© ${ }^{\prime}$ doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA ENGLISH

PRINCIPLES OF MATHEMATICAL INDUCTION - FOR BOARDS

Solved Examples

1. Prove the following by using the principle of mathematical induction
for all $n \in N: 1^{3}+2^{3}+3^{3}+\ldots \ldots \ldots . .+n^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$

- Watch Video Solution

2. Prove the following by the principle of mathematical induction:

$$
\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}++\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

3. Prove the following by the principle of mathematical induction:
4. $2+2.2^{2}+3.2^{3}++n .2^{n}=(n-1) 2^{n+1}+2$

- Watch Video Solution

4. Prove the following by using the principle of mathematical induction for all $\quad n \in N$
5. $2.3+2.3 .4+\operatorname{dot} \operatorname{dot} \operatorname{dot}+\mathrm{n}(\mathrm{n}+1) \quad(\mathrm{n}+2)=\frac{n(n+1)(n+2)(}{4}$

- Watch Video Solution

5. Prove the following by the principle of mathematical induction: $7+77+777++777++\ddot{n}-$ digits $7=\frac{7}{81}\left(10^{n+1}-9 n-10\right)$ for all $n \in N B$.

- Watch Video Solution

6. Prove by the principle of mathematical induction that $\frac{n^{5}}{5}+\frac{n^{3}}{3}+\frac{7 n}{15}$ is a natural number for all $n \in N$.

(Watch Video Solution

7.

prove
that
$\cos \alpha \cos 2 \alpha \cos 4 \alpha \ldots \ldots \cos \left(2^{n-1} \alpha\right)=\frac{\sin 2^{n} \alpha}{2^{n} \sin \alpha} f$ or all $n \in N$

D Watch Video Solution

8. Show that $n^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 for every natural number n.

D Watch Video Solution

9. Using the Principle of mathematical induction, show that $11^{n+2}+12^{2 n+1}$, where n is a natural number is divisible by 133.
10. Prove that for $n \in N, 10^{n}+3.4^{n+2}+5$ is divisible by 9 .

- Watch Video Solution

11. Using the principle of mathematical induction. Prove that $\left(x^{n}-y^{n}\right)$ is divisible by $(x-y)$ for all $n \in N$.

- Watch Video Solution

12. Show by using the principle of mathematical induction that for all natural number $n>2,2^{n}>2 n+1$

- Watch Video Solution

13. Prove the following by using the principle of mathematical induction

$$
\text { for all } n \in N: 1+2+3++n<\frac{1}{8}(2 n+1)^{2}
$$

Watch Video Solution

14. Prove the following by using the principle of mathematical induction for all $n \in N:(2 n+7)<(n+3)^{2}$.

- Watch Video Solution

15. Prove that $(1+x)^{n} \geq(1+n x)$, for all natural number n , where $x \succ 1$.

- Watch Video Solution

Exercise

1. Prove that : $1^{2}+2^{2}+3^{2}++n^{2}=\frac{n(n+1)(2 n+1)}{6}$
2. If $P(n)$ be the statement " $10 n+3$ is a prime number", then prove that $P(1)$ and $P(2)$ are true but $P(3)$ is false.

Watch Video Solution

3. Prove by induction that $4+8+12++4 n=2 n(n+1)$ for all $n N$.

- Watch Video Solution

4. Prove the following by the principle of mathematical induction: $1+2+3++n=\frac{n(n+1)}{2} i \dot{e}$, the sum o the first n natural numbers is $\frac{n(n+1)}{2}$.

- Watch Video Solution

5. Prove by the principle of mathematical induction that for all $n \in N$:
$1^{2}+2^{2}+3^{2}++n^{2}=\frac{1}{6} n(n+1)(2 n+1)$
6. Prove the following by the principle of mathematical induction:
$1+3+3^{2}++3^{n-1}=\frac{3^{n}-1}{2}$

- Watch Video Solution

7. Prove the following by using the principle of mathematical induction
for all $n \in N: \frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\dot{\vdots} \frac{1}{2^{n}}=1-\frac{1}{2^{n}}$

- Watch Video Solution

8. Prove the rule of exponents $(a b)^{n}=a^{n} b^{n}$ by using principle of mathematical induction for every natural number.

- Watch Video Solution

9. Prove the following by using the principle of mathematical induction for all $n \in N: 1^{2}+3^{2}+5^{2}+\dot{+}(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$

- Watch Video Solution

10. Prove by using the principle of mathemtical induction:
$3.2^{2}+3.2^{3}+\ldots+3^{n} .2^{n+1}=\frac{12}{5}\left(6^{n}-1\right)$

- Watch Video Solution

11. Using the principle of mathematical induction prove that :
12. $3+2.3^{2}+3.3^{3}++n .3^{n}=\frac{(2 n+1) 3^{n+1}+3}{4}$ for all $n \in N$.

- Watch Video Solution

12. Prove the following by using the principle of mathematical induction
for all $n \in N: a+a r+a r^{2}+\dot{+} a r^{n-1}=\frac{a\left(r^{n}-1\right)}{r-1}$

(Watch Video Solution

13. Prove the following by the principle of mathematical induction:
$a+(a+d)+(a+2 d)++(a+(n-1) d)=\frac{n}{2}[2 a+(n-1) d]$

- Watch Video Solution

14. Prove by the principle of mathematical induction that for all nbelongs $\rightarrow N$:

$$
\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}++\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}
$$

- Watch Video Solution

15. Prove the following by the principle of mathematical induction:

$$
\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\ldots . .+\frac{1}{(4 n-1)(4 n+3)}=\frac{n}{3(4 n+3)}
$$

16. Prove the following by the principle of mathematical induction:
$1.2+2.3+3.4++n(n+1)=\frac{n(n+1)(n+2)}{3}$

D Watch Video Solution

17. Prove the following by the principle of mathematical induction:
$1.3+2.4+3.5++(2 n-1)(2 n+1)=\frac{n\left(4 n^{2}+6 n-1\right)}{3}$

- Watch Video Solution

18. Prove the following by the principle of mathematical induction:

$$
\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+\ldots .+\frac{1}{(3 n-2)(3 n+1)}=\frac{n}{3 n+1}
$$

- Watch Video Solution

19. Prove the following by the principle of mathematical induction:

$$
\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}++\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{6 n+4}
$$

20. Prove the following by the principle of mathematical induction:

$$
\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{(2 n+1)(2 n+3)}=\frac{n}{3(2 n+3)}
$$

- Watch Video Solution

21. Prove the following by using the principle of mathematical induction for
all

$$
n \in N:
$$

$\frac{1}{1.2 .3}+\frac{1}{2.3 .4}+\frac{1}{3.4 .5}++\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$

- Watch Video Solution

22. Using the principle of mathematical induction prove that $1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}++\frac{1}{1+2+3++n}=\frac{2 n}{n+}$ for all $n \in N$

- Watch Video Solution

23. Prove the following by using the principle of mathematical induction
for all $n \in N:\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right) 1+\frac{1}{n}=(n+1)$

- Watch Video Solution

24. Prove, by induction, that $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$ for all positive as well as negative integral values of n

- Watch Video Solution

25. Prove by the principle of mathematical induction, that
$3 \times 6+6 \times 9+9 \times 12+\ldots+(3 n) \times(3 n+3)=3 n(n+1)(n+2)$

- Watch Video Solution

26. $n(n+1)(n+5)$ is divisible by 6 .
27. If n is as natural number, using mathematical induction show that: $n^{7}-n$ is a multiple of 7 .

- Watch Video Solution

28. If n is a positive integer, show that $4^{n}-3 n-1$ is divisible by 9

- Watch Video Solution

29. Show that $9^{n+1}-8 n-9$ is divisible by 64 , where n is a positive integer.

- Watch Video Solution

30. Prove the following by using the principle of mathematical induction for all $n \in N: 10^{2 n-1}+1$ is divisible by 11 .

- Watch Video Solution

31. Prove, by mathematical induction, that $x^{n}+y^{n}$ is divisible by $x+y$ for any positive odd integer n.

- Watch Video Solution

32. about to only mathematics

- Watch Video Solution

33. Using principle of mathematical induction prove that $x^{2 n}-y^{2 n}$ is divisible by $x+y$ for all nbelongs $\rightarrow N$.
34. For every positive integer n, prove that $7^{n}-3^{n}$ is divisible by 4 .

- Watch Video Solution

35. Using the principle of mathematical induction prove that $41^{n}-14^{n}$ is a multiple of $27 \& 7^{n}-3^{n}$ is divisible by 4 .

- Watch Video Solution

36. Show by using the principle of mathematical induction that $2^{n}>n . n \in N$.

- Watch Video Solution

37. Using mathematical induction, prove the following:
$1+2+3+\ldots+n<(2 n+1)^{2} \forall n \in N$
