©゙doubtnut India's Number 1 Education App

MATHS

BOOKS - KC SINHA ENGLISH

PROGRESSIONS (AP GP) - FOR COMPETITION

Solved Examples

1. If $x^{18}=y^{21} z^{28}$, then $3 \log _{y} x, 3 \log _{z} y, 7 \log _{x} z$ are in

- Watch Video Solution

2. Four different integers form an increasing A.P. One of these numbers is equal to the sum of the squares of the other three numbers. Then The smallest number is
3. If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first $(p+q)$ terms.

- Watch Video Solution

4. The sums of n terms of two AP's are in the ratio $(3 n-13):(5 n+21)$.

Find the ratio of their 24 th terms.

- Watch Video Solution

5. If the sum of m terms of an A.P. is equal to the sum of either the next n terms or the next p terms, then prove that $(m+n)\left(\frac{1}{m}-\frac{1}{p}\right)=(m+p)\left(\frac{1}{m}-\frac{1}{n}\right)$.

- Watch Video Solution

6. If $S_{1}, S_{2}, S_{3} \ldots \ldots, S_{2 n}$ are the sums of infinite geometric series whose first terms are respectively $1,2,3, \ldots ., 2 n$ and common ratio are respectively,
$\frac{1}{2}, \frac{1}{3}, \ldots \ldots ., \frac{1}{2 n+1}$, find the value of,$S_{1}^{2}+S_{2}^{2}+\ldots \ldots .+S_{2 n-1}^{2}$.

- Watch Video Solution

7. about to only mathematics

- Watch Video Solution

8. Find the natural number a for which $\sum_{k=1}^{n} f(a+k)=16\left(2^{n}-1\right)$, where the function f satisfies the relation $f(x+y)=f(x) f(y)$ for all natural number x, yand, further, $f(1)=2$.

- Watch Video Solution

9. If S_{1}, S_{2}, S_{3} denote the sum of n terms of 3 arithmetic series whose first terms are unity and their common difference are in HP, prove that $n=\frac{2 S_{3} S_{1}-S_{1} S_{2}-S_{2} S_{3}}{S_{1}-2 S_{2}+S_{3}}$.

- Watch Video Solution

10. If $x_{1}, x_{2}, x_{3} \ldots, x_{n}$ are in H.P. prove that $x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+\ldots \ldots \ldots+x_{n-1} x_{n}=(n-1) x_{1} x_{n}$

- Watch Video Solution

11. If the p th , qth, r th and sth terms of an A.P are in G.P then $p-q, q-r, r-s$ are in

- Watch Video Solution

12. If the $(m+1) t h,(n+1) t h, \operatorname{and}(r+1) t h$ terms of an A.P., are in G.P. and m, n, r are in H.P., then find the value of the ratio of the common difference to the first term of the A.P.

- Watch Video Solution

13. If $y-z, 2(y-a), y-x$ are in H.P. prove that $x-a, y-a, z-a$ are in G.P.

- Watch Video Solution

14. Find the coefficient of x^{99} and x^{98} in the polynomial $(x-1)(x-2)(x-3) \ldots \ldots \ldots . .(x-100)$.

- Watch Video Solution

15. Find the sum to n terms of the series:
$\frac{1}{1+1^{2}+1^{4}}+\frac{2}{1+2^{2}+2^{4}}+\frac{3}{1+3^{2}+3^{4}}+$

- Watch Video Solution

16. Find the sum to n terms of the series : $5+11+19+29+41$

- Watch Video Solution

17. Sum to n terms the series $1+3+7+15+31+\ldots$

- Watch Video Solution

18.1 $+2.2+3.2^{2}+4.2^{3}+. . . t_{n}$ is :

- Watch Video Solution

19. $\left(a^{2}+b^{2}+c^{2}+d^{2}\right) x^{2}-2(a b+b c+c d+d e) x+\left(b^{2}+c^{2}+d^{2}+e^{2}\right) \leq 1$ then a, b, c, d, e are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

20. If S_{n} denote the sum of first n terms of an A.P. whose first term is $a a n d S_{n x} / S_{x}$ is independent of x, then $S_{p}=p^{3}$ b. $p^{2} a$ c. $p a^{2}$ d. a^{3}

- Watch Video Solution

21. If rational numbers a, b, c be th p th, q th, rth terms respectively of an A.P. then roots of the equation $a(q-r) x^{2}+b(r-p) x+c(p-q)=0$ are necessarily (A) imaginary (B) rational (C) irrational (D) real and equal

- Watch Video Solution

22. If $(r)_{n}$ denites the number $r r r \ldots .$. (n digits), where $r=1,2,3, \ldots \ldots ., 9$ and $a=(6)_{n}, b=(8)_{n}, c=(4)_{2 n}$, then

Watch Video Solution

23. If $a_{1}, a_{2}, a_{3}, \ldots$ are in G. P., where $a_{i} \in C$ (where C satands for set of complex numbers) having r as common ratio such that $\sum_{k=1}^{n} a_{2 k-1} \sum_{k=1}^{n} a_{2 k+3} \neq 0$, then the number of possible values of r is

- Watch Video Solution

24. If $a_{1}, a_{2}, a_{3}, a_{4}$ are in H.P. then $\frac{1}{a_{1} a_{4}} \sum_{r=1}^{3} a_{r} a_{r+1}$ is a root of (A)

$$
\begin{align*}
& x^{2}-2 x-15=0 \quad \text { (B) } x^{2}+2 x+15=0 \quad \text { (C) } x^{2}+2 x-15=0 \\
& x^{2}-2 x+15=0
\end{align*}
$$

- Watch Video Solution

25. If a and b are digits between 0 and 9 the the rational number represented by $0 . a b a b a b$ is (A) $\frac{10 a+b}{99}$ (B) $\frac{9+b}{90}$ (C) $\frac{a+b}{99}$ (D) $\frac{(99 a b+10 a+b)}{990}$

- Watch Video Solution

26. If $\frac{l+m x}{l-m x}=\frac{m+n x}{m-n x}=\frac{n+p x}{n-p x}, x \neq 0$. Then the number $\mathrm{I}, \mathrm{m}, \mathrm{n}$ and p are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

27. If $a_{a}, a_{2}, a_{3}, \ldots, a_{n}$ are in H.P. and $f(k)=\sum_{r=1}^{n} a_{r}-a_{k}$ then $\frac{a_{1}}{f(1)}, \frac{a_{2}}{f(2)}, \frac{a_{3}}{f(n)}$ are in :

- Watch Video Solution

28. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} c^{n}$, wherera, $b, a n d c$ are in A.P. and $|a|<,|b|<1, a n d|c|<1$, then prove that $x, y a n d z$ are in H.P.

- Watch Video Solution

29. If $a+b+c=3$ and $a>0, b>0, c>0$ then the greatest value of $a^{2} b^{3} c^{2}$ is

- Watch Video Solution

30.

$\frac{1^{4}}{1.3}+\frac{2^{4}}{3.5}+\frac{3^{4}}{5.7}+\ldots \ldots+\frac{n^{4}}{(2 n-1)(2 n+1)}=\frac{n\left(4 n^{2}+6 n+5\right)}{48}+\frac{}{16}$

(Watch Video Solution

31. The sum of the sereis
$1+2^{2} x+3^{2} x^{2}+4^{2} x^{3}+\ldots . \infty$ where $-1<x<1=$
$\frac{1+x}{((1-x))^{3}}$
(B) $\frac{x}{(1+x)^{3}}$
(C) $\frac{1-x^{2}}{(1+x)^{3}}$
(D) none of these

- Watch Video Solution

32. For a positive integer n let
$a(n)=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots .+\frac{1}{\left(2^{n}\right)-1}$. Then $a(100) \leq 100 \quad$ b.
$a(100)>100$ c. $a(200) \leq 100$ d. $a(200) \leq 100$

- Watch Video Solution

33. Let $\Delta(x)=\left|\begin{array}{lll}x+a & x+b & x+a-c \\ x+b & x+c & x-1 \\ x+c & x+d & x-b+d\end{array}\right|$ and
$f_{0}^{2} \Delta(x) d x=-16$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are in AP then the common difference of the AP is equal to

- Watch Video Solution

34. If a, b, c are in A.P and a^{2}, b^{2}, c^{2} are in H.P then which is of the following is /are possible?

Watch Video Solution

35. Sum to n terms of the series
$\frac{1}{1.2 .3 .4}+\frac{1}{2.3 .5 .6}+\frac{1}{3.4 .5 \cdot 6}+\ldots \ldots$, is

- Watch Video Solution

36. Find the sum of series $\left(3^{3}-2^{3}\right)+\left(5^{3}-4^{3}\right)+\left(7^{3}-6^{3}\right)+\ldots n$ terms.

- Watch Video Solution

37. Find a three digit number such that its digits are in increasing G.P.
(from left to right) and the digits of the number obtained from it by
subtracting 100 form an A.P.

- Watch Video Solution

38. If $\log _{3} 2, \log _{3}\left(2^{x}-5\right)$ and $\log _{3}\left(2^{x}-\frac{7}{2}\right)$ are in A.P., then x is equal to

- Watch Video Solution

Exercise

1. If $a_{1}, a_{2}, a_{3}, a_{n}$ are in A.P., where $a_{i}>0$ for all i, show that
$\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\ldots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}$.

- Watch Video Solution

2. If $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots \ldots . a_{n}$ are in A.P. whose common difference is d , show tht $\sum_{2}^{n} \frac{\tan ^{-1} d}{1+a_{n-1} a_{n}}=\tan ^{-1}\left(\frac{a_{n}-a_{1}}{1+a_{n} a_{1}}\right)$
3. If $a_{1}, a_{2}, a_{3}, \ldots \ldots . a_{n}, a_{n+1}, \ldots \ldots$. be A.P. whose common difference is d and $S_{1}=a_{1}+a_{2}+\ldots \ldots \ldots+a_{n}, S_{2}=a_{n+1}+\ldots \ldots \ldots \ldots+a_{2 n}, S_{3}=a_{2 n+1}$ etc show that $S_{1}, S_{2}, S_{3}, S_{4} \ldots \ldots \ldots \ldots$ are in A.P. whose common difference is $n^{2} d$.

- Watch Video Solution

4. If $\log 2, \log \left(2^{x}-1\right)$ and $\log 2 \log \left(2^{x}+3\right)$ are in A.P., write the value of x.

- Watch Video Solution

5. If $I_{n}=\int_{0}^{\pi} \frac{1-\cos 2 n x}{1-\cos 2 x} d x$ or $\int_{0}^{\pi} \frac{\sin ^{2} n x}{\sin ^{2} x} d x$, show that $I_{1}, I_{2}, I_{3} \ldots \ldots \ldots \ldots$ are inA.P.
6. A cashier has to count a bundle of Rs. 12,000 one rupee notes. He counts at the rate of Rs. 150 per minute for an hour, at the end of which he begins to count at the rate of Rs. 2 less every minute then he did the previous minute. Find how long he will take to finish his task and explain the double answer.

- Watch Video Solution

7. If a, b, c, d and p are different real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$, then show that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are in G.P.

- Watch Video Solution

8. If $\log _{x} a, a^{x / 2}$ and $\log _{b} x$ are in GP, then x is equal to

- Watch Video Solution

9. about to only mathematics

- Watch Video Solution

10. Prove that the numbers $49,4489,444889, \ldots$. Obtained by inserting 48 into the middle of the preceding numbers are square of integers.

- Watch Video Solution

11. Solve the following equations for x and y : $\log _{10} x+\log _{10}(x)^{\frac{1}{2}}+\log _{10}(x)^{\frac{1}{4}}+\ldots .=y$ $\frac{1+3+5+\ldots+(2 y-1)}{4+7+10+\ldots+(3 y+1)}=\frac{20}{7 \log _{10} x}$

(Watch Video Solution

12. Find the values of $x \in(-\pi, \pi)$ which satisfy the equation $\left.8^{1+|\cos x|+\left|\cos ^{2} x\right|+\left|\cos ^{3} x\right|+\ldots}\right)=4^{3}$
13. The sum oif the first ten terms of an A.P. is equal to 155 , and the sum of the first two terms of a G.P. is 9 . Find these progressionsif the first term of the A.P. equals the common ratio of the G.P. and the 1st term of G.P. equals the common difference of A.P.

- Watch Video Solution

14. Find the sum of all the numbers of the form n^{3} which lie between 100 and 10000 .

- Watch Video Solution

15. The sum to 50 terms of the series

$$
\frac{3}{1^{2}}+\frac{5}{1^{2}+2^{2}}+\frac{7}{1^{+} 2^{2}+3^{2}}+\ldots .+\ldots i s
$$

16. Show that $\left.1 /(x+1)+2 /\left(x^{\wedge} 2+1\right)+4 / x^{\wedge} 4+1\right)+\ldots . .+2^{\wedge} n /\left(x^{\wedge} 2^{\wedge} n+1\right)=\quad /(x-1)-$ $2^{\wedge}(n+1) /\left(x^{\wedge} 2(n+1)-1\right)$

Watch Video Solution

17. The sum of n terms of the series $5 / 1 \cdot 2.1 / 3+7 / 2 \cdot 3 \cdot 1 / 3^{\wedge} 2+9 / 3.4 .1 / 3^{\wedge} 3+11 / 4.5 \cdot 1 / 3^{\wedge} 4+. . i s(A) 1+1 / 2^{\wedge}(n-1) .1 / 3^{\wedge} n(B)$ $1+1 /(\mathrm{n}+1) \cdot 1 / 3^{\wedge} \mathrm{n}(C) 1-1 /(\mathrm{n}+1) \cdot 1 / 3^{\wedge} \mathrm{n}(D) 1+1 / 2 \mathrm{n}-1.1 / 3^{\wedge} \mathrm{n}^{`}$

- Watch Video Solution

18. If x and y are positive real numbers and m, n are any positive integers, then prove that $\frac{x^{n} y^{m}}{\left(1+x^{2 n}\right)\left(1+y^{2 m}\right)}<\frac{1}{4}$

- Watch Video Solution

19. If the arthmetic mean of $(b-c)^{2},(c-a)^{2}$ and $(a-b)^{2}$ is the same as that of $(b+c-2 a)^{2},(c+a-2 b)^{2}$ and $(a+b-2 c)^{2}$ show that $a=b=c$.

- Watch Video Solution

20. If a, b, c are real numbers such that $3\left(a^{2}+b^{2}+c^{2}+1\right)=2(a+b+c+a b+b c+c a)$, than a, b, c are in

- Watch Video Solution

21. If a, b, c, d are distinct integers in an A.P. such that $d=a^{2}+b^{2}+c^{2}$, then find the value of $a+b+c+$..

- Watch Video Solution

22. If $a_{n}=\int_{0}^{\pi} \frac{\sin (2 n-1) x}{\sin x} d x$. Then the number $a_{1}, a_{2}, a_{3} \ldots . . .$. . Are in
(A) A.P (B) G.P (C) H.P (D) none of these

- Watch Video Solution

23. If a, b, c, d, e
are
in
H.P.,
then
$\frac{a}{b+c+d+e}, \frac{b}{a+c+d+e}, \frac{c}{a+b+d+e}, \frac{d}{a+b+c+e}, \frac{e}{a+b+c}$ are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

24. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are proper fractiion are in H.P. and $x \sum_{n=1}^{\infty} a^{n}, y=\sum_{n=1}^{\infty} b^{n}, z=\sum_{n=1}^{\infty} c^{n}$ then $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are in (A) A.P. (B) G.P. (C) H.P.
(D) none of these
25. If $S_{1}, S_{2}, S_{3}, \ldots \ldots \ldots \ldots S_{n}$ denote the sum of $1,2,3 \ldots \ldots \ldots . . .$. n terms of an A.P. having first term a and $\frac{S_{k x}}{S_{x}}$ is independent of x then $S_{1}+S_{2}+S_{3}+\ldots \ldots+S_{n}=\quad$ (A) $\quad \frac{n(n+1)(2 n+1) a}{6}$
${ }^{\wedge}(n+2) C_{3} a(\mathrm{C}) \wedge(n+1) C_{3} a$ (D) none of these

- Watch Video Solution

26. If a, b, c, d are rational and are in G.P. then the rooots of equation $(a-c)^{2} x^{2}+(b-c)^{2} x+(b-x)^{2}-(a-d)^{2}=$ are necessarily (A) imaginary (B) irrational (C) rational (D) real and equal

- Watch Video Solution

27.

$\frac{1}{\sqrt{2}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{11}}+\frac{1}{\sqrt{11}+\sqrt{14}}+\ldots \rightarrow n$
terms $=$ (A) $\frac{n}{\sqrt{3 n+2}-\sqrt{2}}$ (B) $\frac{1}{3}\left(\sqrt{2}-\sqrt{3 n+2}\right.$ (C) $\frac{n}{\sqrt{3 n+2}+\sqrt{2}}$
(D) none of these
28. If a,b,c are $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ term of an AP and GP both, then the product of the roots of equation $a^{b} b^{c} c^{a} x^{2}-a b c x+a^{c} b^{c} c^{a}=0$ is equal to :

- Watch Video Solution

29. If a,b,c, be the pth, qth and rth terms respectivley of a G.P., then the equation $a^{q} b^{r} c^{p} x^{2}+p q r x+a^{r} b^{-p} c^{q}=0$ has (A) both roots zero (B) at least one root zero (C) no root zero (D) both roots unilty

- Watch Video Solution

30.

$a=\underbrace{111 \ldots \ldots .1}_{55 \text { times }}, b=1+10+10^{2}+10^{3}+10^{4}$ and $c=1+10^{5}+10^{10}+$.
then prove that $a=b c$
31. If a, b, c, d, x are real and the roots of equation $\left(a^{2}+b^{2}+c^{2}\right) x^{2}-2(a b+b c+c d) x+\left(b^{2}+c^{2}+d^{2}\right)=0 \quad$ are real and equal then a,b,c,d are in (A) A.P (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

32. If an A.P., a G.P. and a H.P. have the same first term and same $(2 n+1)$ th term and their $(n+1)^{n}$ terms are a,b,c respectively, then the radius of the circle. $x^{2}+y^{2}+2 b x+2 k y+a c=0$ is

- Watch Video Solution

33. If $\sum_{r=1}^{n} t_{r}=\sum_{k=1}^{n} \sum_{j=1}^{k} \sum_{i=1}^{j} 2$, then $\sum_{r=1}^{n} \frac{1}{t_{r}}=$

- Watch Video Solution

34. If the sum of n consecutive odd numbers is $25^{2}-11^{2}$, then

- Watch Video Solution

35. If a,b,c,d are distinct positive then $\frac{a^{n}}{b^{n}}>\frac{c^{n}}{d^{n}}$ for all εN if a, b, c, d are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

36. If $a=\sum_{r=1}^{\infty}\left(\frac{1}{r}\right)^{2}, b=\sum_{r=1}^{\infty} \frac{1}{(2 r-1)^{2}}$, then $\frac{a}{b}=$ (A) $\frac{5}{4}$ (B) $\frac{4}{5}$ (C) $\frac{3}{4}$
(D) none of these

Watch Video Solution

37. If $9 A . M$. ' s and $9 H . M^{\prime} s$ be inserted between 2 and 3 and A be any
$A . M$. and H be the corresponding $H . M$., then $H(5-A)$
38. If $a-b, a x-b y, a x^{2}-b y^{2} a, b \neq 0$) are in G.P., then $x, y \frac{a x-b y}{a-b}$ are in (A) A.P. only (B) G.P.only (C) A.P., G.P. (D) A.P., and G.P and H.P

- Watch Video Solution

39. If the square of differences of three numbers be in A.P., then their differences re in (A) A.P. (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

40. 1,3,9 can be terms of (A) an A.P.but not of a G.P (B) G.P. but not of an
A.P. (C) A.P. and G.P both (D) neither A.P nor G.P

- Watch Video Solution

41. If $t_{r}=2^{\frac{r}{3}}+2^{-\frac{r}{3}}$, then $\sum_{r=1}^{100} t_{r}^{3}-3 \sum_{r=1}^{100} t_{r}+1=\quad$ (A) $\frac{2^{101}+1}{2^{100}}$
$\frac{2^{101}-1}{2^{100}}$
(C) $\frac{2^{201}+1}{2^{100}}$
(D) none of these

(Watch Video Solution

42. If a, b, c in G.P. x, y be the A.M. \'s between a, b and b, c respectively then $\left(\frac{a}{x}+\frac{c}{y}\right)\left(\frac{b}{x}+\frac{b}{y}\right)=(\mathrm{A}) 2$ (B) -4 (C) 4 (D) none of these

- Watch Video Solution

43. If positive numbers a, b, c are in H.P., then equation $x^{2}-k x+2 b^{101}-a^{101}-c^{101}=0(k \in R)$ has both roots positive both roots negative one positive and one negative root both roots imaginary

- Watch Video Solution

44. The sum $\sum_{n=1}^{\infty} \tan ^{-1}\left(\frac{4 n}{n^{4}-2 n^{2}+2}\right)$ is equal to

- Watch Video Solution

45.

$b_{i}=1-a_{i}, n a=\sum_{i=1}^{n} a_{i}, n b=\sum_{i=1}^{n} b_{i}$, then $\sum_{i=1}^{n} a_{i}, b_{i}+\sum_{i=1}^{n}\left(a_{i}-a\right)^{2}=$ $a b$ b. $n a b c .(n+1) a b$ d. $n a b$

Watch Video Solution

46. If the sum of the series $\sum_{n=0}^{\infty} r^{n},|r|<1$ is s, then find the sum of the series $\sum_{n=0}^{\infty} r^{2 n}$.

(Watch Video Solution

47. Four numbers are such that the first three are in.A.P while the last three are in G.P. If the first number is 6 and common ratio of G.P. is $\frac{1}{2}$ the the number are (A) 6,8,4,2 (B) 6,10,14,7 (C) 6,9,12,6 (D) 6,4,2,1
48. The sum of all two digit odd natural numbers in (A) 5049 (B) 2475 (C) 4905 (D) 2530

- Watch Video Solution

49. The series. $\frac{2 x}{x+3}+\left(\frac{2 x}{x+3}\right)^{2}+\left(\frac{2 x}{x+3}\right)^{3}+\ldots \infty$
have a definite sum when

- Watch Video Solution

50. If $\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}$ harmonic mean of $a \& b$ then n is Watch Video Solution
51. The 15 th term of the series $2 \frac{1}{2}+1 \frac{7}{13}+1 \frac{1}{9}+\frac{20}{23}+\ldots$ is
52. Let $a_{1}, a_{2}, \ldots ., a_{10}$ be in A.P. and $h_{1}, h_{2} \ldots h_{10}$ be in H.P. If $a_{1}=h_{1}=2$ and $a_{10}=h_{10}=3$, then $a_{4} h_{7}$ is:

- Watch Video Solution

53. If a, b, c, d are positive real umbers such that $a=b+c+d=2$, then $M=(a+b)(c+d)$ satisfies the relation $0 \leq M \leq 11 \leq M \leq 22 \leq M \leq 33 \leq M \leq 4$

- Watch Video Solution

54. If $a=1+b+b^{2}+b^{3}+\ldots . \rightarrow \infty$ where $|b|<1$ then roots of equation $a x^{2}+x-a b=0$ are (A) $-1, a b$ (B) $1, b$ (C) $-1, b$ (D) $-1, a$

- Watch Video Solution

55. If the sum of the first $2 n$ terms of the A.P. $2,5,8, \ldots$, is equal to the sum of the first n terms of A.P. 57, 59, 61, ..., then n equals 10 b. 12 c. 11 d .13

Watch Video Solution

56. If the pth term of an A.P. is q and the qth term isp, then find its rth term.

- Watch Video Solution

57. If the numbers $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are in A.P. then $m^{7 p}, m^{7 q}, m^{7 r}(m>0)$ are in (A)
A.P. (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

58. Find the sum $1^{2}+\left(1^{2}+2^{2}\right)+\left(1^{2}+2^{2}+3^{2}\right)+\ldots$ up to $22^{n d}$ find the sum when n is odd.
59. If $1^{2}+2^{2}+3^{2}+n^{2}=1015$ then the value of n is equal to (A) 13 (B)

14 (C) 15 (D) none of these

- Watch Video Solution

60. Sum of the first n terms of the series $\frac{1}{2}+\frac{3}{4}+\frac{7}{8}+\frac{15}{16}+\ldots \ldots \ldots$ is equals to (a). $2^{n}-n-1$ (b). $1-2^{-n}$ (c). $n+2^{-n}-1$ (d). $2^{n}+1$

- Watch Video Solution

61. If the sum of the roots of the equation is equal to the sum of the squares of their reciprocals, then (A) a, b, c are in A.P. (B) a^{2}, b^{2}, c^{2} are in G.P. (C) $a b^{2}, b c^{2}, c a^{2}$ are in A.P. (D) $a b, b c, c a$ are G.P.

- Watch Video Solution

62. The third term of a geometric progression is 4 . Then the product of the first five terms is a. 4^{3} b. 4^{5} c. 4^{4} d. none of these

- Watch Video Solution

63. If A_{1}, A_{2} be two A.M. and G_{1}, G_{2} be two G.K.s between aandb then $\frac{A_{1}+A_{2}}{G_{1} G_{2}}$ is equal to $\frac{a+b}{2 a b}$ b. $\frac{2 a b}{a+b}$ c. $\frac{a+b}{a b}$ d. $\frac{a+b}{\sqrt{a b}}$

- Watch Video Solution

64. If $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are distinct positive numbers in A.P., then:

- Watch Video Solution

$65.1+\frac{3}{2}+\frac{5}{2^{2}}+\frac{7}{2^{3}}+\ldots \ldots . \rightarrow \infty$ is equal to (A) 3 (B) 6 (C) 9 (D) 12

- Watch Video Solution

66. STATEMENT-1 : If $a^{x}=b^{y}=c^{z}$, where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are unequal positive numbers and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P. , then
$x^{3}+z^{3}>2 y^{3}$ and
STATEMENT-2 : If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in $\mathrm{H}, \mathrm{P}, a^{3}+c^{3} \geq 2 b^{3}$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are positive real numbers .

- Watch Video Solution

67. If G_{1} and G_{2} are two geometric means inserted between any two numbers and A is the arithmetic mean of two numbers, then the value of $\frac{G_{1}^{2}}{G_{2}}+\frac{G_{2}^{2}}{G_{1}}$ is:

(Watch Video Solution

68. If the sum of n terms of an A.P. is $3 n^{2}+5 n$ and its m th term is 164 , find the value of m.
69. In triangle $A B C$, medians $A D$ and $C E$ are drawn $A D=5, \angle D A C=\pi / 8$, and $\angle A C E=\pi / 4$, then the area of the triangle $A B C$ is equal to

- Watch Video Solution

70. If $x \in\{1,2,3, \ldots, 9\}$ and $f_{n}(x)=x x x \ldots x$ (n digits) , then $f_{n}^{2}(3)+f_{n}(2)$

- Watch Video Solution

71. Let $S_{n}=\sum_{r=0}^{\infty} \frac{1}{n^{r}}$ and $\sum_{n=1}^{k}(n-1) S_{n}=5050$ thenk $=$ (A) 50 (B) 505
(C) 100 (D) 55

- Watch Video Solution

72. Let $f: R \rightarrow R$ such that $f(x)$ is continuous and attains only rational value at all real x and $\mathrm{f}(3)=4$. If $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$ are in H.P. then $\sum_{r=1}^{4} a_{r} a_{r+1}=(A) f(3) \cdot a_{1} a_{5}$ (B) $f(3) \cdot a_{4} a_{5}$ (C) $f(3) \cdot a_{1} a_{2}$ (D) $f(3) \cdot a_{1} a_{3}$

- Watch Video Solution

73. If three successive terms of as G.P. with commonratio $r>1$ form the sides of a triangle and $[r]$ denotes the integral part of x the $[r]+[-r]=(\mathrm{A}) 0(\mathrm{~B}) 1(\mathrm{C})-1(\mathrm{D})$ none of these

- Watch Video Solution

74. Let $a_{n}=\int_{0}^{\frac{\pi}{2}} \frac{1-\cos 2 n x d x}{1-\cos 2 x}$, then ` $\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3$ is in

- Watch Video Solution

75. If $a_{1}, a_{2}, a_{3}, a_{n}$ are in H.P. and $f(k)=\left(\sum_{r=1}^{n} a_{r}\right)-a_{k}$, then $\frac{a_{1}}{f(1)}, \frac{a_{2}}{f(2)}, \frac{a_{3}}{f(3)},, \frac{a_{n}}{f(n)}$, are in a. A.P b. G.P. c. H.P. d. none of these

- Watch Video Solution

76. If the sides of a triangle are in G.P., and its largest angle is twice the smallest, then the common ratio r satisfies the inequality ${ }^{\text {© }} 0$

- Watch Video Solution

77. Find $\frac{5}{1.2} \frac{.1}{3}+\frac{7}{2.3} \frac{.1}{3^{2}}+\frac{9}{3.4} \frac{.1}{3^{3}}+\frac{11}{4.5} \frac{.1}{3^{4}}+\ldots \ldots \ldots \ldots \rightarrow n$ terms

- Watch Video Solution

78. If $\frac{b+c}{a+d}=\frac{b c}{a d}=3\left(\frac{b-c}{a-d}\right)$ then a, b, c, d are in (A) H.P. (B) G.P. (C) A.P. (D) none of these

- Watch Video Solution

79. If $\log \left(\frac{2 b}{3 c}\right), \log \left(\frac{4 c}{9 a}\right)$ and $\log \left(\frac{8 a}{27 b}\right)$ are in A.P. where a, b, c and are in G.P. then a,b,c are the length of sides of (A) a scelene triangle (B) anisocsceles tirangel (C) an equilateral triangle (D) none of these

- Watch Video Solution

80. If S_{r} denote the sum of first ' r ' terms of a non constaint A.P. and $\frac{S_{a}}{a^{2}}=\frac{S_{b}}{b^{2}}=c$, where a,b,c are distinct then $S_{c}=$

- Watch Video Solution

81. If S_{p} denotes the sum of the series $1+r^{p}+r^{2 p}+\rightarrow \infty$ and s_{p} the sum of the series $1-r^{2 p} r^{3 p}+\rightarrow \infty,|r|<1$, then $S_{p}+s_{p}$ in term of $S_{2 p}$ is $2 S_{2 p}$ b. 0 c. $\frac{1}{2} S_{2 p}$ d. $-\frac{1}{2} S_{2 p}$
82. If a, b and c are in AP, then the straight lines $a x+b y+c=0$ will always pass through

- Watch Video Solution

83. The value of $10^{3}+11^{3}+12^{3}+\ldots \ldots \ldots .+100^{3}$ is equal to (A) 25500475 (B) 25500000 (C) 25000000 (D) none of these

- Watch Video Solution

84. If $a_{n}=$ the digit at units palce in the number o $1!+2!+3!+\ldots \ldots \ldots n!$ for $n \geq 4$ the $a_{4}, a_{5}, a_{6}, \ldots \ldots \ldots$ are in (A) A.P. only (B) G.P. only (C) A.P. and G.P. only (D) A.P., G.P. and H.P.

- Watch Video Solution

85. Let a, b, c be positive real numers such that $b x^{2}+\left(\sqrt{\left((a+c)^{2}+4 b^{2}\right)} x+(a+c),=0, \forall x \varepsilon R\right.$, then $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in (A) G.P. (B) A.P. (C) H.P. (D) none of these

- Watch Video Solution

86. The coefficient of x^{49} in the product $(x-1)(x-3)(x-99) i s$ a. -99^{2} b. 1 c. -2500 d . none of these

- Watch Video Solution

87. If $a, a_{1}, a_{2}, a_{3}, a_{2 n}, b$ are in A.P. and $a, g_{1}, g_{2}, g_{3},, g_{2 n}, b$. are in G.P. and $h \quad s$ the H.M. of aandb, then prove that $\frac{a_{1}+a_{2 n}}{g_{1} g_{2 n}}+\frac{a_{2}+a_{2 n-1}}{g_{1} g_{2 n-1}}++\frac{a_{n}+a_{n+1}}{g_{n} g_{n+1}}=\frac{2 n}{h}$

- Watch Video Solution

88. Let α be the A.M. and β, γ be two G.M.|'s between two positive numbes then the value of $\frac{\beta^{3}+\gamma^{3}}{\alpha \beta \gamma}$ is (A) 1 (B) 2 (C) 0 (D) 3

- Watch Video Solution

89. If the sum of n positive number is $2 n$, then the product of these numbers is (A) $\leq 2^{n}$ (B) $\geq 2^{n}$ (C) divisible by 2^{n} (D) none of these

- Watch Video Solution

90. Let $\mathrm{p}, \mathrm{q}, \mathrm{r}$ are positive real numbers, such that $27 p q r \geq(p+q+r)^{2}$ and $3 p+4 p+5 r=12$, then $p^{2}+q^{4}+r^{3}=$

- Watch Video Solution

91. Sum of the first n terms of an A.P. having positive terms is given by $S_{n}=\left(1+2 T_{n}\right)\left(1-T_{n}\right)\left(w h e r e T_{n}\right.$ is the nth term of the series $)$. The
value of T_{2}^{2} is (A) $\frac{\sqrt{2}+1}{2 \sqrt{2}}$ (B) $\frac{\sqrt{2}-1}{2 \sqrt{2}}$ (C) $\frac{1}{2 \sqrt{2}}$ (D) none of these

- Watch Video Solution

92. Let a be the A.M. and b,c bet wo G.M\'s between two positive numbers. Then $b^{3}+c^{3}$ is equal to (A) $a b c$ (B) $2 a b c$ (C) $3 a b c$ (D) $4 a b c$

- Watch Video Solution

93. If $a>0, b>0, c>0$ and the minimum value of $a^{2}(b+c)+b^{2}(c+a)+c^{2}(a+b)$ is kabc, then k is (A) 1 (B) 3 (C) 6 (D) 4

- Watch Video Solution

94. If $(2+x)\left(2+x^{2}\right)\left(2+x^{3}\right) \ldots \ldots \ldots . .\left(2+x^{100}\right)=\sum_{r=0}^{n} k_{r} x^{r}$, then $n=(A) 2550$ (B) 5050 (C) 2^{8} (D) none of these

- Watch Video Solution

95. Let S_{1}, S_{2}, \ldots. be squares such that for each $n \geq 1$, the length of a side of S_{n} equals the lengh of a diagonal of S_{n+1}. If the length of a side of S_{1} is 10 cm and the area of S_{n} less than 1 sq cm . Then, find the value of n.

- Watch Video Solution

96. The next term of the G.P. $x, x^{2}+2, a n d x^{3}+10$ is $\frac{729}{16}$ b. 6 c. 0 d. 54

- Watch Video Solution

97. If ${ }^{\wedge} n C_{4},{ }^{n} C_{5}$ and ${ }^{\wedge} n C_{6}$ are in A.P. then n is equal to (A) 11 (B) 14 (C) 12 (D) 9

- Watch Video Solution

98. If a, b, c are in G.P. and x, y be the AM's between a, b and b, c respectively then $\begin{array}{ll}\text { (A) } \frac{1}{a}+\frac{1}{b}=\frac{x+y}{6}(B) a x+c y=b & \text { (C) } \frac{a}{x}+\frac{c}{y}=2 \\ \frac{1}{x}+\frac{1}{y}=\frac{2}{b} & \end{array}$

(Watch Video Solution

99. If $a_{n}=\int_{0}^{\pi} \frac{\sin (2 n-1) x}{\sin x} d x$. Then the number $a_{1}, a_{2}, a_{3} \ldots \ldots .$. . Are in
(A) A.P (B) G.P (C) H.P (D) none of these

- Watch Video Solution

100. If the first two terms of a progression are $\log _{2} 256$ and $\log _{3} 81$ respectively, then which of the following stastement (s) is (are) true: (A) if the third term is $2 \log _{6} 1$ the the terms are in A.P. (B) if the third term is $\log _{2} 8$, the the terms are in A.P. (C) if the third term is $\log _{4} 16$ the the terms are in G.P. (D) if the third term is $\frac{2}{3} \log _{2} 16$ the the terms are in H.P.

- Watch Video Solution

101. about to only mathematics

- Watch Video Solution

102. The complex numbrs x and y such that $x, x+2 y, 2 x+y$ are n A.P. and $(y+1)^{2}, x y+5,(x+1)^{2}$ are in G.P. are (A) $x=3, y=1$
$x=-1+2 \sqrt{2} i, y=\frac{1}{3}(-1+2 \sqrt{2} i)$
$x=\sqrt{2}+i, y=3 \sqrt{5}-\sqrt{2} i(\mathrm{D}){ }^{`} \mathrm{x}=-1(1+2 \mathrm{sqrt}(2) \mathrm{i}), \mathrm{y}=-1 / 3(1+2 \mathrm{sqrt}(2) \mathrm{i})$

- Watch Video Solution

103. The values of x for which $\frac{1}{1+\sqrt{x}}, \frac{1}{1-x}, \frac{1}{1-\sqrt{x}}$ are in A.P. lie in the interval (A) $(0, \infty)$ (B) $(1, \infty)$ (C) $(0,1)$ (D) none of these

- Watch Video Solution

104. If the pth, qth and rth terms of an A. P. are in G.P., prove that the common ratio of the G.P. is
$\frac{q-r}{p-q}$.

- Watch Video Solution

105. If A_{1}, A_{2} be two A.M..'s G_{1}, G_{2} be the two G.M.|'s and H_{1}, H_{2} be the two H.M.|'s between a and b then (A) $\frac{A_{1}+A_{2}}{G_{1} G_{2}}=\frac{a+b}{a b}$
$\frac{H_{1}+H_{2}}{H_{1} H_{2}}=\frac{a+b}{a b}$
$\frac{G_{1} G_{2}}{H_{1} H_{2}}=\frac{A_{1}+A_{2}}{H_{1}+H_{2}}(D)\left(A_{1}+A_{2}\right) \frac{H_{1}+H_{2}}{H_{1} H_{2}}=\frac{a+b}{a-b}$

(Watch Video Solution

106. The sum of the first n terms of the series $1^{2}+2 \times 2^{2}+3^{2}+2 \times 4^{2}+5^{2}+2 \times 6^{2} \ldots . i s \frac{n(n+1)^{2}}{2}$ when n is even. Then find the sum when n is odd.
107. Let T be the r th term of an A.P. whose first term is a and conmon difference is d. If for some positive integers $m, n, T_{n}=\frac{1}{m}, T_{m}=\frac{1}{n}$ then $(a-d)$ equals

- Watch Video Solution

108. The geometric mean G of two positive numbers is 6 . Their arithmetic mean A and harmonic mean H satisfy the equation $90 A+5 H=918$, then A may be equal to:

- Watch Video Solution

109. Let $a_{1}, a_{2}, a_{3} \ldots \ldots \ldots \ldots, a_{n}$ be positive numbers in G.P. For each n let A_{n}, G_{n}, H_{n} be respectively the arithmetic mean geometric mean and harmonic mean of $a_{1}, a_{2}, \ldots \ldots, a_{n}$ On the basis of above information answer the following question: A_{k}, G_{k}, H_{k} are in (A) A.P. (B) G.P. (C) H.P.
(D) none of these
110. about to only mathematics

- Watch Video Solution

111. Let S_{n} denote the sum of first n terms of a G.P. whose first term and common ratio are a and r respectively. On the basis of above information answer the following question: $S_{1}+S_{2}+S_{3}+\ldots+S_{n}=$
$\frac{n a}{1-r}-\frac{a r\left(1-r^{n}\right)}{(1-r)^{2}}$
(B) $\frac{n a}{1-r}-\frac{a r\left(1+r^{n}\right)}{(1+r)^{2}}$
(C) $\frac{n a}{1-r}-\frac{a\left(1-r^{n}\right)}{(1-r)^{2}}$
(D) none of these

- Watch Video Solution

112. Let S_{n} denote the sum of first n terms of a G.P. whose first term and common ratio are a and r respectively. On the basis of above information answer the following question: The sum of product of first n terms of the
G.P. taken two at a time in (A) $\frac{r+1}{r} S_{n} S_{n-1}$ (B) $\frac{r}{r+1} S_{n}^{2}$ $\frac{r}{r+1} S_{n} S_{n-1}$
(D) none of these

- Watch Video Solution

113. If sum of n termsof a sequende is S_{n} then its nth term $t_{n}=S_{n}-S_{n-1}$. This relation is vale for all $n>-1$ provided $S_{0}=0$.

But if $S_{\neq 0}$, then the relation is valid ony for $n \geq 2$ and in hat cast t_{1} can be obtained by the relation $t_{1}=S_{1}$. Also if nth term of a sequence $t_{1}=S_{n}-S_{n-1}$ then sum of n term of the sequence can be obtained by putting $n=1,2,3, . n$ and adding them. Thus $\sum_{n=1}^{n} t_{n}=S_{n}-S_{0}$. if $S_{0}=0$, then $\sum_{n=1}^{n} t_{n}=S_{n}$. On the basis of above information answer thefollowing questions: If the sum of n terms of a sequence is $10 n^{2}+7 n$ then the sequence is (A) an A.P. having common difference 20 (B) an A.P. having common difference 7 (C) an A.P. having common difference 27 (D) not an A.P.

- Watch Video Solution

114. If sum of n termsof a sequende is S_{n} then its nth term $t_{n}=S_{n}-S_{n-1}$. This relation is vale for all $n>-1$ provided $S_{0}=0$. But if $S_{\neq 0}$, then the relation is valid ony for $n \geq 2$ and in hat cast t_{1} can be obtained by the relation $t_{1}=S_{1}$. Also if nth term of a sequence $t_{1}=S_{n}-S_{n-1}$ then sum of n term of the sequence can be obtained by putting $n=1,2,3, . n$ and adding them. Thus $\sum_{n=1}^{n} t_{n}=S_{n}-S_{0}$. if $S_{0}=0$, then $\sum_{n=1}^{n} t_{n}=S_{n}$. On the basis of above information answer thefollowing questions: If the sum of n terms of a sequence $2 n^{2}+3 n+5$ then the sequence is (A) an A.P. having common difference 4 (B) an A.P. having common difference 2 (C) an A.P. having common difference 3 (D) not an A.P.

- Watch Video Solution

115. If sum of n termsof a sequende is S_{n} then its nth term $t_{n}=S_{n}-S_{n-1}$. This relation is vale for all $n>-1$ provided $S_{0}=0$.

But if $S_{\neq 0}$, then the relation is valid ony for $n \geq 2$ and in hat cast t_{1} can be obtained by the relation $t_{1}=S_{1}$. Also if nth term of a sequence
$t_{1}=S_{n}-S_{n-1}$ then sum of n term of the sequence can be obtained by putting $n=1,2,3, . n$ and adding them. Thus $\sum_{n=1}^{n} t_{n}=S_{n}-S_{0}$. if $S_{0}=0$, then $\sum_{n=1}^{n} t_{n}=S_{n}$. On the basis of above information answer thefollowing questions:If nth term of a sequence is $\frac{n}{1+n^{2}+n^{4}}$ then the sum of its first n terms is (A) $\frac{n^{2}+n}{1+n+n^{2}}$ (B) $\frac{n^{2}-n}{1+n+n^{2}}$
$\frac{n^{2}+n}{1-n+n^{2}}$
(D) $\frac{n^{2}+n}{2\left(1+n+n^{2}\right)}$

- Watch Video Solution

116. If a, b, c, are positive real numbers, then prove that (2004, 4M) $\{(1+a)(1+b)(1+c)\}^{7}>7^{7} a^{4} b^{4} c^{4}$

- Watch Video Solution

117. If $\mathrm{x} \in \mathrm{R}$ and the numbers $\left(5^{1-x}+5^{x+1}, \frac{a}{2},\left(25^{x}+25^{-} x\right)\right)$ form an
A. P. then a must lie in the interval

- Watch Video Solution

118. Find the sum of integers from 1 to 100 that are divisible by 2 or 5 .

- Watch Video Solution

119. Sum of infinite terms of series $3+5 \cdot \frac{1}{4}+7 \cdot \frac{1}{4^{2}}+\ldots$. is

- Watch Video Solution

120. The largest term common to the sequence $1,11,21,31, \ldots$. .to 100 terms and $31,36,41,46$,..... to 100 tetms is

- Watch Video Solution

121. Assertion: $\left[\left(1+\frac{1}{10000}\right)^{10000}\right]=2$ where [.] is the greatest integer function. Reason: $2<\left(1+\frac{1}{n}\right)^{n}<2.5$ for all $\mathrm{n} \varepsilon N$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is
not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

122. Assertion: If n is odd then the sum of n terms of the series $1^{2}+2 \times 2^{2}+3^{2}+2 \times 4^{2}+5^{2}+2 \times 6^{2}+7^{2}+\ldots i s \frac{n^{2}(n+1)}{2}$. If n is even then the sum of n terms of the series. $1^{2}+2 \times 2^{2}+3^{2}+2 \times 4^{2}+5^{2}+2 \times 6^{2}+\ldots . i s \frac{n(n+1)^{2}}{2}(\mathrm{~A})$ Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

123. Assertion: one root of equation
$(a-d)^{2} x^{2}-\left[(b-c)^{2}\right\}(c-a)^{2} x-(d-b)^{2}=0 \quad$ is necessarily 1. Reason: $(a-d)^{2}=(b-c)^{2}+(c-a)^{2}+(d-b)^{2}$ (A) Both A and R are
true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

124. Assertion: x, y, z are in A.P., Reason: sum of an infinite G.P. having first term a and common ratio r is $\frac{a}{1-r}$ where $-1<r<1$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

125. Assertion: $x-a, y-a, z-a$ are in G.P., Reason: If a,b,c are in H.P. then $a-\frac{b}{2}, b-\frac{b}{2}, c-\frac{b}{2}$ are in G.P. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.
126. Assertion: I_{1}, I_{2}, I_{3},......... are in A.P. Reason: $I_{n+2}+I_{n}-2 I_{n+1}=0$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

127. Assetion: $a_{1}, a_{2}, a_{3}, \ldots \ldots \ldots . .$. an are not in G.P. Reason: $a_{n+1}=a_{n}(\mathrm{~A})$ Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

128. Assertion: a^{2}, b^{2}, c^{2} are in A.P., Reason: $\frac{1}{b+c}, \frac{1}{c+a}, \frac{1}{a+b}$ are in A.P. (A) Both A and R are true and R is the correct explanation of $A(B)$

Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

129. Assertion: $\frac{S_{1}}{S_{2}}=\frac{n}{n+1}$, Reason: Numbers of odd termsof A.P. is $(n+1)$ and numbers of even terms is n . (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

130. Let $n_{t h}$ term of the sequence be given by $t_{n}=\frac{(n+2)(n+3)}{4}$ Assertion: $\quad \frac{1}{t_{1}}+\frac{1}{t_{2}}+\ldots \ldots \ldots .+\frac{1}{t_{2009}}=\frac{2009}{1509}, \quad$ Reason: $\frac{1}{(n+2)(n+3)}=\frac{1}{n+2}-\frac{1}{n+3}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.
131. The real numbers x_{1}, x_{2}, x_{3} satisfying the equation $x^{3}-x^{2}+b x+\gamma=0$ are in A.P. Find the intervals in which β and γ lie.

- Watch Video Solution

132. Let x be the arithmetic mean and y, z be tow geometric means between any two positive numbers. Then, prove that $\frac{y^{3}+z^{3}}{x y z}=2$.

- Watch Video Solution

133. If $\cos (x-y), \cos x$ and $\cos (x+y)$ are in HP, then $\cos x \sec \left(\frac{y}{2}\right)=$

- Watch Video Solution

134. Let α and β be roots of the equation $X^{2}-2 x+A=0$ and let γ and δ be the roots of the equation $X^{2}-18 x+B=0$. If $\alpha<\beta<\gamma<\delta$ are in arithmetic progression then find the valus of A and B.

- Watch Video Solution

135. Let T_{r} be the rth term of an A.P., for $r=1,2,3$, If for some positive integers m, n, we have $T_{m}=\frac{1}{n} a n d T_{n}=\frac{1}{m}$, then $T_{m n}$ equals $\frac{1}{m n}$ b. $\frac{1}{m}+\frac{1}{n} \mathrm{c} .1 \mathrm{~d} .0$

- Watch Video Solution

136. If $x>1, y>1, a n d z>1$ are in G.P., then $\frac{1}{1+\ln x}, \frac{1}{1+\ln y}$ and $\frac{1}{1+\ln z}$ are in a. $A \dot{P}$. b. $H \dot{P}$. c. $G \dot{P}$. d. none of these
137. If x_{1}, x_{2}, x_{3} as well as y_{1}, y_{2}, y_{3} are in $G P$ with the same common ratio, then the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right) \cdot(a) l i e$ on a straight line (b)lie on an ellipse (c)lie on a circle (d) are the vertices of a triangle.

- Watch Video Solution

138. The harmonic mean of the roots of the equation $(5+\sqrt{2}) x^{2}-(4+\sqrt{5}) x+8+2 \sqrt{5}=0$ is 2 b. 4 c. 6 d. 8

- Watch Video Solution

139. Let $a_{1}, a_{2}, \ldots ., a_{10}$ be in A.P. and $h_{1}, h_{2} \ldots . h_{10}$ be in H.P. If $a_{1}=h_{1}=2$ and $a_{10}=h_{10}=3$, then $a_{4} h_{7}$ is:

- Watch Video Solution

140. Let S_{1}, S_{2}, \ldots be squares such that for each $n \geq 1$, the length of a side of S_{n} equals the lengh of a diagonal of S_{n+1}. If the length of a side of S_{1} is 10 cm and the area of S_{n} less than 1 sq cm . Then, find the value of n.

- Watch Video Solution

141. If a, b, c, d are positive real umbers such that $a=b+c+d=2$, then $M=(a+b)(c+d)$ satisfies the relation $0 \leq M \leq 11 \leq M \leq 22 \leq M \leq 33 \leq M \leq 4$

- Watch Video Solution

142. Consider an infinite geometric series with first term a and common ratio r. If its sum is 4 and the second term is $3 / 4$, then (a) $a=\frac{4}{7}, r=\frac{3}{7}$
(b). $a=2, r=\frac{3}{8}$ (c). $a=\frac{3}{2}, r=\frac{1}{2}$ (d). $a=3, r=\frac{1}{4}$
143. about to only mathematics

- Watch Video Solution

144. Let $\alpha a n d \beta$ be the roots of $x^{2}-x+p=0 a n d \gamma a n d \delta$ be the root of $x^{2}-4 x+q=0$. If $\alpha, \beta, a n d \gamma, \delta$ are in G.P., then the integral values of pandq, respectively, are $-2,-32$ b. $-2,3$ c. $-6,3$ d. $-6,-32$

- Watch Video Solution

145. If the sum of the first $2 n$ terms of the A.P. $2,5,8, \ldots$, is equal to the sum of the first n terms of A.P. $57,59,61, \ldots$, then n equals 10 b .12 c .11 d . 13

- Watch Video Solution

146. Let the positive numbers $a, b, c a d n d$ be in the A.P. Then $a b c, a b d, a c d, a n d b c d$ are a. not in A.P. /G.P./H.P. b. in A.P. c. in G.P. d. in H.P.

- Watch Video Solution

147. about to only mathematics

- Watch Video Solution

148. If $\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{4}-..\right)+\cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}\right)=\frac{\pi}{2}$ for ${ }^{\circ} \mathrm{O}<|\mathrm{x}|$

- Watch Video Solution

149. If $a_{1}, a_{2},, a_{n}$ are positive real numbers whose product is a fixed number c, then the minimum value of $a_{1}+a_{2}++a_{n-1}+2 a_{n}$ is $a_{n-1}+2 a_{n}$ is b. $(n+1) c^{1 / n} 2 n c^{1 / n}(n+1)(2 c)^{1 / n}$
150. Suppose a,b,c are in A.P and a^{2}, b^{2}, c^{2} are in G.P if a

- Watch Video Solution

151. Let a and b be positive real numbers. If $\mathrm{a}, A_{1}, A_{2}, \mathrm{~b}$ are in arthimatic progression, a G_{1}, G_{2}, b are in geometric progression and $\mathrm{a}, H_{1}, H_{2}, \mathrm{~b}$ are in harmonic progression, show that $\frac{G_{1} G_{2}}{H_{1} H_{2}}=\frac{A_{1}+A_{2}}{H_{1}+H_{2}}=\frac{(2 a+b)(a+2 b)}{9 a b}$.

- Watch Video Solution

152. If $\alpha \in\left(0, \frac{\pi}{2}\right)$, then $\sqrt{x^{2}+x}+\frac{\tan ^{2} \alpha}{\sqrt{x^{2}+x}}$ is always greater than or equal to $2 \tan \alpha 12 \sec ^{2} \alpha$

- Watch Video Solution

153. If a, b, c are in A.P. and a^{2}, b^{2}, c^{2} are in H.P., then prove that either $a=b=c$ or $a, b, c=\frac{c}{2}$ form a G.P.

- Watch Video Solution

154. An infinite G.P. has first term as a and sum 5, then a belongs to a) $|a|<10$ b) $-10<a<0$ c) $0<a<10$ d) $a>10$

(Watch Video Solution

155. If a, b, c, are positive real numbers, then prove that (2004, 4M) $\{(1+a)(1+b)(1+c)\}^{7}>7^{7} a^{4} b^{4} c^{4}$

- Watch Video Solution

> 156. In $a x^{2}+b x+c=0, \Delta=b^{2}-4 a c$ and $\alpha+\beta, \alpha^{2}+\beta^{2}, \alpha^{3}+\beta^{3}$, are in
G.P, where α, β are the roots of $a x^{2}+b x+c$, then (a) $\Delta \neq 0$ (b) $b \Delta=0$ (c) $c \Delta=0$ (d) $\Delta=0$

- Watch Video Solution

157. If $a_{n}=\frac{3}{4}-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}+\ldots \ldots+(-1)^{n-1}\left(\frac{3}{4}\right)^{n} \quad$ and
$b_{n}=1-a_{n}$ then find the least natural number n_{0} such that
$b_{n}>a_{n} \forall n \leq n_{0}$

- Watch Video Solution

158. Let V_{r} denotes the sum of the first r terms of an arithmetic progression whose first term is r and the common difference is $(2 r-1)$. Let $T_{r}=V_{r+1}-V_{r}-2$ and $Q_{r}=T_{r+1}-T_{r}$ for $r=1,2, \ldots$. T_{r} is always
159. Let V_{r} denotes the sum of the first r terms of an arithmetic progression whose first term is r and the common difference is $(2 r-1)$. Let $T_{r}=V_{r+1}-V_{r}-2$ and $Q_{r}=T_{r+1}-T_{r}$ for $r=1,2, \ldots$ T_{r} is always

- Watch Video Solution

160. Let $V(r)$ denote the sum of the first r terms of an arithmetic progression (AP) whose first term is r and the common difference is $(2 r-1) . \operatorname{LetT}(\mathrm{r})=\mathrm{V}(\mathrm{r}+1)-\mathrm{V}(\mathrm{r})-2 \quad$ and $\quad \mathrm{Q}(\mathrm{r}) \quad=\mathrm{T}(\mathrm{r}+1)-\mathrm{T}(\mathrm{r}) \quad$ for $\quad \mathrm{r}=1,2$ Whicho \neq ofthefollow \in gisac or rectstatement? $(A) Q_{_} 1$,

Q_3.............,are $\in A . P$. withcommond \Leftrightarrow erence5(B)Q_1, Q_2,

Q_3.............,are $\in A . P$. withcommond \Leftrightarrow erence $6(C)$ Q_1 $^{\prime}$, Q_2,

161. Let A_{1}, G_{1}, H_{1} denote the arithmetic, geometric and harmonic means respectively, of two distinct positive numbers. For $n \geq 2$, let A_{n-1}, G_{n-1} and H_{n-1} has arithmetic,geometric and harmonic means as A_{n}, G_{n}, H_{n} respectively.

Which of the following statement is correct?

- Watch Video Solution

162. Let A_{1}, G_{1}, H_{1} denote the arithmetic, geometric and harmonic means respectively, of two distinct positive numbers. For $n \geq 2$, let A_{n-1}, G_{n-1} and H_{n-1} has arithmetic,geometric and harmonic means as A_{n}, G_{n}, H_{n} respectively.

Which of the following statement is correct?

- Watch Video Solution

163. Let A_{1}, G_{1}, H_{1} denote the arithmetic, geometric and harmonic means respectively, of two distinct positive numbers. For $n \geq 2$, let
A_{n-1}, G_{n-1} and H_{n-1} has arithmetic,geometric and harmonic means as A_{n}, G_{n}, H_{n} respectively.

Which of the following statement is correct?

- Watch Video Solution

164. Assertion: The numbers $b_{1}, b_{2}, b_{3}, b_{4}$ are neither in A.P. nor in G.P. Reason: The numbers $b_{1}, b_{2}, b_{3}, b_{3}$ are in H.P. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

165. If the sum of first n terms of an AP is cn^{2}, then the sum of squares of these n terms is :

- Watch Video Solution

