

MATHS

BOOKS - KC SINHA ENGLISH

PROGRESSIONS (AP GP) - FOR COMPETITION

Solved Examples

1. If $x^{18} = y^{21}z^{28}$, then $3\log_y x, 3\log_z y, 7\log_x z$ are in

Watch Video Solution

2. Four different integers form an increasing A.P. One of these numbers is equal to the sum of the squares of the other three numbers. Then The smallest number is

3. If the sum of first p terms of an A.P. is equal to the sum of the first q terms, then find the sum of the first (p + q) terms.

terms or the next
$$p$$
 terms, then prove that
 $(m+n)\left(\frac{1}{m}-\frac{1}{p}\right)=(m+p)\left(\frac{1}{m}-\frac{1}{n}\right).$

6. If $S_1, S_2, S_3, \ldots, S_{2n}$ are the sums of infinite geometric series whose first terms are respectively $1, 2, 3, \ldots, 2n$ and common ratio are respectively,

 $rac{1}{2}, rac{1}{3}, \ldots, rac{1}{2n+1}, ext{ find the value of ,} S_1^2 + S_2^2 + \ldots + S_{2n-1}^2.$

Watch Video Solution

7. about to only mathematics

Watch Video Solution

8. Find the natural number a for which $\sum_{k=1}^{n} f(a+k) = 16(2^{n}-1)$, where the function f satisfies the relation f(x+y) = f(x)f(y) for all natural number x, yand, further, f(1) = 2.

9. If S_1, S_2, S_3 denote the sum of n terms of 3 arithmetic series whose first terms are unity and their common difference are in HP, prove that

$$n=rac{2S_3S_1-S_1S_2-S_2S_3}{S_1-2S_2+S_3}.$$

Watch Video Solution

10. If
$$x_1, x_2, x_3, \ldots, x_n$$
 are in H.P. prove that $x_1x_2+x_2x_3+x_3x_4+\ldots +x_{n-1}x_n=(n-1)x_1x_n$

Watch Video Solution

11. If the pth ,qth , rth and sth terms of an A.P are in G.P then p-q,q-r , r-s are in

12. If the (m + 1)th, (n + 1)th, and(r + 1)th terms of an A.P., are in G.P. and m, n, r are in H.P., then find the value of the ratio of the common difference to the first term of the A.P.

in G.P.

Watch Video Solution

14. Find the coefficient of x^{99} and x^{98} in the polynomial

$$(x-1)(x-2)(x-3)....(x-100).$$

19. If a, b, c, d, e, x are real and $(a^2 + b^2 + c^2 + d^2)x^2 - 2(ab + bc + cd + de)x + (b^2 + c^2 + d^2 + e^2) \le 0$ then a,b,c,d,e are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

Watch Video Solution

20. If S_n denote the sum of first n terms of an A.P. whose first term is $aandS_{nx}/S_x$ is independent of $x, thenS_p = p^3$ b. p^2a c. pa^2 d. a^3

Watch Video Solution

21. If rational numbers a,b,c be th pth, qth, rth terms respectively of an A.P. then roots of the equation $a(q-r)x^2 + b(r-p)x + c(p-q) = 0$ are necessarily (A) imaginary (B) rational (C) irrational (D) real and equal

22. If $(r)_n$ denites the number rrr....(n digits), where r = 1, 2, 3, ..., 9 and $a = (6)_n, b = (8)_n, c = (4)_{2n}$, then

Watch Video Solution

23. If a_1, a_2, a_3, \ldots are in G. P., where $a_i \in C$ (where C satands for set of complex numbers) having r as common ratio such that $\sum_{k=1}^n a_{2k-1} \sum_{k=1}^n a_{2k+3} \neq 0$, then the number of possible values of r is

Watch Video Solution

24. If
$$a_1, a_2, a_3, a_4$$
 are in H.P. then $\frac{1}{a_1a_4}\sum_{r=1}^3 a_r a_{r+1}$ is a root of (A)
 $x^2 - 2x - 15 = 0$ (B) $x^2 + 2x + 15 = 0$ (C) $x^2 + 2x - 15 = 0$ (D)
 $x^2 - 2x + 15 = 0$

25. If a and b are digits between 0 and 9 the the rational number represented by 0 . ababab is (A) $\frac{10a+b}{99}$ (B) $\frac{9+b}{90}$ (C) $\frac{a+b}{99}$ (D) $\frac{(99ab+10a+b)}{990}$

Watch Video Solution

26. If
$$rac{l+mx}{l-mx}=rac{m+nx}{m-nx}=rac{n+px}{n-px}, x
eq 0$$
. Then the number l,m,n and

p are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

Watch Video Solution

27. If
$$a_a, a_2, a_3, \dots, a_n$$
 are in H.P. and $f(k) = \sum_{r=1}^n a_r - a_k$ then $\frac{a_1}{f(1)}, \frac{a_2}{f(2)}, \frac{a_3}{f(n)}$ are in :

28. If
$$x = \sum_{n=0}^{\infty} a^n, y = \sum_{n=0}^{\infty} b^n, z = \sum_{n=0}^{\infty} c^n, where ra, b, and c$$
 are in A.P.

and $|a|<,\,|b|<1,\,and|c|<1,\,$ then prove that $x,\,yandz$ are in H.P.

Watch Video Solution

29. If a+b+c=3 and a>0, b>0, c>0 then the greatest value of $a^2b^3c^2$ is

Watch Video Solution

30.

$$\frac{1^4}{1.3} + \frac{2^4}{3.5} + \frac{3^4}{5.7} + \dots + \frac{n^4}{(2n-1)(2n+1)} = \frac{n(4n^2 + 6n + 5)}{48} + \frac{1}{16}$$

$$rac{1+x}{\left(\left(1-x
ight)
ight) ^{3}}$$
 (B) $rac{x}{\left(1+x
ight) ^{3}}$ (C) $rac{1-x^{2}}{\left(1+x
ight) ^{3}}$ (D) none of these

Watch Video Solution

33. Let
$$\Delta(x) = egin{bmatrix} x+a & x+b & x+a-c \\ x+b & x+c & x-1 \\ x+c & x+d & x-b+d \end{bmatrix}$$
 and

 $f_0^2\Delta(x)dx=~-~16,\,$ where a,b,c and d are in AP then the common

difference of the AP is equal to

34. If a,b,c are in A.P and a^2 , b^2 , c^2 are in H.P then which is of the following

is /are possible ?

$$rac{1}{1.2.3.4} + rac{1}{2.3.5.6} + rac{1}{3.4.5.6} + \ldots$$
 , is

Watch Video Solution

36. Find the sum of series $\left(3^3-2^3
ight)+\left(5^3-4^3
ight)+\left(7^3-6^3
ight)+...$ n

terms.

37. Find a three digit number such that its digits are in increasing G.P. (from left to right) and the digits of the number obtained from it by

subtracting 100 form an A.P.

38. If
$$\log_3 2$$
, $\log_3(2^x-5)$ and $\log_3\left(2^x-rac{7}{2}
ight)$ are in A.P., then x is equal to

Watch Video Solution

Exercise

1. If
$$a_1, a_2, a_3, a_n$$
 are in A.P., where $a_i > 0$ for all i , show that
 $\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \ldots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} = \frac{n-1}{\sqrt{a_1} + \sqrt{a_n}}$.
Watch Video Solution

2. If $a_1, a_2, a_3, \ldots, a_n$ are in A.P. whose common difference is d,

show tht
$$\sum_{2}^{n}rac{ an^{-1}d}{1+a_{n-1}a_{n}}= an^{-1}igg(rac{a_{n}-a_{1}}{1+a_{n}a_{1}}igg)$$

3. If $a_1, a_2, a_3, \ldots a_n, a_{n+1}, \ldots$ be A.P. whose common difference is d and $S_1 = a_1 + a_2 + \ldots + a_n, S_2 = a_{n+1} + \ldots + a_{2n}, S_3 = a_{2n+1}$ etc show that $S_1, S_2, S_3, S_4, \ldots$ are in A.P. whose common difference is n^2d .

Watch Video Solution

4. If $\log 2, \log(2^x-1)$ and $\log 2\log(2^x+3)$ are in A.P., write the value of

 $x \cdot$

Watch Video Solution

5. If
$$I_n=\int_0^\pi rac{1-\cos 2nx}{1-\cos 2x}dx$$
 or $\int_0^\pi rac{\sin^2 nx}{\sin^2 x}dx,$ show that

 I_1, I_2, I_3, \ldots are in A.P.

6. A cashier has to count a bundle of Rs. 12,000 one rupee notes. He counts at the rate of Rs. 150 per minute for an hour, at the end of which he begins to count at the rate of Rs. 2 less every minute then he did the previous minute. Find how long he will take to finish his task and explain the double answer.

7. If a, b, c, d and p are different real numbers such that $(a^2+b^2+c^2)p^2-2(ab+bc+cd)p+(b^2+c^2+d^2)\leq 0$, then show that a, b, c and d are in G.P.

Watch Video Solution

8. If $\log_x a, a^{x/2}$ and $\log_b x$ are in GP, then x is equal to

9. about to only mathematics

Watch Video Solution

10. Prove that the numbers 49, 4489, 444889, Obtained by inserting 48

into the middle of the preceding numbers are square of integers.

11. Solve the following equations for x and y:

$$\log_{10} x + \log_{10} (x)^{\frac{1}{2}} + \log_{10} (x)^{\frac{1}{4}} + \dots = y$$

$$\frac{1+3+5+\dots+(2y-1)}{4+7+10+\dots+(3y+1)} = \frac{20}{7\log_{10} x}$$

Watch Video Solution

12. Find the values of $x\in(-\pi,\pi)$ which satisfy the equation $8^{1+|\cos x|+|\cos^2 x|+|\cos^3 x|+...} = 4^3$

13. The sum oif the first ten terms of an A.P. is equal to 155, and the sum of the first two terms of a G.P. is 9. Find these progressionsif the first term of the A.P. equals the common ratio of the G.P. and the 1st term of G.P. equals the common difference of A.P.

14. Find the sum of all the numbers of the form n^3 which lie between 100 and 10000.

Watch Video Solution

15. The sum to 50 terms of the series

$$rac{3}{1^2} + rac{5}{1^2+2^2} + rac{7}{1^+2^2+3^2} + \ldots + \ldots is$$

19. If the arthmetic mean of $(b-c)^2$, $(c-a)^2$ and $(a-b)^2$ is the same as that of $(b+c-2a)^2$, $(c+a-2b)^2$ and $(a+b-2c)^2$ show that a=b=c.

20. If
$$a, b, c$$
 are real numbers such that $3(a^2+b^2+c^2+1)=2(a+b+c+ab+bc+ca)$, than a, b, c are in

Watch Video Solution

21. If a, b, c, d are distinct integers in an A.P. such that $d = a^2 + b^2 + c^2$,

then find the value of a + b + c + ...

22. If $a_n=\int_0^\pi rac{\sin(2n-1)x}{\sin x}dx.$ Then the number a_1,a_2,a_3 Are in

(A) A.P (B) G.P (C) H.P (D) none of these

(D) none of these

25. If $S_1, S_2, S_3, \ldots, S_n$ denote the sum of 1,2,3....n terms of an A.P. having first term a and $\frac{S_{kx}}{S_x}$ is independent of x then $S_1 + S_2 + S_3 + \ldots + S_n =$ (A) $\frac{n(n+1)(2n+1)a}{6}$ (B)

 $\hat{}~(n+2)C_3a$ (C) $\hat{}~(n+1)C_3a$ (D) none of these

Watch Video Solution

26. If a,b,c,d are rational and are in G.P. then the rooots of equation $(a-c)^2 x^2 + (b-c)^2 x + (b-x)^2 - (a-d)^2 =$ are necessarily (A)

imaginary (B) irrational (C) rational (D) real and equal

Watch Video Solution

27. Sum of
$$\frac{1}{\sqrt{2}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{8}} + \frac{1}{\sqrt{8}+\sqrt{11}} + \frac{1}{\sqrt{11}+\sqrt{14}} + \ldots \rightarrow n$$

terms= (A) $\frac{n}{\sqrt{3n+2}-\sqrt{2}}$ (B) $\frac{1}{3}(\sqrt{2}-\sqrt{3n+2})$ (C) $\frac{n}{\sqrt{3n+2}+\sqrt{2}}$

(D) none of these

28. If a,b,c are p^{th} , q^{th} and r^{th} term of an AP and GP both, then the product of the roots of equation $a^b b^c c^a x^2 - abcx + a^c b^c c^a = 0$ is equal to :

Watch Video Solution

29. If a,b,c, be the pth, qth and rth terms respectivley of a G.P., then the equation $a^q b^r c^p x^2 + pqrx + a^r b^{-p} c^q = 0$ has (A) both roots zero (B) at least one root zero (C) no root zero (D) both roots unilty

Watch Video Solution

30.

If

 $a = \underbrace{111....1}_{55 ext{times}}, b = 1 + 10 + 10^2 + 10^3 + 10^4 ext{ and } c = 1 + 10^5 + 10^{10} + .$

then prove that a=bc

31. If a,b,c,d, x are real and the roots of equation $(a^2+b^2+c^2)x^2-2(ab+bc+cd)x+(b^2+c^2+d^2)=0$ are real

and equal then a,b,c,d are in (A) A.P (B) G.P. (C) H.P. (D) none of these

Watch Video Solution

32. If an A.P., a G.P. and a H.P. have the same first term and same (2n + 1)th term and their $(n + 1)^n$ terms are a,b,c respectively, then the radius of the circle. $x^2 + y^2 + 2bx + 2ky + ac = 0$ is

Watch Video Solution

33. If
$$\sum_{r=1}^n t_r = \sum_{k=1}^n \sum_{j=1}^k \sum_{i=1}^j 2$$
, then $\sum_{r=1}^n \frac{1}{t_r} =$

34. If the sum of n consecutive odd numbers is $25^2 - 11^2$, then

36. If
$$a = \sum_{r=1}^{\infty} \left(\frac{1}{r}\right)^2$$
, $b = \sum_{r=1}^{\infty} \frac{1}{\left(2r-1\right)^2}$, $then \frac{a}{b} =$ (A) $\frac{5}{4}$ (B) $\frac{4}{5}$ (C) $\frac{3}{4}$

(D) none of these

37. If 9A. M. 's and 9H. M's be inserted between 2 and 3 and A be any

 $A.\ M.$ and H be the corresponding $H.\ M.$, then H(5-A)

38. If $a-b, ax-by, ax^2-by^2a, b \neq 0$) are in G.P., then $x, y \frac{ax-by}{a-b}$

are in (A) A.P. only (B) G.P.only (C) A.P., G.P. (D) A.P., and G.P and H.P

39. If the square of differences of three numbers be in A.P., then their differences re in (A) A.P. (B) G.P. (C) H.P. (D) none of these

Watch Video Solution

40. 1,3,9 can be terms of (A) an A.P.but not of a G.P (B) G.P. but not of an

A.P. (C) A.P. and G.P both (D) neither A.P nor G.P

41. If
$$t_r = 2^{\frac{r}{3}} + 2^{-\frac{r}{3}}$$
, then $\sum_{r=1}^{100} t_r^3 - 3\sum_{r=1}^{100} t_r + 1 =$ (A) $\frac{2^{101} + 1}{2^{100}}$ (B) $\frac{2^{101} - 1}{2^{100}}$ (C) $\frac{2^{201} + 1}{2^{100}}$ (D) none of these

Watch Video Solution

42. If a,b,c in G.P. x,y be the A.M.\'s between a,b and b,c respectively then

$$\left(rac{a}{x}+rac{c}{y}
ight)\left(rac{b}{x}+rac{b}{y}
ight)=$$
 (A) 2 (B) -4 (C) 4 (D) none of these

Watch Video Solution

43. If positive numbers a,b,c are in H.P., then equation $x^2-kx+2b^{101}-a^{101}-c^{101}=0 (k\in R)$ has both roots positive both

roots negative one positive and one negative root both roots imaginary

44. The sum
$$\sum\limits_{n=1}^{\infty} an^{-1}igg(rac{4n}{n^4-2n^2+2}igg)$$
 is equal to

45.

$$b_i = 1 - a_i, na = \sum_{i=1}^n a_i, nb = \sum_{i=1}^n b_i, then \sum_{i=1}^n a_i, b_i + \sum_{i=1}^n (a_i - a)^2 =$$

If

ab b. nab c. (n+1)ab d. nab

Watch Video Solution

47. Four numbers are such that the first three are in.A.P while the last three are in G.P. If the first number is 6 and common ratio of G.P. is $\frac{1}{2}$ the the number are (A) 6,8,4,2 (B) 6,10,14,7 (C) 6,9,12,6 (D) 6,4,2,1

48. The sum of all two digit odd natural numbers in (A) 5049 (B) 2475 (C)

4905 (D) 2530

49. The series
$$\cdot rac{2x}{x+3} + \left(rac{2x}{x+3}
ight)^2 + \left(rac{2x}{x+3}
ight)^3 + ...\infty$$

have a definite sum when

Watch Video Solution

50. If
$$\frac{a^{n+1}+b^{n+1}}{a^n+b^n}$$
 harmonic mean of $a\&b$ then n is

Watch Video Solution

51. The 15th term of the series
$$2\frac{1}{2} + 1\frac{7}{13} + 1\frac{1}{9} + \frac{20}{23} + \ldots$$
 is

52. Let a_1, a_2 ,.... , a_{10} be in A.P. and h_1, h_2 h_{10} be in H.P. If $a_1 = h_1 = 2$ and $a_{10}=h_{10}=3$, then a_4h_7 is :

If a, b, c, d are positive real umbers a = b + c + d = 2, then M = (a + b)(c + d) satisfies the relation

such

that

$$0 \leq M \leq 1\,1 \leq M \leq 2\,2 \leq M \leq 3\,3 \leq M \leq 4$$

Watch Video Solution

53.

54. If $a=1+b+b^2+b^3+\ldots$ $ightarrow\infty where |b|<1$ then roots of equation $ax^2+x-ab=0$ are (A) $-1,\,ab$ (B) $1,\,b$ (C) $-1,\,b$ (D) $-1,\,a$

55. If the sum of the first 2n terms of the A.P. 2, 5, 8, ..., is equal to the sum

of the first n terms of A.P. 57, 59, 61, ..., then n equals 10 b. 12 c. 11 d. 13

Watch Video Solution	
----------------------	--

56. If the pth term of an A.P. is q and the qth term isp, then find its rth term.

Watch Video Solution

57. If the numbers p,q,r are in A.P. then $m^{7p}, m^{7q}, m^{7r}(m>0)$ are in (A)

A.P. (B) G.P. (C) H.P. (D) none of these

58. Find the sum $1^2 + \left(1^2 + 2^2\right) + \left(1^2 + 2^2 + 3^2\right) + \ldots$ up to 22^{nd} find

the sum when n is odd .

59. If $1^2 + 2^2 + 3^2 + n^2 = 1015$ then the value of n is equal to (A) 13 (B)

14 (C) 15 (D) none of these

Watch Video Solution

60. Sum of the first n terms of the series $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{15}{16} + \dots$ is equals to (a). $2^n - n - 1$ (b). $1 - 2^{-n}$ (c). $n + 2^{-n} - 1$ (d). $2^n + 1$

Watch Video Solution

61. If the sum of the roots of the equation is equal to the sum of the squares of their reciprocals, then (A) a, b, c are in A.P. (B) a^2, b^2, c^2 are in G.P. (C) ab^2, bc^2, ca^2 are in A.P. (D) ab, bc, ca are G.P.

62. The third term of a geometric progression is 4. Then the product of the first five terms is a. 4^3 b. 4^5 c. 4^4 d. none of these

63. If A_1, A_2 be two A.M. and G_1, G_2 be two G.K.s between aandb then $\frac{A_1 + A_2}{G_1G_2}$ is equal to $\frac{a+b}{2ab}$ b. $\frac{2ab}{a+b}$ c. $\frac{a+b}{ab}$ d. $\frac{a+b}{\sqrt{ab}}$ Watch Video Solution

64. If a, b, c, d are distinct positive numbers in A.P., then:

65.
$$1 + \frac{3}{2} + \frac{5}{2^2} + \frac{7}{2^3} + \dots \rightarrow \infty$$
 is equal to (A) 3 (B) 6 (C) 9 (D) 12
Watch Video Solution

66. STATEMENT-1 : If $a^x = b^y = c^z$, where x,y,z are unequal positive numbers and a, b,c are in G.P. , then $x^3 + z^3 > 2y^3$ and

STATEMENT-2 : If a, b,c are in H,P, $a^3+c^3\geq 2b^3$, where a, b, c are positive

real numbers .

Watch Video Solution

67. If G_1 and G_2 are two geometric means inserted between any two

numbers and A is the arithmetic mean of two numbers, then the value of

$$rac{G_1^2}{G_2} + rac{G_2^2}{G_1}$$
 is:

Watch Video Solution

68. If the sum of n terms of an A.P. is $3n^2 + 5n$ and its mth term is 164,

find the value of m_{\cdot}

69. In triangle ABC, medians AD and CE are drawn AD = 5, $\angle DAC = \pi/8$, and $\angle ACE = \pi/4$, then the area of the triangle ABC is equal to

70. If
$$x\in\{1,2,3,...,9\}$$
 and $f_n(x)=xxx....x$ (n digits) , then $f_n^2(3)+f_n(2)$

Watch Video Solution

71. Let
$$S_n = \sum_{r=0}^{\infty} \frac{1}{n^r}$$
 and $\sum_{n=1}^k (n-1)S_n = 5050 then k =$ (A) 50 (B) 505 (C) 100 (D) 55

72. Let $f: R \to R$ such that f(x) is continuous and attains only rational value at all real x and f(3)=4. If a_1, a_2, a_3, a_4, a_5 are in H.P. then $\sum_{r=1}^4 a_r a_{r+1} = (A)f(3). a_1a_5$ (B) $f(3). a_4a_5$ (C) $f(3). a_1a_2$ (D) $f(3). a_1a_3$

Watch Video Solution

73. If three successive terms of as G.P. with commonratio r > 1 form the sides of a triangle and [r] denotes the integral part of x the [r] + [-r] = (A) 0 (B) 1 (C) -1 (D) none of these

Watch Video Solution

74. Let
$$a_n=\int_0^{rac{\pi}{2}}rac{1-\cos 2nxdx}{1-\cos 2x}$$
, then `a1, a2, a3 is in

78. If $\frac{b+c}{a+d} = \frac{bc}{ad} = 3\left(\frac{b-c}{a-d}\right)$ then a,b,c,d are in (A) H.P. (B) G.P. (C)

A.P. (D) none of these

79. If
$$\log\left(\frac{2b}{3c}\right)$$
, $\log\left(\frac{4c}{9a}\right)$ and $\log\left(\frac{8a}{27b}\right)$ are in A.P. where a, b, c and

are in G.P. then a,b,c are the length of sides of (A) a scelene triangle (B)

anisocsceles tirangel (C) an equilateral triangle (D) none of these

Watch Video Solution

80. If S_r denote the sum of first 'r' terms of a non constaint A.P. and $\frac{S_a}{a^2}=\frac{S_b}{b^2}=c$, where a,b,c are distinct then $S_c=$

Watch Video Solution

81. If S_p denotes the sum of the series $1+r^p+r^{2p}+
ightarrow\infty and s_p$ the sum of the series $1-r^{2p}r^{3p}+
ightarrow\infty,$ |r|<1, $then S_p+s_p$ in term of S_{2p} is $2S_{2p}$ b. 0 c. $rac{1}{2}S_{2p}$ d. $-rac{1}{2}S_{2p}$

82. If a,b and c are in AP, then the straight lines ax + by + c = 0 will always pass through......

85. Let a,b,c be positive real numers such that
$$bx^2 + \left(\sqrt{\left(\left(a+c\right)^2 + 4b^2\right)}x + (a+c), = 0, \forall x \in R, then a,b,c are in (A) G.P. (B) A.P. (C) H.P. (D) none of these$$

86. The coefficient of
$$x^{49}$$
 in the product $(x-1)(x-3)(x-99)is$ a. -99^2 b. 1 c. -2500 d. none of these

Watch Video Solution

Watch Video Solution

87. If $a, a_1, a_2, a_3, a_{2n}, b$ are in A.P. and $a, g_1, g_2, g_3, g_{2n}, b$. are in G.P.

and h s the H.M. of aandb, then prove that $rac{a_1+a_{2n}}{g_1g_{2n}}+rac{a_2+a_{2n-1}}{g_1g_{2n-1}}++rac{a_n+a_{n+1}}{g_ng_{n+1}}=rac{2n}{h}$

88. Let α be the A.M. and β , γ be two G.M.\'s between two positive numbes then the value of $\frac{\beta^3 + \gamma^3}{\alpha\beta\gamma}$ is (A) 1 (B) 2 (C) 0 (D) 3

Watch Video Solution

89. If the sum of n positive number is 2n, then the product of these numbers is (A) $\leq 2^n$ (B) $\geq 2^n$ (C) divisible by 2^n (D) none of these

Watch Video Solution

Watch Video Solution

91. Sum of the first n terms of an A.P. having positive terms is given by $S_n = (1+2T_n)(1-T_n)(whereT_n$ is the nth term of the series). The

value of
$$T_2^2$$
 is (A) $rac{\sqrt{2}+1}{2\sqrt{2}}$ (B) $rac{\sqrt{2}-1}{2\sqrt{2}}$ (C) $rac{1}{2\sqrt{2}}$ (D) none of these

Watch Video Solution

92. Let a be the A.M. and b,c bet wo G.M\'s between two positive numbers.

Then $b^3 + c^3$ is equal to (A) abc (B) 2abc (C) 3abc (D) 4abc

95. Let S_1, S_2, \ldots be squares such that for each $n \ge 1$, the length of a side of S_n equals the length of a diagonal of S_{n+1} . If the length of a side of S_1 is 10 cm and the area of S_n less than 1 sq cm. Then, find the value of n.

97. If $\ \ nC_4, \ nC_5$ and $\ \ nC_6$ are in A.P. then n is equal to (A) 11 (B) 14 (C) 12 (D) 9

98. If a, b, c are in G.P. and x,y be the AM's between a,b and b,c respectively

then (A)
$$\frac{1}{a} + \frac{1}{b} = \frac{x+y}{6}(B)ax + cy = b$$
 (C) $\frac{a}{x} + \frac{c}{y} = 2$ (D) $\frac{1}{x} + \frac{1}{y} = \frac{2}{b}$

Watch Video Solution

99. If
$$a_n = \int_0^\pi \frac{\sin(2n-1)x}{\sin x} dx$$
. Then the number a_1, a_2, a_3 Are in (A) A.P (B) G.P (C) H.P (D) none of these

Watch Video Solution

100. If the first two terms of a progression are $\log_2 256$ and $\log_3 81$ respectively, then which of the following stastement (s) is (are) true: (A) if the third term is $2\log_6 1$ the the terms are in A.P. (B) if the third term is $\log_2 8$, the the terms are in A.P. (C) if the third term is $\log_4 16$ the the terms are in G.P. (D) if the third term is $\frac{2}{3}\log_2 16$ the the terms are in H.P.

101. about to only mathematics

102. The complex numbrs x and y such that x, x + 2y, 2x + y are n A.P. and $(y+1)^2, xy + 5, (x+1)^2$ are in G.P. are (A) x = 3, y = 1 (B) $x = -1 + 2\sqrt{2}i, y = \frac{1}{3}(-1 + 2\sqrt{2}i)$ (C) $x = \sqrt{2} + i, y = 3\sqrt{5} - \sqrt{2}i$ (D) `x=-1(1+2sqrt(2)i), y= - 1/3 (1+2sqrt(2)i)

Watch Video Solution

103. The values of x for which $rac{1}{1+\sqrt{x}}, rac{1}{1-x}, rac{1}{1-\sqrt{x}}$ are in A.P. lie in

the interval (A) $(0,\infty)$ (B) $(1,\infty)$ (C) (0,1) (D) none of these

104. If the pth, qth and rth terms of an A. P. are in G.P., prove that the

common ratio of the G.P. is

 $\frac{q-r}{p-q}.$

Watch Video Solution

105. If A_1, A_2 be two A.M.\'s G_1, G_2 be the two G.M.\'s and H_1, H_2 be the

two H.M.\'s between a and b then (A) $\frac{A_1 + A_2}{G_1 G_2} = \frac{a + b}{ab}$ (B) $\frac{H_1 + H_2}{H_1 H_2} = \frac{a + b}{ab}$ (C) $\frac{G_1 G_2}{H_1 H_2} = \frac{A_1 + A_2}{H_1 + H_2} (D) (A_1 + A_2) \frac{H_1 + H_2}{H_1 H_2} = \frac{a + b}{a - b}$

Watch Video Solution

106. The sum of the first n terms of the series $1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 \dots is \frac{n(n+1)^2}{2}$ when n is even .Then find the sum when n is odd.

107. Let T be the rth term of an A.P. whose first term is a and common difference is d. If for some positive integers $m, n, T_n = \frac{1}{m}, T_m = \frac{1}{n}$ then (a-d) equals

Watch Video Solution

108. The geometric mean G of two positive numbers is 6. Their arithmetic mean A and harmonic mean H satisfy the equation 90A + 5H = 918, then A may be equal to:

109. Let $a_1, a_2, a_3, \ldots, a_n$ be positive numbers in G.P. For each n let A_n, G_n, H_n be respectively the arithmetic mean geometric mean and harmonic mean of a_1, a_2, \ldots, a_n On the basis of above information answer the following question: A_k, G_k, H_k are in (A) A.P. (B) G.P. (C) H.P. (D) none of these 110. about to only mathematics

111. Let S_n denote the sum of first n terms of a G.P. whose first term and common ratio are a and r respectively. On the basis of above information answer the following question: $S_1 + S_2 + S_3 + \ldots + S_n =$ (A) $\frac{na}{1-r} - \frac{ar(1-r^n)}{(1-r)^2}$ (B) $\frac{na}{1-r} - \frac{ar(1+r^n)}{(1+r)^2}$ (C) $\frac{na}{1-r} - \frac{a(1-r^n)}{(1-r)^2}$ (D) none of these

Watch Video Solution

112. Let S_n denote the sum of first n terms of a G.P. whose first term and common ratio are a and r respectively. On the basis of above information answer the following question: The sum of product of first n terms of the

G.P. taken two at a time in (A) $\frac{r+1}{r}S_nS_{n-1}$ (B) $\frac{r}{r+1}S_n^2$ (C) $\frac{r}{r+1}S_nS_{n-1}$ (D) none of these

Watch Video Solution

113. If sum of n termsof a sequende is S_n then its nth term $t_n=S_n-S_{n-1}.$ This relation is vale for all n>-1 provided $S_0=0.$ But if $S_{
eq} 0$, then the relation is valid ony for $n\geq 2$ and in hat cast t_1 can be obtained by the relation $t_1=S_1$. Also if nth term of a sequence $t_1=S_n-S_{n-1}$ then sum of n term of the sequence can be obtained by putting n=1,2,3, . n and adding them. Thus $\sum_{n=1}^{n}t_{n}=S_{n}-S_{0}.$ if $S_0=0, then \sum_{i=1}^n t_n=S_n.$ On the basis of above information answer thefollowing questions: If the sum of n terms of a sequence is $10n^2+7n$ then the sequence is (A) an A.P. having common difference 20 (B) an A.P. having common difference 7 (C) an A.P. having common difference 27 (D) not an A.P.

114. If sum of n termsof a sequende is S_n then its nth term $t_n=S_n-S_{n-1}.$ This relation is vale for all n>-1 provided $S_0=0.$ But if $S_{
eq} 0$, then the relation is valid ony for $n\geq 2$ and in hat cast t_1 can be obtained by the relation $t_1 = S_1$. Also if nth term of a sequence $t_1=S_n-S_{n-1}$ then sum of n term of the sequence can be obtained by putting n=1,2,3,.n and adding them. Thus $\sum_{n=1}^{n} t_n = S_n - S_0$. if $S_0=0, then \sum_{n=1}^n t_n=S_n.$ On the basis of above information answer thefollowing questions: If the sum of n terms of a sequence $2n^2 + 3n + 5$ then the sequence is (A) an A.P. having common difference 4 (B) an A.P. having common difference 2 (C) an A.P. having common difference 3 (D) not an A.P.

Watch Video Solution

115. If sum of n termsof a sequende is S_n then its nth term $t_n = S_n - S_{n-1}$. This relation is vale for all n > -1 provided $S_0 = 0$. But if $S_{\neq} 0$, then the relation is valid ony for $n \ge 2$ and in hat cast t_1 can be obtained by the relation $t_1 = S_1$. Also if nth term of a sequence $t_1 = S_n - S_{n-1} \text{ then sum of n term of the sequence can be obtained by}$ putting n = 1, 2, 3, .n and adding them. Thus $\sum_{n=1}^n t_n = S_n - S_0$. if $S_0 = 0, then \sum_{n=1}^n t_n = S_n$. On the basis of above information answer thefollowing questions: If nth term of a sequence is $\frac{n}{1+n^2+n^4}$ then the sum of its first n terms is (A) $\frac{n^2+n}{1+n+n^2}$ (B) $\frac{n^2-n}{1+n+n^2}$ (C) $\frac{n^2+n}{1-n+n^2}$ (D) $\frac{n^2+n}{2(1+n+n^2)}$

Watch Video Solution

116. If a,b,c,~ are positive real numbers, then prove that (2004, 4M) $\{(1+a)(1+b)(1+c)\}^7>7^7a^4b^4c^4$

Watch Video Solution

117. If $\mathsf{x} \in \mathsf{R}$ and the numbers $\left(5^{1-x}+5^{x+1}, rac{a}{2}, \left(25^x+25^{-}x
ight)
ight)$ form an

A. P. then a must lie in the interval

118. Find the sum of integers from 1 to 100 that are divisible by 2 or 5.

120. The largest term common to the sequence 1,11,21,31,....to 100 terms and 31,36,41,46,..... to 100 terms is

Watch Video Solution

121. Assertion: $\left[\left(1 + \frac{1}{10000}\right)^{10000}\right] = 2$ where [.] is the greatest integer function. Reason: $2 < \left(1 + \frac{1}{n}\right)^n < 2.5$ for all n εN (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is

not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

122. Assertion: If n is odd then the sum of n terms of the series $1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + 7^2 + \dots is \frac{n^2(n+1)}{2}$. If n is even then the sum of n terms of the series. $1^2 + 2 \times 2^2 + 3^2 + 2 \times 4^2 + 5^2 + 2 \times 6^2 + \dots is \frac{n(n+1)^2}{2}$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

123. Assertion: one root of equation

$$(a-d)^2 x^2 - [(b-c)^2](c-a)^2 x - (d-b)^2 = 0$$
 is necessarily 1.
Reason: $(a-d)^2 = (b-c)^2 + (c-a)^2 + (d-b)^2$ (A) Both A and R are

true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

124. Assertion: x,y,z are in A.P., Reason: sum of an infinite G.P. having first term a and common ratio r is $\frac{a}{1-r}where - 1 < r < 1$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

125. Assertion: x - a, y - a, z - a are in G.P., Reason: If a,b,c are in H.P. then $a - \frac{b}{2}$, $b - \frac{b}{2}$, $c - \frac{b}{2}$ are in G.P. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true. **126.** Assertion: I_1 , I_2 , I_3 ,..., are in A.P. Reason: $I_{n+2} + I_n - 2I_{n+1} = 0$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

127. Assetion: a_1, a_2, a_3, \ldots an are not in G.P. Reason: $a_{n+1} = a_n$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

128. Assertion: a^2 , b^2 , c^2 are in A.P., Reason: $\frac{1}{b+c}$, $\frac{1}{c+a}$, $\frac{1}{a+b}$ are in A.P. (A) Both A and R are true and R is the correct explanation of A (B)

Both A and R are true R is not te correct explanation of A (C) A is true but

R is false. (D) A is false but R is true.

Watch Video Solution

129. Assertion: $\frac{S_1}{S_2} = \frac{n}{n+1}$, Reason: Numbers of odd termsof A.P. is (n+1) and numbers of even terms is n. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

130. Let n_{th} term of the sequence be given by $t_n = \frac{(n+2)(n+3)}{4}$ Assertion: $\frac{1}{t_1} + \frac{1}{t_2} + \dots + \frac{1}{t_{2009}} = \frac{2009}{1509}$, Reason: $\frac{1}{(n+2)(n+3)} = \frac{1}{n+2} - \frac{1}{n+3}$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true. 131. The real numbers x_1, x_2, x_3 satisfying the equation $x^3 - x^2 + bx + \gamma = 0$ are in A.P. Find the intervals in which eta and γ lie.

Watch Video Solution

132. Let x be the arithmetic mean and y, z be tow geometric means between any two positive numbers. Then, prove that $\frac{y^3 + z^3}{xyz} = 2$.

133. If $\cos(x-y), \cos x$ and $\cos(x+y)$ are in HP, then $\cos x \sec\left(\frac{y}{2}\right) =$

134. Let α and β be roots of the equation $X^2 - 2x + A = 0$ and let γ and δ be the roots of the equation $X^2 - 18x + B = 0$. If $\alpha < \beta < \gamma < \delta$ are in arithmetic progression then find the valus of A and B.

Watch Video Solution

135. Let T_r be the rth term of an A.P., for $r=1,\,2,\,3,\,$ If for some positive

integers
$$m,n,\,$$
 we have $T_m=rac{1}{n}andT_n=rac{1}{m},\,thenT_{mn}$ equals $rac{1}{mn}$ b. $rac{1}{m}+rac{1}{n}$ c. 1 d. 0

Watch Video Solution

136. If
$$x > 1, y > 1, and z > 1$$
 are in G.P., then $\frac{1}{1 + \ln x}, \frac{1}{1 + \ln y} and \frac{1}{1 + \ln z}$ are in a. $A\dot{P}$ b. $H\dot{P}$ c. $G\dot{P}$ d. none of these

137. If x_1, x_2, x_3 as well as y_1, y_2, y_3 are in GP with the same common ratio, then the points $(x_1, y_1), (x_2, y_2)$, and (x_3, y_3) . (a)lie on a straight line (b)lie on an ellipse (c)lie on a circle (d) are the vertices of a triangle.

139. Let a_1, a_2 ,... , a_{10} be in A.P. and h_1, h_2 h_{10} be in H.P. If $a_1 = h_1 = 2$

and $a_{10}=h_{10}=3$, then a_4h_7 is :

140. Let S_1, S_2, \ldots be squares such that for each $n \ge 1$, the length of a side of S_n equals the length of a diagonal of S_{n+1} . If the length of a side of S_1 is 10 cm and the area of S_n less than 1 sq cm. Then, find the value of n.

a=b+c+d=2, then M=(a+b)(c+d) satisfies the relation $0\leq M\leq 1\,1\leq M\leq 2\,2\leq M\leq 3\,3\leq M\leq 4$

Watch Video Solution

142. Consider an infinite geometric series with first term a and common ratio r. If its sum is 4 and the second term is 3/4, then (a) $a = \frac{4}{7}$, $r = \frac{3}{7}$ (b). a = 2, $r = \frac{3}{8}$ (c). $a = \frac{3}{2}$, $r = \frac{1}{2}$ (d). a = 3, $r = \frac{1}{4}$

143. about to only mathematics

144. Let $\alpha and\beta$ be the roots of $x^2 - x + p = 0$ and $\gamma and\delta$ be the root of $x^2 - 4x + q = 0$. If $\alpha, \beta, and\gamma, \delta$ are in G.P., then the integral values of pandq, respectively, are -2, -32 b. -2, 3 c. -6, 3 d. -6, -32

Watch Video Solution

145. If the sum of the first 2n terms of the A.P. 2, 5, 8, ..., is equal to the sum of the first n terms of A.P. 57, 59, 61, ..., then n equals 10 b. 12 c. 11 d. 13

146. Let the positive numbers *a*, *b*, *cadnd* be in the A.P. Then *abc*, *abd*, *acd*, *andbcd* are a. not in A.P. /G.P./H.P. b. in A.P. c. in G.P. d. in H.P.

147. about to only mathematics

Watch Video Solution

148. If
$$\sin^{-1}\left(x - \frac{x^2}{2} + \frac{x^3}{4} - ..\right) + \cos^{-1}\left(x^2 - \frac{x^4}{2} + \frac{x^6}{4}\right) = \frac{\pi}{2}$$
 for `0<|x|

Watch Video Solution

149. If a_1, a_2, a_n are positive real numbers whose product is a fixed number c, then the minimum value of $a_1 + a_2 + a_{n-1} + 2a_n$ is $a_{n-1} + 2a_n$ is b. $(n+1)c^{1/n} 2nc^{1/n} (n+1)(2c)^{1/n}$ **150.** Suppose a,b,c are in A.P and a^2,b^2,c^2 are in G.P if a

0	Watch	Video	Solution
---	-------	-------	----------

151. Let a and b be positive real numbers. If a, A_1 , A_2 , b are in arthimatic progression, a G_1 , G_2 , b are in geometric progression and a, H_1 , H_2 ,b

are in harmonic progression, show that $rac{G_1G_2}{H_1H_2}=rac{A_1+A_2}{H_1+H_2}=rac{(2a+b)(a+2b)}{9ab}.$

Watch Video Solution

152. If
$$lpha\in \Big(0,rac{\pi}{2}\Big), then\sqrt{x^2+x}+rac{ an^2lpha}{\sqrt{x^2+x}}$$
 is always greater than or

equal to $2 \tan \alpha \ 1 \ 2 \sec^2 \alpha$

153. If a, b, c are in A.P. and a^2, b^2, c^2 are in H.P., then prove that either a = b = c or $a, b, c = \frac{c}{2}$ form a G.P. Watch Video Solution **154.** An infinite G.P. has first term as a and sum 5, then a belongs to a)

|a| < 10 b) -10 < a < 0 c) 0 < a < 10 d) a > 10

Watch Video Solution

155. If a, b, c, are positive real numbers, then prove that (2004, 4M) $\{(1+a)(1+b)(1+c)\}^7>7^7a^4b^4c^4$

G.P , where lpha,eta are the roots of $ax^2+bx+c,\,$ then (a) $\Delta
eq 0$ (b)

$$b\Delta=0$$
 (c) $c\Delta=0$ (d) $\Delta=0$

Watch Video Solution

157. If
$$a_n = \frac{3}{4} - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 + \ldots + (-1)^{n-1} \left(\frac{3}{4}\right)^n$$
 and

 $b_n = 1 - a_n$ then find the least natural number n_0 such that $b_n > a_n \, orall \, n \leq n_0$

Watch Video Solution

158. Let V_r denotes the sum of the first r terms of an arithmetic progression whose first term is r and the common difference is (2r - 1). Let $T_r = V_{r+1} - V_r - 2$ and $Q_r = T_{r+1} - T_r$ for r = 1, 2, ... T_r is always

159. Let V_r denotes the sum of the first r terms of an arithmetic progression whose first term is r and the common difference is (2r - 1). Let $T_r = V_{r+1} - V_r - 2$ and $Q_r = T_{r+1} - T_r$ for r = 1, 2, ... T_r is always

Watch Video Solution

160. Let V(r) denote the sum of the first r terms of an arithmetic progression (AP) whose first term is r and the common difference is (2r - 1). LetT(r)=V(r+1)-V(r)-2 and Q(r) =T(r+1)-T(r) for r=1,2 $Whicho \neq of the follow \in gisac \text{ or } rectstatement? (A)Q_1, Q_2,$ Q_3, $are \in A. P. with commond \Leftrightarrow erence5(B)Q_1, Q_2,$ Q_3, $are \in A. P. with commond \Leftrightarrow erence6(C)Q_1, Q_2,$ Q_3 ..., $are \in A. P. with commond \Leftrightarrow erence11(D)Q_1=Q_2=Q_3$

161. Let A_1 , G_1 , H_1 denote the arithmetic, geometric and harmonic means respectively, of two distinct positive numbers. For $n \ge 2$, let A_{n-1} , G_{n-1} and H_{n-1} has arithmetic, geometric and harmonic means as A_n , G_n , H_n respectively.

Which of the following statement is correct?

Watch Video Solution

162. Let A_1 , G_1 , H_1 denote the arithmetic, geometric and harmonic means respectively, of two distinct positive numbers. For $n \ge 2$, let A_{n-1} , G_{n-1} and H_{n-1} has arithmetic, geometric and harmonic means as A_n , G_n , H_n respectively.

Which of the following statement is correct?

Watch Video Solution

163. Let A_1, G_1, H_1 denote the arithmetic, geometric and harmonic means respectively, of two distinct positive numbers. For $n \geq 2$, let

 A_{n-1}, G_{n-1} and H_{n-1} has arithmetic, geometric and harmonic means as A_n, G_n, H_n respectively.

Which of the following statement is correct?

Watch Video Solution

164. Assertion: The numbers b_1 , b_2 , b_3 , b_4 are neither in A.P. nor in G.P. Reason: The numbers b_1 , b_2 , b_3 , b_3 are in H.P. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

165. If the sum of first n terms of an AP is cn^2 , then the sum of squares of these n terms is :

