©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA ENGLISH

PROPERTIES OF TRIANGLE - FOR COMPETITION

Solved Examples

1. If in a triangle $\mathrm{ABC}, \frac{\tan A}{1}=\frac{\tan B}{2}=\frac{\tan C}{3}$ then prove that $6 \sqrt{2 a}=3 \sqrt{5 b}=2 \sqrt{10} c$

- Watch Video Solution

2. The sides of a triangle are $x^{2}+x+1,2 x+1$, and $x^{2}-1$. Prove that the greatest angle is 120°
3. The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smalles one. Determine the sides of the triangle.

- Watch Video Solution

4. If in triangle $A B C, \cos A \cos B+\sin A \sin B \sin C=1$. Show that $a: b: c=1: 1: \sqrt{2}$

- Watch Video Solution

5. In $A B C$, if $\sin ^{3} \theta=\sin (A-\theta) \sin (B-\theta) \sin (C-\theta)$, then prove that $\cot \theta=\cot A+\cot B+\cot C$.

- Watch Video Solution

6. If in a triangle of base ' a ', the ratio of the other two sides is $r(<1)$.Show that the altitude of the triangle is less than or equal to $\frac{a r}{1-r^{2}}$

- Watch Video Solution

7. Given the base of a triangle, the opposite angle A , and the product k^{2} of the other two sides, show that it is not possible for a to be less than $2 k \frac{\sin A}{2}$

- Watch Video Solution

8. In a triangle $A B C$, the vertices A, B, C are at distances of p, q, r fom the orthocentre respectively. Show that $a q r+b r p+c p q=a b c$

- Watch Video Solution

9. Prove that a triangle $A B C$ is equilateral if and only if $\tan A+\tan B+\tan C=3 \sqrt{3}$.

Watch Video Solution

10. If the sides of triangle $A B C$ are in G.P with common ratio $r(r<1)$, show that $r<\frac{1}{2}(\sqrt{5}+1)$

- Watch Video Solution

11. If in a triangle $r_{1}=r_{2}+r_{3}+r$, prove that the triangle is right angled.

- Watch Video Solution

12. If $A+B+C=\pi$, prove that
(a) $\tan 3 A+\tan 3 B+\tan 3 C=\tan 3 A \tan 3 B \tan 3 C$
(b) $\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=\cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$

- Watch Video Solution

13. about to only mathematics

- Watch Video Solution

14. Prove that the sum of the radii of the radii of the circles, which are, respectively, inscribed and circumscribed about a polygon of n sides, whose side length is a, is $\frac{1}{2} a \frac{\cot \pi}{2 n}$.

- Watch Video Solution

15. The sides of a quadrilateral are $3,4,5$ and 6 cms . The sum of a pair of opposite angles is 120°. Showt $\hat{t} h e a r e a o f t h e ~ r i l a t e r a l i s 3 s q r t(30)^{\prime}$ sq.cm.
16. The two adjacent sides of a cyclic quadrilateral are 2 and 5 and the angle between them is 60°. If the area of the quadrilateral is $4 \sqrt{3}$, find the remaining two sides

- Watch Video Solution

17. A cyclic quadrilateral $A B C D$ of areal $\frac{3 \sqrt{3}}{4}$ is inscribed in unit circle. If one of its side $A B=1$, and the diagonal $B D=\sqrt{3}$, find the lengths of the other sides.

- Watch Video Solution

18. In a cyclic quadrilateral ABCD, prove that $\tan ^{2} \frac{B}{2}=\frac{(s-a)(s-b)}{(s-c)(s-d)}, a, b, c$, and d being the lengths of sides $A B C, C D$ and $D A$ respectively and s is semi-perimeter of quadrilateral.

- Watch Video Solution

19. In triangle $A B C$, prove that $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \leq \frac{1}{8}$ and hence, prove that $\operatorname{cosec} \frac{A}{2}+\operatorname{cosec} \frac{B}{2}+\operatorname{cosec} \frac{C}{2} \geq 6$.

- Watch Video Solution

20. The side of a triangle inscribed in a given circle subtends angles $\alpha, \beta a n d \gamma$ at the centre. The minimum value of the arithmetic mean of $\cos \left(\alpha+\frac{\pi}{2}\right), \cos \left(\beta+\frac{\pi}{2}\right)$, and $\cos \left(\gamma+\frac{\pi}{2}\right)$ is equal to \qquad

- Watch Video Solution

21. If $\mathrm{A}+\mathrm{B}+\mathrm{C}=\pi$, prove that $\tan ^{2} \frac{A}{2}+\tan ^{2} \frac{B}{2}+\tan ^{2} \frac{C}{2} \geq 1$

- Watch Video Solution

$1<m<3 \cdot \ln a \Delta A B C$, if $2 b=(m+1) a$ and $\cos A=\frac{1}{2} \sqrt{\frac{(m-1)(r}{m}}$ prove that there are two values to the third side, one of which is m times the other.

- Watch Video Solution

23. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$, be three angles such that $A=\frac{\pi}{4}$ and $\tan B, \tan C=p$. Find all possible values of p such that A, B, C are the angles of a triangle.

- Watch Video Solution

24. Two sides of triangle are of lengths $\sqrt{6}$ and 4 and the angle opposite to smaller side is 30°, then how many such triangles are possible ?

- Watch Video Solution

25. If the angle A, B and C of a triangle are in an arithmetic propression and if $a, b a n d c$ denote the lengths of the sides opposite to $A, B a n d C$ respectively, then the value of the expression $\frac{a}{c} \sin 2 C+\frac{c}{a} \sin 2 A$ is (a) $\frac{1}{2}$ (b) $\frac{\sqrt{3}}{2}$ (c) 1 (d) $\sqrt{3}$

- Watch Video Solution

26. Let $A B C D$ be a quadrilateral with area 18 , side $A B$ parallel to the side $C D$, and $A B=2 C D$. Let $A D$ be perpendicular to $A B a n d C D$. If a circle is drawn inside the quadrilateral $A B C D$ touching all the sides, then its radius is $a=3$ (b) 2 (c) $\frac{3}{2}$ (d) 1

- Watch Video Solution

27. One angle of an isosceles triangle is 120° and the radius of its incricel is $\sqrt{3}$. Then the area of the triangle in sq. units is $7+12 \sqrt{3}$ (b) $12-7 \sqrt{3}$ $12+7 \sqrt{3}$ (d) 4π
28. A triangle $A B C$ with fixed base $B C$, the vertex A moves such that $\cos B+\cos C=4 \frac{\sin ^{2} A}{2}$. If $a, b a n d c$, denote the length of the sides of the triangle opposite to the angles A, B, and C, respectively, then (a) $b+c=4 a$ (b) $b+c=2 a$ (c)the locus of point A is an ellipse (d)the locus of point A is a pair of straight lines

- Watch Video Solution

29. Internal bisector of $\angle A$ of $\triangle A B C$ meets side BC to D . A line drawn through D perpendicular to $A D$ intersects the side $A C$ at E and side $A B$ at.
F. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ represent sides of $\triangle A B C$, then

- Watch Video Solution

30. If in a $\triangle A B C, \cos A \cdot \cos B+\sin A \cdot \sin B \cdot \sin C=1$, then (A)
$A=B$ (B) $C=\frac{\pi}{2}$ (C) $A C=B C$ (D) $A B=\sqrt{2} A C$
31. In a $\triangle A B C$, if $r=r_{2}+r_{3}-r_{1}$ and $A>\frac{\pi}{3}$ then range of $\frac{s}{a}$ contains
(A) $\left(\frac{1}{2}, 2\right)$
(B) $[1,2)$
(C) $\left(\frac{1}{2}, 3\right)$
(D) $(3, \infty)$

- Watch Video Solution

32. Let us consider a triangle $A B C$ having $B C=5 \mathrm{~cm}, C A=4 \mathrm{~cm}, A B=3 \mathrm{~cm}, D, E$ are points on BC such $\mathrm{BD}=\mathrm{DE}=\mathrm{EC}, \angle C A E=\theta$, then:
$A E^{2}$ is equal to

- Watch Video Solution

33. In triangle $\mathrm{ABC}, R(b+c)=a \sqrt{b c}$, where R is the circumradius of the triangle. Then the triangle is

- Watch Video Solution

34. In acute angled triangle $A B C, A D$ is the altitude. Circle drawn with $A D$ as its diameter cuts A Band ACatPand Q, respectively. Length of $P Q$ is equal to $/(2 R)$ (b) $\frac{a b c}{4 R^{2}} 2 R \sin A \sin B \sin C$ (d) Δ / R

- Watch Video Solution

35. Statement 1. If A is the area and $2 s$ is the perimeter of a $\triangle A B C$, then $A \leq \frac{s^{2}}{3 \sqrt{3}}$,

Statement 2. $A . M \geq G$. M.
(A) Both Statements are false
(B) Both Statement 1 and Statement 2 are true
(C) Statement 1 is true but Statement 2 is false.
(D) Statement 1 is flse but Stastement 2 is true

Watch Video Solution

36. Radius of circumcircle of $\triangle D E F$ is
(A) R
(B) $\frac{R}{2}$
(C) $\frac{R}{4}$
(D) none of these

- Watch Video Solution

37. If $\cot A+\cot B+\cot C=k\left(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}\right)$ then the value of k is
(A) R^{2}
(B) $2 R$
(C) $\triangle{ }^{`}(\mathrm{D}) a^{2}+b^{2}+c^{2}$

- Watch Video Solution

38. Let $A B C a n d A B C^{\prime}$ be two non-congruent triangles with sides $A B=4, A C=A C^{\prime}=2 \sqrt{2}$ and angle $B=30^{\circ}$. The absolute value of the difference between the areas of these triangles is

- Watch Video Solution

39. $A B C$ is a triangle. Its area is $12 \mathrm{sq} . \mathrm{cm}$. and base is 6 cm . the difference of base angle is 60°. If A be the angle opposite to the base, then the value of $8 \sin A-6 \cos A$ is......

- Watch Video Solution

40. perpendiculars are drawn from the angles $A, B a n d C$ of an acuteangled triangle on the opposite sides, and produced to meet the circumscribing circle. If these produced parts are α, β, γ, respectively, then show that $\frac{a}{\alpha}+\frac{b}{\beta}+\frac{c}{\gamma}=2(\tan A+\tan B+\tan C)$.

- Watch Video Solution

41. The sides of a triangle are in AP. If the angles A and C are the greatest and smallest angle respectively, then $4(1-\cos A)(1-\cos C)$ is equal to

- Watch Video Solution

42. The radius of the circle passing through the vertices of the triangle $A B C$, is

43. Three circles touch one another externally. The tangents at their points of contact meet at a point whose distance from a point of contact is 4 . Find the ratio of the product of the radii to the sum of the radii of the circles.

- Watch Video Solution

44. Bisectors of angles A, B and C of a triangle $A B C$ intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF are $90 o-\frac{1}{2} A, 90 o-\frac{1}{2} B$ and $90 o-\frac{1}{2} C$

- Watch Video Solution

Exercise

1. A ring, 10 cm in diameter, is suspended from a point 12 cm above its centre by 6 equal strings attached to its circumference at equal intervals.

Find the cosine of the angle between consecutive strings.

- Watch Video Solution

2. The angle of a triangle are in the ratio $1: 2: 7$, prove that the ratio of the greatest side to the least side is $(\sqrt{5}+1):(\sqrt{5}-1)$.

- Watch Video Solution

3. If the base angles of triangle are $\frac{22}{12} \operatorname{and} 112 \frac{1}{2^{0}}$, then prove that the altitude of the triangle is equal to $\frac{1}{2}$ of its base.

- Watch Video Solution

4. If $\mathrm{f}, \mathrm{g}, \mathrm{h}$ are internal bisectoirs of the angles of a triangle $A B C$, show that $\frac{1}{f} \cos , \frac{A}{2}+\frac{1}{g} \cos , \frac{B}{2}+\frac{1}{h} \cos , \frac{C}{2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$

- Watch Video Solution

5. In triangle $A B C$, medians $A D$ and $C E$ are drawn $A D=5, \angle D A C=\pi / 8$, and $\angle A C E=\pi / 4$, then the area of the triangle $A B C$ is equal to

- Watch Video Solution

6. In $\triangle A B C$,

if the sides are $7,4 \sqrt{3}$ and $\sqrt{13} \mathrm{~cm}$, prove that the smallest angle is 30°.

- Watch Video Solution

7. In an isosceles right angled triangle , a straight line drwan from the mid

- point of one of equal sides to the opposite angle. It divides the angle into two parts, θ and $(\pi / 4-\theta)$. Then $\tan \theta$ and $\tan [(\pi / 4)-\theta]$ are equal to

- Watch Video Solution

8. If the roots of the equation $x^{3}-p x^{2}+q x-r=0$ are in A.P., then prove that, $2 p^{3}-9 p q+27 r=0$

(Watch Video Solution

9. In any $\triangle A B C, \prod\left(\frac{\sin ^{2} A+\sin A+1}{\sin A}\right)$ is always greater than

D Watch Video Solution

10. In a
$\triangle A B C$,
Prove
that
$\sin ^{4} A+\sin ^{4} B+\sin ^{4} C=\frac{3}{2}+2 \cos A \cos B \cos C+\frac{1}{2} \cos 2 A \cos 2 B \cos 2$

- Watch Video Solution

11. Prove that,
$\frac{a \sin (B-C)}{b^{2}-c^{2}}=\frac{b \sin (C-A)}{c^{2}-a^{2}}=\frac{c \sin (A-B)}{a^{2}-b^{2}}$
12. In any triangle $A B C$ prove that: $\sin \left(\frac{B-C}{2}\right)=\left(\frac{b-c}{a}\right) \frac{\cos A}{2}$

- Watch Video Solution

13. If in a $\triangle A B C, \sin ^{3} A+\sin ^{3} B+\sin ^{3} C$
$=3 \sin A \cdot \sin B \cdot \sin C$, then find the valueof determinant $\left|\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|$.

- Watch Video Solution

14. In a triangle ABC , Prove that: $\sin ^{3} A+\sin ^{3} B+\sin ^{3} C=$ $3 \frac{\cos A}{2} \frac{\cos B}{2} \frac{\cos C}{2}+\frac{\cos (3 A)}{2} \frac{\cos (3 B)}{2} \frac{\cos (3 C)}{2}$

- Watch Video Solution

15. Prove that $\left(\frac{\cot A}{2}+\frac{\cot B}{2}\right)\left(a \frac{\sin ^{2} B}{2}+b \frac{\sin ^{2} A}{2}\right)=o t \frac{C}{2}$
16. If pandq are perpendicular from the angular points A and B of $A B C$ drawn to any line through the vertex C, then prove that $a^{2} b^{2} \sin ^{2} C=a^{2} p^{2}+b^{2} q^{2}-2 a b p q \cos C$.

- Watch Video Solution

17. Let O be a point inside a triangle $A B C$ such that $\angle O A B=\angle O B C=\angle O C A=\omega \quad$, then show that: $\cot \omega=\cot A+\cot B+\cot C$
$\cos e c^{2} \omega=\cos e c^{2} A+\cos e c^{2} B+\cos ^{2} c^{2} C$

Watch Video Solution

18. If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are perpendicular from circum centre of the sides of the $\triangle A B C$ respectively. Prove that $\frac{a}{z}+\frac{b}{y}+\frac{c}{z}=\frac{a b c}{4 x y z}$
19. Prove that a triangle $A B C$ is equilateral if and only if $\tan A+\tan B+\tan C=3 \sqrt{3}$.

- Watch Video Solution

20. In a triange $A B C$, if $\sin \left(\frac{A}{2}\right) \sin \left(\frac{B}{2}\right) \sin \left(\frac{C}{2}\right)=\frac{1}{8}$ prove that the triangle is equilateral.

- Watch Video Solution

21. If in a triangle $A B C, \cos A+2 \cos B+\cos C=2$ prove that the sides of the triangle are in $A P$
22. If in $\triangle A B C,(a-b)(s-c)=(b-c)(s-a)$, prove that r_{1}, r_{2}, r_{3} are in A.P.

- Watch Video Solution

23. In a $\Delta A B C, I f \tan \left(\frac{A}{2}\right), \tan \left(\frac{B}{2}\right), \tan \left(\frac{C}{2}\right)$, are in H.P.,then a,b,c are in

- Watch Video Solution

24. If the sides of triangle in A.P. and $\angle C=90+\angle A$ then prove that sides will be in ratio $\sqrt{7}+1: \sqrt{7}: \sqrt{7}-1$

- Watch Video Solution

25. If the sides a,b,c of a triangle are in Arithmetic progressioni then find the value of $\tan \left(\frac{A}{2}\right)+\tan \left(\frac{C}{2}\right)$ in terms of $\cot \left(\frac{B}{2}\right)$
26. Prove that $r_{1}+r_{2}+r_{3}-r=4 R$

- Watch Video Solution

27. prove that : triangle ABC, $\frac{1}{r_{1}}+\frac{1}{r_{2}}+\frac{1}{r_{3}}=\frac{1}{r}$

- Watch Video Solution

28. To show that $\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}+\frac{1}{r_{3}^{2}}+\frac{1}{r^{2}}=\frac{\sum a^{2}}{S^{2}}$

- Watch Video Solution

29. If A, A_{1}, A_{2}, A_{3} are the areas of the inscribed and escribed of a $\triangle A B C$, then
30. Prove that : $\frac{r_{1}}{b c}+\frac{r_{2}}{c a}+\frac{r_{3}}{a b}=\frac{1}{r}-\frac{1}{2 R}$

- Watch Video Solution

31. $A B C$ is an isosceles triangle inscribed in a circle of radius r. If $A B=A C$ and h is the altitude from A to $B C$, then triangle $A B C$ has perimeter $P=2\left(\sqrt{2 h r-h^{2}}+\sqrt{2 h r}\right)$ and area $A=$ \qquad \ldots and also $(\lim)_{x \rightarrow} \frac{A}{P^{3}}=$ _-

- Watch Video Solution

32. If p_{1}, p_{2}, p_{3} re the altitudes of the triangle ABC from the vertices A, B and C respectivel. Prove that $\frac{\cos A}{p_{1}}+\frac{\cos B}{p^{2}}+\frac{\cos C}{p_{3}}=\frac{1}{R}$

- Watch Video Solution

33. Three circles whose radii are a, b and c and c touch one other externally and the tangents at their points of contact meet in a point. Prove that the distance of this point from either of their points of contact is $\left(\frac{a b c}{a+b+c}\right)^{\frac{1}{2}}$.

- Watch Video Solution

34. In a triangle $A B C$ prove that
$r_{1} r_{2} r_{3}=r^{3} \cot ^{2}\left(\frac{A}{2}\right) \cdot \cot ^{2}\left(\frac{B}{2}\right) \cdot \cot ^{2}\left(\frac{C}{2}\right)$

- Watch Video Solution

35. Prove that : $\left(r_{1}+r_{2}\right) \frac{\tan (C)}{2}=\left(r_{3}-r\right) \frac{\cot (C)}{2}=c$

- Watch Video Solution

36. Prove that : $4 R \sin A \sin B \sin \mathbb{C}=a \cos A+b \cos B+c \cos C$

(Watch Video Solution

37. Prove that $\left(r_{1}-r\right)\left(r_{2}-r\right)\left(r_{3}-r\right)=4 R r^{2}$

- Watch Video Solution

38.

In
a
triangle
ABC,
prove
that
$r^{2}+r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=16 R^{2}-a^{2}-b^{2}-c^{2}$.

- Watch Video Solution

39. If I is the incentre and I_{1}, I_{2}, I_{3} are the centre of escribed circles of the $\triangle A B C$. Prove that

$$
I I_{1} . I I_{2} . I I_{3}=16 R^{2} r .
$$

- Watch Video Solution

40. If 1 is the incentre and $1_{1}, 1_{2}, 1_{3}$ are the centre of escribed circles of the $\triangle A B C$. Prove that
$I I_{1}, I I_{2}, I I I_{3}=16 R^{2} r$.

- Watch Video Solution

41. $\frac{1}{b c}+\frac{1}{c a}+\frac{1}{a b}=$

- Watch Video Solution

42.

Prove
that
$\frac{r_{1}}{(s-b)(s-c)}+\frac{r_{2}}{(s-c)(s-a)}+\frac{r_{3}}{(s-a)(s-b)}=\frac{3}{r}$

(Watch Video Solution

43. If the distances of the vertices of a triangle $=A B C$ from the points of contacts of the incercle with sides are $\alpha, \beta a n d \gamma$ then prove that
$r^{2}=\frac{\alpha \beta \gamma}{\alpha+\beta+\gamma}$

D Watch Video Solution

44. If in a triangle $\left(1-\frac{r_{1}}{r_{2}}\right)\left(1-\frac{r_{1}}{r_{3}}\right)=2$ then the triangle is right angled (b) isosceles equilateral (d) none of these

- Watch Video Solution

45. In a triangle $A B C$, prove that the ratio of the area of the incircle to that of the triangle is $\pi: \cot \left(\frac{A}{2}\right) \cot \left(\frac{B}{2}\right) \cot \left(\frac{C}{2}\right)$

- Watch Video Solution

46. For a regular polygon, let r and R be the radii of the inscribed and the cirumscribed circles, respectively. A false statement among the following is
47. A square whose side is 2 cm , has its corners cut away so as to form a regular octagon, find its area.

- Watch Video Solution

48. An equilateral triangle and a regular hexagon has same perimeter.

Find the ratio of their areas.

- Watch Video Solution

49. The ratio of the area of a regular polygon of n sides inscribed in a circle to that of the polygon of same number of sides circumscribing the same is $3: 4$. Then the value of n is

- Watch Video Solution

50. A cyclic quadrilateral $A B C D$ of areal $\frac{3 \sqrt{3}}{4}$ is inscribed in unit circle. If one of its side $A B=1$, and the diagonal $B D=\sqrt{3}$, find the lengths of the other sides.

- Watch Video Solution

51. about to only mathematics

D Watch Video Solution

52. In an acute-angled triangle $\mathrm{ABC}, \tan A+\tan B+\tan C$

- Watch Video Solution

53. If in a triamgle ABC, θ is the angle determined by $\cos \theta=(a-b) / c$, then
54. If R be the circum radius and r the in radius of a triangle $A B C$, show that $R \geq 2 r$

- Watch Video Solution

55. If $A+B+C=\pi$, prove that: $\cot ^{2} A+\cot ^{2} B+\cot ^{2} C \geq 1$

- Watch Video Solution

56. In acute angled $\triangle A B C$ prove that $\tan ^{2} A+\tan ^{2} B+\tan ^{2} C \geq 9$.

- Watch Video Solution

57. In $\triangle A B C$, prove that $\operatorname{cosec} \frac{A}{2}+\operatorname{cosec} \frac{B}{2}+\operatorname{cosec} \frac{C}{2} \geq 6$.

- Watch Video Solution

58. Prove that in $\triangle A B C, 2 \cos A \cos B \cos C \leq \frac{1}{4}$.

- Watch Video Solution

59. Three equal circles each of radius r touch one another. The radius of the circle touching all the three given circles internally is $(2+\sqrt{3}) r$ (b) $\frac{(2+\sqrt{3})}{\sqrt{3}} r \frac{(2-\sqrt{3})}{\sqrt{3}} r(\mathrm{~d})(2-\sqrt{3}) r$

- Watch Video Solution

60. In a $\Delta A B C$, prove that
$\sum_{r=0}^{n}{ }^{n} C_{r} a^{r} b^{n-r} \cos (r B-(n-r) A)=c^{n}$.

D Watch Video Solution

61. If \triangle is the area and $2 s$ is the perimeter of $\triangle A B C$, then prove that $\triangle \leq \frac{s^{2}}{3 \sqrt{3}}$
62. The sides of a triangle are $3 x+4 y, 4 x+3 y$ and $5 x+5 y$ units, where $x>0, y>0$. The triangle is

D Watch Video Solution

63. In a $\triangle A B C, \cos e c A[\sin B \cdot \cos C+\cos B \cdot \sin C]=$
(A) $\frac{c}{a}$
(B) $\frac{a}{c}$
(C) 1
(D) none of these

D Watch Video Solution

64. If the data given to construct a triangle $A B C$ are $a=5, b=7$, sin $A=3 / 4$, then is it possible to construct?
65. If in a triangle the angles are in the ratio as $1: 2: 3$, prove that the corresponding sides are $1: \sqrt{3}: 2$.

- Watch Video Solution

66. If three sides a, b, c of a triangle $A B C$ are in arithmetic progression, then the value of $\cot \left(\frac{A}{2}\right), \cot \left(\frac{B}{2}\right), \cot \left(\frac{C}{2}\right)$ are in

- Watch Video Solution

67. If $b=3, c=4$, and $B=\frac{\pi}{3}$, then find the number of triangles that can be constructed.
68. In a triangle $A B C, a=4, b=3, \angle A=60^{\circ}$ then c is root of the equation $c^{2}-3 c-7=0$ (b) $c^{2}+3 c+7=0$ (c) $c^{2}-3 c+7=0$ (d) $c^{2}+3 c-7=0$

- Watch Video Solution

69. If in a triangle $A B C, 3 \sin A=6 \sin B=2 \sqrt{3} \sin C$, then the angle A is

- Watch Video Solution

70. The number of triangles $A B C$ that can be formed with $\sin A=\frac{5}{13}, a=3$ and $b=8$ is

- Watch Video Solution

71. $\alpha-\beta, \alpha+\beta$ and $\sqrt{3 \alpha^{2}+\beta^{2}},(\alpha>\beta>0)$. Its largest angle is

Watch Video Solution

72. In a $\triangle P Q R$ (as shown in figure) if $x: y: z=2: 3: 6$, then the value of $\angle Q P R$ is :

73. If in a $\triangle A B C, \angle C=90^{\circ}$, then find the maximum value of $\sin \mathrm{A} \sin$ B.

- Watch Video Solution

74. In an isosceles right angled triangle $A B C, \angle B=90^{\circ}, A D$ is the median then $\frac{\sin \angle B A D}{\sin \angle C A D}$ is (A) $\frac{1}{\sqrt{2}}$ (B) $\sqrt{2}$ (C) 1 (D) none of these

- Watch Video Solution

75. If in a $\triangle A B C, \mathrm{c}=3 \mathrm{~b}$ and $\mathrm{C}-\mathrm{B}=90^{\circ}$, then $\tan \mathrm{B}=$

- Watch Video Solution

76. If the lenghts of the sides of a triangle are 3,5 and 7 , then the largest angle of the triangle is
77. In a $\triangle A B C$ if $\mathrm{a}=7, \mathrm{~b}=8$ and $\mathrm{c}=9$, then the length of the line joining B to the mid-points of $A C$ is

- Watch Video Solution

78. If in $\triangle A B C$, the distance of the vertices from the orthocenter are x, y, and z then prove that $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=\frac{a b c}{x y z}$

- Watch Video Solution

79. If the sides of a triangle are in the ratio $3: 7: 8$, then find $R: r$

- Watch Video Solution

80. If the sides of a triangle are in GP and its largest angle is twice tha smallset then the common ratio r satisfies the inequality
81. If in a $\triangle A B C, a^{2} \cos ^{2} A=b^{2}+c^{2}$, then angle A is
(A) less than 45° (B) more than 45° and less than 90°
(C) right angled (D) obtuse angle

- Watch Video Solution

82. The perimeter of a triangle $A B C$ is six times the arithmetic mean of the sines of its angles. If the side a is 1 , then find angle A

- Watch Video Solution

83. In a tiangle ABC if angle C is obtuse, prove that $\tan A \tan B<1$

- Watch Video Solution

84. In an equilateral triangle, the inradius, circumradius, and one of the exradii are in the ratio

- Watch Video Solution

85. The ratio of the area of triangle inscribed in ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ to that of triangle formed by the corresponding points on the auxiliary circle is 0.5 . Then, find the eccentricity of the ellipse.

- Watch Video Solution

86. If in a triangle ABC , the altitude AM be the bisector of $\angle B A D$, where

D is the mid point of side BC , then prove that $\left(b^{2}-c^{2}\right)=\frac{a^{2}}{2}$.

- Watch Video Solution

87. In a $/ / \backslash \mathrm{ABC}, \tan , \mathrm{A} / 2=5 / 6$ and $\tan , \mathrm{C} / 2=2 / 5$ then (A) a,c,b are in A.P. (B) $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P. (C) b,a,c are in A.P. (D) a,b,c are in G.P.

Watch Video Solution

88. The sides of a triangle are $3 x+4 y, 4 x+3 y$ and $5 x+5 y$ units, where
$x>0, y>0$. The triangle is

- Watch Video Solution

89. In triangle $A B C, A D$ is the altitude from A. If $b>c, \angle C=23^{0}, a n d A D=\frac{a b c}{b^{2}}-c^{2}$, then $\angle B=_{-}{ }_{-}$

- Watch Video Solution

90. A circle is inscribed in an equilateral triangle of side a. Find the area of any square inscribed in this circle.
91. about to only mathematics

- Watch Video Solution

92. Let $f(x+y)=f(x) . f(y)$ for all x and $\mathrm{y} f(1)=2$ If in a triangle
${ }^{\prime} A B C, a=f(3), b=f(1)+f(3), c=f(2)+f(3)$, then $2 A$ is equal to

Watch Video Solution

93. In triangle $A B C$, angle A is greater than angle B. If the measure of angles A and B satisfy the equation $3 \sin x-4 \sin ^{3} x-k=0$. Find the value of angle C (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{2}$ (C) $\frac{2 \pi}{3}$ (D) $\frac{5 \pi}{6}$

- Watch Video Solution

94. In a $\triangle A B C, \angle B=\frac{\pi}{3}$ and $\angle C=\frac{\pi}{4}$ let D divide BC internally in the ratio $1: 3$, then $\frac{\sin (\angle B A D)}{\sin (\angle C A D)}$ is equal to :

- Watch Video Solution

95. If a, b, c be the sides of a triangle $A B C$ and if roots of equation $a(b-c) x^{2}+b(c-a) x+c(a-b)=90 \quad$ are equal then $\frac{\sin ^{2} A}{2}, \frac{\sin ^{2} B}{2}, \frac{\sin ^{2} C}{2}$ are in

- Watch Video Solution

96. In a $\triangle A B C, b^{2}+c^{2}=1999 a^{2}$, then $\frac{\cot B+\cot C}{\cot A}=$ (A) $1 / 1999$
(B) 1/999 (C) 999 (D) 1999

- Watch Video Solution

97. If $(1+a x)^{n}=1+8 x+24 x^{2}+\ldots$, then $\mathrm{a}=. .$. and $\mathrm{n}=\ldots$.
98. If equations $a x^{2}+b x+c=0$ and $4 x^{2}+5 x+6=0$ have a comon root, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are the sides of $\triangle A B C$ opposite to angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively, then 2a= (A) c (B) 2c (C) 3c (D) 4c

- Watch Video Solution

99. In a $\triangle A B C$, if $\frac{2 \cos A}{a}+\frac{\cos B}{b}+\frac{2 \cos C}{c}=\frac{a}{b c}+\frac{b}{c a}$, prove that $\angle A=90^{\circ}$.

- Watch Video Solution

100. In triangle ABC, $a: b: c=4: 5: 6$. Then find the ratio of the radius of the circumcircle to that of the incircle

- Watch Video Solution

101. In triangle $\mathrm{ABC}, \frac{\sin A+\sin B+\sin C}{\sin A+\sin B-\sin C}$ is equal to

- Watch Video Solution

102. If $\cos \mathrm{A}+\cos \mathrm{B}=4 \sin ^{2}\left(\frac{C}{2}\right)$, then

- Watch Video Solution

103. If twice the square of the diameter of the circle is equal to half the sum of the squares of the sides of incribed triangle $A B C$,then $\sin ^{2} A+\sin ^{2} B+\sin ^{2} C$ is equal to

- Watch Video Solution

104. If the base angles of triangle are $\frac{22}{12}$ and $112 \frac{1}{2^{0}}$, then prove that the altitude of the triangle is equal to $\frac{1}{2}$ of its base.
105. Let $A B C$ be an isosceles triangle with base $B C$. If r is the radius of the circle inscribsed in $\triangle A B C$ and r_{1} is the radius of the circle ecribed opposite to the angle A , then the product $r_{1} r$ can be equal to (where R is the radius of the circumcircle of $\Delta A B C$)

(Watch Video Solution

106. If Δ represents the area of acute angled triangle $A B C$, then
$\sqrt{a^{2} b^{2}-4 \Delta^{2}}+\sqrt{b^{2} c^{2}-4 \Delta^{2}}+\sqrt{c^{2} a^{2}-4 \Delta^{2}}=\quad$ (a) $a^{2}+b^{2}+c^{2}$ $\frac{a^{2}+b^{2}+c^{2}}{2}$
(c) $a b \cos C+b c \cos A+c a \cos B$
$a b \sin C+b c \sin A+c a \sin B$

D Watch Video Solution

107. If in a $\triangle A B C, a=6, b=3$ and $\cos (A-B)=\frac{4}{5}$ then (A)
$C=\frac{\pi}{4}$ (B) $A=\frac{\sin ^{-1} 2}{\sqrt{5}}$ (C) $\operatorname{ar}(\triangle A B C)=9$ (D) none of these

- Watch Video Solution

108. In a triangle, the lengths of the two larger sides are 10 and 9 , respectively. If the angles are in A.P, then the length of the third side can be (a) $5-\sqrt{6}$ (b) $3 \sqrt{3}$ (c) 5 (d) $5+\sqrt{6}$

- Watch Video Solution

109. In a triangle $A B C$, points D and E are taken on side $B C$ such that $B D=$ $\mathrm{DE}=\mathrm{EC}$. If angle $\mathrm{ADE}=$ angle $\mathrm{AED}=\theta$, then: $(\mathrm{A}) \tan \theta=3 \tan \mathrm{~B}(\mathrm{~B}) 3 \tan \theta=$ $\tan \mathrm{C}(\mathrm{C})(6 \tan \theta) /\left(\tan ^{2} \theta-9\right)=\tan \mathrm{A}(\mathrm{D}) \angle B=\angle C$

- Watch Video Solution

110. For any triangle ABC, prove that $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}=\frac{a^{2}+b^{2}+c^{2}}{2 a b c}$

- Watch Video Solution

111. about to only mathematics

- Watch Video Solution

112. The value of $\lim _{x \rightarrow 0} \frac{\int_{0}^{x^{2}} \sec ^{2} t d t}{x \sin x} d x$, is

- Watch Video Solution

113. If a and b be the length of the sides and c the length of hypotenuse of a right anlged triangle then (A) $a+b>c$ (B) $a^{2}+b^{2}=c^{2}$
$a^{3}+b^{3}<c^{3}$ (D) $a^{n}+b^{n}<c^{n}$ for $n \geq 3, n=Z$

- Watch Video Solution

114. If in $\triangle A B C, \angle A=90^{\circ}$ and c , $\sin \mathrm{B} \cos \mathrm{B}$ are rational numbers, then show a and b are rational .
115. In triangle $A B C$, the value of $\left|\begin{array}{ccc}e^{-i 2 A} & e^{i C} & e^{i B} \\ e^{i C} & e^{-i 2 B} & e^{i A} \\ e^{i B} & e^{i A} & e^{-i 2 C}\end{array}\right|$

- Watch Video Solution

116. If a, b, c, d and p are different real numbers such that $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$, then show that a, b, c and d are in G.P.

- Watch Video Solution

117. In a triangle, $a^{2}+b^{2}+c^{2}=c a+a b \sqrt{3}$. Then the triangles is :

- Watch Video Solution

118. If all the vertices of a triangle have integral coordinates, then the triangle may be (a) right-angle (b) equilateral (c) isosceles (d) none of these

- Watch Video Solution

119. In a triangle, the lengths of the two larger sides are 10 and 9 respectively. If the angles are in A.P.,

- Watch Video Solution

120. If the tangents of the angles A, B of a $\Delta A B C$...satisfy the equation $a b x^{2}-c^{2} x+a b=0$, then the triangle is:

- Watch Video Solution

121. In a triangle $A B C$, points D and E are taken on side $B C$ such that $B D=$ $\mathrm{DE}=\mathrm{EC}$. If angle $\mathrm{ADE}=$ angle $\mathrm{AED}=\theta$, then: (A$) \tan \theta=3 \tan \mathrm{~B}(\mathrm{~B}) 3 \tan \theta=$ $\tan \mathrm{C}$ (C) $(6 \tan \theta) /\left(\tan ^{2} \theta-9\right)=\tan \mathrm{A}(\mathrm{D}) \angle B=\angle C$

- Watch Video Solution

122. If in a $\triangle A B C$, if $a^{4}+b^{4}+c^{4}=2 c^{2}\left(a^{2}+b^{2}\right)$, prove that $C=45^{0}$ or 135^{0}.

- Watch Video Solution

123. Statement-1: If the measures of two angles of a triangle are 45° and $60{ }^{\circ}$, then the ratio of the smallest and the greatest sides are $(\sqrt{3}-1): 1$

Statement-2: The greatest side of a triangle is opposite to its greatest angle.
$A B C$, if $a: b: c=4: 5: 6$, thenR: $r=16: 7$, Statement 2 . In any triangle $\frac{R}{r}=\frac{a b c}{4 s}$ (A) Both Statement 1 and Statement 2 are true and
Statement 2 is the correct explanation of Statement 1 (B) Both Statement 1 and Statement 2 are true and Statement 2 is not the correct explanatioin of Statement 1 (C) Statement 1 is true but Statement 2 is false. (D) Statement 1 is false but Stastement 2 is true

- Watch Video Solution

125. $\sin \left\{2 \cos ^{-1}\left(-\frac{3}{5}\right)\right\}$ is equal to (a) $6 / 25$ (b) $24 / 25$ (c) $4 / 5$ (d) $-24 / 25$

- Watch Video Solution

126. Three circles touch one another externally. The tangents at their points of contact meet at a point whose distance from a point of contact
is 4 . Find the ratio of the product of the radii to the sum of the radii of the circles.

(Watch Video Solution

127. If $A+B+C=\pi$, prove that
(a) $\tan 3 A+\tan 3 B+\tan 3 C=\tan 3 A \tan 3 B \tan 3 C$
(b) $\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=\cot \frac{A}{2} \cot \frac{B}{2} \cot \frac{C}{2}$

(Watch Video Solution

128. Given the base of a triangle, the opposite angle A , and the product k^{2} of the other two sides, show that it is not possible for a to be less than $2 k \frac{\sin A}{2}$

- Watch Video Solution

129. In a triangle $A B C$ the sides b and c are the roots of the equation $x^{2}-61 x+820=0$ and $A=\tan ^{-1}\left(\frac{4}{3}\right)$ thena ${ }^{2}+3$ is equal to

- Watch Video Solution

130. If in a triangle $A B C, \operatorname{Rr}(\sin A+\sin B+\sin C)=96$ then the square of the area of the triangle $A B C$ is.......

- Watch Video Solution

131. The sides of a quadrilateral are $3,4,5$ and 6 cms . The sum of a pair of opposite angles is 120°. Showtt̂heareaofthe rilateralis $3 \mathrm{sqrt}(30)^{`}$ sq.cm.

- Watch Video Solution

132. Three circles touch one another externally. The tangents at their points of contact meet at a point whose distance from a point of contact is 4 . Find the ratio of the product of the radii to the sum of the radii of the circles.

- Watch Video Solution

133. In triangle ABC, $a: b: c=4: 5: 6$. Then find the ratio of the radius of the circumcircle to that of the incircle

- Watch Video Solution

134. If p_{1}, p_{2}, p_{3}, be the altitudes of a triangle ABC from the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively and Δ be the area of the triangle $A B C$, prove that : $\frac{p}{p_{1}}+\frac{1}{p_{2}}-\frac{1}{p_{3}}=\frac{2 a b \cos ^{2}, \frac{C}{2}}{\Delta(a+b+c)}$

- Watch Video Solution

135. If the sides of a quadrilateral touch a circle, prove that the sum of a pair of opposite sides is equal to the sum of the other pair.

- Watch Video Solution

136. If in triangle $A B C, a=(1+\sqrt{3}) c m, b=2 c m$, and $\angle C=6$ then find the other two angles and the third side

- Watch Video Solution

137. If a circle is inscribed in right angled triangle $A B C$ with right angle at B , show that the diameter of the circle is equal to $A B+B C-A C$.

- Watch Video Solution

138. If a triangle is inscribed in a circle, then prove that the product of any two sides of the triangle is equal to the product of the diameter and the perpendicular distance of the thrid side from the opposite vertex.

Watch Video Solution

139. $A B C$ is a triangle and D is the middle point of $B C$. If $A D$ is perpendicular to AC , then prove that $\cos A \cdot \cos C=\frac{2\left(c^{2}-a^{2}\right)}{3 a c}$

Watch Video Solution

140. If angles A, B, and C of a triangle $A B C$ are in A.P. and if $\frac{b}{c}=\frac{\sqrt{3}}{\sqrt{2}}$, then find angle A

D Watch Video Solution

141. The exradii r_{1}, r_{2}, and r_{3} of $\triangle A B C$ are in H.P. show that its sides a, b, and c are in A.P.

- Watch Video Solution

142. If in a $\triangle A B C, \cos A+\cos B+\cos C=\frac{3}{2}$. Prove that $\triangle A B C$ is an equilateral triangle.

- Watch Video Solution

143. With usual notion, if in triangle $A B C$, $\frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$, thenprovethat $\frac{\cos A}{7}=\frac{\cos B}{19}=\frac{\cos C}{25}$

- Watch Video Solution

144. $A B$ is a diameter of a circle and C is any point on the circumference of the circle. Then a) the area of $A B C$ is maximum when it is isosceles b) the area of $A B C$ is minimum when it is isosceles c) the perimeter of $A B C$ is minimum when it is isosceles d) none of these

- Watch Video Solution

145. about to only mathematics

- Watch Video Solution

146. If in triangle $A B C, \cos A \cos B+\sin A \sin B \sin C=1$. Show that $a: b: c=1: 1: \sqrt{2}$

- Watch Video Solution

147. Prove that If any A B C are distinct positive numbers, then the expression $(b+c-a)(c+a-b)(a+b-c)-a b c$ is negative

- Watch Video Solution

148. In a triangle, the lengths of the two larger sides are 10 and 9 respectively. If the angles are in A.P.,
149. If the angles of a triangle are 30° and 45° and the included side is $(\sqrt{3}+1) c m$ then the area of the triangle is \qquad .

- Watch Video Solution

150. about to only mathematics

- Watch Video Solution

151. The sides of a triangle are three consecutive natural numbers and its largest angle is twice the smalles one. Determine the sides of the triangle.

- Watch Video Solution

152. $\frac{2 \cos A}{a}+\frac{\cos B}{b}+\frac{2 \cos C}{c}=\frac{a}{a c}+\frac{b}{c a}$, then the values of the angle A is
153. A circle is inscribed in an equilateral triangle of side a. The area of any square inscribed in this circle is \qquad .

D Watch Video Solution

154. about to only mathematics

- Watch Video Solution

155. Consider the following statements concerning a $\triangle A B C$
(i) The sides a, b, c and area of triangle are rational.
(ii) $a, \tan \frac{B}{2}, \tan \frac{C}{2}$
(iii) $a, \sin A \sin B, \sin C$ are rational .

Prove that $(i) \Rightarrow(i i) \Rightarrow(i i i) \Rightarrow(i)$
156. IF the lengths of the side of triangle are 3,5 and 7 , then the largest angle of the triangle is $\frac{\pi}{2}$ (b) $\frac{5 \pi}{6}$ (c) $\frac{2 \pi}{3}$ (d) $\frac{3 \pi}{4}$

- Watch Video Solution

157. In triangle ABC, $a: b: c=4: 5: 6$. Then find the ratio of the radius of the circumcircle to that of the incircle

- Watch Video Solution

158. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$, be three angles such that $A=\frac{\pi}{4}$ and $\tan B, \tan C=p$. Find all possible values of p such that A, B, C are the angles of a triangle.

- Watch Video Solution

159. If in a triangle $P Q R ; \sin P, \sin Q, \sin R$ are in A.P; then (A)the altitudes are in AP (B)the altitudes are in HP (C)the altitudes are in GP (D)the medians are in AP

- Watch Video Solution

160. Prove that a triangle $A B C$ is equilateral if and only if $\tan A+\tan B+\tan C=3 \sqrt{3}$.

- Watch Video Solution

161. Let $A B C$ be a triangle having O and I as its circumcentre and incentre, respectively. If R and r are the circumradius and the inradius respectively, then prove that (IO) $2=R 2-2 R r$. Further show that the triangle BIO is right angled triangle if and only if b is the arithmetic mean of a and c.

- Watch Video Solution

162. In triangle $\mathrm{ABC}, 2 a c \sin \left(\frac{1}{2}(A-B+C)\right)$ is equal to

- Watch Video Solution

163. In triangle $A B C$, let $\angle C=\pi / 2$. If r is the inradius and R is circumradius of the triangle, then $2(r+R)$ is equal to

- Watch Video Solution

164. In any triangle $A B C$ prove that $\cot \left(\frac{A}{2}\right)+\cot \left(\frac{B}{2}\right)+\cot \left(\frac{C}{2}\right)=\cot \left(\frac{A}{2}\right) \cot \left(\frac{B}{2}\right) \cot \left(\frac{C}{2}\right)$

- Watch Video Solution

165. Let $P Q a n d R S$ be tangent at the extremities of the diameter $P R$ of a circle of radius r. If $P S a n d R Q$ intersect at a point X on the circumference of the circle, then prove that $2 r=\sqrt{P Q x R S}$.
166. If Δ is the area of a triangle with side lengths a, b, and c, then show that $\Delta \leq \frac{1}{2} \sqrt{(a+b+c) a b c}$. Also show that equality occurs in the above inequality if and only if $a=b=c$

- Watch Video Solution

167. Which of the following pieces of data does NOT uniquely determine an acute-angled triangle $A B C$ (R being the radius of the circumcircle)?
(a) $a, \sin A, \sin B(b) a, b, c(c) \mathrm{a}, \sin \mathrm{B}, \mathrm{R}(d) \mathrm{a}, \sin \mathrm{A}, \mathrm{R}^{\prime}$

- Watch Video Solution

168. If the angles of a triangle are in the ratio $4: 1: 1$, then the ratio of the longest side to the perimeter is

- Watch Video Solution

169. If a, b, c are the sides of a triangle such that $a: b: c=1: \sqrt{3}: 2$, then ratio $A: B: C$ is equal to $3: 2: 1 \mathrm{~b} .3: 1: 2 \mathrm{c} .1: 2: 3 \mathrm{~d} .1: 3: 2$

- Watch Video Solution

170. In an equilateral triangle, three coins of radii 1 unit each are kept so that they touch each other and also the sides of the triangle. The area of the triangle is $2 \operatorname{sqrt}(3)(b) 6+4 \operatorname{sqrt}(3) 12+(7 \operatorname{sqrt}(3)) / 4(d) 3+(7 \operatorname{sqrt}(3)) / 4{ }^{\text {` }}$

D Watch Video Solution

171. One angle of an isosceles triangle is 120° and the radius of its incricel is $\sqrt{3}$. Then the area of the triangle in sq. units is $7+12 \sqrt{3}$ (b) $12-7 \sqrt{3}$ $12+7 \sqrt{3}$ (d) 4π

- Watch Video Solution

172. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the sides of a triangle. Now two of them are equal to $\lambda \varepsilon R$
. If the roots of the equation
$x^{2}+2(a+b+c) x+3 \lambda(a b+b c+c a)=0$ are real then

- Watch Video Solution

173. Internal bisector of $\angle A$ of $\triangle A B C$ meets side BC to D . A line drawn through D perpendicular to $A D$ intersects the side $A C$ at E and side $A B$ at.
F. If a,b,c represent sides of $\triangle A B C$, then

- Watch Video Solution

174. A triangle $A B C$ with fixed base $B C$, the vertex A moves such that $\cos B+\cos C=4 \frac{\sin ^{2} A}{2}$. If $a, b a n d c$, denote the length of the sides of the triangle opposite to the angles A, B, $a n d C$, respectively, then (a) $b+c=4 a$ (b) $b+c=2 a$ (c)the locus of point A is an ellipse (d)the locus of point A is a pair of straight lines
175. Consider a triangle $A B C$ and let $a, b a n d c$ denote the lengths of the sides opposite to vertices $A, B, a n d C$, respectively. Suppose $a=6, b=10$, and the area of triangle is $15 \sqrt{3}$. If $\angle A C B$ is obtuse and if r denotes the radius of the incircle of the triangle, then the value of r^{2} is

- Watch Video Solution

176. If the angle A, B and C of a triangle are in an arithmetic propression and if a, bandc denote the lengths of the sides opposite to $A, B a n d C$ respectively, then the value of the expression $\frac{a}{c} \sin 2 C+\frac{c}{a} \sin 2 A$ is (a) $\frac{1}{2}$ (b) $\frac{\sqrt{3}}{2}$ (c) 1 (d) $\sqrt{3}$

- Watch Video Solution

177. Let $A B C$ be a triangle such that $\angle A C B=\frac{\pi}{6}$ and let a, b and c denote the lengths of the side opposite to A, B, and C respectively. The value(s) of x for which $a=x^{2}+x+1, b=x^{2}-1$, and $c=2 x+1$ is(are) $-(2+\sqrt{3})$ (b) $1+\sqrt{3}$ (c) $2+\sqrt{3}$ (d) $4 \sqrt{3}$

- Watch Video Solution

178. The sum of the radii of inscribed and circumscribed circles for an n sided regular polygon of side ' a ', is: $a \cot \left(\frac{\pi}{n}\right)$ b. $\frac{a}{2} \cot \left(\frac{\pi}{2 n}\right)$ C. $a \cot \left(\frac{\pi}{2 n}\right)$ d. $\frac{a}{4} \cot \left(\frac{\pi}{2 n}\right)$

- Watch Video Solution

179. In a triangle $A B C$, medians $A D$ and $B E$ are drawn. If $A D=4, \angle D A B=\frac{\pi}{6}$ and $\angle A B E=\frac{\pi}{3}$ then the area of the triangle $A B C$ is :
180. If in a triangle $A B C, a \cos ^{2}\left(\frac{C}{2}\right)+c \cos ^{2}\left(\frac{A}{2}\right)=\frac{3 b}{2}$, then the sides $a, b, a n d c$ are in A.P. b. are in G.P. c. are in H.P. d. satisfy $a+b=$.

- Watch Video Solution

181. The sides of a triangle are $\sin \alpha, \cos \alpha, \sqrt{1+\sin \alpha \cos \alpha}$ for some $0<\alpha<\frac{\pi}{2}$ then the greatest angle of the triangle is:

- Watch Video Solution

182. In triangle $A B C$, let $\angle c=\frac{\pi}{2}$. If r is the inradius and R is circumradius of the triangle, then $2(r+R)$ is equal to $a+b$ (b) $b+c$ $c+a$ (d) $a+b+c$

- Watch Video Solution

183. If in $\triangle A B C$, the altitudes from the vertices A, B and C on opposite sides are in $H P$, then $\sin A \sin B$ and $\sin C$ are in
