© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - KC SINHA ENGLISH

QUADRATIC EQUATIONS - FOR COMPETITION

Solved Examples

1. If the roots of equation $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ be equal prove that a, b, c are in H.P.

- Watch Video Solution

2. If a, b, c are nonzero real numbers and $a z^{2}+b z+c+i=0$ has purely imaginary roots, then prove that $a=b^{2} c$
3. If $a+b+c=0(a, b, c$ are real), then prove that equation $(b-x)^{2}-4(a-x)(c-x)=0$ has real roots and the roots will not be equal unless $a=b=c$.

- Watch Video Solution

4. If $P(x)=a x^{2}+b x+c$ and $Q(x)=-a x^{2}+d x+c$ where $a c \neq 0$ then $P(x) Q(x)=0$ has atleast

- Watch Video Solution

5. Prove that the roots of equation $b x^{2}+(b-c) x+b-c-a=0$ are real if those of equatiion $a x^{2}+2 b x+b=0$ are imaginary and vice versa where $a, b, c \varepsilon R$.

- Watch Video Solution

6. The number of integral values of 'm' less than 50 , so that the roots of the quadratic equation $m x^{2}+(2 m-1) x+(m-2)=0$ are rational, are

- Watch Video Solution

7. Statement (1) : If a and b are integers and roots of $x^{2}+a x+b=0$ are rational then they must be integers. Statement (2): If the coefficient of x^{2} in a quadratic equation is unity then its roots must be integers

D Watch Video Solution

8. If r is the ratio of the roots of the equation $a x^{2}+b x+c=0$, show that $\frac{(r+1)^{2}}{r}=\frac{b^{2}}{a c}$

- Watch Video Solution

9. If one root of the equation $(l-m) x^{2}+l m+1=0$ is double the other and if I is real, then the great value of m is

- Watch Video Solution

10. If one root of the equation $a x^{2}+b x+c=0$ is equal to the $n^{t h}$ power of the other, then $\left(a c^{n}\right)^{\frac{1}{n+1}}+\left(a^{n} c\right)^{\frac{1}{n+1}}+b$ is equal to

- Watch Video Solution

11. If $\alpha a n d \beta$ are the roots of $x^{2}-p(x+1)-c=0 a n d S_{n}=\alpha^{n}+\beta$, then $a S_{n+1}+b S_{n}+c S_{n-1}=0$ and hence find S_{5}.

- Watch Video Solution

12. Let x_{1}, x_{2} be the roots of the equation $x^{2}-3 x+A=0$ and x_{3}, x_{4} be those of equation $x^{2}-12 x+B=0$ and $x_{1}, x_{2}, x_{3}, x_{4}$ form an
increasing G.P. find A and B .

- Watch Video Solution

13. Let $p a n d q$ be the roots of the equation $x^{2}-2 x+A=0$ and let rands be the roots of the equation $x^{2}-18 x+B=0$. If $p<q<r<s$ are in arithmetic progression, then $A=$ and $B=\ldots$ (1997, 2M)

- Watch Video Solution

14. If $x^{2}-a x+b=0$ and $x^{2}-p x+q=0$ have a root in common then the second equation has equal roots show that $b+q=\frac{a p}{2}$

- Watch Video Solution

15. If $a x^{2}+2 b x+c=0$ and $x^{2}+2 b_{1} x+c_{1}=0$ have a common root and $\frac{a}{a_{1}}, \frac{b}{b_{1}}, \frac{c}{c_{1}}$ are in show that a_{1}, b_{1}, c_{1} are in G.P.
16. If $a, b, c, a_{1}, b_{1}, c_{1}$ are rational and equations $a x^{2}+2 b x+c=0$ and $a_{1} x^{2}+2 b_{1} x+c_{1}=0$ have one and only one root in common, prove that $b^{2}-a c$ and $b_{1}^{2}-a_{1} c_{1}$ must be perfect squares.

- Watch Video Solution

17. Find the vaues of p if the equations $3 x^{2}-2 x+p=0$ and $6 x^{2}-17 x+12=0$ have a common root.

- Watch Video Solution

18. If the quadratic equations $x^{2}+b x+c a=0 \& x^{2}+c x+a b=0$ (where $a \neq 0$) have a common root. prove that the equation containing their other root is $x^{2}+a x+b c=0$
19. If $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$ are real and $p r>4(q+s)$ then show that at least one of the equations $x^{2}+p x+q=0$ and $x^{2}+r x+s=0$ has real roots.

- Watch Video Solution

20. If the roots of $a x^{2}+2 b x+c=0$ be possible and different then show that the roots of $(a+c)\left(a x^{2}+2 b x+2 c\right)=2\left(a c-b^{2}\right)\left(x^{2}+1\right)$ will be impossible and vice versa

- Watch Video Solution

21. If α, β are the roots of
$x^{2}+p x+q=0 a n d x^{2 n}+p^{n} x^{n}+q^{n}=0 \operatorname{andif}(\alpha / \beta),(\beta / \alpha)$ are the roots of $x^{n}+1+(x+1)^{n}=0$, the $\cap(\in N)$ a. must be an odd integer
b. may be any integer c. must be an even integer d. cannot say anything
22. Approach to solve greatest integer function of x and fractional part of x ; (i) Let $[\mathrm{x}]$ and $\{x\}$ represent the greatest integer and fractional part of x ; respectively Solve $4\{x\}=x+[x]$

- Watch Video Solution

23. If $b>a$ then show that the equation $(x-a)(x-b)-1=0$ has one root less than a and other root greater than b.

- Watch Video Solution

24. Let $-1 \leq p \leq 1$, show that the equation $4 x^{3}-3 x-p=0$ has a unique root in the interval $\left[\frac{1}{2}, 1\right]$ and identify it.

- Watch Video Solution

25. If α is a real root of the quadratic equation $a x^{2}+b x+c=0 a n d \beta$ ils a real root of $-a x^{2}+b x+c=0$, then show that there is a root γ of equation $(a / 2) x^{2}+b x+c=0$ whilch lies between aand β.

- Watch Video Solution

26. If $2 a+3 b+6 c=0$, then prove that at least one root of the equation $a x^{2}+b x+c=0$ lies in the interval $(0,1)$.

- Watch Video Solution

27. Thus $f(0)=f(1)$ and hence equation $f^{\prime}(x)=0$ has at least one root between 0 and 1. Show that equation $(x-1)^{5}+(2 x+1)^{9}+(x+1)^{21}=0$ has exactly one real root.

- Watch Video Solution

28. Find the positive solutions of the system of equations $x^{x+y}=y^{n}$ and $y^{x+y}=x^{2 n} . y^{n}$, where $n>0$

- Watch Video Solution

29. For $a \leq 0$, determine all roots of the equaton $x^{2}-2 a|x-a|-3 a^{2}=0$.

- Watch Video Solution

30. Find all integers x for which $(5 x-1)<(x+1)^{2}<(7 x-3)$.

- Watch Video Solution

31. Show that the expression $\frac{x^{2}-3 x+4}{x^{2}+3 x+4}$ lies between $\frac{1}{7}$ and 7 for real values of x .
32. Find the range of $f(x)=\frac{x^{2}+34 x-71}{x^{2}+2 x-7}$

- Watch Video Solution

33. If x is real, show that the expression $\frac{4 x^{2}+36 x+9}{12 x^{2}+8 x+1}$ can have any real value.

- Watch Video Solution

34. Prove that if x is real, the expression $\frac{(x-a)(x-c)}{x-b}$ is capable of assuming all values if $a>b>c$ or $a<b<c$.

- Watch Video Solution

35. Prove that $\left|\frac{12 x}{4 x^{2}+9}\right| \leq 1$ for all real values of x the equality being satisfied only if $|x|=\frac{3}{2}$
36. Prove that if the equation $x^{2}+9 y^{2}-4 x+3=0$ is satisfied for real values of $x a n d y$, then x must lie between 1 and 3 and y must lie between$1 / 3$ and $1 / 3$.

- Watch Video Solution

37. For what real values of a, will the expression $x^{2}-a x+1-2 a^{2}$, for the real x , be always positive ?

- Watch Video Solution

38. For what real values of k both the roots of equation $x^{2}+2(k-3) x+9=-0$ lie between -6 and 1 .

- Watch Video Solution

39. Find all the values of the parameter a for which the inequality $a 9^{x}+4(a-1) 3^{x}+a>1$ is satisfied for all real values of x.

- Watch Video Solution

40. If the equation $x^{2}+p x+q=0$, the coefficient of x was incorrectly written as 17 instead of 13 . Thetn roots were found to be -2 and -15 .

Then correct roots are :

- Watch Video Solution

41. If the roots of the quadratic equation $a x^{2}+c x+c=0$ are in the ratio $p: q$ show that $\sqrt{\frac{p}{q}}+\sqrt{\frac{q}{p}}+\sqrt{\frac{c}{a}}=0$, where a, c are real numbers, such that $a>0$

- Watch Video Solution

42. Find the number of quadratic equations, which are unchanged by squaring their roots.

- Watch Video Solution

43. a, b, c are positive real numbers forming a G.P. ILf $a x^{2}+2 b x+c=0 a n d d x^{2}+2 e x+f=0$ have a common root, then prove that $d / a, e / b, f / c$ are in A.P.

- Watch Video Solution

44. the equation $e^{\sin x}-e^{-\sin x}-4=0$ has.

- Watch Video Solution

45. The roots of the equation $(q-r) x^{2}+(r-p) x+p-q=0$ are (A) $\frac{r-p}{q-r}, 1$ (B) $\frac{p-q}{q-r}, 1$ (C) $\frac{q-r}{p-q}, 1$ (D) $\frac{r-p}{p-q}, 1$
46. If α and β are the roots equation
$a x^{2}-2 b x+c=0$, then $\alpha^{3} \beta^{3}+\alpha^{2} \beta^{3}+\alpha^{3} \beta^{2}=\quad(\mathrm{A}) \frac{c^{2}}{a^{3}}(c+2 b)$
$\frac{c^{2}}{c^{3}}(c-2 b)$ (C) $b \frac{c^{2}}{a^{3}}$ (D) none of these

D Watch Video Solution

47. If c, d are the roots of the equation $(x-a)(x-b)-k=0$, prove that a, b are roots of the equation $(x-c)(x-d)+k=0$.

(Watch Video Solution

48. If and the $a, b, c \in R$ equation $a x^{2}+b x+c=0$ and $x^{2}+x+1=0$ have a common root, then

- Watch Video Solution

49. If $a x^{2}+2 b x+c=0$ and $a_{1} x^{2}+2 b_{1} x+c_{1}=0$ have a common root and $\frac{a}{a_{1}}, \frac{b}{b_{1}}, \frac{c}{c_{1}}$ are in AP then a_{1}, b_{1}, c_{1} are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

- Watch Video Solution

50. The sum of all real values of k for which the expression $x^{2}+2 x y+k y^{2}+2 x+k=0$ can be resolved into linear factors is :

- Watch Video Solution

51. Equation $(a+5) x^{2}-(2 a+1) x+(a-1)=0$ will have roots equal in magnitude but opposite in sign if $a=$ (A) 1 (B) -1 (C) 2 (D) $-\frac{1}{2}$

- Watch Video Solution

52. Let $\mathrm{f}(\mathrm{x})$ be defined by $f(x)=x-[x], 0 \neq x \in R$, where $[\mathrm{x}]$ is the greatest integer less than or equal to x then the number of solutions of
$f(x)+f\left(\frac{1}{x}\right)=1$

- Watch Video Solution

53. If $0<x<1000$ and $\left[\frac{x}{2}\right]+\left[\frac{x}{3}\right]+\left[\frac{x}{5}\right]=\frac{31}{30} x$, where $[x]$ is the greatest integer less than or equal to x the number of possible values of x is

- Watch Video Solution

54. If the equations $a x+b y=1$ and $c x^{2}+d y^{2}=1$ have only one solution, prove that $\frac{a^{2}}{c}+\frac{b^{2}}{d}=1$ and $x=\frac{a}{c}, y=\frac{b}{d}$

- Watch Video Solution

55. If α, β are the roots of the equations $x^{2}+p x+q=0$ then one of the roots of the equation $q x^{2}-\left(p^{2}-2 q\right) x+q=0$ is (A) 0 (B) 1 (C) $\frac{\alpha}{\beta}$
(D) $\alpha \beta$
56. Let α and β be the roots of the equation $x^{2}+x+1=0$. The equation whose roots are α^{29}, β^{17} is (A) $x^{2}-x+1=0$ $x^{2}+x+1=0$ (C) $x^{2}-x-1=0$ (D) $x^{2}+x-1=0$

- Watch Video Solution

57. If $x \varepsilon R$, then the number of real solutions of the equation $3^{x}+3^{-x}=\log _{10} 99$ is (A) 0 (B) 1 (C) 2 (D) more than 2

- Watch Video Solution

58. Number of real roots of the equation $2^{x}+2^{x-1}+2^{x-2}=7^{x}+7^{x-1}+7^{x-2}$ is
(A) 4
(B) 2
(C) 1
(D) 0

- Watch Video Solution

59. Roots of the equation $a(b-c) x^{2}+b(c-a) x+c(a-b)=0$ are real and equal, then (A) $a+b+c \neq 0$ (B) a, b, c are in H.P. (C) a, b, c are in A.P. (D) a, b, c are in G.P.

- Watch Video Solution

60. Let $f(x)=a x^{2}+b x+c, a, b, c \varepsilon R a \neq 0$ such that $f(x)>0 \forall x \varepsilon R$ also let $g(x)=f(x)+f^{\prime}(x)+f^{\prime \prime}(x)$. Then (A) $g(x)<0 \forall x \varepsilon R$
$g(x)>0 \forall x \varepsilon R$ (C) $g(x)=0$ has real roots (D) $g(x)=0$ has non real complex roots
61. If $\alpha a n d \beta$ are the roots of $x^{2}+p x+q=0 a n d \alpha^{4}, \beta^{4}$ are the roots of $x^{2}-r x+s=0$, then the equation $x^{2}-4 q x+2 q^{2}-r=0$ has always. one positive and one negative root two positive roots two negative roots cannot say anything

- Watch Video Solution

62. If $P(x)=x^{2}+a x+b$ and $Q(x)=x^{2}+a_{1} x+b_{1}, a, b, a_{1}, b_{1} \varepsilon R$ and equation $P(x) \cdot Q(x)=0$ has at most one real root, then
(A) $(1+a+b)\left(1+a_{1}+b_{1}\right)>0$ (B) $(1+a+b)\left(1+a_{1}+b_{1}\right)<0$
(C) $\frac{1+a+b}{1+a_{1}-b_{1}}>0$ (D) $1+a+b>0$

(Watch Video Solution

63. Find product of all real values of x satisfying $(5+2 \sqrt{6})^{x^{2}-3}+(5-2 \sqrt{6})^{x^{2}-3}=10$.
64. The set of values of a for which the inequation $x^{2}+a x+a^{2}+6 a<0$ is satisfied for all $x \varepsilon(1,2)$ lies in the interval

Watch Video Solution

65. If the sum of the roots of the equation $a x^{2}+b x+c=0$ is equal to sum of the squares of their reciprocals, then $b c^{2}, c a^{2}, a b^{2}$ are in

- Watch Video Solution

66. If the equation $x^{2}+2 x+3=0$ and $a x^{2}+b x+c=0, a, b, c \varepsilon R$ have a common root, then $a: b: c$ is

- Watch Video Solution

67. If a, b, and c are odd integers, then prove that roots of $a x^{2}+b x+c=0$ cancont be rational.
68. If the equation $f(x)=a x^{2}+b x+c=0$ has no real root, then $(a+b+c) c$ is (A) $=0(\mathrm{~B})>0(\mathrm{C})<0$ (D) not real

- Watch Video Solution

69. If $2 a+3 b+6 c=0$, then prove that at least one root of the equation $a x^{2}+b x+c=0$ lies in the interval (0,1).

- Watch Video Solution

70. If $f(x)=x$ has non real roots, then the equation $f(f(x))=x$ (A) has all real and unequal roots (B) has some real and non real roots (C) has all real and equal roots (D) has all non real roots

- Watch Video Solution

71. Consider the quadratic equation $x^{2}-m x+1=0$ with two roots α and β such that $\alpha+\beta=\mathrm{m}$ and $\alpha \beta=1$ The value of m for which both the roots of the equation are less than unity are (A) $]-\infty,-2]$ (B) $[-2,2]$
(C) $[2, \infty]$ (D) $]-\infty,-2] \cup[2, \infty]$

- Watch Video Solution

72. Consider the quadratic equation $x^{2}-m x+1=0$ with two roots α and β such that $\alpha+\beta=\mathrm{m}$ and $\alpha \beta=1$ The value of m for which both the roots of the equation are greater then unity re (A) $[2, \infty]$ (B) $]--\infty, 2]$
(C) $[-2,2]$ (D) none of these

- Watch Video Solution

73. Consider the quadratic equation $x^{2}-m x+1=0$ with two roots α and β such that $\alpha+\beta=\mathrm{m}$ and $\alpha \beta=1$ The values of m for which

$$
\begin{align*}
& \alpha<1 \text { and } \beta>1 \text { are (A) }[-2, \infty[\text { (B) }[-2,2] \quad \text { (C) }[2, \infty] \tag{D}\\
&]-\infty,-2]
\end{align*}
$$

74. Let α, β be the roots of $x^{2}-x+p=0$ and γ, δ be the roots of $x^{2}-4 x+q=0 \quad$ such that $\alpha, \beta, \gamma, \delta \quad$ are in G.P. and $p \geq 2$. Ifa $, b, c \varepsilon\{1,2,3,4,5\}$, let the number of equation of the form $a x^{2}+b x+c=0$ which have real roots be r, then the minium value of p $q \mathrm{r}=$

- Watch Video Solution

75. Let α, β and γ be the roots of equation $f(x)=0$, where $f(x)=x^{3}+x^{2}-5 x-1=0$. then the value of $|[\alpha]+[\beta]+[\gamma]|$, where $[$.$] denotes the integer function, is equal to$

- Watch Video Solution

Exercise

1. If the roots of the equation $a x^{2}+b x+c=0$ be in the ratio $m: n$, prove that $\sqrt{\frac{m}{n}}+\sqrt{\frac{n}{m}}+\frac{b}{\sqrt{a c}}=0$

- Watch Video Solution

2. If α, β are the roots of the equation $x^{2}-p x+q=0$, find the quadratic equation the roots of the which are $\left(\alpha^{2}-\beta^{2}\right)\left(\alpha^{3}-\beta^{3}\right)$ and $\alpha^{3} \beta^{2}+\alpha^{2} \beta^{3}$.

- Watch Video Solution

3. If n and r are positive integers such that $0<r<n$ then show that the roots of the quadratic equation $n C_{r} x^{2}+2 .{ }^{n} C_{r+1} x+{ }^{n} C_{r+2}=0$ are real.

- Watch Video Solution

4. If a, b, c, are nonzero, unequal rational numbers, then prove that the roots of the equation $(a b c)^{2} x^{2}+3 x^{2} c x+b^{2} c x-6 a^{2}-a b+2 b^{2}=0$ are rational.

- Watch Video Solution

5. If α_{1}, α_{2} be the roots of equation $x^{2}+p x+q=0$ and β_{1}, β be those of equation $x^{2}+r x+s=0$ and the system of equations $\alpha_{1} y+\alpha_{2} z=0$ and $\beta_{1} y+\beta_{2} z=0$ has non trivial solution, show that $\frac{p^{2}}{r^{2}}=\frac{q}{s}$

- Watch Video Solution

6. If a,b,c are the roots of the equation $x^{3}+p x^{2}+q x+r=0$ such that $c^{2}=-a b$ show that $\left(2 q-p^{2}\right)^{3} . r=(p q-4 r)^{3}$.

- Watch Video Solution

7. Let $\alpha+i \beta ; \alpha, \beta \in R$, be a root of the equation $x^{3}+q x+r=0 ; q, r \in R$. A real cubic equation, independent of $\alpha \& \beta$, whose one root is 2α is (a) $x^{3}+q x-r=0$ (b) $x^{3}-q x+4=0$ (c) $x^{3}+2 q x+r=0$ (d) None of these

- Watch Video Solution

8. Find the values of k for which $5 x^{2}-4 x+2+k\left(4 x^{2}-2 x-1\right)=0$ has real and equal roots.

- Watch Video Solution

9. Find the value of m for which the product of the roots of the equation $5 x^{2}-4 x+2+m\left(4 x^{2}-2 x-1\right)=0$ is 2

- Watch Video Solution

10. Find the value of m for which the sum of the roots of the equation $5 x^{2}-4 x+2+m\left(4 x^{2}-2 x-1\right)=0$ is 6.

- Watch Video Solution

11. If the sum of the rotsof the equation $p x^{2}+q x+r=0$ be equal to the sum of their squares, show that $2 p r=p q+q^{2}$

- Watch Video Solution

12. In copying a quadratic equation of the form $x^{2}+p x+q=0$, the coefficient of x was wrongly written as -10 in place of -11 and the roots were found to be 4 and 6 . find the roots of the correct equation.

- Watch Video Solution

13. Solve for $\mathrm{x}: \sqrt{11 x-6}+\sqrt{x-1}=\sqrt{4 x+5}$
14. If x and y satisfy the equation $y=2[x]+3$ and $y=3[x-2]$ simultaneously, where [.] denotes the greatest integer function, then $[x+y]$ is equal to

- Watch Video Solution

15. $|x+1|-|x|+3|x-1|-2|x-2|=x+2$. Solve for x

- Watch Video Solution

16. Solve $\left|x^{2}+4 x+3\right|+2 x+5=0$.

- Watch Video Solution

17. Show that the equation $(x-1)^{5}+(x+2)^{7}+(7 x-5)^{9}=10$ has exactly one root.

Watch Video Solution

18. Solve $\frac{1}{[x]}+\frac{1}{[2 x]}=\{x\}+\frac{1}{3}$, where [] denotes the greatest integer function and $\}$ denotes fractional part of x.

- Watch Video Solution

19. Solve for $x: 4^{x} 3^{x-1 / 2}=3^{x+1 / 2}-2^{2 x-1}$.

- Watch Video Solution

20. Find the values of x,satisfying the equation $\log _{10}\left(98+\sqrt{x^{3}-x^{2}-12 x+36}\right)=2$ is
$(\log)_{(2 x+3)}\left(6 x^{2}+23+21\right)+(\log)_{(3 x+7)}\left(4 x^{2}+12 x+9\right)=4$

- Watch Video Solution

22. If S is the set of all real x such that $\frac{2 x-1}{2 x^{3}+3 x^{2}+x}$ is $\left(-\infty,-\frac{3}{2}\right)$
b. $\left(-\frac{3}{2}, \frac{1}{4}\right)$ c. $\left(-\frac{1}{4}, \frac{1}{2}\right)$ d. $\left(\frac{1}{2}, 3\right)$ e. None of these

- Watch Video Solution

23. Find the value of x such that $\log _{10}\left(x^{2}-2 x-2\right) \leq 0$

- Watch Video Solution

24. For real x, the function $(x-a)(x-b) /(x-c)$ will assume all real

25. If x, a, b are real prove that $4(a-x)\left(x-a+\sqrt{a^{2}+b^{2}}\right) \ngtr a^{2}+b^{2}$

Watch Video Solution

26. Prove that for real values of $x,\left(a x^{2}+3 x-4\right) /\left(3 x-4^{2}+a\right)$ may have any value provided a lies between 1 and 7 .

- Watch Video Solution

27. if α, β, γ are roots of $2 x^{3}+x^{2}-7=0$ then find the value of $\sum_{\alpha, \beta, \gamma}\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right)$

- Watch Video Solution

28.

$x^{3}+p x^{2}+q x+r=0$ and $x^{3}+p^{\prime} x^{2}+q^{\prime} x+r^{\prime}=0 \quad$ have two common roots, find the quadratic whose roots are these two common roots.

- Watch Video Solution

29. FIND that condition that the roots of equation $a x^{3}+3 b x^{2}+3 c x+d=0$ may be in G.P.

- Watch Video Solution

30. Show that one of the roots of equation $a x^{2}+b x+c=0$ may be reciprocal of one of the roots of $a_{1} x^{2}+b_{1} x+c_{1}=0$ if $\left(a a_{1}-c\right.$
$\left.c_{1}\right)^{2}=\left(b c_{1}-a b_{1}\right)\left(b_{1} c-a_{1} b\right)$

- Watch Video Solution

31. If every pair from among the equations $x^{2}+p x+q r=0$, and $x^{2}+r x+p q=0$ have a common root, then $\left(\frac{\text { sum of all distinct roots }}{\text { Product of all distinct roots }}\right)$ is

- Watch Video Solution

32. If $a<b<c<d$, then for any real non-zero λ, the quadratic equation $(x-a)(x-c)+\lambda(x-b)(x-d)=0$, has real roots for

- Watch Video Solution

33. Show that the following equation can have at most one real root $3 x^{5}-5 x^{3}+21 x+3 \sin x+4 \cos x+5=0$

- Watch Video Solution

34. If $e^{\left(\cos ^{2} x+\cos ^{4}+\cos ^{x} \ldots \ldots\right) \log 3}$ satisfies the equation $t^{2}-8 t-9=0$ then the value of $\tan x,\left(0<x<\frac{\pi}{2}\right)$ is
(A) $\sqrt{3}$
(B) $\sqrt{2}$
(C) 1
(D) $\frac{1}{\sqrt{2}}$

- Watch Video Solution

35.

Let
$a=\cos \left(\frac{2 \pi}{7}\right)+i \sin \left(\frac{2 \pi}{7}\right), A=a+a^{2}+a^{4}$ and $B=a^{3}+a^{5}+a^{6}$, then A and B are the roots of the equation (A) $x^{2}-x+2=0$
$x^{2}-x-2=0$ (C) $x^{2}+x+2=0$ (D) none of these

- Watch Video Solution

36. The number of real solution of $\sin \left(e^{x}\right)=5^{x}+5^{-x} \in[0,1]$ is
(A) 0
(B) 1
(C) 2
(D) 4

- Watch Video Solution

37. If $\left(x^{2}-3 x+2\right)$ is a factor of $x^{4}-p x^{2}+q=0$, then the values of p and q are

- Watch Video Solution

38. Equation $\frac{a}{x-1}+\frac{b}{x-2}+\frac{c}{x-3}=0(a, b, c>0)$ has (A) two imaginary roots (B) one real roots in $(1,2)$ and other in $(2,3)(C)$ no real root in [1,4] (D) two real roots in (1,2)

- Watch Video Solution

39. If α is a root of the equation $4 x^{2}+3 x-1=0$ and $f(x)=4 x^{2}-3 x+1$, then $2(f(\alpha)+(\alpha))$ is equal to
40. The number of solution of equation $|x-1|=e^{x}$ is
(A) 0
(B) 1
(C) 2
(D) none of these

- Watch Video Solution

41. If $p, q, r, s \in R$, then the
equation
$\left(x^{2}+p x+3 q\right)\left(-x^{2}+r x+q\right)\left(-x^{2}+s x-2 q\right)=0$ has

- Watch Video Solution

42. If $\alpha a n d \beta$ are the roots of $x^{2}+p x+q=0 a n d \alpha^{4}, \beta^{4}$ are the roots of $x^{2}-r x+s=0$, then the equation $x^{2}-4 q x+2 q^{2}-r=0$ has
always. one positive and one negative root two positive roots two negative roots cannot say anything

D Watch Video Solution

43. If $a+b+c>\frac{9 c}{4}$ and the equation $a x^{2}+2 b x-5 c=0$ has non-real complex roots, then

- Watch Video Solution

44. If $a, b, c \varepsilon R(a \neq 0)$ and $a+2 b+4 c=0$ then equatio $a x^{2}+b x+c=0$ has

(Watch Video Solution

45. If p, q be non zero real numbes and $f(x) \neq 0, x \in[0,2]$ also

$$
f(x)>0
$$ and

$\int_{0}^{1} f(x) \cdot\left(x^{2}+p x+q\right) d x=\int_{1}^{2} f(x) \cdot\left(x^{2}+p x+q\right) d x=0 \quad$ then
equation $x^{2}+p x+q=0$ has (A) two imginary roots (B) no root in $(0,2)$ (C) one root in $(0,1)$ and other in $(1,2)$ (D) one root in $(-\infty, 0)$ and other in $(2, \infty)$

- Watch Video Solution

46. The number of real roots of $x^{8}-x^{5}+x^{2}-x+1=0$ is

- Watch Video Solution

47. If $\sin \theta$ and $\cos \theta$ are the roots of the equation $a x^{2}+b x+c=0$, then (A) $(a-c)^{2}=b^{2}+c^{2}$ (B) $(a+c)^{2}=b^{2}-c^{2}$ (C) $a^{2}=b^{2}-2 a c$ (D) $a^{2}+b^{2}-2 a c=0$

- Watch Video Solution

48. If $x^{2}+a x+b$ is an integer for every integer x , then :
49. If $x^{2}+a x+b$ is an integer for every integer x , then :

- Watch Video Solution

50. If $0<\alpha<\frac{\pi}{4}$ equation $(x-\sin \alpha)(x-\cos \alpha)-2=0$ has (A) both roots in $(\sin \alpha, \cos \alpha)$ (B) both roots in $(\cos \alpha, \sin \alpha)$ (C) one root in $(-\infty, \cos \alpha)$ and other in $(\sin \alpha, \infty)$ (D) one root in $(-\infty, \sin \alpha)$ and other in $(\cos \alpha, \infty)$

- Watch Video Solution

51. Number of roots of the equation $\sin x+\cos x=x^{2}-2 x+\sqrt{6}$ is
(A) 0
(B) 2
(C) 4
(D) an odd number
52.

$f(x)=x^{3}-6 x^{2}+3(1+\pi) x+7, p>q>r$, then $\frac{\{x-f(p)\}(x-f(r)\}}{x-f(q)}$ has no value in (A) (p,q)(B)(q,r)(C)(r, (D) none of these

- Watch Video Solution

53. If expression $x^{2}-4 c x+b^{2}>0 f$ or allx εR and $a^{2}+c^{2}<a b$ then range of the function $\frac{x+a}{x^{2}+b x+c^{2}}$ is (A) $(0, \infty)$ (B) $(0, \infty)$
$(-\infty, \infty)(D)$ none of these

(Watch Video Solution

54. If the equation $(\lambda-1) x^{2}+(\lambda+1) x+\lambda-1=0$ has real roots then $\lambda=\frac{\sin \theta}{\cos \theta} \cdot \frac{\cos 3 \theta}{\sin 3 \theta}$ for
(A) only one value of θ
(B) for infinitely many values of θ
(C) for no value of θ
(D) of only two values of θ

- Watch Video Solution

55. If α and β are roots of equation $x^{2}+p x+q=0$ and $f(n)=\alpha^{n}+\beta^{n}$, then (i) $f(n+1)+p f(n)-q f(n-1)=0$
$f(n+1)-p f(n)+q f(n-1)=0$
$f(n+1)+p f(n)+q f(n-1)=0$
$f(n+1)-p f(n)-q f(n-1)=0$

D Watch Video Solution

56. If t_{n} denotes the nth term of an A.P. and $t_{p}=\frac{1}{q}, t_{q}=\frac{1}{p}$ then which one of the following is necessarily a root of the equation $(p+2 q-3 r) x^{2}+(q+2 r-3 p) x+(r+2 p-3 q)=0$ (А) t_{p} (В) t_{q}
$t_{p q}$ (D) t_{p+q}
57. If α and β ($\alpha^{\prime}<\beta^{\prime}$) arethe $\sqrt[s]{\text { oftheequation } \mathrm{x}^{\wedge} 2+\mathrm{b} \mathrm{x}+\mathrm{c}=0, \text { wherec }<0.00}$

Watch_Video Solution

58. α and β are the roots of the equation $x^{2}+p x+p^{3}=0,(p \neq 0)$. If the point (α, β) lie on the curve $x=y^{2}$ then the roots of the given equation are (A) 4,-2 (B) 4,2 (C) 1,-1 (D) 1,1

- Watch Video Solution

59. If α and β are the roots of the equation $x^{2}-a x+b=0$ and $A_{n}=\alpha^{n}+\beta^{n}$, then which of the following is true?

- Watch Video Solution

60. If the difference between the roots of $x^{2}+a x+b=0$ is same as that of $x^{2}+b x+a=0 a \neq b$, then:

- Watch Video Solution

61. If x satisfies $|x-1|+x-2|+|x-3| \geq 6$, then (a) $0 \leq x \leq 4$ (b) $x \leq 4$ (c) $x \leq 0$ or $x \geq 4$ (d) none of these

- Watch Video Solution

62. Let a, b, c be nonzero real numbers such that
$\int_{0}^{1}\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x$
$=\int_{0}^{2}\left(1+\cos ^{8} x\right)\left(a x^{2}+b x+c\right) d x=0$ Then show that the equation $a x^{2}+b x+c=0$ will have one root between 0 and 1 and other root between 1 and 2.

- Watch Video Solution

63. If α and β are the roots of a quadratic equation such that $\alpha+\beta=2, \alpha^{4}+\beta^{4}=272$, then the quadratic equation is

- Watch Video Solution

64. The minimum valueof $|x-3|+|x-2|+|x-5|^{\prime}$ is (A) 3 (B) 7 (C) 5 (D) 9

- Watch Video Solution

65. Let $[x]$ denote the integral part of a real number \mathbf{x} and $\{x\}=x-[x]$ then solution of $4\{x\}=x+[x]$ are (A) $\pm \frac{2}{3}, 0$ (B) $\pm \frac{4}{3}, 0$ (C) $0, \frac{5}{3}$ (D) $\pm 2,0$

- Watch Video Solution

66. The equation $\left|x^{2}-x-6\right|=x+2$ has:
67. If equation $x^{2}-(2+m) x+1\left(m^{2}-4 m+4\right)=0$ has coincident roots then (A) $m=0, m=1$ (B) $m=0, m=2$ (C) $m=\frac{2}{3}, m=6$ (D) $m=\frac{2}{3}, m=1$

- Watch Video Solution

68. If $f(x)=2 x^{3}+m x^{2}-13 x+n$ and 2 and 3 are 2 roots of the equations $f(x)=0$, then values of m and n are

- Watch Video Solution

69. If $y=\frac{x^{2}-3 x+1}{2 x^{2}-3 x+2}$, where \mathbf{x} is real, the value of \mathbf{y} lies between (A) $-1 \leq y \leq \frac{5}{7}$ (B) $-\frac{1}{2} \leq y \leq \frac{5}{7}$ (C) $\frac{5}{7}<y<1$ (D) none of these

- Watch Video Solution

70. If one of the values of x of the equation $2 x^{2}-6 x+k=0$ be $\frac{1}{2}(a+5 i)$, find the values of \mathbf{a} and \mathbf{k}.

- Watch Video Solution

71. If $f(x)$ is a continuous function and attains only rational values and $f(0)=3$, then roots of equation $f(1) x^{2}+f(3) x+f(5)=0$ as

- Watch Video Solution

72. If a, b, c, d are unequal positive numbes, then the roots of equation $\frac{x}{x-a}+\frac{x}{x-b}+\frac{x}{x-c}+x+d=0$ are necessarily (A) all real (B) all imaginary (C) two real and two imaginary roots (D) at least two real

- Watch Video Solution

73. The number of solutions of te equation $\left|2 x^{2}-5 x+3\right|+x-1=0$ is (A) $\mathbf{1 (B)} \mathbf{2 (C)} \mathbf{0}(\mathrm{D})$ infinite

Watch Video Solution

74. The set of value of a for which both the roots of the equation $x^{2}-(2 a-1) x+a=0$ are positie is
(A) $\left\{\frac{2-\sqrt{3}}{2}\right\}$
(B) $\left\{\frac{2-\sqrt{3}}{2}, \frac{2+\sqrt{3}}{2}\right\}$
(C) $\left[\left(2+\frac{\sqrt{3}}{2}, \infty\right)\right.$
(D) none of these

- Watch Video Solution

75.

the root
of the
equation
$(a-1)\left(x^{2}+x+1\right)^{2}=(a+1)\left(x^{4}+x^{2}+1\right)$ are real and distinct,
then the value of $a \in(-\infty, 3]$ b. $(-\infty,-2) \cup(2, \infty)$ c. $[-2,2]$ d. $[-3, \infty)$

- Watch Video Solution

76. If the product of the roots of the equation $2 x^{2}+a x+4 \sin a=0$ is 1, then roots will be imaginary, if

- Watch Video Solution

77. The quadratic equation whose roots are x and y intercepts of the line passing through $(1,1)$ and making a triangle of area A with the axes is

- Watch Video Solution

78. If α and β are solution of $\sin ^{2} x+a \sin x+b=0$ as well as that of $\cos ^{2} x+\operatorname{cocs} x+d=0$, such that $\sin \alpha \neq \sin \beta$ and $\cos \alpha \neq \cos \beta$ then $\sin (\alpha+\beta)$ is equal to
79. The roots α and β of the quadratic equation $a x^{2}+b x+c=0$ are and of opposite sing. The roots of the equation $\alpha(x-\beta)^{2}+\beta(x-\alpha)^{2}=0$ are

- Watch Video Solution

80. If $a, b, c \varepsilon\{1,2,3,4,5\}$, the number of equations of the form $a x^{2}+b x+c=0$ which have real roots is (A) 25 (B) 26 (C) 27 (D) 24

- Watch Video Solution

81. The number of real solutions of the equation $-x^{2}+x-1=\sin ^{4} x$ is
(A) 1
(B) 2

- Watch Video Solution

82. Solve the equation $(6-x)^{4}+(8-x)^{4}=16$

- Watch Video Solution

83.

$$
\text { If } x, a_{1}, a_{2}, a_{3}, \ldots \ldots a_{n} \varepsilon R
$$

and
$\left(x-a_{1}+a_{2}\right)^{2}+\left(x-a_{2}+a_{3}\right)^{2}+\ldots \ldots . .+\left(x-a_{n-1}+a_{n}\right)^{2} \leq 0$,
then $a_{1}, a_{2}, a_{3} \ldots \ldots \ldots a_{n}$ are in (A) AP (B) GP (C) HP (D) none of these

- Watch Video Solution

84. The expression $a x^{2}+2 b x+b$ has same sign as that of \mathbf{b} for every real \mathbf{x}, then the roots of equation $b x^{2}+(b-c) x+b-c-a=0$ are (A) real and equal (B) real and unequal (C) imaginary (D) none of these
85. Let $\alpha+i \beta ; \alpha, \beta \in R$, be a root of the equation $x^{3}+q x+r=0 ; q, r \in R$. A real cubic equation, independent of $\alpha \& \beta$, whose one root is 2α is (a) $x^{3}+q x-r=0$ (b) $x^{3}-q x+4=0$
$x^{3}+2 q x+r=0$ (d) None of these

- Watch Video Solution

86. The equation $\sin x=x^{2}+x+1$ has (A) 'one real solution (B) \mathbf{n} real solution (C) more thanone real solution (D) two positive solutons

- Watch Video Solution

87. If $p, q, r \in R$ and the quadratic equation $p x^{2}+q x+r=0$ has no real roots, then (A) $p(p+q+r)>0 \quad$ (B) $(p+q+r)>0$
$q(p+q+r)>0$ (D) $p+q+r>0$
88. If $p, q, r \varepsilon R$ and are distinct the equation
$(x-p)^{5}+(x-q)^{5}+(x-r)^{5}=0$ has
(A) four imaginary and one real root
(B) two imaginary and three real roots
(C) all the roots real
(D) none of these

- Watch Video Solution

89. Let S denotes the set of real values of 'a' for which the roots of the equation $x^{2}-a x-a^{2}=0$ exceeds ' a ', then S equals to

- Watch Video Solution

90. Let
$f(x)=x^{2}+b x+c$ and $g(x)=a f(x)+b f^{\prime}(x)+c f^{\prime \prime}(x) . I f f(x)>0 \forall$
then the sufficient condition of $g(x)$ to be $>0 \forall x \varepsilon R$ is (A) $c>0$ (B) $b>0$ (C) $b<0$ (D) $c<0$

- Watch Video Solution

91. Find the set of values of \mathbf{k} for which $x^{2}-k x+\sin ^{-1}(\sin 4)>0$ for all real x .

- Watch Video Solution

92. Let a, b, c be three distinct positive real numbers then number of real roots of $a x^{2}+2 b|x|+c=0$ is (A) $\mathbf{0}$ (B) 1 (C) 2 (D) 4

- Watch Video Solution

93. The constant term of the quadratic expression
$\sum_{k=2}^{n}\left(x-\frac{1}{k-1}\right)\left(x-\frac{1}{k}\right)$, as $n \rightarrow \infty$ is
94. If $x^{2}+a x+b$ is an integer for every integer \mathbf{x}, then :

- Watch Video Solution

95. If a, b are roots of $x^{2}+p x+q=0$ and c, d are the roots $x^{2}-p x+r=0$ thena ${ }^{2}+b^{2}+c^{2}+d^{2}$ equals (A) $p^{2}-q-r$
$p^{2}+q+r$
(C) $p^{2}+q^{2}-r^{2}$
(D) $2\left(p^{2}-q+r\right)$

- Watch Video Solution

96. If two roots of the equation
$(p-1)\left(x^{2}+x+1\right)^{2}-(p+1)\left(x^{4}+x^{2}+1\right)=0$ are real and distinct and $f(x)=\frac{1-x}{1+x}$, then $f(f(x))+f\left(f\left(\frac{1}{x}\right)\right)$ is equal to

- Watch Video Solution

97. Te least value of $|a|$ for which $\tan \theta$ and $\cot \theta$ are the roots of the equation $x^{2}+a x+b=0$ is (A) 2 (B) 1 (C) $\frac{1}{2}$ (D) 0

- Watch Video Solution

98. If $\left(y^{2}-5 y+3\right)(x 62+x+1)<2 x$ for all $x \in R$, then fin the interval in which $y \mathrm{~m}$ lies.

- Watch Video Solution

99. If $P(x)$ be a polynomial satisfying the identity $P\left(x^{2}\right)+2 x^{2}+10 x=2 x P(x+1)+3$, then $P(x)$ is

- Watch Video Solution

100. Let a,b,c be positive real parameter and $a x^{2}+\frac{b}{x^{2}} \geq c, \forall x \varepsilon R$ then
(A) $c^{2} \geq 4 a b$
(B) $4 c \geq b^{2}$
(C) $4 b c \geq c^{2}$
(D) $4 a c<b^{2}$

- Watch Video Solution

101. The quadratic equatin $(2 x-a)(2 x-c)+\lambda(x-2 b)(x-2 d)=0$, (where $0<4 a<4 b<c<4 d$) has (A) a root between $\mathbf{2} \mathbf{b}$ and 2d for all λ (B) as root between \mathbf{b} nd \mathbf{d} for all $-v e \lambda(\mathrm{C})$ a root between \mathbf{b} and \mathbf{d} for all $+v e \lambda$ (D) none of these

- Watch Video Solution

102. The set of values of c for which $x^{3}-6 x^{2}+9 x-c$ is of the form $(x-a)^{2}(x-b)(\mathbf{a}, \mathbf{b}$ is real) is given by

- Watch Video Solution

103. The number of real roots (s) of the equation $x^{2} \tan x=1$ lying between $\mathbf{0}$ and 2π is /are

- Watch Video Solution

104. If 1 lies between the roots of the quadratic equation
$3 x^{2}-(3 \sin \theta) x-2 \cos ^{2} \theta=0$, then $: \quad$ (A) $-\frac{\pi}{3}<\theta<\frac{5 \pi}{3}$
$n \pi<\theta<2 n \pi$ (C) $2 n \pi+\frac{\pi}{6}<\theta<2 n \pi+\frac{5 \pi}{6}$ (D) none of these

- Watch Video Solution

105. Let α and β be the real and distinct roots of the equation $a x^{2}+b x+c=|c|,(a>0)$ and p, q be the real and distinct roots of the equation $a x^{2}+b x+c=0$. Then which of the following is true? (A) \mathbf{p} and \mathbf{q} lie between α and $\beta(\mathbf{B}) \mathbf{p}$ and \mathbf{q} lies outside $(\alpha, \beta)(\mathbf{C})$ only \mathbf{p} lies between α and β (\mathbf{D}) only \mathbf{q} lies between (α and β)
106. The roots of the equation $a x^{2}+b x+c=0, a \in R^{+}$, are two consecutive odd positive
(A) $|b| \leq 4 a$
(B) $|b| \geq 4 a$
(C) $|b| \geq 2 a$
(D) none of these

- Watch Video Solution

107. If equation $x^{5}+10 x^{2}+x+5=0$ has one roots as alpha then (A) $[\alpha]=-3$ (where [.] denotes the greatest integer function) (B) number of roots between -2 and -1 is three (C) number of real roots is 3 (D) equation has at least one positive root

- Watch Video Solution

108.

The
equation
$\frac{A}{x-a_{1}}+\frac{A_{2}}{x-a_{2}}+\frac{A_{3}}{x-a_{3}}=0, w h e r e A_{1}, A_{2}, A_{3}>0$ and $a_{1}<a_{2}<a$
has two real roots lying in the invervals.
(A) $\left(a_{1}, a_{2}\right)$ and $\left(a_{2}, a_{3}\right)$
(B) $\left(-\infty, a_{1}\right)$ and $\left(a_{3}, \infty\right)$
$\left(A_{1}, A_{3}\right)$ and $\left(A_{2}, A_{3}\right)$ (D) none of these

- Watch Video Solution

109. If both roots of the equation $x^{2}-2 a x+a^{2}-1=0$ lie between -3 and 4 ,then [a] is/are , where [] represents the greatest ineger function

- Watch Video Solution

110. If α be the number of solutons of equation $[\sin x]=|x|$, where $[x]$ denotes the integral part of x and m be the greatest value of $\cos \left(x^{2}+x e^{x}-[x]\right)$ in the interval $[-1,1]$, then (A) $\alpha=m$ (B) $\alpha<m$ (C) $\alpha>m$ (D) $\alpha \neq m$

- Watch Video Solution

111. If m be the number of integral solutions of equation $2 x^{2}-3 x y-9 y^{2}-11=0$ and \mathbf{n} be the roots of $x^{3}-[x]-3=0$, then m

- Watch Video Solution

112. If the roots of equation $a x^{2}+b x+10=0$ are not real and distinct where $a, b \varepsilon R$, and m and n are values of a and b respectively for which $5 a+b$ is minimum then the family of lines $m(4 x+2 y+3)+n(x-y-10=0$ are concurrent at (A) $(1,-1)$
$\left(-\frac{1}{6},-\frac{7}{6}\right)$ (C) (1,1)(D) none of these

- Watch Video Solution

113. If $[x]$ denotes the integral part of \mathbf{x} and $k=\sin ^{-1}\left(\frac{1+t^{2}}{2 t}\right)>0$ then integral valueof α for which the equation
$(x-[k])(x+\alpha)-1=0$ has integral roots is (A) $1(B) 2(C) 4$ (D) none of these

- Watch Video Solution

114. If $[x]$ denotes the integral part of \mathbf{x} and $m=\left[\frac{|x|}{1+x^{2}}\right], n=$ integral values of $\frac{1}{2-\sin 3 x}$ then (A) $m \neq n$ (B) $m>n$ (C) $m+n=0$ (D) $n^{m}=0$

- Watch Video Solution

115. If 1 lies between the roots of the equation $y^{2}-m y+1=0$ and [\mathbf{x}] denotes the greatest integer less than or equal to x, then the values of $\left[\left(\frac{4|x|}{|x|^{2}+16}\right)^{m}\right]$, is
116. If for $x>0 f(x)=\left(a-x^{n}\right)^{\frac{1}{n}}, g(x)=x^{2}+p x+q, p, q \varepsilon R$ and equation $g(x)-x=0$ has imaginary roots, then number of real roots of equation $g(g(x))-f(f(x))=0$ is
(A) 0
(B) 2
(C) 4
(D) none of these

- Watch Video Solution

117. Let $f(x)=x^{3}+x^{2}+10 x+7 \sin x$, then the equation $\frac{1}{y-f(1)}+\frac{2}{y-f(2)}+\frac{3}{y-f(3)}=0$ has (A) no real root (B) one real roots (C) two real roots (D) more than two real roots

- Watch Video Solution

118. If $0<\alpha<\beta<\gamma<\frac{\pi}{2}$ then the equation

$$
\frac{1}{x-\sin \alpha}+\frac{1}{x-\sin \beta}+\frac{1}{x-\sin \gamma}=0 \text { has }
$$

(A) imaginary roots
(B) real and equal roots
(C) real and unequal roots
(D) rational roots

- Watch Video Solution

119. IF $a=\frac{x^{2}-2 x+4}{x^{2}+2 x+4}$ and equation of lines $A B$ and $C D$ be $3 y=x$ and $y=3 x$ respectively, then for all real \mathbf{x}, point $P\left(a, a^{2}\right)$ (A) lies in the acute angle between lines $A B$ and $C D$ (B) lies in the obtuse angle between lines $A B$ and $C D(C)$ cannot be in the acute angle between lines $A B$ and $C D(D)$ cannot lie in the obtuse angle between lines $A B$ and CD

- Watch Video Solution

120. If $f(x)=3^{x}+4^{x}+5^{x}-6^{x}$, then $f(x)<f(3)$ for (A) only one value of $x(B)$ no value of $x(C)$ only two value of $x(D)$ infinitely many value

- Watch Video Solution

121. If α_{1}, α_{2} are the roots of equation $x 62-p x+1=0 a n d \beta_{1}, \beta_{2}$ are those of equation $x^{2}=q x+1=0$ and vector $\alpha_{1} \hat{i}+\beta_{1} \hat{j}$ is parallel to $\alpha_{2} \hat{i}+\beta_{2} \hat{j}$, then $p= \pm q$ b. $p= \pm 2 q$ c. $p=2 q$ d. none of these

- Watch Video Solution

122. If α_{1}, α_{2} be the roots of the equation $x^{2}-p x+1=0$ and β_{1}, β_{2} be those of equation $x^{2}-q x+1=0$ and $\vec{u}=\alpha_{1} \hat{i}+\alpha_{2} \hat{j}$, and $\vec{v}=\beta_{1} \hat{i}+\beta_{2} \hat{j}$ is parallel.

- Watch Video Solution

123. If $a, b, c, d \varepsilon R$ and $f(x)=a x^{3}+b x^{2}-c x+d$ has local extrema at two points of opposite signs and $a b>0$ then roots of equation $a x^{2}+b x+c=0$ (A) are necessarily negative (B) have necessarily negative real parts (C) have necessarily positive real parts (D) are necessarily positive

- Watch Video Solution

124. Let $f(x)=A x^{2}+B x+c$, where A, B, C are real numbers. Prove that if $f(x)$ is an integer whenever x is an integer, then the numbers $2 A, A+B$, and C are all integer. Conversely, prove that if the number $2 A, A+B$, and C are all integers, then $f(x)$ is an integer whenever x is integer.

- Watch Video Solution

125. Let $f(x)=A x^{2}+B x+c$, where A, B, C are real numbers. Prove that if $f(x)$ is an integer whenever x is an integer, then the numbers
$2 A, A+B$, and C are all integer. Conversely, prove that if the number $2 A, A+B$, and C are all integers, then $f(x)$ is an integer whenever x is integer.

- Watch Video Solution

126. If $a(p+q)^{2}+2 b p q+c=0$ and $a(p+r)^{2}+2 b p r+c=0(a \neq 0)$, then which one is correct? a) $q r=p^{2}$ b) $q r=p^{2}+\frac{c}{a}$ c) none of these d) either a) or b)

- Watch Video Solution

127. If α and $\beta(\alpha<\beta)$ are the roots of the equation $x^{2}+b x+c=0$ where $c<0<b$, then

- Watch Video Solution

128. Let $\alpha a n d \beta$ be the roots of $x^{2}-x+p=0 a n d \gamma a n d \delta$ be the root of $x^{2}-4 x+q=0$. If $\alpha, \beta, a n d \gamma, \delta$ are in G.P., then the integral values of pandq , respectively, are $-2,-32$ b. $-2,3$ c. $-6,3$ d. $-6,-32$

- Watch Video Solution

129. If $2 a+3 b+6 c=0$, then prove that at least one root of the equation $a x^{2}+b x+c=0$ lies in the interval (0,1).

- Watch Video Solution

130. if α, β be roots of $x^{2}-3 x+a=0$ and γ, δ are roots of $x^{2}-12 x+b=0$ and $\alpha, \beta, \gamma, \delta$ (in order) form a increasing GP then find the value of $a \& b$

- Watch Video Solution

131. If the difference of the roots of the equation $x^{2}+k x+7=0$ is 6 , then possible values of k are (A) $4(B)-4(C) 8 D)-8$

- Watch Video Solution

132. If \mathbf{x} real and $y=\frac{x^{2}-x+3}{x+2}$, then (A) $y \geq 1$ (B) $y \geq 11$ (C) $y \leq-11$ (D) $-11<y<1$

- Watch Video Solution

133. Let $f(x)=\frac{3}{x-2}+\frac{4}{x-3}+\frac{5}{x-4}$. Then $f(x)=0$ has (A) exactly one real root in $(2,3)(B)$ exactly one real root in $(3,4)(C)$ at least one real root in $(2,3)(D)$ none of these

- Watch Video Solution

134. Let $f(x)=a x^{3}+b x^{2}+c x+1$ has exterma at $x=\alpha, \beta$ such that $\alpha \beta<0$ and $f(\alpha) f(\beta)<0 \mathbf{f}$. Then the equation $f(x)=0$ has (a)three equal real roots (b)one negative root if $f(\alpha)<0$ and $f(\beta)>0$ (c)one positive root if $f(\alpha)<0$ and $f(\beta)>0$ (d) none of these

Watch Video Solution

135. If every pair from among the equations $x^{2}+p x+q r=0$, and $x^{2}+r x+p q=0$ have a common root, then $\left(\frac{\text { sum of all distinct roots }}{\text { Product of all distinct roots }}\right)$ is

- Watch Video Solution

136. If every pair from among the equations $x^{2}+p x+q r=0$, and $x^{2}+r x+p q=0$ have a common root, then $\left(\frac{\text { sum of all distinct roots }}{\text { Product of all distinct roots }}\right)$ is
137. If $a+b+2 c=0, c \neq 0$, then equation $a x^{2}+b x+c=0$ has (\mathbf{A}) at least one root in (0,1) (B) at least one root in (0,2) (C) at least on root in $(-1,1)$ (D) none of these

- Watch Video Solution

138. If all the roots of $z^{3}+a z^{2}+b z+c=0$ are of unit modulus, then
(A) $|a| \leq 3$
(B) $|b| \leq 3$
(C) $|c|=1$
(D) none of these

- Watch Video Solution

139. If the product of the roots of the equatiin $2 x^{2}+a x+4 \sin a=0$ is

1, then the roots will be imaginary if
(A) $a \varepsilon R$
(B) $a \varepsilon\left\{\frac{-7 \pi}{6}, \frac{\pi}{6}\right\}$
(C) $a \varepsilon\left\{\frac{\pi}{6}, \frac{5 \pi}{6}\right\}$
(D) none of these

(Watch Video Solution

140. If \mathbf{p} and \mathbf{q} are odd integers, then the equation $x^{2}+2 p x+2 q=0$ (\mathbf{A}) has no integral root (B) has no rational root (C) has no irrational root (D) has no imaginary root

- Watch Video Solution

141. Suppose that $f(x)$ isa quadratic expresson positive for all real x. If $g(x)=f(x)+f^{\prime}(x)+f^{\prime \prime}(x)$, then for any real \mathbf{x}

- Watch Video Solution

142. Let $f(x)$ be a quadratic expression which is positive for all real \mathbf{x} and $g(x)=f(x)+f^{\prime}(x)+f^{\prime \prime}(x) \cdot \mathbf{A}$ quadratic expression $f(x)$ has same sign as that coefficient of x^{2} for all real x if and only if the roots of the corresponding equation $f(x)=0$ are imaginary.Which of the following
holds true? (A) $g(0) g(1)<0$ (B) $g(0) g(-1)<0$ (C) $g(0) f(1) f(2)>0$ (D) $f(0) f(1) f(2)<0$

- Watch Video Solution

143. let $f(x)$ be a polynomial function of degree $\mathbf{2}$ and $f(x)>0$ for all $x \in R$. if $g(x)=f(x)+f^{\prime}(x)+f^{\prime \prime}(x)$, then for any \mathbf{x} show that $g(x)>0$

Watch Video Solution

144. Let $\alpha+\iota \beta, \alpha, \beta \varepsilon R$ be a root of $x^{3}+q x+r=0$ lf γ be a real root of equation $x^{3}+q x+r=0$ then γ
(A) -2α
(B) α
(C) 2α
(D) $-\alpha$
145. Let $\alpha+i \beta ; \alpha, \beta \in R, \quad$ be \mathbf{a} root of the equation $x^{3}+q x+r=0 ; q, r \in R$. A real cubic equation, independent of $\alpha \& \beta$, whose one root is 2α is (a) $x^{3}+q x-r=0$ (b) $x^{3}-q x+4=0$ $x^{3}+2 q x+r=0$ (d) None of these

- Watch Video Solution

146. The number of solution of equation $|x-1|=e^{x}$ is (A) $\mathbf{0}$ (B) $\mathbf{1}$ (C) 2
(D) none of these

- Watch Video Solution

147. If α is root of equation $f(x)=0$ then the value of $\left(\alpha+\frac{1}{\alpha}\right)^{2}+\left(\alpha^{2}+\frac{1}{\alpha^{2}}\right)^{2}+\left(\alpha^{3}+\frac{1}{\alpha^{3}}\right)+\ldots \ldots \ldots+\left(\alpha^{6}+\frac{1}{\alpha^{6}}\right)^{2}$

- Watch Video Solution

148. Find the Domain and Range of $f(x)=\frac{x-3}{4-x}$

- Watch Video Solution

149. The set of all value of a for which one root of equation $x^{2}-a x+1=0$ is less than unity and other greater than unity
(A) $(-\infty, 2)$
(B) $(2, \infty)$
(C) $(1, \infty)$
(D) none of these

- Watch Video Solution

150. The set of all values of a for which both roots of equation $x^{2}-2 a x+a^{2}-1=0$ lies between -2 and 4 is (A) $(-1,2)$ (B) $(1,3)$
$(-1,3)(D)$ none of these
151. If

$$
a, b, c\left(a b c^{2}\right) x^{2}+3 a^{2} c x+b^{2} c x-6 a^{2}-a b+2 b^{2}=0 \quad \text { ares }
$$

rational.

- Watch Video Solution

152. If \boldsymbol{n} and \mathbf{r} are positive of the equation $x^{2}-b x+c=0$ then show that the roots of the quadratic equatin ${ }^{\wedge} c C_{r} x^{2}+2 \cdot{ }^{n} C_{r+1} x+{ }^{n} C_{r+2}=0$ are real.

- Watch Video Solution

153. If $a x^{3}+b x^{2}+c x+d$ has local extremum at two points of opposite signs then roots of equation $a x^{2}+b x+c=0$ are necessarily (A) rational (B) real and unequal (C) real and equal (D) imaginary

- Watch Video Solution

154. If α and β are the roots of the equation $a x^{2}+b x+c=0$ then $a x^{2}+b x+c=a(x-\alpha)(x-\beta)$ Also if a quadratic equation $f(x)=0$ has both roots between m and n then $f(m)$ and $f(n)$ must have same sign. It is given that all the quadratic equations are of form $a x^{2}-b x+c=0 a, b, c \varepsilon N$ have two distict real roots between 0 and 1 .The least value of a for which such a quadratic equation exists is (A) 3 (B) 4 (C) 5 (D) 6

- Watch Video Solution

155. If α and β are the roots of the equation $a x^{2}+b x+c=0$ then $a x^{2}+b x+c=a(x-\alpha)(x-\beta)$ Also if a quadratic equation $f(x)=0$ has both roots between m and n then $f(m)$ and $f(n)$ must have same sign. It is given that all the quadratic equations are of form $a x^{2}-b x+c=0 a, b, c \varepsilon N$ have two distict real roots between 0 and 1 .The least value of b for which such a quadratic equation exists is (A) 3 (B) 4 (C) 5 (D) 6
156. If α and β are the roots of the equation $a x^{2}+b x+c=0$ then $a x^{2}+b x+c=a(x-\alpha)(x-\beta)$.Also if a quadratic equation $f(x)=0$ has both roots between m and n then $f(m)$ and $f(n)$ must have same sign. It is given that all the quadratic equations are of form $a x^{2}-b x+c=0 a, b, c \varepsilon N$ have two distict real roots between 0 and 1 . The least value of c for which such a quadratic equation exists is (A) 1 (B) 2 (C) 3 (D) 4

- Watch Video Solution

157. The number of real root (s) of the equation $x^{2} \tan x=1$ lying between $\mathbf{0}$ and 2π is /are.

- Watch Video Solution

158. Find the number of quadratic equations, which are unchanged by squaring their roots.

(D) Watch Video Solution

159. If x and y satisfy the equation $y=2[x]+3$ and $y=3[x-2]$ simultaneously, where [.] denotes the greatest integer function, then $[x+y]$ is equal to

- Watch Video Solution

160. Given that α, γ are roots of the equation $A x^{2}-4 x+1=0$, and
$\beta, \delta 1$ the equation of $B x^{2}-6 x+1=0$, such that
α, β, γ and δ are in H.P., then

- Watch Video Solution

161. Let α be the root of the equation $a x^{2}+b x+c=0$ and β be the root of the equation $a x^{2}-b x-c=0$ where $\alpha<\beta$ Assertion (A): Equation $a x^{2}+2 b x+2 c=0$ has exactly one root between α and β,

Reason (\mathbf{R}) : A continuous function $f(x)$ vanishes odd number of times between \mathbf{a} and \mathbf{b} if $f(a)$ and $f(b)$ have opposite signs.
A. Both A and R are true and R is the correct explanation of A
B. Both A and R are true and R is not the correct explanation of A
C. A is true but R is false.
D. A is false but R is true.

Answer: null

- Watch Video Solution

162. Let $f(x)=a x^{3}+b x^{2}+c x+d=0$ have extremum of two different points of opposite signsAssertion (A): Equation $a x^{2}+b x+c=0$ has distinct real roots., Reason (R): A differentiable function $f(x)$ has extremum only at points where $f^{\prime}(x)=0$.

- Watch Video Solution

163. Assertion (A): Equation $\quad(x-p)(x-q)-r=0 \quad$ where $p, q, r \varepsilon R$ and $0<p<q<r$ has roots in (p, q), Reason(R): A polynomial equation $f(x)=0$ has odd number of roots between a and $b(a<b)$ if $f(a)$ and $f(b)$ have opposite signs

- Watch Video Solution

164. Assertion (A): Equation $(x-a)(x-b)-2=0, a<b$ has one root less than a and other root greater than b. , Reason (R): A polynomial equation $f^{\prime}(x)=0$ has even number of roots between \mathbf{a} and \mathbf{b} if $f(a)$ and $f(b)$ have opposite signs. .

- Watch Video Solution

165. Assertion (A): For $0<a<b<c$ equation $(x-a)(x-b)-c=0$ has no roots in (a, b)

Reason (R):For a continuous function $f(x)$ equation $f^{\prime}(x)=0$ has at least one root between \mathbf{a} and \mathbf{b} if $f(a)$ and $f(b)$ are equal.
(A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

166. Assertion (A): For $\alpha<\beta$ equation $(x-\cos \alpha)(x-\cos \beta)-2=0$ has one root less than $\cos \beta$ and other greater than $\cos \alpha$., Reason (\mathbf{R}): Quadratic expression $a x^{2}+b x+c$ has sign opposite to that of a between the roots α and β of equation $a x^{2}+b x+c=0$ if $\alpha<\beta$.

- Watch Video Solution

167. LET the equation $a x^{2}+b x+c=0$ has no real roots Assertion (A):
$c(a+b+c)>0$, Reason (R): A quadratic expression $a x^{2}+b x+c$ has
signs same as that of al for all real \mathbf{x} if the roots of the corresponding equation $a x^{2}+b x+c=0$ are imaginary. (A) Both \mathbf{A} and \mathbf{R} are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te
correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

168. Assertion (A): Quadratic equation $f(x)=0$ has real and distinct roots. Reason (R): quadratic equation $f(x)=0$ has even number of roots between \mathbf{p} and $q(p<q)$ if $f(p)$ and $f(q)$ have same sign. (A) Both \mathbf{A} and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

169. Let a, b, c be real. If $a x^{2}+b x+c=0$ has two real roots $\alpha a n d \beta$, where $\alpha\langle-1$ and $\beta\rangle 1$, then show that $1+\frac{c}{a}+\left|\frac{b}{a}\right|<0$

- Watch Video Solution

170. The real numbers x_{1}, x_{2}, x_{3} satisfying the equation $x^{3}-x^{2}+b x+\gamma=0$ are in A.P. Find the intervals in which β and γ lie.

- Watch Video Solution

171. The sum of all real roots of the equation $|x-2|^{2}+|x-2|-2=0$ is

- Watch Video Solution

172. The equation $\sqrt{(x+1)}-\sqrt{(x-1)}=\sqrt{(4 x-1)}$ has

- Watch Video Solution

173. Let S be a square of unit area. Consider any quadrilateral which has one vertex on each side of S. If a, b, c and d denote the lengths of sides of the quadrilateral, prove that $2 \leq a_{2}+b_{2}+c_{2}+d_{2} \leq 4$
174. Let $f(x)=A x^{2}+B x+c$, where A, B, C are real numbers. Prove that if $f(x)$ is an integer whenever x is an integer, then the numbers $2 A, A+B$, and C are all integer. Conversely, prove that if the number $2 A, A+B$, and C are all integers, then $f(x)$ is an integer whenever x is integer.

- Watch Video Solution

175. In a triangle $P Q R, \angle R=\frac{\pi}{2}$.ff $\tan \left(\frac{P}{2}\right) \& \tan \left(\frac{Q}{2}\right)$, are the roots of the equation $a x^{2}+b x+c=(a \neq 0)$ then

- Watch Video Solution

176. If the roots of the equation $x^{2}-2 a x+a^{2}-a-3=0$ are real and less than 3, then (a) $a<2$ b. $2<-a \leq 3$ c. ${ }^{3} 34$
177. If α and $\beta\left(\alpha^{\prime}<\beta^{\prime}\right)$ arethe $\sqrt[s]{o}$ ftheequation $\mathbf{x}^{\wedge} \mathbf{2}+\mathbf{b} \mathbf{x}+\mathbf{c}=\mathbf{0}$, wherec <0

Watch_Video Solution

178. If $b>a$, then the equation $(x-a)(x-b)-1=0$ has both roots in (a, b) both roots in $(-\infty, a)$ both roots in $(b,+\infty)$ one root in $(-\infty, a)$ and the other in $(b,+\infty)$

- Watch Video Solution

179. For the equation $3 x^{2}+p x+3=0, p>0$, if one of the root is square of the other, then p is equal to $1 / 3$ b. 1 c. 3 d. $2 / 3$

- Watch Video Solution

180. If α, β are the roots of $a x^{2}+b x+c=0,(a \neq 0)$ and $\alpha+\delta, \beta+\delta$ are the roots of $A x^{2}+B x+C=0,(A \neq 0)$ for some constant δ then prove that $\frac{b^{2}-4 a c}{a^{2}}=\frac{B^{2}-4 A C}{A^{2}}$

- Watch Video Solution

181. Let $\alpha a n d \beta$ be the roots of $x^{2}-x+p=0 a n d \gamma a n d \delta$ be the root of $x^{2}-4 x+q=0$. If $\alpha, \beta, a n d \gamma, \delta$ are in G.P., then the integral values of pandq, respectively, are $-2,-32$ b. $-2,3$ c. $-6,3$ d. $-6,-32$

- Watch Video Solution

182. Let $-1 \leq p \leq 1$. Show that the equation $4 x^{3}-3 x-p=0$ has a unique root in the interval $[1 / 2,1]$ and identify it.

- Watch Video Solution

183. Let a, b, c be real numbers with $a \neq 0$ and α, β be the roots of the equation $a x^{2}+b x+c=0$. Express the roots of $a^{3} x^{2}+a b c x+c^{3}=0$ in terms of α, β.

- Watch Video Solution

184. The number of solution of $\log _{4}(x-1)=\log _{2}(x-3)$ is :

- Watch Video Solution

185. Let $f(x)=\left(1+b^{2}\right) x^{2}+2 b x+1$ and let $m(b)$ be the minimum value of $f(x)$. As b varies, the range of $m(b)$ is (a) $[0$,$\} b. \left(0, \frac{1}{2}\right)$ c. $\frac{1}{2}, 1$ d. $(0,1]$

- Watch Video Solution

186. The set of all real numbers x for which $x^{2}-|x+2|+x>0$ is
$(-\infty,-2)$
b. $(-\infty,-\sqrt{2}) \cup(\sqrt{2}, \infty)$
c. $(-\infty,-1) \cup(1, \infty)$ d.
$(\sqrt{2}, \infty)$

- Watch Video Solution

187. If $x^{2}+(a-b) x+(1-a-b)=0$. wherea, $b \in R$, then find the values of a for which equation has unequal real roots for all values of b.

- Watch Video Solution

188. If $f(x)=x^{2}+2 b x+2 c^{2}$ and $g(x)=-x^{2}-2 c x+b^{2}$ are such that $\min f(x)>\max g(x)$, then the relation between b and c is

- Watch Video Solution

189. For all ' x ',$x^{2}+2 a x+(10-3 a)>0$, then the interval in which 'a' lies is :

- Watch Video Solution

190. If one root is square of the other root of the equation $x^{2}+p x+q=0, \quad$ then the relation between $p a n d q$ is $p^{3}-q(3 p-1)+q^{2}=0 \quad p^{3}-q(3 p+1)+q^{2}=0$
$p^{3}+q(3 p-1)+q^{2}=0 p^{3}+q(3 p+1)+q^{2}=0$

- Watch Video Solution

191. If α, β are the roots of $a x^{2}+b x+c=0,(a \neq 0)$ and $\alpha+\delta, \beta+\delta$ are the roots of $A x^{2}+B x+C=0,(A \neq 0)$ for some constant δ then prove that $\frac{b^{2}-4 a c}{a^{2}}=\frac{B^{2}-4 A C}{A^{2}}$
192. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the sides of a triangle. Now two of them are equal to $\lambda \varepsilon R$
• If the roots of the equation
$x^{2}+2(a+b+c) x+3 \lambda(a b+b c+c a)=0$ are real then

- Watch Video Solution

193. Let a and b are the roots of the equation $x^{2}-10 x c-11 d=0$ and those of $x^{2}-10 a x-11 b=0$, are \mathbf{c} and \mathbf{d} then find the value of $a+b+c+d$

- Watch Video Solution

194. Let α, β be the roots of the equation $x^{2}-p x+r=0$ and $\alpha / 2,2 \beta$ be the roots of the equation $x^{2}-q x+r=0$, then the value of \mathbf{r} is (1)
$\frac{2}{9}(p-q)(2 q-p)$
(2) $\frac{2}{9}(q-p)(2 p-q)$
(3) $\frac{2}{9}(q-2 p)(2 q-p)$
$\frac{2}{9}(2 p-q)(2 q-p)$

- Watch Video Solution

195. The smallest value of k for which both roots of the equation
$x^{2}-8 k x+16\left(k^{2}-k+1\right)=0$ are real distinct and have value at least 4, is

- Watch Video Solution

