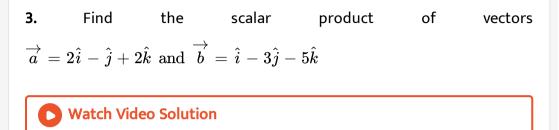


MATHS

BOOKS - KC SINHA ENGLISH

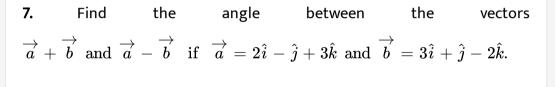
SCALAR PRODUCT OF TWO VECTORS


Solved Examples

1. Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes $\sqrt{3}$ and 2 respectively having \overrightarrow{a} . $\overrightarrow{b} = \sqrt{6}$

Watch Video Solution

2. Find the magnitude of two vectors \overrightarrow{a} and \overrightarrow{b} having the same magnitude and such that the angle between them is 60^0 and their scalar product is $\frac{1}{2}$.


4. Show that the vectors $2\hat{i} - \hat{j} + \hat{k}$ and $\hat{i} - 3\hat{j} - 5\hat{k}$ are at righat angles.

Watch Video Solution

5. Find the angle between the vectors $4\hat{i} - 2\hat{j} + 4\hat{k}$ and $3\hat{i} - 6\hat{j} - 2\hat{k}$.

6. If $\overrightarrow{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\overrightarrow{b} = 3\hat{i} + \hat{j} + 2\hat{k}$ show that the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are perpendicular to other.

Watch Video Solution

Watch Video Solution

8. If $a=5\hat{i}-\hat{j}+7\hat{k}$ and $b=\hat{i}-\hat{j}+\lambda\hat{k}$, then find λ such that a+b

and a-b are orthogonal.

Watch Video Solution

9. Find the value of λ so that the two vectors $2\hat{i}+3\hat{j}-\hat{k}$ and $-4\hat{i}-6\hat{j}+\lambda\hat{k}$ are parallel

10. Find the value of λ so that the two vectors $2\hat{i} + 3\hat{j} - \hat{k}$ and $-4\hat{i} - 6\hat{j} + \lambda\hat{k}$ are Perpendicular to each other

Watch Video Solution

11. If \overrightarrow{a} makes equal angles with the coordinate axes and has magnitude 3,find the angle between \overrightarrow{a} and each of the three coordinate axes.

Watch Video Solution

12. The vectors $\overrightarrow{a} = 3\hat{i} + x\hat{j} - \hat{k}$ and $\overrightarrow{b} = 2\hat{i} + \hat{j} + y\hat{k}$ are mutually perpedicular. Given that $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right|$, find the value of x and y.

13. Using dot product of vectors show that the vectors $2\hat{i} - \hat{j} + \hat{k}, \, \hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ form a righat angled triangle

14. Prove that points (2, -1, 1), (1, -3, -5) and (3, -4, -4) are

the vertices of a righat angled triangle.

Watch Video Solution

15. Find a vector whose magnitude is 3 units and which is perpendicular

to the vectors \overrightarrow{a} and \overrightarrow{b} where $\overrightarrow{a} = 3\hat{i} + \hat{j} - 4\hat{k}$ and $\overrightarrow{b} = 6\hat{i} + \hat{j} - 2\hat{k}$

16. Let $\overrightarrow{a} = \hat{i} - \hat{j}$, $\overrightarrow{b} = \hat{i} - \hat{k}$ and $\overrightarrow{c} = 7\hat{i} - \hat{k}$. Find a vector \hat{d} which is perpendicular to vectors \overrightarrow{a} and \overrightarrow{b} and satisfies the condition $\overrightarrow{c} \cdot \overrightarrow{d}$ =1.

Watch Video Solution

17. The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with a unit vector along the sum of the vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\lambda\hat{i} + 2\hat{j} + 3\hat{k}$ is equal to one. Find the value of λ .

Watch Video Solution

18. A unit vector \overrightarrow{a} makes angles $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with \hat{i} and \hat{j} respectively and an acute angle θ with \hat{k} . Find the angle θ and components of \overrightarrow{a} .

19. Find the projection of $A=2\hat{i}-\hat{j}+\hat{k}~~{
m on}~~B=\hat{i}-2\hat{j}+\hat{k}.$

Watch Video Solution

20. Find the projection of the vector $2\hat{i} - 3\hat{j} - 6\hat{k}$ on the line joining the points (5,6,-3) and (3,4,-2).

Watch Video Solution

21. Find the vector component of a vector $2\hat{i} + 3\hat{j} + 6har(k)$ along and

perpendicular to the non-zero vecotr $2\hat{i}+\hat{j}+2\hat{k}.$

Watch Video Solution

22. Find
$$\lambda$$
 if the scalar projection of
 $\overrightarrow{a} = \lambda \hat{i} + \hat{j} + 4\hat{k}$ on $\overrightarrow{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$ is 4 units.

23. Find the perpendicular distance of the point A(1,0,1) to the line through the points B(2,3,4) and C(-1,1,-2)

24. A line I is passing through the point \overrightarrow{b} and is parallel to vector \overrightarrow{c} . Determine the distance of point $A(\overrightarrow{a})$ from the line I in from $\left|\overrightarrow{b} - \overrightarrow{a} + \frac{\left(\overrightarrow{a} - \overrightarrow{b}\right)\overrightarrow{c}}{\left|\overrightarrow{c}\right|^{2}}\overrightarrow{c}\right| \text{ or } \frac{\left|\left(\overrightarrow{b} - \overrightarrow{a}\right) \times \overrightarrow{c}\right|}{\left|\overrightarrow{c}\right|}$

Watch Video Solution

25. Express the vector $\overrightarrow{a} = (5\hat{i} - 2\hat{j} + 5\hat{k})$ as sum of two vectors such that one is paralle to the vector $\overrightarrow{b} = (3\hat{i} + \hat{k})$ and the other is perpendicular to \overrightarrow{b} .

26. Let $\overrightarrow{b} = 4\hat{i} + 3\hat{j}$ and \overrightarrow{c} be two vectors perpendicular to each other in the xy- plane. All vectors in the sme plane having projections 1 and 2 along \overrightarrow{b} and \overrightarrow{c} , respectively, are given by _____

Watch Video Solution

27. Determine the value of c so that for all real x , vectors $cx\hat{i}-6\hat{j}-3\hat{k}$ and $x\hat{i}+2\hat{j}+2cx\hat{k}$ make an obtuse angle with each other.

Watch Video Solution

28. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are non coplanar non zero vectors and $\overrightarrow{n}, \overrightarrow{a} = \overrightarrow{n}, \overrightarrow{b} = \overrightarrow{n}, \overrightarrow{c} = 0$, Show that \overrightarrow{n} is a zero vector

29. Find the angle between any two diagonals of a cube.

30. A line makes angles $\angle, \beta, \gamma \text{ and } \delta$ with the diagonals of a cube. Show

that $\cos^2lpha+\cos^2eta+\cos^2\gamma+\cos^2\delta=4/3.$

31. (Cauchy-Schawarz inequality) For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} prove
that $\left(\overrightarrow{a},\overrightarrow{b}\right)^2 \leq \left|\overrightarrow{a}\right|^2 \left|\overrightarrow{b}\right|^2$ and hence show that
 $(a_1b_2 + a_2b_2 + a_3b_3)^2 \leq (a12 + a22 + a32)(b12 + b22 + b32)$.

Watch Video Solution

32. A vector whose modulus is $\sqrt{51}$ and makes the same angle with $a = \frac{\hat{i} - 2\hat{j} + 2\hat{k}}{3}, b = \frac{-4\hat{i} - 3\hat{k}}{5}$ and $c = \hat{j}$, will be

33. If
$$\left| \overrightarrow{a} + \overrightarrow{b} \right| = \left| \overrightarrow{a} - \overrightarrow{b} \right|, \left(\overrightarrow{a}, \overrightarrow{b} \neq \overrightarrow{0} \right)$$
 show that the vectors

 \overrightarrow{a} and \overrightarrow{b} are perpendicular to each other.

Watch Video Solution

34. Find
$$\left| \overrightarrow{x} \right|$$
 , if for a unit vector \overrightarrow{a} , $\left(\overrightarrow{x} - \overrightarrow{a} \right)$. $\left(\overrightarrow{x} + \overrightarrow{a} \right) = 15$.

Watch Video Solution

35. If $\widehat{a}and\widehat{b}$ are unit vectors inclined at an angle θ , then prove that $\frac{\sin\theta}{2} = \frac{1}{2}|\widehat{a} + \widehat{b}|$.

36. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} prove that $\left|\overrightarrow{a}, \overrightarrow{b}\right| \leq \left|\overrightarrow{a}\right| \left|\overrightarrow{b}\right|$

37. For any two vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , we always have $\left|\overrightarrow{a} + \overrightarrow{b}\right| \leq \left|\overrightarrow{a}\right| + \left|\overrightarrow{b}\right|$ [Triangle inequality].
Watch Video Solution

38. Given
$$\overrightarrow{a}$$
 is perpendicular to $\overrightarrow{b} + \overrightarrow{c}$, \overrightarrow{b} is perpendicular to $\overrightarrow{c} + \overrightarrow{a}$
and \overrightarrow{c} is perpendicular to $\overrightarrow{a} + \overrightarrow{b}$. If $|\overrightarrow{a}| = 1$, $|\overrightarrow{b}| = 2$, $|\overrightarrow{c}| = 3$, find $|\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}|$

D Watch Video Solution

39. If
$$\overrightarrow{a}$$
, \overrightarrow{b} and \overrightarrow{c} are unit vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$ then the value of \overrightarrow{a} . $\overrightarrow{b} + \overrightarrow{b}$. $\overrightarrow{c} + \overrightarrow{c}$. \overrightarrow{a} is a) 1 b) 0 c) 3 d) $-\frac{3}{2}$

40. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are mutually perpendicular vectors of equal magnitudes, show that the vector $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is equally inclined to \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} .

Watch Video Solution

41. (Pythagorass Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Watch Video Solution

42. Prove that the mid-point of the hypotenuse of a right triangle is equidistant from its vertices.

43. Using distance formula, prove the apollonius' theorem that is in $\Delta ABC, AB^2 + AC^2 = 2(AD^2 + BD^{20})$, where D is the middle point

Watch Video Solution]
	-
44. Show that the diagonals of a rhombus bisect each other at righ	t

angles.

Watch Video Solution

45. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

Watch Video Solution

46. Prove using vectors: The median to the base of an isosceles triangle is

perpendicular to the base.

47. Prove using vectors: If two medians of a triangle are equal, then it is

isosceles.

Watch Video Solution

48. Prove that an angle inscribed in a semi-circle is a right angle using vector method.

Watch Video Solution

49. Using vector method, prove that the altitudes of a triangle are concurrent.

Watch Video Solution

50. Show that the perpendicular bisectors of the sides of a triangle are

concurrent.

51. In any ΔABC , prove that

 $ac\cos B - bc\cos A = a^2 - b^2$

Watch Video Solution

52.
$$2(bosA + ca \cos B + ab \cos C) = a^2 + b^2 + c^2$$

Watch Video Solution

53. Prove by vector metod the following formula of plane trigonometry

 $\cos(lpha-eta)=\coslpha\coseta+\sinlpha\sineta$

54. In any ΔABC , prove that $\cos C = rac{a^2+b^2-c^2}{2ab}$ with the help of

vectors

Watch Video Solution

Constant

forces

 $P_1=\hat{i}-\hat{j}+\hat{k},P_2=-\hat{i}+2\hat{j}-\hat{i}k\,\, ext{and}\,\,P_3=\hat{j}-\hat{k}\, ext{act}$ on a particle at a point A . Determine the work done when particle is displaced from position $A\Big(4\hat{i}-3\hat{j}-2\hat{k}\Big)\,\,\, ext{to}B\Big(6\hat{i}+\hat{j}-3\hat{k}\Big)$

Watch Video Solution

56. A paticle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ is displaced from the point $\hat{i} + 2\hat{j} + 3\hat{k} \rightarrow 5\hat{i} + 4\hat{j} + \hat{k}$. Find the work done

1. Find the scalar product of vectors \overrightarrow{a} and \overrightarrow{b} , where : $\widehat{a}=2\widehat{i}+4\widehat{k},\, \widehat{b}=3\widehat{j}-2\widehat{k}$

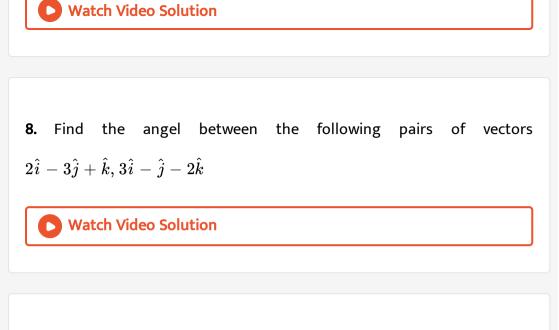
Watch Video Solution

2. Find the scalar product of vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} , where :
 $\overrightarrow{a} = 2\hat{i} - 3\hat{k}, \overrightarrow{b} = 3\hat{i} + 4\hat{j}$

Watch Video Solution

3. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - \hat{j}$ and $\overrightarrow{c} = 3\hat{j} + \hat{k}$ then verify the following: $\overrightarrow{a} \cdot \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{a} \cdot \overrightarrow{c}$.

4. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - \hat{j}$ and $\overrightarrow{c} = 3\hat{j} + \hat{k}$ then verify the following: $\left(\overrightarrow{a} + \overrightarrow{b}\right)$. $\left(\overrightarrow{a} - \overrightarrow{b}\right) = a^2 - b^2$.


5. Find the angle between two vectors \overrightarrow{a} and \overrightarrow{b} with magnitudes 1 and 2 respectively and satisfying \overrightarrow{a} . \overrightarrow{b} . = 1

Watch Video Solution

6. IF
$$|\overrightarrow{a}| = \sqrt{3}$$
, $|\overrightarrow{b}| = 2$ and $|\overrightarrow{a} - \overrightarrow{b}| = 3$ find the angle between \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

7. Find the angle between the following pairs of vectors $3\hat{i} + 2\hat{j} - 6\hat{k}, 4\hat{i} - 3\hat{j} + \hat{k}, \hat{i} - 2\hat{j} + 3\hat{k}, 3\hat{i} - 2\hat{j} + \hat{k}$

9. Find the angel between the following pairs of vectors $\hat{i}+\hat{j}-\hat{k},\,\hat{i}-\hat{j}+\hat{k}$

Watch Video Solution

10. Find the angle between the following pairs of vectors $3\hat{i} + 2\hat{j} - 6\hat{k}, 4\hat{i} - 3\hat{j} + \hat{k}, \hat{i} - 2\hat{j} + 3\hat{k}, 3\hat{i} - 2\hat{j} + \hat{k}$

11. Prove that the following vectors are at righat angle: $2\hat{i}-\hat{j}+\hat{k},\,\hat{i}-3\hat{j}+5\hat{k}$

Watch Video Solution

12. Prove that the following vectors are at righat angle: $2\hat{i} + 5\hat{j} + \hat{k}, 3\hat{i} - 2\hat{j} + 4\hat{k}$

Watch Video Solution

13. Find the angle between the vectors $3\hat{i} + 4\hat{j}$ and $2\hat{j} - 5\hat{k}$.

14. Find the angle betwene the vectors $3\hat{i} + 4\hat{j} + 5\hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$. Also find the sine of the angle between them. 15. Show that the following vectors are perpendicular to each other: $2\hat{j} + 3\hat{j} + 6\hat{k}, 3\hat{i} - 6\hat{j} + 2\hat{k}, 6\hat{i} + 2\hat{j} - 3\hat{k}$

16. Show that the following vectors are perpendicular to each other: $6\hat{i} + 3\hat{j} + 2\hat{k}, 2\hat{i} - 6\hat{j} + 3\hat{k}, -3\hat{i} + 2\hat{j} + 6\hat{k}$

Watch Video Solution

17. Show that the following vectors are perpendicular to each other:

$$3\hat{i}+\hat{j}+2\hat{k},\,\hat{i}-\hat{j}-5\hat{j}-4\hat{k}$$

18. If $\overrightarrow{a} = 3\hat{i} + 2\hat{j} + 9\hat{k}$ and $\overrightarrow{b} = \hat{i} + \lambda\hat{j} + 3\hat{k}$, find the value λ so that $\overrightarrow{a} + \overrightarrow{b}$ is perpendicular to $\overrightarrow{a} - \overrightarrow{b}$

Watch Video Solution

19. If $a = 4\hat{i} + 2\hat{j} - \hat{k}$ and $\overrightarrow{b} = 5\hat{i} + 2\hat{j} - 3\hat{k}$ find the angle between the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$

Watch Video Solution

20. If $\overrightarrow{a} = 5\hat{i} - \hat{j} - 3\hat{k}$ and $\overrightarrow{b} = \hat{i} + 3\hat{j} - 5\hat{k}$, then show that the vectors $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} - \overrightarrow{b}$ are perpendicular.

Watch Video Solution

21. Find the value of λ such that the vectors $\vec{a} = 2\hat{i} + \lambda\hat{j} + \hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ are orthogonal.

22. If
$$\overrightarrow{OA} = 2\hat{i} - \hat{j} + \hat{k}, \overrightarrow{OB} = \hat{i} - 3\hat{j} - 5\hat{k}$$
 and $\overrightarrow{OC} = 3\hat{i} - 3\hat{j} - 3\hat{k}$

then show that CB is perpendicular to AC.

Watch Video Solution

23. If
$$\overrightarrow{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$$
, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + k$ and $\overrightarrow{c} = 3\hat{i} + \hat{j}$ such that $\overrightarrow{a} + \lambda \overrightarrow{b} is$ perpendicular to vector c` then the find the value of lamda.

Watch Video Solution

24. Show that each of the given three vectors is a unit vector: $\frac{1}{7} \left(2\hat{i} + 3\hat{j} + 6\hat{k} \right), \frac{1}{7} \left(3\hat{i} - 6\hat{j} + 2\hat{k} \right), \frac{1}{7} \left(6\hat{i} + 2\hat{j} - 3\hat{k} \right) \text{Also}, \quad \text{show}$

that they are mutually perpendicular to each other.

25. Show that the thre angles of the triangle with vertices (1,-1,1), (2,3,-1)

and
$$(3, 0, 2)$$
 are, respectively, $\cos^{-1}\left(\frac{2}{\sqrt{114}}\right)$, $\cos^{-1}\left(\frac{4}{\sqrt{126}}\right)$ and $\cos^{-1}\left(\frac{4}{\sqrt{126}}\right)$

26. Find the scalar components of a unit vector which is perpendicular to

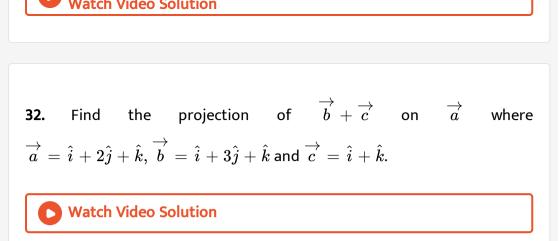
each of the vectors $\hat{i} + 2\hat{j} - \hat{k}$ and $3\hat{i} - \hat{j} + 2\hat{k}$.

Watch Video Solution

27. If
$$\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$$
, $\overrightarrow{b} = \hat{i} - 3\hat{j} - 5\hat{k}$. Find a vector \overrightarrow{c} such that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} from the sides of a righat angled tringle taken in order.

Watch Video Solution

28. Find the vector magnitude $\sqrt{2}$ which lies in zx-plane and is at righat angles to the vector $2\hat{i} + \hat{j} + 2\hat{k}$


29. Find the values of x for which the angle between the vectors $\vec{a} = -3\hat{i} + x\hat{j} + \hat{k}$ and $\vec{b} = x\hat{i} + 2x\hat{j} + \hat{k}$ is acute nd the angle between \vec{b} and x-axis lies between $\frac{\pi}{2}$ and π .

Watch Video Solution

30. The diagonals of as parallelogram are given by $\vec{a} = 3\hat{i} - 4\hat{j} - \hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} - 6\hat{k}$ Show that the parallelogram

is as rhombus and determine the length of its sides.

31. Let
$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}$$
, $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\overrightarrow{c} = 2\hat{i} - 2\hat{j} + 4\hat{k}$.
Find a vector \overrightarrow{d} which perpendicular to both \overrightarrow{a} and \overrightarrow{b} and $\overrightarrow{c} \cdot \overrightarrow{d} = 15$.

33. Find the projection of the vector $\hat{i} - 2\hat{j} + \hat{k}$ on the vector $4\hat{i} - 4\hat{j} + 7\hat{k}.$

Watch Video Solution

34. If $\overrightarrow{OA} = 2\hat{i} + 3\hat{j} - 4\hat{k}$ and $\overrightarrow{OB} = \hat{j} + \hat{k}$ are two vectors through the origin O, find the projection of \overrightarrow{OA} and \overrightarrow{OB}

35. If $\overrightarrow{OA} = 2\hat{i} + 3\hat{j} - 4\hat{k}$ and $\overrightarrow{OB} = \hat{j} + \hat{k}$ are two vectors through the origin O, find the projection of \overrightarrow{OBonOA} .

Watch Video Solution

36. Let $\overrightarrow{a} = \hat{i} + 3\hat{j} + 7\hat{k}$ and $\overrightarrow{b} = 7\hat{i} - \hat{j} + 8\hat{k}$ find the projection of \overrightarrow{a} on \overrightarrow{b}

Watch Video Solution

37. Let
$$\overrightarrow{a} = \hat{i} + 3\hat{j} + 7\hat{k}$$
 and $\overrightarrow{b} = 7\hat{i} - \hat{j} + 8\hat{k}$ find the projection of \overrightarrow{b} on \overrightarrow{a}

Watch Video Solution

38. Find the projection oif $\overrightarrow{a}=2\hat{i}+3\hat{j}+2\hat{k}$ on the vector $\overrightarrow{b}=\hat{i}+2\hat{j}+\hat{k}.$

39. Find the projection of the vecto $\,\hat{i}\,-\,\hat{j}$ on the vector $\,\hat{i}\,+\,\hat{j}$

Watch Video Solution

40. Find the vector component of $\overrightarrow{F} = \hat{i} + 2\hat{j} + 2\hat{k}$ along the direction of $\overrightarrow{p} = -3\hat{i} - 4\hat{j} + 12\hat{k}$ in the plane of \overrightarrow{F} and \overrightarrow{P} ,

Watch Video Solution

41. P,Q,R,S are points $\hat{i} - \hat{j} - \hat{k}$, $-\hat{i} + \hat{j}$, $2\hat{i} - 3\hat{k}$ and $3\hat{i} - 2\hat{j} - \hat{k}$ respectivley. Show that the projection of PQ on RS is equal to that of RS on PQ each being $-\frac{4}{3}$. Also find the cosine of their inclination.

42. If $\overrightarrow{a} = 4\hat{i} + 6\hat{j}$ and $\overrightarrow{b} = 3\hat{i} + 4\hat{k}$ find the vector component of \overrightarrow{a} alond \overrightarrow{b} .

43. Evaluate:
$$\left(3\overrightarrow{a} - 5\overrightarrow{b}\right)$$
. $\left(2\overrightarrow{a} + 7\overrightarrow{b}\right)$

Watch Video Solution

44. Prove that:
$$\left(\frac{\overrightarrow{a}}{a^2} - \frac{\overrightarrow{b}}{b^2}\right)^2 = \left(\frac{\overrightarrow{a} - \overrightarrow{b}}{ab}\right)^2$$

Watch Video Solution

45. Given that
$$\overrightarrow{p} = \overrightarrow{a} + \overrightarrow{b}$$
 and $\overrightarrow{q} = \overrightarrow{a} - \overrightarrow{b}$ and $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right|$, show that $\overrightarrow{p} \cdot \overrightarrow{q} = 0$

46. Find
$$\left|\overrightarrow{a} - \overrightarrow{b}\right|$$
, if two vectors \overrightarrow{a} and \overrightarrow{b} are such that $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 3$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 4$.

Watch Video Solution

47. If
$$\overrightarrow{a}$$
 is unit vector and $\left(\overrightarrow{x} - a\right)$. $\left(\overrightarrow{x} + a\right) = 12$ then find $|x|$.

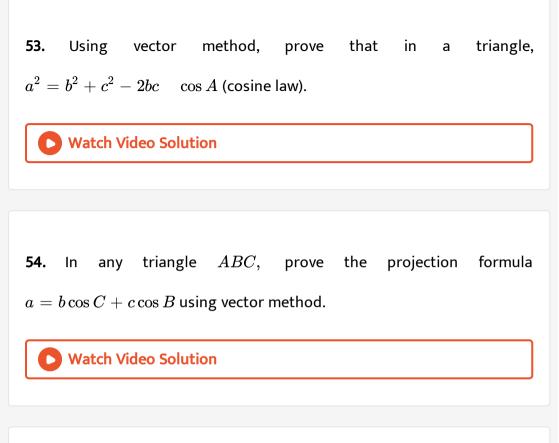
Watch Video Solution

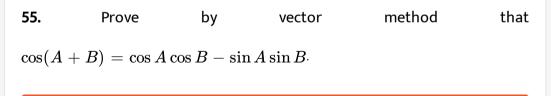
48. Find
$$\left|\overrightarrow{a}\right|$$
 and $\left|\overrightarrow{b}\right|$ if $\left(\overrightarrow{a} + \overrightarrow{b}\right)$. $\left(\overrightarrow{a} - \overrightarrow{b}\right) = 8$ and $\left|\overrightarrow{a}\right| = 8\left|\overrightarrow{b}\right|$.

Watch Video Solution

49. show that
$$|\overrightarrow{a}|\overrightarrow{b} + |\overrightarrow{b}|\overrightarrow{a}|$$
 is a perpendicular to $|\overrightarrow{a}|\overrightarrow{b} - |\overrightarrow{b}|\overrightarrow{a}|$ for any two non-zero vectors \overrightarrow{a} and \overrightarrow{b}

50. The angle between \overrightarrow{a} and \overrightarrow{b} ,is 30^0 and the angle between \overrightarrow{b} and \overrightarrow{c} is, 60^0 the angle being measured in each case from the first vectro to the second vector nd in counter clockwise dirction. Compute $\left|\overrightarrow{a} + 2\overrightarrow{b} - 3\overrightarrow{c}\right|$, given that \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three coplanar unit vectors.


Watch Video Solution


51. If
$$\left|\overrightarrow{a}\right| = 1$$
, $\left|\overrightarrow{b}\right| = 2$, $\left|\overrightarrow{c}\right| = 3$ and $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$ the show that $\overrightarrow{a} \cdot \overrightarrow{b} + \overrightarrow{b} \cdot \overrightarrow{c} + \overrightarrow{c} \cdot \overrightarrow{a} = -7$

Watch Video Solution

52. prove by vector method that the sum of the squares of the diagonals

of a parallelogram is equal to the sum of the squares of its sides.

Watch Video Solution

56. Find the equation of the plane passing through the point $\hat{i} - \hat{j} + \hat{k}$ and perpendicular to the vectro $3\hat{i} - \hat{j} - 2\hat{k}$ and show that

the point $2\hat{i}+4\hat{j}$ lies on the plane.

57. If $\overrightarrow{\alpha}$ is a constant vectro and $\overrightarrow{\gamma}$ is the position vector of a variable point (x,y,z), show that $(\overrightarrow{\gamma} - \overrightarrow{\alpha})\overrightarrow{\alpha} = 0$ is the equation of a plane through fixed point $\overrightarrow{\alpha}$

Watch Video Solution

58. A paticle acted on by constant forces $4\hat{i} + \hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$ is displaced from the point $\hat{i} + 2\hat{j} + 3\hat{k} \rightarrow 5\hat{i} + 4\hat{j} + \hat{k}$. Find the work done

Watch Video Solution

59. Froces acting on a particle have magnitude 5,3,1 and act in the direction of the vectors (6,2,3),(3,-2,6),(2,-3,-6) respectively. These remain

constant while the particle is displaced form the point $A(4,\ -2,\ -6) o B(7,\ -2,\ -2).$ Find the work done by the forces.

Watch Video Solution

60. A force $\overrightarrow{F} = 2\hat{i} + \hat{j} - \hat{k}$ acts at a point A whose position vectro is $2\hat{i} - \hat{j}$. If the point aplication of \overrightarrow{F} moves from point A to point B, with position vector $2\hat{i} + \hat{j}$, find the workdown by \overrightarrow{F}

Watch Video Solution

61. Two forces $-\hat{i} + 2\hat{j} - \hat{k}$ and $2\hat{i} - 5\hat{j} + 6\hat{k}$ act on a particfle whose position vector is $4\hat{i} - 3\hat{j} + 2\hat{k}$ and displace it to another point whose positon vector is $6\hat{i} + \hat{j} - 3\hat{k}$. Find the total work done by the force.

62. Two forces whose magnitudes are 2N and 3N act on a particle in the direction of the vectros $2\hat{i} + 4\hat{j} + 4\hat{k}$ and $4\hat{i} - 4\hat{j} + 2\hat{k}$ respectively. If the particle is displaced from the origin O to the point (1,2,2). Find the work done.