©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA ENGLISH

SCALAR PRODUCT OF TWO VECTORS

Solved Examples

1. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2 respectively having $\vec{a} \cdot \vec{b}=\sqrt{6}$

- Watch Video Solution

2. Find the magnitude of two vectors \vec{a} and \vec{b} having the same magnitude and such that the angle between them is 60° and their scalar product is $\frac{1}{2}$.
3.

Find the scalar product of
vectors
$\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=\hat{i}-3 \hat{j}-5 \hat{k}$

- Watch Video Solution

4. Show that the vectors $2 \hat{i}-\hat{j}+\hat{k}$ and $\hat{i}-3 \hat{j}-5 \hat{k}$ are at righat angles.

- Watch Video Solution

5. Find the angle between the vectors $4 \hat{i}-2 \hat{j}+4 \hat{k}$ and $3 \hat{i}-6 \hat{j}-2 \hat{k}$.

- Watch Video Solution

6. If $\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$ and $\vec{b}=3 \hat{i}+\hat{j}+2 \hat{k}$ show that the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular to other.

- Watch Video Solution

7. Find the angle between the vectors
$\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ if $\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+\hat{j}-2 \hat{k}$.

- Watch Video Solution

8. If $a=5 \hat{i}-\hat{j}+7 \hat{k}$ and $b=\hat{i}-\hat{j}+\lambda \hat{k}$, then find λ such that $\mathrm{a}+\mathrm{b}$ and $\mathrm{a}-\mathrm{b}$ are orthogonal.

- Watch Video Solution

9. Find the value of λ so that the vectors $2 \hat{i}+3 \hat{j}-\hat{k}$ and $-4 \hat{i}-6 \hat{j}+\lambda \hat{k}$ are parallel
10. Find the value of λ so that the two vectors $2 \hat{i}+3 \hat{j}-\hat{k}$ and $-4 \hat{i}-6 \hat{j}+\lambda \hat{k}$ are Perpendicular to each other

- Watch Video Solution

11. If \vec{a} makes equal angles with the coordinate axes and has magnitude 3,find the angle between \vec{a} and each of the three coordinate axes.

- Watch Video Solution

12. The vectors $\vec{a}=3 \hat{i}+x \hat{j}-\hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+y \hat{k}$ are mutually perpedicular. Given that $|\vec{a}|=|\vec{b}|$, find the value of x and y .

- Watch Video Solution

13. Using dot product of vectors show that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ form a righat angled triangle

- Watch Video Solution

14. Prove that points $(2,-1,1),(1,-3,-5)$ and $(3,-4,-4)$ are the vertices of a righat angled triangle.

- Watch Video Solution

15. Find a vector whose magnitude is 3 units and which is perpendicular $\begin{array}{lll}\text { to } & \text { vectors } & \vec{a} \text { and } \vec{b} \\ \vec{a}=3 \hat{i}+\hat{j}-4 \hat{k} \text { and } \vec{b}=6 \hat{i}+\hat{j}-2 \hat{k} & & \text { where } \\ & \end{array}$

- Watch Video Solution

16. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{i}-\hat{k}$ and $\vec{c}=7 \hat{i}-\hat{k}$. Find a vector \hat{d} which is perpendicular to vectors \vec{a} and \vec{b} and satisfies the condition $\vec{c} \cdot \vec{d}$ $=1$.

- Watch Video Solution

17. The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of the vectors $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ.

- Watch Video Solution

18. A unit vector \vec{a} makes angles $\frac{\pi}{4}$ and $\frac{\pi}{3}$ with \hat{i} and \hat{j} respectively and an acute angle θ with \hat{k}. Find the angle θ and components of \vec{a}.

- Watch Video Solution

19. Find the projection of $A=2 \hat{i}-\hat{j}+\hat{k}$ on $B=\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

20. Find the projection of the vector $2 \hat{i}-3 \hat{j}-6 \hat{k}$ on the line joining the points (5,6,-3) and (3,4,-2).

- Watch Video Solution

21. Find the vector component of a vector $2 \hat{i}+3 \hat{j}+6 \operatorname{har}(k)$ along and perpendicular to the non-zero vecotr $2 \hat{i}+\hat{j}+2 \hat{k}$.

- Watch Video Solution

22. Find λ if the scalar projection of $\vec{a}=\lambda \hat{i}+\hat{j}+4 \hat{k}$ on $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$ is 4 units.
23. Find the perpendicular distance of the point $A(1,0,1)$ to the line through the points $\mathrm{B}(2,3,4)$ and $\mathrm{C}(-1,1,-2)$

- Watch Video Solution

24. A line I is passing through the point \vec{b} and is parallel to vector \vec{c}. Determine the distance of point $\mathrm{A}(\vec{a})$ from the line 1 in from $\left|\vec{b}-\vec{a}+\frac{(\vec{a}-\vec{b}) \vec{c}}{|\vec{c}|^{2}} \vec{c}\right|$ or $\frac{|(\vec{b}-\vec{a}) \times \vec{c}|}{|\vec{c}|}$

(D) Watch Video Solution

25. Express the vector $\vec{a}=(5 \hat{i}-2 \hat{j}+5 \hat{k})$ as sum of two vectors such that one is paralle to the vector $\vec{b}=(3 \hat{i}+\hat{k})$ and the other is perpendicular to \vec{b}.
26. Let $\vec{b}=4 \hat{i}+3 \hat{j}$ and \vec{c} be two vectors perpendicular to each other in the ry- plane. All vectors in the mme plane having projections 1 and 2 along \vec{b} and \vec{c}., respectively, are given by \qquad

- Watch Video Solution

27. Determine the value of c so that for all real x, vectors $c x \hat{i}-6 \hat{j}-3 \hat{k}$ and $x \hat{i}+2 \hat{j}+2 c x \hat{k}$ make an obtuse angle with each other.

- Watch Video Solution

28. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar non zero vectors and $\vec{n} \cdot \vec{a}=\vec{n} \cdot \vec{b}=\vec{n} \cdot \vec{c}=0$, Show that \vec{n} is a zero vector

- Watch Video Solution

29. Find the angle between any two diagonals of a cube.

- Watch Video Solution

30. A line makes angles \angle, β, γ and δ with the diagonals of a cube. Show that $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma+\cos ^{2} \delta=4 / 3$.

- Watch Video Solution

31. (Cauchy-Schawarz inequality) For any two vectors \vec{a} and \vec{b} prove that $\quad(\vec{a} \vec{b})^{2} \leq|\vec{a}|^{2}|\vec{b}|^{2} \quad$ and hence show that
$\left(a_{1} b_{2}+a_{2} b_{2}+a_{3} b_{3}\right)^{2} \leq(a 12+a 22+a 32)(b 12+b 22+b 32)$.

- Watch Video Solution

32. A vector whose modulus is $\sqrt{51}$ and makes the same angle with
$a=\frac{\hat{i}-2 \hat{j}+2 \hat{k}}{3}, b=\frac{-4 \hat{i}-3 \hat{k}}{5}$ and $c=\hat{j}$, will be

(D) Watch Video Solution

33. If $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|,(\vec{a}, \vec{b} \neq \overrightarrow{0})$ show that the vectors \vec{a} and \vec{b} are perpendicular to each other.

- Watch Video Solution

34. Find $|\vec{x}|$, if for a unit vector $\vec{a},(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=15$.

- Watch Video Solution

35. If $\widehat{a} a n d \hat{b}$ are unit vectors inclined at an angle θ, then prove that $\frac{\sin \theta}{2}=\frac{1}{2}|\widehat{a}+\hat{b}|$.

Watch Video Solution

36. For any two vectors \vec{a} and \vec{b} prove that $|\vec{a} \cdot \vec{b}| \leq|\vec{a}||\vec{b}|$
37. For any two vectors \vec{a} and \vec{b}, we always have $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$ [Triangle inequality].

- Watch Video Solution

38. Given \vec{a} is perpendicular to $\vec{b}+\vec{c}, \vec{b}$ is perpendicular to $\vec{c}+\vec{a}$ and \vec{c} is perpendicular to $\vec{a}+\vec{b}$. If $|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=3$, find $|\vec{a}+\vec{b}+\vec{c}|$

- Watch Video Solution

39. If \vec{a}, \vec{b} and \vec{c} are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ then the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is a) 1 b) 0 c) 3 d) $-\frac{3}{2}$

- Watch Video Solution

40. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to \vec{a}, \vec{b} and \vec{c}.

- Watch Video Solution

41. (Pythagorass Theorem) Prove by vector method that in a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

D Watch Video Solution

42. Prove that the mid-point of the hypotenuse of a right triangle is equidistant from its vertices.

- Watch Video Solution

43. Using distance formula, prove the apollonius' theorem that is in $\Delta A B C, A B^{2}+A C^{2}=2\left(A D^{2}+B D^{20}\right)$, where D is the middle point

D Watch Video Solution

44. Show that the diagonals of a rhombus bisect each other at right angles.

- Watch Video Solution

45. Using dot product of vectors, prove that a parallelogram, whose diagonals are equal, is a rectangle

- Watch Video Solution

46. Prove using vectors: The median to the base of an isosceles triangle is perpendicular to the base.
47. Prove using vectors: If two medians of a triangle are equal, then it is isosceles.

- Watch Video Solution

48. Prove that an angle inscribed in a semi-circle is a right angle using vector method.

- Watch Video Solution

49. Using vector method, prove that the altitudes of a triangle are concurrent.

- Watch Video Solution

50. Show that the perpendicular bisectors of the sides of a triangle are concurrent.
51. In any $\triangle A B C$, prove that
$a c \cos B-b c \cos A=a^{2}-b^{2}$

- Watch Video Solution

52. 2(bos $A+c a \cos B+a b \cos C)=a^{2}+b^{2}+c^{2}$

- Watch Video Solution

53. Prove by vector metod the following formula of plane trigonometry $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$

- Watch Video Solution

54. In any $\triangle A B C$, prove that $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$ with the help of vectors

- Watch Video Solution

55.

Constant
forces
$P_{1}=\hat{i}-\hat{j}+\hat{k}, P_{2}=-\hat{i}+2 \hat{j}-\hat{i} k$ and $P_{3}=\hat{j}-\hat{k}$ act on a particle at a point A. Determine the work done when particle is displaced from position $A(4 \hat{i}-3 \hat{j}-2 \hat{k}) \operatorname{to} B(6 \hat{i}+\hat{j}-3 \hat{k})$

- Watch Video Solution

56. A paticle acted on by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$ is displaced from the point $\hat{i}+2 \hat{j}+3 \hat{k} \rightarrow 5 \hat{i}+4 \hat{j}+\hat{k}$. Find the work done
57. Find the scalar product of vectors \vec{a} and \vec{b}, where : $\widehat{a}=2 \hat{i}+4 \hat{k}, \hat{b}=3 \hat{j}-2 \hat{k}$

(Watch Video Solution

2. Find the scalar product of vectors \vec{a} and \vec{b}, where : $\vec{a}=2 \hat{i}-3 \hat{k}, \vec{b}=3 \hat{i}+4 \hat{j}$

- Watch Video Solution

3. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}$ and $\vec{c}=3 \hat{j}+\hat{k}$ then verify the following: $\vec{a} \cdot(\vec{b}+\vec{c})=\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$.

- Watch Video Solution

4. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}$ and $\vec{c}=3 \hat{j}+\hat{k}$ then verify the following: $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=a^{2}-b^{2}$.

- Watch Video Solution

5. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes 1 and 2 respectively and satisfying $\vec{a} \cdot \vec{b} \cdot=1$

- Watch Video Solution

6. IF $|\vec{a}|=\sqrt{3},|\vec{b}|=2$ and $|\vec{a}-\vec{b}|=3$ find the angle between \vec{a} and \vec{b}.

- Watch Video Solution

7. Find the angle between the following pairs of vectors $3 \hat{i}+2 \hat{j}-6 \hat{k}, 4 \hat{i}-3 \hat{j}+\hat{k}, \hat{i}-2 \hat{j}+3 \hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$
8. Find the angel between the following pairs of vectors $2 \hat{i}-3 \hat{j}+\hat{k}, 3 \hat{i}-\hat{j}-2 \hat{k}$

- Watch Video Solution

9. Find the angel between the following pairs of vectors $\hat{i}+\hat{j}-\hat{k}, \hat{i}-\hat{j}+\hat{k}$

- Watch Video Solution

10. Find the angle between the following pairs of vectors $3 \hat{i}+2 \hat{j}-6 \hat{k}, 4 \hat{i}-3 \hat{j}+\hat{k}, \hat{i}-2 \hat{j}+3 \hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

11. Prove that the following vectors are at righat angle: $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}+5 \hat{k}$

- Watch Video Solution

12. Prove that the following vectors are at righat angle: $2 \hat{i}+5 \hat{j}+\hat{k}, 3 \hat{i}-2 \hat{j}+4 \hat{k}$

- Watch Video Solution

13. Find the angle between the vectors $3 \hat{i}+4 \hat{j}$ and $2 \hat{j}-5 \hat{k}$.

- Watch Video Solution

14. Find the angle betwene the vecrtors $3 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$.

Also find the sine of the angle between them.

- Watch Video Solution

15. Show that the following vectors are perpendicular to each other:
$2 \hat{j}+3 \hat{j}+6 \hat{k}, 3 \hat{i}-6 \hat{j}+2 \hat{k}, 6 \hat{i}+2 \hat{j}-3 \hat{k}$

- Watch Video Solution

16. Show that the following vectors are perpendicular to each other: $6 \hat{i}+3 \hat{j}+2 \hat{k}, 2 \hat{i}-6 \hat{j}+3 \hat{k},-3 \hat{i}+2 \hat{j}+6 \hat{k}$

- Watch Video Solution

17. Show that the following vectors are perpendicular to each other:
$3 \hat{i}+\hat{j}+2 \hat{k}, \hat{i}-\hat{j}-5 \hat{j}-4 \hat{k}$

- Watch Video Solution

18. If $\vec{a}=3 \hat{i}+2 \hat{j}+9 \hat{k}$ and $\vec{b}=\hat{i}+\lambda \hat{j}+3 \hat{k}$, find the value λ so that $\vec{a}+\vec{b}$ is perpendicular to $\vec{a}-\vec{b}$

- Watch Video Solution

19. If $a=4 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=5 \hat{i}+2 \hat{j}-3 \hat{k}$ find the angle between the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$

- Watch Video Solution

20. If $\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}-5 \hat{k}$, then show that the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular.

- Watch Video Solution

21. Find the value of λ such that the vectors $\vec{a}=2 \hat{i}+\lambda \hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$ are orthogonal.
22. If $\overrightarrow{O A}=2 \hat{i}-\hat{j}+\hat{k}, \overrightarrow{O B}=\hat{i}-3 \hat{j}-5 \hat{k}$ and $\overrightarrow{O C}=3 \hat{i}-3 \hat{j}-3 \hat{k}$ then show that $C B$ is perpendicular to $A C$.

- Watch Video Solution

23. If $\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+k$ and $\vec{c}=3 \hat{i}+\hat{j}$ such that $\vec{a}+\lambda \vec{b}$ isperpendicular to vector c^{\prime} then the find the value of lamda.

- Watch Video Solution

24. Show that each of the given three vectors is a unit vector: $\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k}), \frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$ Also, show that they are mutually perpendicular to each other.

- Watch Video Solution

25. Show that the thre angles of the triangle with vertices (1,-1,1), (2,3,-1) and $(3,0,2)$ are, respectively, $\cos ^{-1}\left(\frac{2}{\sqrt{114}}\right), \cos ^{-1}\left(\frac{4}{\sqrt{126}}\right)$ and \cos

- Watch Video Solution

26. Find the scalar components of a unit vector which is perpendicular to each of the vectors $\hat{i}+2 \hat{j}-\hat{k}$ and $3 \hat{i}-\hat{j}+2 \hat{k}$.

- Watch Video Solution

27. If $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}-3 \hat{j}-5 \hat{k}$. Find a vector \vec{c} such that $\vec{a}, \vec{b}, \vec{c}$ from the sides of a righat angled tringle taken in order.

- Watch Video Solution

28. Find the vector magnitude $\sqrt{2}$ which lies in $z x$-plane and is at righat angles to the vector $2 \hat{i}+\hat{j}+2 \hat{k}$

Watch Video Solution

29. Find the values of x for which the angle between the vectors $\vec{a}=-3 \hat{i}+x \hat{j}+\hat{k}$ and $\vec{b}=x \hat{i}+2 x \hat{j}+\hat{k}$ is acute nd the angle between \vec{b} and x-axis lies between $\frac{\pi}{2}$ and π.

- Watch Video Solution

30. The diagonals of as parallelogram are given by $\vec{a}=3 \hat{i}-4 \hat{j}-\hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-6 \hat{k}$ Show that the parallelogram is as rhombus and determine the length of its sides.

- Watch Video Solution

31. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-2 \hat{j}+4 \hat{k}$. Find a vector \vec{d} which perpendicular to both \vec{a} and \vec{b} and $\vec{c} \cdot \vec{d}=15$.
32. Find the projection of $\vec{b}+\vec{c}$ on \vec{a} where $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}+3 \hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{k}$.

- Watch Video Solution

33. Find the projection of the vector $\hat{i}-2 \hat{j}+\hat{k}$ on the vector $4 \hat{i}-4 \hat{j}+7 \hat{k}$.

- Watch Video Solution

34. If $\overrightarrow{O A}=2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\overrightarrow{O B}=\hat{j}+\hat{k}$ are two vectors through the origin o , find the projection of $\overrightarrow{O A}$ and $\overrightarrow{O B}$

- Watch Video Solution

35. If $\overrightarrow{O A}=2 \hat{i}+3 \hat{j}-4 \hat{k}$ and $\overrightarrow{O B}=\hat{j}+\hat{k}$ are two vectors through the origin O , find the projection of $\overrightarrow{O B}$ on $\overrightarrow{O A}$.

- Watch Video Solution

36. Let $\vec{a}=\hat{i}+3 \hat{j}+7 \hat{k}$ and $\vec{b}=7 \hat{i}-\hat{j}+8 \hat{k}$ find the projection of \vec{a} on \vec{b}

- Watch Video Solution

37. Let $\vec{a}=\hat{i}+3 \hat{j}+7 \hat{k}$ and $\vec{b}=7 \hat{i}-\hat{j}+8 \hat{k}$ find the projection of \vec{b} on \vec{a}

- Watch Video Solution

38. Find the projection oif $\vec{a}=2 \hat{i}+3 \hat{j}+2 \hat{k}$ on the vector $\vec{b}=\hat{i}+2 \hat{j}+\hat{k}$.
39. Find the projection of the vecto $\hat{i}-\hat{j}$ on the vector $\hat{i}+\hat{j}$

- Watch Video Solution

40. Find the vector component of $\vec{F}=\hat{i}+2 \hat{j}+2 \hat{k}$ along the direction of $\vec{p}=-3 \hat{i}-4 \hat{j}+12 \hat{k}$ in the plane of \vec{F} and \vec{P},

- Watch Video Solution

41. $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}$ are points $\hat{i}-\hat{j}-\hat{k},-\hat{i}+\hat{j}, 2 \hat{i}-3 \hat{k}$ and $3 \hat{i}-2 \hat{j}-\hat{k}$ respectivley. Show that the projectionof $P Q$ on RS is equal to that of RS on PQ each being $-\frac{4}{3}$. Also find the cosine of their inclination.

- Watch Video Solution

42. If $\vec{a}=4 \hat{i}+6 \hat{j}$ and $\vec{b}=3 \hat{i}+4 \hat{k}$ find the vector component of \vec{a} alond \vec{b}.

- Watch Video Solution

43. Evaluate: $(3 \vec{a}-5 \vec{b}) \cdot(2 \vec{a}+7 \vec{b})$

- Watch Video Solution

44. Prove that: $\left(\frac{\vec{a}}{a^{2}}-\frac{\vec{b}}{b^{2}}\right)^{2}=\left(\frac{\vec{a}-\vec{b}}{a b}\right)^{2}$

(Watch Video Solution

45. Given that $\vec{p}=\vec{a}+\vec{b}$ and $\vec{q}=\vec{a}-\vec{b}$ and $|\vec{a}|=|\vec{b}|$, show that $\vec{p} \cdot \vec{q}=0$
46. Find $|\vec{a}-\vec{b}|$, if two vectors \vec{a} and \vec{b} are such that $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=4$.

- Watch Video Solution

47. If \vec{a} is unit vector and $(\vec{x}-a) \cdot(\vec{x}+a)=12$ then find $|x|$.

- Watch Video Solution

48. Find $|\vec{a}|$ and $|\vec{b}|$ if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$.

- Watch Video Solution

49. show that $|\vec{a}| \vec{b}+|\vec{b}| \vec{a}$ is a perpendicular to $|\vec{a}| \vec{b}-|\vec{b}| \vec{a}$.for any two non-zero vectors \vec{a} and \vec{b}
50. The angle between \vec{a} and \vec{b},is 30° and the angle between \vec{b} and \vec{c} is, 60° the angle being measured in each case from the first vectro to the second vector nd in counter clockwise dirction. Compute $|\vec{a}+2 \vec{b}-3 \vec{c}|$, given that $\vec{a}, \vec{b}, \vec{c}$ are three coplanar unit vectors.

- Watch Video Solution

51. If $|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=3$ and $\vec{a}+\vec{b}+\vec{c}=0$ the show that $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-7$

- Watch Video Solution

52. prove by vector method that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.

- Watch Video Solution

53. Using vector method, prove that in a triangle, $a^{2}=b^{2}+c^{2}-2 b c \quad \cos A$ (cosine law).

- Watch Video Solution

54. In any triangle $A B C$, prove the projection formula $a=b \cos C+c \cos B$ using vector method.

- Watch Video Solution

55. Prove by vector method that
$\cos (A+B)=\cos A \cos B-\sin A \sin B$.

- Watch Video Solution

56. Find the equation of the plane passing through the point $\hat{i}-\hat{j}+\hat{k}$ and perpendicular to the vectro $3 \hat{i}-\hat{j}-2 \hat{k}$ and show that
the point $2 \hat{i}+4 \hat{j}$ lies on the plane.

- Watch Video Solution

57. If $\vec{\alpha}$ is a constant vectro and $\vec{\gamma}$ is the position vector of a variable point (x,y,z), show that $(\vec{\gamma}-\vec{\alpha}) \vec{\alpha}=0$ is the equation of a plane through fixed point $\vec{\alpha}$

- Watch Video Solution

58. A paticle acted on by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$ is displaced from the point $\hat{i}+2 \hat{j}+3 \hat{k} \rightarrow 5 \hat{i}+4 \hat{j}+\hat{k}$. Find the work done

- Watch Video Solution

59. Froces acting on a particle have magnitude 5,3,1 and act in the direction of the vectors $(6,2,3),(3,-2,6),(2,-3,-6)$ respectively. These remain
constant while the particle is displaced form the point $A(4,-2,-6) \rightarrow B(7,-2,-2)$. Find the work done by the forces.

- Watch Video Solution

60. A force $\vec{F}=2 \hat{i}+\hat{j}-\hat{k}$ acts at a point A whose position vectro is $2 \hat{i}-\hat{j}$. If the point aplication of \vec{F} moves from point A to point B, with position vector $2 \hat{i}+\hat{j}$, find the workdown by \vec{F}

- Watch Video Solution

61. Two forces $-\hat{i}+2 \hat{j}-\hat{k}$ and $2 \hat{i}-5 \hat{j}+6 \hat{k}$ act on a particfle whose position vector is $4 \hat{i}-3 \hat{j}+2 \hat{k}$ and displace it to another point whose positon vector is $6 \hat{i}+\hat{j}-3 \hat{k}$. Find the total work done by the force.

- Watch Video Solution

62. Two forces whose magnitudes are 2 N and 3 N act on a particle in the direction of the vectros $2 \hat{i}+4 \hat{j}+4 \hat{k}$ and $4 \hat{i}-4 \hat{j}+2 \hat{k}$ respectively. If the particle is displaced from the origin 0 to the point $(1,2,2)$. Find the work done.

- Watch Video Solution

