

MATHS

BOOKS - KC SINHA ENGLISH

SINE AND COSINE FORMULA - FOR BOARDS

Solved Examples

1. If in any
$$\Delta ABC$$
, $A=30^{\circ}$ and $B=60^{\circ}$, then find $a\!:\!b\!:\!c$

► Watch Video Solution

2. If in any
$$\triangle ABC$$
, $B=60^{\circ}$ and b : $c=\sqrt{3}$: $\sqrt{2}$, then find A .

Watch Video Solution

3. If in ΔABC , a=3, b=5, c=7 find the greatest angle.

4. If in a $\ \triangle\ ABC, a=rac{1}{\sqrt{6}-\sqrt{2}}, b=rac{1}{\sqrt{6}+\sqrt{2}}, C=60^\circ$, then prove that $c=rac{\sqrt{3}}{2}.$

5. In any ΔABC , prove that $a^2+b^2+c^2=2(bc\cos A+ca\cos B+ab\cos C).$

6. In any ABC, prove that: $a(b\cos C - \mathrm{o} sB) = b^2 - c^2$

7. In any ΔABC , prove that

$$\left(a-b
ight)^2\cos^2\!\left(rac{C}{2}
ight) + \left(a+b
ight)^2\sin^2\!\left(rac{C}{2}
ight) = c^2.$$

8. If in any ΔABC , $a\!:\!b\!:\!c=4\!:\!5\!:\!6$, prove that the greatest angle is doule the smalles angle`

9. The sides of a tringle are 8 cm, 10 cm and 12 cm. Prove that the greatest angle is double of the smalest angle.

10. In any parallelogram if a and b are the length of the two non-parallel sides, θ is the angle measure between these two sides and d is the length

that the measure of d can be given be : $d^2 = a^2 + b^2 + 2ab\cos x$

of the diagonal that has a common vertex with sides a and b, then show

11. With usual notations, if in a triangle $ABC\frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$, then prove that: $\frac{\cos A}{7} = \frac{\cos B}{19} = \frac{\cos C}{25}$

12. If in a triangle
$$ABC, \angle C = 60^0$$
, then prove that $\frac{1}{a+c} + \frac{1}{b+c} = \frac{3}{a+b+c}$.

In

14.

$$(b+c)\cos A + (c+a)\cos B + (a+b)\cos C = a+b+c$$

that:

any ABC , prove

15. In any
$$\Delta ABC$$
, prove that :

$$rac{\cos A}{b\cos C + c\cos B} + rac{\cos B}{c\cos A + a\cos C} + rac{\cos C}{a\cos B + b\cos A} = rac{a^2 + b^2 + c}{2abc}$$

Watch Video Solution

17. In any ABC , prove that: $2\Big\{arac{\sin^2C}{2}+crac{\sin^2A}{2}\Big\}=a+c-b$

18. In any triangle
$$ABC$$
 prove that: $\sin\!\left(\frac{B-C}{2}\right) = \left(\frac{b-c}{a}\right)\frac{\cos A}{2}$

Watch Video Solution

19. In any $\triangle ABC$, prove that

$$\frac{\sin(A-B)}{\sin(A+B)} = \frac{a^2-b^2}{c^2}$$

Watch Video Solution

- **20.** In any $\triangle ABC$, prove that
- $a\sin(B-C) + b\sin(C-A) + c\sin(A-B) = 0$

any triangle ABC

ln

21.

Watch Video Solution

 $a(\sin B - \sin C) + b(\sin C - \sin A) + c(\sin A - \sin B) = 0$

following:

that

, prove

22. In any
$$\Delta ABC$$
, prove that $a\sin\Bigl(rac{A}{2}+B\Bigr)=(b+c)\sinrac{A}{2}$

23. In any ΔABC , prove that $\frac{\sin B}{\sin C} = \frac{c - a\cos B}{b - a\cos C}$

24. In any $\triangle ABC$, prove that : $\left(\frac{a-b}{c}\right)=rac{ an\left(rac{A}{2}\right)- an\left(rac{B}{2}\right)}{ an\left(rac{A}{2}\right)+ an\left(rac{B}{2}\right)}$

- **26.** If a^2, b^2, c^2 are in A.P., prove that $\cot A, \cot B, \cot C$ are in $A\dot{P}$.
 - Watch Video Solution

27. Problem on sine rule Type:-1(i) In a ΔABC ; If a=2; b=3 and $\sin A=\frac{2}{3}$; find $\angle B$ (ii) In a ΔABC ; the angle of a triangle are in AP; It is being given that $b: c=\sqrt{3}:\sqrt{2}$

- **28.** In any triangle ABC, prove that: $\frac{\sin(B-C)}{\sin(B+C)} = \frac{b^2-c^2}{a^2}$
 - Watch Video Solution

29. In any ΔABC , prove that

$$a^{3}\cos(B-C) + b^{3}\cos(C-A) + c^{3}\cos(A-B) = 3abc$$

30. For any triangle ABC, prove that
$$rac{b^2-c^2}{a^2}\sin 2A+rac{c^2-a^2}{b^2}\sin 2B+rac{a^2-b^2}{c^2}\sin 2C=0$$

31. In any triangle ABC, prove

In any ΔABC , prove that

 $a^{3}\sin(B-C) + b^{3}\sin(C-A) + c^{3}\sin(A-B) = 0$

that:

32.

$$a\cos A + b\cos B + c\cos C = 2a\sin B\sin C$$

33. For any triangle ABC, prove that
$$(b^2-c^2)\cot A+(c^2-a^2)\cot B+(a^2-b^2)\cot C=0$$

34. In a triangle ABC, if $a\cos A = b\cos B$, show that the triangle is either isosceles or right angled.

35. In any triangle, if $\frac{a^2-b^2}{a^2+b^2}=\frac{\sin(A-B)}{\sin(A+B)}$, then prove that the triangle is either right angled or isosceles

36. In $\Delta ABC,\,a=3,\,b=5,\,c=6$, find the value of : $\sin\!\left(rac{A}{2}
ight)$

37. In $\Delta ABC,\,a=3,\,b=5,\,c=6$, find the value of : $\cos\!\left(rac{A}{2}
ight)$

38. In $\Delta ABC, \, a=3, \, b=5, \, c=6$, find the value of : $an\Bigl(rac{A}{2}\Bigr)$

39. In $\Delta ABC, a=3, b=5, c=6$, find the value of : $\cot\left(rac{A}{2}
ight)$

Watch Video Solution

40. In any
$$\Delta ABC$$
, prove $(a+b-c)\cot\left(rac{B}{2}
ight)=(a-b+c)\cot\left(rac{C}{2}
ight)$

that

41. If in ΔABC , (a+b+c)(b+c-a)=abc, find the condition of a

- **42.** In any ΔABC , prove that: $rac{a+b-c}{a+b+c}= an\Bigl(rac{A}{2}\Bigr) an\Bigl(rac{B}{2}\Bigr)$
 - Watch Video Solution

- **43.** In any ABC , prove that: $2\Big\{arac{\sin^2C}{2}+crac{\sin^2A}{2}\Big\}=a+c-b$
 - Watch Video Solution

$$\cot\left(\frac{A}{2}\right) + \epsilon$$

44.

45.

$$\cot\left(\frac{A}{2}\right) + \cot\left(\frac{B}{2}\right) + \cot\left(\frac{C}{2}\right) = \frac{a+b+c}{b+c-a}\cot\left(\frac{A}{2}\right)$$

that

any triangle

 $2a\sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right) = (b+c-a)\sin\left(\frac{A}{2}\right)$

any

 ΔABC .

in

prove

any

that

triangle

that

that

In

$$ABC, (a+b+c)igg(anigg(rac{A}{2}igg)+ anigg(rac{B}{2}igg)igg)=2c\cotigg(rac{C}{2}igg)$$

Show

In

47.

46.

ABC, show

47. In any triangle ABC,
$$2a\cos\left(\frac{B}{2}\right)\cos\left(\frac{C}{2}\right)=(a+b+c)\sin\left(\frac{A}{2}\right)$$

48. In
$$\Delta ABC$$
, $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in A.P. prove that $\csc^2\frac{A}{2}$, $\csc^2\frac{B}{2}$, $\csc^2\frac{C}{2}$ are also in A.P.

49. In any $\Delta ABC, \angle B=90^\circ$, prove that $anrac{A}{2}=\sqrt{rac{b-c}{b+c}}$

50. In $\triangle ABC$, if $\angle C=90^{0}$, then prove

that

 $\tan\left(\frac{A}{2}\right) = \sqrt{\frac{c-b}{c+b}} = \frac{a}{b+c}$

52. In a
$$\Delta ABC$$
, if $a=18,\,b=24,\,c=30$, find the area of ΔABC

54. In any ΔABC , prove that $b^2\sin 2C + c^2\sin 2B = 2bc\sin A = 4\Delta$.

53. In any ΔABC , prove that $\Delta = \frac{b^2 + c^2 - a^2}{4\cot A}$.

55. Prove that in $\triangle ABC$,

$\frac{\left(a+b+c ight)^2}{a^2+b^2+c^2} \Rightarrow \frac{\cot rac{A}{2}+\cot rac{B}{2}+\cot rac{C}{2}}{\cos A+\cot B+\cot C}$

56. In any $\triangle ABC$, If $\cot \frac{A}{2}$, $\cot \frac{B}{2}$, $\cot \frac{C}{2}$ are in AP, then a,b,c are in

Watch Video Solution

 $\text{If} \qquad a\cos^2\!\left(\frac{C}{2}\right) + c\cos^2\!\left(\frac{A}{2}\right) = \frac{3b}{2}.$ To prove: $\cot\left(\frac{A}{2}\right)$, $\cot\left(\frac{B}{2}\right)$, $\cot\left(\frac{C}{2}\right)$ are in A.P.

58. If P_1, P_2 and P_3 are the altitudes of a triangle from vertices A, B and C respectively and Δ is the area of the triangle, then the value of $\frac{1}{P_1} + \frac{1}{P_2} - \frac{1}{P_2} =$

Watch Video Solution

1. The ratio of angles in a triangle ABC is $2\!:\!3\!:\!7$ then prove that

$$a : b : c = \sqrt{2} : 2 : (\sqrt{3} + 1)$$

2. If in ΔABC , $a=4,\,b=12,\,\angle B=30^{0}$, then find $\sin A$.

3. In any ΔABC , prove that $\dfrac{\sin B}{\sin(B+C)}=\dfrac{b}{a}$

4. In $\triangle ABC$,

If the two angles of a triangle are $30^\circ~{
m and}~45^\circ$ and the included side is $(\sqrt{3}+1)$ cm, find the area of the triangle.

5. The angle of a triangle are in the ratio 1 : 2 : 7, prove that the ratio of the greatest side to the least side is $\left(\sqrt{5}+1\right)$: $\left(\sqrt{5}-1\right)$.

6. In $\triangle ABC$, if $c=3.4cm,\,A=25^0,\,B=85^0$, find a,b and angle C.

7. Find the greatest angle of ΔABC if : a=2, $b=\sqrt{6},$ $c=\sqrt{3}+1$

8. Find the greatest angle of ΔABC if : $a=m, b=n, c=\sqrt{m^2+mn+n^2}$

9. In ΔABC , if $a=25,\,b=52\,$ and $\,c=63$, find $\cos A$

10. In a ΔABC , If $a=18,\;b=24,\;c=30$, find the value of $\cos A,\;\cos B\;and\;\cos C$

11. In a ABC , if $\angle B=60^0$, prove that (a+b+c)(a-b+c)=3ca

12. If the sides of a triangle are 3, 5, and 6, prove that the triangle is obtuse - angled triangle and find the obtuse angle.

13. In any ΔABC , prove that $: rac{b^2+c^2-a^2}{c^2+a^2-b^2} = rac{ an B}{ an A}$

14. In a triangle ABC, $a^4+b^4+c^4=2c^2ig(a^2+b^2ig)$ prove that $C=45^\circ$ or 135°

15. In a ABC, prove the following : $\frac{c-b\cos A}{b-c\cos A}=\frac{\cos B}{\cos C}$

16. In $\Delta ABC,\,a=4,\,b=6,\,c=8$, then find the value of

 $8\cos A + 16\cos B + 4\cos C.$

17. For any triangle ABC, prove that $(b+c)rac{\cos(B+C)}{2}=arac{\cos(B-C)}{2}$

18. For any triangle ABC, prove that $\dfrac{a+b}{c}=\dfrac{\cos\left(\dfrac{A-B}{2}\right)}{\dfrac{\sin C}{2}}$

19. For any triangle ABC, prove that $\frac{a-b}{c}=rac{\sin\left(rac{A-B}{2}
ight)}{\cos\left(rac{C}{2}
ight)}$

20. In any ΔABC , prove that : If $b+c=2a\cos\left(\frac{B-C}{2}\right)$, then prove that $A=60^{0}$.

$$h^2$$
 a^2) and

21. In any ΔABC , prove that :

$$ig(b^2-c^2ig)\cos 2A + ig(c^2-a^2ig)\cos 2B + ig(a^2-b^2ig)\cos 2C = 0$$

Watch Video Solution

22. In any $\triangle ABC$, prove that

$$\frac{1 + \cos(A - B)\cos C}{1 + \cos(A - C)\cos B} = \frac{a^2 + b^2}{a^2 + c^2}$$

 $rac{b^2 - c^2}{\cos B + \cos C} + rac{c^2 - a^2}{\cos C + \cos A} + rac{a^2 - b^2}{\cos A + \cos B} = 0$

- **24.** In any triangle ABC, prove that:

23. In any ΔABC , prove that

 $rac{a^2\sin(B-C)}{\sin B+s\in C}+rac{b^2\sin(C-A)}{\sin C+s\in A}+rac{c^2\sin(A-B)}{\sin A+s\in B}=0$

25. In any
$$\Delta ABC$$
, prove that : $\dfrac{b^2-c^2}{a^2}=\dfrac{\sin(B-C)}{\sin(B+C)}$

26. In any ΔABC , prove that : $an\Bigl(rac{A}{2}+B\Bigr)=rac{c+b}{c-b} an\Bigl(rac{A}{2}\Bigr)$

 $a^2(\cos^2 B - \cos^2 C) + b^2(\cos^2 C - \cos^2 A) + c^2(\cos^2 A - \cos^2 B) = 0$.

28. If A=2B, then prove that either c=b or $a^2=b(c+b)$

27.

29. In any ΔABC , prove that :

 $\frac{\cos A}{a} + \frac{a}{bc} = \frac{\cos B}{b} + \frac{b}{ca} = \frac{\cos c}{c} + \frac{c}{ab}$

30. In a ΔABC the angles A, B, C are in A.P. show that

$$2\cosrac{A-C}{2}=rac{a+c}{\sqrt{(a^2-ac+c^2)}}$$

Watch Video Solution

31. In any $\triangle ABC$, prove that

$$\frac{\cos 2A}{a^2} - \frac{\cos 2B}{b^2} = \frac{1}{a^2} - \frac{1}{b^2}$$

Watch Video Solution

- **32.** In any ΔABC , prove that :
- $(b^2-c^2)\sin^2 A + (c^2-a^2)\sin^2 B + (a^2-b^2)\sin^2 C = 0$

 - Watch Video Solution

- **33.** In any triangle ABC , prove that following:
 - $\frac{a^2 \sin(B-C)}{\sin A} + \frac{b^2 \sin(C-A)}{\sin B} + \frac{c^2 \sin(A-B)}{\sin C} = 0$
 - Watch Video Solution
- is equal to

 - Watch Video Solution

- **35.** In a $\triangle ABC$, If $\tan \frac{A}{2}$, $\tan \frac{B}{2}$, $\tan \frac{C}{2}$ are in A.P. then $\cos A, \cos B, \cos C$ are in

34. In a ΔABC , if median AD is perpendicular to AB, the $\tan A + 2 \tan B$

36. If
$$\frac{\sin A}{\sin C} = \frac{\sin(A-B)}{\sin(B-C)}$$
, prove that a^2, b^2, c^2 are in A.P.

37. If in ΔABC , a=15, b=36, c=39, find $an\left(rac{A}{2}
ight)$

$$(2)$$
, (2) , (2)

39. In

$$\tan\left(\frac{A}{2}\right), \tan\left(\frac{B}{2}\right), \tan\left(\frac{C}{2}\right)$$

38. In a $\triangle ABC$, if a = 18, b = 24, c = 30, find

any ΔABC , prove

 $\frac{b-c}{a}\cos^2\left(\frac{A}{2}\right) + \frac{c-a}{b}\cos^2\left(\frac{B}{2}\right) + \frac{a-b}{c}\cos^2\left(\frac{C}{2}\right) = 0$

40. Prove the questions :

$$1 - an. \ rac{A}{2} an. \ rac{B}{2} = rac{2c}{(a+b+c)}$$

41. In any
$$ABC$$
, prove that: $2(bosA+ca\cos B+ab\cos C)=a^2+b^2+c^2$

42. In any
$$\Delta ABC$$
, prove that
$$\frac{\cos^2\left(\frac{A}{2}\right)}{a} + \frac{\cos^2\left(\frac{B}{2}\right)}{b} + \frac{\cos^2\left(\frac{C}{2}\right)}{c} = \frac{s^2}{abc}$$

46. Prove that
$$(b+c-a)igg(\cot.rac{B}{2}+\cot.rac{C}{2}igg)=2a\cot.rac{A}{2}$$

 $3\tan, \frac{A}{2}\tan, \frac{C}{2}=1$

If in $\mathsf{a}\Delta ABC, \sin A, \sin B, \sin C$ are in A.P., show

that

43. In ABC, $\left(\cot\left(\frac{A}{2}\right)+\cot\left(\frac{B}{2}\right)\right)\left(a\sin^2\left(\frac{B}{2}\right)+b\sin^2\left(\frac{A}{2}\right)\right)=$

(a) $\cot C$ (b) $\cot C$ (c) $\cot \left(\frac{C}{2}\right)$ (d) $\cot \left(\frac{C}{2}\right)$

44. In
$$\Delta ABC$$
, prove that:
$$\frac{\tan A}{2}.\ \frac{\tan B}{2}.\ \frac{\tan C}{2}=\sqrt{\left(1-\frac{a}{s}\right)\left(1-\frac{b}{s}\right)\left(1-\frac{c}{s}\right)}$$

47. Prove that
$$(b+c-a)igg(\cot.rac{B}{2}+\cot.rac{C}{2}igg)=2a\cot.rac{A}{2}$$

48. In a ΔABC , in the sum of two sides is $\sqrt{3}$ times their difference and the included angle is 60° , find the difference of the remaining angles.

49. If in ΔABC , the difference of two angles is 60^0 and the remaining angle is 30^0 , then find the ratio of the sides opposite to first two angles.

Water video Solution

51. The side of a triangle are in A.P. Its area is $\frac{3}{5}$ the of an equilateral triangle of the same perimeter. Show that the sides are in the proportion 3:5:7.

Watch Video Solution

52. The sides of a quadrilateral are 3, 4, 5 and 6 cms. The sum of a pair of opposite angles is 120^0 . Show that the area of the quadrilateral is $3\sqrt{30}$ sq.cm.

Watch Video Solution