©゙ doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA ENGLISH

VECTOR ALGEBRA

Solved Examples

1. Classify the following as scalars and vector: 5 seconds

D Watch Video Solution

2. Classify the following as scalars and vector: 10 kg
3. Classify the following as scalars and vector: 40°

- Watch Video Solution

4. Classify the following as scalars and vector: $20 \frac{\mathrm{~m}}{\mathrm{sec}^{2}}$

- Watch Video Solution

5. Classify the following as scalars and vector: 2 meters north west

- Watch Video Solution

6. Classify the following as scalars and vector: 10^{-19} Coulomb`

- Watch Video Solution

7. Classify the following as scalar and vector quantity: work
8. Classify the following as scalar and vector quantity: intensity

- Watch Video Solution

9. Classify the following as scalar and vector quantity: time period

- Watch Video Solution

10. Classify the following as scalar and vector quantity: momentum

- Watch Video Solution

11. Classify the following as scalar and vector quantity: force
12. Classify the following as scalar and vector quantity: distance

- Watch Video Solution

13. Represent graphically a displacement of $40 \mathrm{~km}, 30 \mathrm{oe}$ ast of north.

- Watch Video Solution

14. Represent the following graphically: A displacement of 20 km ,south east

- Watch Video Solution

15. In the given figure identify the following vectors: equal

- Watch Video Solution

16. In the given figure identify the following vectors: collinear but not equal

- Watch Video Solution

17. In the given figure identify the following vectors: cointial

- Watch Video Solution

18. Answer the following as true or false: Two colliner vectors are always equal in magnitude.

- Watch Video Solution

19. Answer the following as true or false: Two vectors having same magnitude are collinear
20. Answer the following as true or false: Two collinear vectors having the same magnitude are equal

- Watch Video Solution

21. Answer the following as true or false: \vec{a} and $\overrightarrow{-} a$ are collinear.

- Watch Video Solution

22. Answer the following as true or false: Zero vector is unique

- Watch Video Solution

23. If D is the mid-point of the side $B C$ of a triangle $A B C$, prove that $\vec{A} B+\vec{A} C=2 \vec{A} D$.
24. In a regular hexagon ABCDEF, prove that $\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F}=3 \overrightarrow{A D}$

- Watch Video Solution

25. If D, E and F are the mid-points of the sides $B C, C A$ and $A B$ respectively of the $\triangle A B C$ and O be any point, then prove that $O A+O B+O C=O D+O E+O F$

- Watch Video Solution

26. Let O be the centre of the regular hexagon ABCDEF then find $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O D}+\overrightarrow{O C}+\overrightarrow{O E}+\overrightarrow{O F}$

- Watch Video Solution

27. $A B C D E$ is pentagon, prove that $\vec{A} B+\vec{B} C+\vec{C} D+\vec{D} E+\vec{E} A=$ $\overrightarrow{0}$

- Watch Video Solution

28. In triangle ABC (Figure), which of the following is not true:
(A) $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=\overrightarrow{0}$
(B) $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{A C}=\overrightarrow{0}$
(C) $\overrightarrow{A B}+\overrightarrow{B C}-\overrightarrow{C A}=\overrightarrow{0}$
(D) $\overrightarrow{A B}+\overrightarrow{C B}+\overrightarrow{C A}=\overrightarrow{0}$
29. If \vec{a} and \vec{b} are the vectors determined by two adjacent sides of a regular hexagon $A B C D E F$, find the vector determined by the ther sides taken in order. Also find $\overrightarrow{A D}$ and $\overrightarrow{C E}$ in terms of \vec{a} and \vec{b}.

- Watch Video Solution

30. Vectors drawn the origin O to the points A, B and C are respectively \vec{a}, \vec{b} and $\overrightarrow{4} a-\overrightarrow{3} b$. find $\vec{A} C$ and $\vec{B} C$.

- Watch Video Solution

31. about to only mathematics

- Watch Video Solution

32. What is the geometrical significance of the relation

$$
|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| ?
$$

- Watch Video Solution

33. IN any $\triangle A B C$, a point p is on the side BC . If $\overrightarrow{P Q}$ is the resultant of the vectors $\overrightarrow{A P}, \overrightarrow{P B}$ and $\overrightarrow{P C}$ the prove that $A B Q C$ is a parallelogram and hence Q is a fixed point.

- Watch Video Solution

34. If the sum of two unit vectors is a unit vector, then the magnitude of their difference is

- Watch Video Solution

35. P, Q, R are the points on the sides $A B, B C$ and $C A$ respectively of triangle $A B C$ such that $A P: P B=B Q: Q C=A R: R C=1: 2$. Show that $P B Q R$ is a parallelogram.
36. If O is the circumcentre and P the orthocentre of $\triangle A B C$, prove that $\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}=2 \overrightarrow{O P}$

- Watch Video Solution

37. If O is the circumcentre and P the orthocentre of $\triangle A B C$, prove that $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O P}$.

- Watch Video Solution

38. If the position vectors of A and B respectively $\hat{i}+3 \hat{j}-7 \hat{k}$ and $5 \hat{i}-2 \hat{j}+4 \hat{k}$, then find

- Watch Video Solution

39. Compute the magnitude of the following vectors. Also mention whether it is a unit vector: $\vec{a}=\hat{i}+\hat{j}+\hat{k}$

- Watch Video Solution

40. Compute the magnitude of the following vectors. Also mention whether it is a unit vector: $\vec{b}=2 \hat{i}-7 \hat{j}-3 \hat{k}$

D Watch Video Solution

41. Compute the magnitude of the following vectors. Also mention whether it is a unit vector: $\frac{\hat{i}}{\sqrt{3}}+\frac{\hat{j}}{\sqrt{3}}-\frac{\hat{k}}{\sqrt{3}}$

- Watch Video Solution

42. Write two different vectors having same direction.

- Watch Video Solution

43. Write two different vectors having same magnitude.

- Watch Video Solution

44. If $P(-1,2)$ and $Q(3,-7)$ are two points, express the vectors $\overrightarrow{P Q}$ in terms of unit vectors \hat{i} and \hat{j}. Also find the distance between points P and Q . What is the unit vector in the direction of $\overrightarrow{P Q}$? Verify that magnitude of unit vector indeed unity.

Watch Video Solution

45. Write the direction ratios of the vector $\rightarrow a=\hat{i}+\hat{j}-2 \hat{k}$ and hence calculate its direction cosines.

- Watch Video Solution

46. If $O P=2 \hat{i}+3 \hat{j}-\hat{k}$ and $O Q=3 \hat{i}-4 \hat{j}+2 \hat{k}$, find the modulus and direction cosines of PQ .
47. Find the direction cosines of the vector joining the points $A(1,2,-3) a \cap B(-1-2,1)$ directed from $A \rightarrow B$.

- Watch Video Solution

48. Show that the vector $\hat{i}+\hat{j}+\hat{k}$ is equally inclined to the axes OX , OY and OZ .

- Watch Video Solution

49. If $\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$ calculate $\vec{a}+\vec{b}$

- Watch Video Solution

50. Find the unit vector in the direction of the resultant of vectors $\hat{i}-\hat{j}+\hat{3} k, 2 \hat{i}+\hat{j}-2 \hat{k}$ and $2 \hat{j}-2 \hat{k}$
51. Find a vector in the direction of the vector $5 \hat{i}-\hat{j}+2 \hat{k}$ which has magnitude 8 units.

- Watch Video Solution

52.1 $|\vec{a}|=3$ and $-4 \leq k \leq 1$, then what can you say about |kveca| ?

- Watch Video Solution

53. The position vectors of the point P, Q, R and S are respectively $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$. Prove that the lines PQ and RS are parallel and the ratio of their length is $\frac{1}{2}$

- Watch Video Solution

54. Show that the points A, B, and C with position vectgors $\vec{a}=2 \hat{i}+4 \hat{j}-\hat{k}, \vec{b}=4 \hat{i}+5 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+6 \hat{j}-3 \hat{k}$ respectively form the veertices of a righat angled triangle

- Watch Video Solution

55. A tirangle hs vertices $(1,2,4),(-2,2,1)$ and $(2,4,-3)$. Prove that the triangle is right angled triangle

- Watch Video Solution

56. The two adjacent sides of a parallelogram are $2 \hat{i}+3 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. Find the uit vectors along the diagonal of te parallelogram.

- Watch Video Solution

57. For any two vectors \vec{a} and \vec{b}, we always have $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$ [Triangle inequality].

(Watch Video Solution

58. For any two vectors \vec{a} and \vec{b}, we always have $|\vec{a}+\vec{b}| \leq|\vec{a}|+|\vec{b}|$ [Triangle inequality].

- Watch Video Solution

59. For any two vectors \vec{a} and \vec{b} prove that $|\vec{a}-|\geq|\vec{a}|-|\vec{b}|$

- Watch Video Solution

60. Find the values of x and y so that the vectors $2 \hat{i}+3 \hat{j}$ and $x \hat{i}+y \hat{j}$ are equal.
61. Show that the vectors $2 \hat{i}-3 \hat{j}+4 \hat{k}$ and $-4 \hat{i}+6 \hat{j}-8 \hat{k}$ are collinear.

Watch Video Solution

62. Let $\vec{a}=2 \hat{i}-3 \hat{j}$ and $\vec{b}=3 \hat{i}+2 \hat{j}$. Is $|\vec{a}|=|\vec{b}|$? Are the vectors \vec{a} and \vec{b} equal?

- Watch Video Solution

63. If $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}$ are non zero vectors then prove that they are paralel if and only if $a_{1} b_{2}-a_{2} b_{1}=0$

- Watch Video Solution

64. If the points $(2, \beta, 3), B(\alpha,-6,1)$ and $C(-1,11,9)$ are collinear find the values of α and β by vector method
65.

$\vec{a}=2 i-\hat{j}+\hat{k}, \vec{b}=\hat{i}+3 \hat{j}-\hat{k}, \vec{c}=-2 \hat{i}+\hat{j}-3 \hat{k}$ and $\vec{d}=3 \hat{i}+2 \hat{j}$
find the scalars α, β and γ such that $\vec{d}=\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}$

- Watch Video Solution

66. If $\vec{A} O+\vec{O} B=\vec{B} O+\vec{O} C$, prove that A, B, C are collinear points.

- Watch Video Solution

67. Show that the points A, B and C with position vectors $-2 \hat{i}+3 \hat{j}+5 \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}$ and $7 \hat{i}-\hat{k}$ respectively are collinear
68. Prove that the three points
$\vec{a}-2 \vec{b}+3 \vec{c}, \overrightarrow{2 a}+3 \vec{b}-4 \vec{c}$ and $-7 \vec{b}+10 \vec{c}$ are collinear

Watch Video Solution

69. Show that the points $A(1,-2,-8), B(5,0,-2)$ and $C(11,3,7)$ are collinear, and find the ratio in which B divides $A C$.

- Watch Video Solution

$\begin{array}{lccr}\text { 70. } & \text { Show } & \text { that } & \text { the }\end{array}$ vectors vector where $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors

- Watch Video Solution

71. If \vec{a}, \vec{b} and \vec{c} are non-coplanar vectors, prove that the four points $2 \vec{a}+3 \vec{b}-\vec{c}, \vec{a}-2 \vec{b}+3 \vec{c}, 3 \vec{a}+4 \vec{b}-2 \vec{c}$ and $\vec{a}-6 \vec{b}+6 \vec{c}$ are coplanar.

- Watch Video Solution

72. Show that the vectors
$\hat{i}-3 \hat{i}+2 \hat{k}, 2 \hat{i}-4 \hat{j}-\hat{k}$ and $3 \hat{i}+2 \hat{j}-\hat{k}$ and linearly independent.

- Watch Video Solution

73. Find the position vectors of the points which divide the join of the points $2 \vec{a}-3 \vec{b}$ and $3 \vec{a}-2 \vec{b}$ internally and externally in the ratio $2: 3$.

- Watch Video Solution

74. \vec{a} and \vec{b} are the position vectors of A, B respectively and C is a point on $A B$ produced such that $A C=3 A B$. Then the position vector of C is

Watch Video Solution

75. Prove analytically that the medians of a triangle are concurrent.

- Watch Video Solution

76.

Show
that
the
points
$\vec{a}+2 \vec{b}+3 c,-2 \vec{a}+3 \vec{b}+5 \vec{c}$ and $7 \vec{a}-\vec{c}$ are colinear.

- Watch Video Solution

77. Let OACB be a parallelogram with O at the origin and OC a diagonal. Let D be the mid-point of OA. Using vector methods prove that BD and CO intersects in the same ratio. Determine this ratio.
78. Prove by vector method that the diagonals of a parallelogram bisect each other.

- Watch Video Solution

79. If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.

- Watch Video Solution

80. Prove that the line segments joints joining the mid-points of the adjacent sides of a quadrilateral from a parallelogram.

- Watch Video Solution

81. Write all the unit vectors in $X Y$ - plane.

- Watch Video Solution

82. If the resultant of two forces is equal in magnitude to one of the components and perpendicular to it direction, find the other components using the vector method.

- Watch Video Solution

83. The wind is blowing due south with speed of $3 \mathrm{~m} / \mathrm{sec}$. How fast should a car travel due east in order that the wind shall hasve a speed of $5 \mathrm{~m} / \mathrm{sec}$ relative to the car.

- Watch Video Solution

84. Let $\overrightarrow{A B}$ be a vector in two dimensional plane with magnitude 4 units. And making an anle of 60° with x-axis, and lying in first quadrant. Find the components of $\overrightarrow{A B}$ in terms of unit vectors \hat{i} and \hat{j}. so verify that calculation of components is correct.

- Watch Video Solution

85. A girl walks 4 km towards west, and then she walks 3 km in a direction 30^{0} east of north and stops. Determine the girls displacement from her initial point of departure.

- Watch Video Solution

86. Let $\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}, \vec{r}_{n}$ be the position vectors of points $P_{1}, P_{2}, P_{3}, P_{n}$ relative to the origin O. If the vector equation $a_{1} \vec{r}_{1}+a_{2} \vec{r}_{2}++a_{n} \vec{r}_{n}=0$ hold, then a similar equation will also hold w.r.t. to any other origin provided a. $a_{1}+a_{2}++a_{n}=n$ b.

$$
a_{1}+a_{2}++a_{n}=1 \text { c. } a_{1}+a_{2}++a_{n}=0 \text { d. } a_{1}=a_{2}=a_{3}+a_{n}=0
$$

(D) Watch Video Solution

87. Prove that the vector relation $p \vec{a}+q \vec{b}+r \vec{c}+\ldots .=0$ will be inependent of the orign if and only if $p+q+r+.=0$, wherep $, q, r \ldots \ldots$. are scalars.

- Watch Video Solution

88. A vector a has components a_{1}, a_{2} and a_{3} in a right handed rectangular cartesian system OXYZ. The coordinate system is rotated about Z-axis through angle $\frac{\pi}{2}$. Find components of a in the new system.

- Watch Video Solution

89. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ be the position vectors of points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ respectively and $\vec{b}-\vec{a}=2(\vec{d}-\vec{c})$ show that the pointf intersection of the straighat lines $A D$ and $B C$ divides these line segments in the ratio 2:1.
90. If G_{1} is the mean centre of A_{1}, B_{1}, C_{1} and G_{2} that of A_{2}, B_{2}, C_{2} then show that $\overrightarrow{A_{1} A_{2}}+\overrightarrow{B_{1} B_{2}}+\overrightarrow{C_{1} C_{2}}=3 \overrightarrow{G_{1} G_{2}}$

- Watch Video Solution

91. The position vectors of the points A, B, C, D are
$\overrightarrow{3 i}-\overrightarrow{2 j}-\vec{k}, \overrightarrow{2 i}+\overrightarrow{3 j}-\overrightarrow{4 k}-\vec{i}+\vec{j}+\overrightarrow{2 k}$ and $\overrightarrow{4 j}+\overrightarrow{5 j}+\overrightarrow{\lambda k}$
respectively Find λ if A, B, C, D are coplanar.

- Watch Video Solution

92. If the vectors $\vec{\alpha}=a \hat{i}+\hat{j}+\hat{k}, \vec{\beta}=\hat{i}+b \hat{j}+\hat{k} a n d \vec{\gamma}=\hat{i}+\hat{j}+c \hat{k}$ are coplanar, then prove that
$\frac{1}{1-a}+\frac{1}{1+b}+\frac{1}{1-c}=1$, wherea $\neq 1, b \neq 1$ and $c \neq 1$.

- Watch Video Solution

93. If \vec{a}, \vec{b} be two non zero non parallel vectors then show that the points whose position vectors are $p_{1} \vec{a}+q_{1} \vec{b}, p_{2} \vec{a}+q_{2} \vec{b}, p_{3} \vec{a}+q_{3} \vec{b}$ are collinear if $\left|\begin{array}{ccc}1 & p_{1} & q_{1} \\ 1 & p_{2} & q_{2} \\ 1 & p_{3} & q_{3}\end{array}\right|=0$

- Watch Video Solution

94. Show that the vectors
$\hat{i}-3 \hat{i}+2 \hat{k}, 2 \hat{i}-4 \hat{j}-\hat{k}$ and $3 \hat{i}+2 \hat{j}-\hat{k}$ and linearly independent.

(Watch Video Solution

95. if $\vec{a}, \vec{b}, \vec{c}$ are non coplanar and non zero vectors such that $\vec{b} \times \vec{c}=\vec{a}, \vec{a} \times \vec{b}=\vec{c}$ and $\vec{c} \times \vec{a}=\vec{b} \quad$ then
$(a)|a|=1(b)|a|=2(c)|a|=3(d)|a|=4$

D Watch Video Solution

96. if $\vec{a}, \vec{b}, \vec{c}$ are non coplanar and non zero vectors such that $\vec{b} \times \vec{c}=\vec{a}, \vec{a} \times \vec{b}=\vec{c}$ and $\vec{c} \times \vec{a}=\vec{b} \quad$ then 2.
$(a)|a|-|b|+|c|=4(b)|a|-|b|+|c|=\frac{2}{3}(c)|a|-|b|+|c|=1(d)$ none of these

- Watch Video Solution

97. if $\vec{a}, \vec{b}, \vec{c}$ are non coplanar and non zero vectors such that
$\vec{b} \times \vec{c}=\vec{a}, \vec{a} \times \vec{b}=\vec{c}$ and $\vec{c} \times \vec{a}=\vec{b} \quad$ then
$(a)|a|+|b|+|c|=0(b)|a|+|b|+|c|=2(c)|a|+|b|+|c|=3$
none of these`

- Watch Video Solution

98. Prove that the internal bisectors of the angles of a triangle are concurrent
99. Assertion: If I is the incentre of $\triangle A B C$, then $|\operatorname{vec}(B C)| \operatorname{vec}(I A)+|\operatorname{vec}(C A)| \operatorname{vec}(I B)+|\operatorname{vec}(A B)| \operatorname{vec}(I C)=0$

Reason:IfOisthe or ig \in, thentheposition \longrightarrow rofcentroidof
/_ABCis $\frac{\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}}{3}$

- Watch Video Solution

100. Let OACB be a parallelogram with O at the origin and OC a diagonal.

Let D be the mid-point of OA. Using vector methods prove that BD and CO intersects in the same ratio. Determine this ratio.

- Watch Video Solution

101. In a $\triangle O A B, \mathrm{E}$ is the mid point of OB and D is the point on AB such that $A D: D B=2: 1$ If OD and AE intersect at P then determine the ratio of $O P: P D$ using vector methods
102. Find the vector equation of the line through the points $2 \vec{i}+\vec{j}-3 \vec{k}$ and parallel to vector $\vec{i}+2 \vec{j}+\vec{k}$

- Watch Video Solution

103. Find the vector equation of the line through the points $(1,-2,1)$ and $(0,-2,3)$.

- Watch Video Solution

104. Find the equation of the plane passing through three given points

$$
A(-2 \vec{i}+6 \vec{j}-6 \vec{k}), B(-3 \vec{i}+10 \vec{j}-9 \vec{k}) \text { and } C(-5 \vec{i}+\overrightarrow{6 k})
$$

- Watch Video Solution

105. Find the equation of the plane through the origin and the points $4 \vec{j}$ and $2 \vec{i}+\vec{k}$. Find also the point in which this plane is cut by the line joining points $\vec{i}-2 \vec{j}+\vec{k}$ and $3 \vec{k}-2 \vec{j}$.

- Watch Video Solution

106. O is any point in the plane of the triangle $A B C, A O, B O$ and $C O$ meet the sides $B C, C A$ nd $A B$ in D, E, F respectively show that $\frac{O D}{A D}+\frac{O E}{B E}+\frac{O F}{C F}=1$.

- Watch Video Solution

107. Find the perpendicular distance of the point $A(1,0,1)$ to the line through the points $\mathrm{B}(2,3,4)$ and $\mathrm{C}(-1,1,-2)$

- Watch Video Solution

108. If vectors \vec{a}, \vec{b} and \vec{c} are coplanar, show that $\left|\begin{array}{lll}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c}\end{array}\right|=\overrightarrow{0}$

Watch Video Solution

109. If vector $\vec{a}, \vec{b}, \vec{c}$ are coplanar then find the value of \vec{c} in terms of \vec{a} and \vec{b}

- Watch Video Solution

110. If n be integer gt 1 , then prove that $\sum_{r=1}^{n-1} \frac{\cos (2 r \pi)}{n}=-1$

- Watch Video Solution

111. Let $A B C$ be a triangle with $A B=A C$. If D is the midpoint of $B C, E$ is the foot of the perpendicular drawn from D to $A C, a n d F$ is the
midpoint of $D E$, then prove that $A F$ is perpendicular to $B E$.

- Watch Video Solution

112. Two triangles $A B C$ and $P Q R$ are such that the perpendiculars from A to QR, B to RP and C to PQ are concurrent .Show that the perpendicular from P to $B C, Q$ to $C A$ and R to $A B$ are also concurrent .

- Watch Video Solution

113. Find the equation of the plane through the point $2 \vec{i}-\vec{j}+\vec{k}$ and perpendiulr to the vector $4 \vec{i}+2 \vec{j}-3 \vec{k}$. Determine the perpendicular distance of this plane from the origin.

- Watch Video Solution

114. Find the equation of a plane passing throug the piont $A(3,-2,1)$ and perpendicular to the vector $4 \vec{i}+7 \vec{j}-4 \vec{k}$. If PM be perpendicular
from the point $P(1,2,-1)$ to this plane find its length.

- Watch Video Solution

115. Find the projection of the line $\vec{r}=\vec{a}+t \vec{b}$ on the plane given by $\vec{r} \cdot \vec{n}=q$.

- Watch Video Solution

116. A particle acted by costant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$ is displaced from point $\hat{i}+2 \hat{j}+3 \hat{k}$ to point $5 \hat{i}+4 \hat{j}+\hat{k}$ find the total work done by the forces in units.

- Watch Video Solution

117. about to only mathematics

- Watch Video Solution

118. Let $\vec{O} A=\vec{a}, \widehat{O} B=10 \vec{a}+2 \vec{b}$ and $\vec{O} C=\vec{b}$, where O, AandC are non-collinear points. Let p denotes the areaof quadrilateral $O A C B$, and let q denote the area of parallelogram with $O A a n d O C$ as adjacent sides. If $p=k q$, then find k.

- Watch Video Solution

119. If A, B, C, D are any four points in space prove that $\overrightarrow{A B} \times \overrightarrow{C D}+\overrightarrow{B C} x \overrightarrow{A D}+\overrightarrow{C A} \times \overrightarrow{B D}=2 \overrightarrow{A B} \times \overrightarrow{C A}$

- Watch Video Solution

120. $A, B, \operatorname{Cand} D$ are any four points in the space, then prove that $|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (area of $A B C$.)

- Watch Video Solution

121. Show that the equation of as line perpendicular to the two vectors \vec{b} and \vec{c} and passing through point \vec{a} is $\vec{r}=\vec{a}+t(\vec{b} \times \vec{c})$ where t is a scalar.

- Watch Video Solution

122.

$\vec{A}(t)=f_{1}(t) \hat{i}+f_{2}(t) \hat{j}$ and $\vec{B}(t)=g(t) \hat{i}+g_{2}(t) \hat{j}, t \in[0,1], f_{1}, f_{2}, g_{1} g_{2}$ are continuous functions. If $\vec{A}(t)$ and $\vec{B}(t)$ are non-zero vectors for all t and $\vec{A}(0)=2 \hat{i}+3 \hat{j}, \vec{A}(1)=6 \hat{i}+2 \hat{j}, \vec{B}(0)=3 \hat{i}+2 \hat{i}$ and $\vec{B}(1)=2 \hat{i}$ Then,show that $\vec{A}(t)$ and $\vec{B}(t)$ are parallel for some t.

- Watch Video Solution

123. Given that vectors \vec{A}, \vec{B} and \vec{C} from a triangle such that $\vec{A}=\vec{B}+\vec{C}$. Find $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d such that the area of the triangle is $5 \sqrt{16}$
where.

$$
\vec{A}=a \hat{i}+b \vec{j}+c \hat{k}
$$

$\vec{B}=d \hat{i}+3 \hat{j}+4 \hat{k}$
$\vec{C}=3 \hat{i}+\hat{j}-2 \hat{k}$

- Watch Video Solution

124. Position vectors of two points A and C re $9 \vec{i}-\vec{j}+7 \vec{i}-2 \vec{j}+7 \vec{k}$ respectively THE point intersection of vectors $\overrightarrow{A B}=4 \vec{i}-\vec{j}+3 \vec{k}$ and $\overrightarrow{C D}=2 \vec{i}-\vec{j}+2 \vec{k}$ is P. If vector $\overrightarrow{P Q}$ is perpendicular to $\overrightarrow{A B}$ and $\overrightarrow{C D}$ and $\mathrm{PQ}=15$ units find the position vector of Q .

- Watch Video Solution

125. $A, B, \operatorname{Cand} D$ are four points such that $\vec{A} B=m(2 \hat{i}-6 \hat{j}+2 \hat{k}), \vec{B} C=(\hat{i}-2 \hat{j}) a n d \vec{C} D=n(-6 \hat{i}+15 \hat{j}-3 \hat{k}$ If $C D$ intersects $A B$ at some point E, then a. $m \geq 1 / 2 \mathrm{~b} . n \geq 1 / 3 \mathrm{c}$. $m=n$ d. $m<n$
126. In a $\triangle A B C$ points $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are taken on the sides BC, CA and AB respectively such that $\frac{B D}{D C}=\frac{C E}{E A}=\frac{A F}{F B}=n \quad$ prove that $\triangle D E F=\frac{n^{2}-n+1}{(n+1)^{2}} \triangle A B C$

- Watch Video Solution

127. The position vectors of the vertices A, B and C of a tetrahedron $A B C D$ are $\hat{i}+\hat{j}+\hat{k}, \hat{k}, \hat{i}$ and $\hat{3} i$, respectively. The altitude from vertex D to the opposite face $A B C$ meets the median line through Aof triangle $A B C$ at a point E . If the length of the side $A D$ is 4 and the volume of the tetrahedron is $2 \sqrt{ } 2 / 3$, find the position vectors of the point E for all its possible positions

- Watch Video Solution

128. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are four distinct vectors satisfying the conditions $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times d$ then prove that
$\vec{a} \cdot \vec{b}+\vec{c} \cdot \vec{d} \neq \vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{d}$

- Watch Video Solution

129. If $\vec{A}=(1,1,1)$ and $\vec{C}=(0,1,-1)$ are given vectors the vector \vec{B} satisfying the equations $\vec{A} \times \vec{B}=\vec{C}$ and $\vec{A} \cdot \vec{B}=3$ is \qquad .

- Watch Video Solution

130.

$\vec{A}=(2 \vec{i}+\vec{k}), \vec{B}=(\vec{i}+\vec{j}+\vec{k})$ and $\vec{C}=4 \vec{i}-\overrightarrow{3} j+7 \vec{k}$ determine a \vec{R} satisfying $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} \cdot \vec{A}=0$

- Watch Video Solution

131. For any two vectors \vec{u} and \vec{v} prove that $\left(1+|\vec{u}|^{2}\right)\left(1+|\vec{v}|^{2}\right)=(1-\vec{u} \cdot \vec{v})^{2}+|\vec{u}+\vec{v}+(\vec{u} \times \vec{v})|^{2}$
132. Let points P, Q, and R hasve positon vectors $\vec{r}_{1}=3 \vec{i}-2 \vec{j}-\vec{k}, \vec{r}_{2}=\vec{i}+3 \vec{j}+4$ verck and $\vec{r}_{3}=2 \vec{i}+\vec{j}-2$ relative to an origin 0 . Find the distance of P from the plane $O Q R$.

- Watch Video Solution

133. A non vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors $\vec{i}, \vec{i}+\vec{j}$ and thepane determined by the vectors $\vec{i}-\vec{j}, \vec{i}+\vec{k}$ then angle between \vec{a} and $\vec{i}-2 \vec{j}+2 \vec{k}$ is
=(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{6}$
(D) $\frac{\pi}{4}$

(D) Watch Video Solution

134. The position vector sof points P, Q, R are $3 \vec{i}+4 \vec{j}+5 \vec{k}, 7 \vec{i}-\vec{k}$ and $5 \vec{i}+5 \vec{j}$ respectivley. If A is a point
equidistant form the lines $O P, O Q$ and $O R$ find a unit vector along $\overrightarrow{O A}$ where O is the origin.

- Watch Video Solution

135. A force of 15 units act iln the direction of the vector $\vec{i}-\vec{j}+2 \vec{k}$ and passes through a point $2 \vec{i}-2 \vec{j}+2 \vec{k}$. Find the moment of the force about the point $\vec{i}+\vec{j}+\vec{k}$.

- Watch Video Solution

136. A rigid body is spinning about a fixed point ($3,-2,-1$) with an angular velocity of $4 \mathrm{rad} / \mathrm{s}$, the axis of rotation being in the direction of $(1,2,2)$.

Find the velocity of the particle at point $(4,1,1)$.

- Watch Video Solution

137. Find the volume of the parallelopiped whose edges are represented by $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\hat{k}, \vec{c}=3 \hat{i}-\hat{j}+2 \hat{k}$

- Watch Video Solution

138.

Prove that
the four
points
$4 \vec{i}+5 \vec{i}+\vec{k},-(\vec{j}+\vec{k}), 3 \vec{i}+9 \vec{j}+4 \vec{k}$ and $4(-\vec{i}+\vec{j}+\vec{k})$ are coplanar

- Watch Video Solution

139. Prove that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

140. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then show that $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ are also coplanar.
141. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of A, B, C respectively prove that $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is a vector perpendicular to the plane $A B C$.

- Watch Video Solution

142. Examine whether the vectors $\vec{a}=2 \vec{i}+3 \vec{j}+2 \vec{k}, \vec{b}=\vec{i}-\vec{j}+2 \vec{k}$ and $\vec{c}=3 \vec{i}+2 \vec{j}-4 \vec{k}$ form a left handed or a righat handed system.

(Watch Video Solution

143. If $\vec{l}, \vec{m}, \vec{n}$ are three non coplanar vectors prove that $[\vec{l} \vec{m} \vec{n}](\vec{a} \times \vec{b})=\left|\begin{array}{llll}\overrightarrow{1} \cdot \vec{a} & \overrightarrow{1} \cdot \vec{b} & \overrightarrow{1} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n}\end{array}\right|$
144. Show that $[\vec{a} \vec{b} \vec{c}]^{2}=\left|\begin{array}{ccc}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}\end{array}\right|$

- Watch Video Solution

145. vecctor $\overrightarrow{O A}=\hat{i}+2 \hat{j}+2 \hat{k}$ turns through a right angle passing through the positive x-axis on the way. Show that the vector in its new postion is $\frac{4 \hat{i}-\hat{j}-\hat{k}}{\sqrt{2}}$

(D) Watch Video Solution

146.

If is
given
that
$\vec{x}=\frac{\vec{b} \times \vec{c}}{\vec{a} \vec{b} \vec{c}}, \vec{y}=\frac{\vec{c} \times \vec{a}}{\vec{a} \vec{b} \vec{c}}, \vec{z}=\frac{\vec{a} \times \vec{b}}{\vec{a} \vec{b} \vec{c}}$ where $\vec{a}, \vec{b}, \vec{c}$
are non coplanar vectors. Find the value of $\vec{x} \cdot(\vec{a}+\vec{b})+\vec{y} \cdot(\vec{c}+\vec{b})+\vec{z}(\vec{c}+\vec{a})$
147. If $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \vec{c}=\vec{a}$, show that $\vec{a}, \vec{b}, \vec{c}$ are orthogonal in pairs. Also show that $|\vec{c}|=|\vec{a}|$ and $|\vec{b}|=1$

- Watch Video Solution

148. If is given that $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}, \vec{r} \cdot \vec{a}=0$ and $\vec{a} \cdot \vec{b} \neq 0$.

What is the geometrical meaning of these equation separately? If the abvoe three statements hold good simultaneously, determine the vector \vec{r} in terms of \vec{a}, \vec{b} and \vec{c}.

- Watch Video Solution

149. If $\vec{X} \cdot \vec{A}=0, \vec{X} \cdot \vec{B}=0$ and $\vec{X} \cdot \vec{C}=0$ for some non-zero vector $\vec{x} 1$, then[vecA vecB vecC] $=0^{\prime}$

- Watch Video Solution

150. Express $\vec{a}, \vec{b}, \vec{c}$ in terms of $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ and $\vec{a} \times \vec{b}$.

- Watch Video Solution

151. find x, y, and z if $x \vec{a}+y \vec{b}+z \vec{c}=\vec{d}$ and $\vec{a}, \vec{b}, \vec{c}$ are non coplanar.

- Watch Video Solution

152. $O A B C$ is a tetrahedron where O is the origin and A, B, C have position vectors $\vec{a}, \vec{b}, \vec{c}$ respectively prove that circumcentre of tetrahedron OABC is $\frac{a^{2}(\vec{b} \times \vec{c})+b^{2}(\vec{c} \times \vec{a})+c^{2}(\vec{a} \times \vec{b})}{2[\vec{a} \vec{b} \vec{c}]}$

- Watch Video Solution

153. Let \vec{u} and \vec{v} be unit vectors. If \vec{w} is a vector such that $\vec{w}+\vec{w} \times \vec{u}=\vec{v}$, then prove that $|(\vec{u} \times \vec{v}) \cdot \vec{w}| \leq \frac{1}{2}$ and that the equality holds if and only if \vec{u} is perpendicular to \vec{v}.

- Watch Video Solution

154. If $\vec{a} \perp \vec{b}$ then vector \vec{v} in terms of \vec{a} and \vec{b} satisfying the equations \vec{v}. Veca $=0 n a d \vec{v} . V e c b=1$ and $[\vec{a} \vec{a} \vec{b}]=1$ is

- Watch Video Solution

155. $\vec{a}, \vec{b}, \vec{c}$ are three non coplanat unit vectors wuch that angle between any two is alpha. If $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=\overrightarrow{l a}+m \vec{b}+n \vec{c}$ then determine I,m,n in terms of α.

- Watch Video Solution

156. Prove that the formula for the volume V of a tetrahedron, in terms of the lengths of three coterminous edges and their mutul inclinations is $V^{2}=\frac{a^{2} b^{2} c^{2}}{36}\left|\begin{array}{ccc}1 & \cos \phi & \cos \psi \\ \cos \phi & 1 & \cos \theta \\ \cos \psi & \cos \theta & 1\end{array}\right|$

(Watch Video Solution

157. Findthe value of $\vec{\alpha} \times(\vec{\beta} \times \vec{\gamma})$, where, $\vec{\alpha}=2 \vec{i}-10 \vec{j}+2 \vec{k}, \vec{\beta}=3 \vec{i}+\vec{j}+2 \vec{k}, \vec{\gamma}=2 \vec{i}+\vec{j}+3 \vec{k}$

- Watch Video Solution

158.

Prove
that
$\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})=\overrightarrow{0}$

- Watch Video Solution

$\hat{i} \times(\vec{a} \times \vec{i})+\hat{j} \times(\vec{a} \times \vec{j})+\hat{k} \times(\vec{a} \times \vec{k})=2 \vec{a}$

- Watch Video Solution

160. show that $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ if and only if \vec{a} and \vec{c} are collinear or $(\vec{a} \times \vec{c}) \times \vec{b}=\overrightarrow{0}$

- Watch Video Solution

161. Let vea, \vec{b} and \vec{c} be any three vectors, then prove that $\left[\begin{array}{lll}\vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a}\end{array}\right]=\left[\begin{array}{ll}\vec{a} \vec{b} & \vec{c}\end{array}\right]^{2}$

- Watch Video Solution

162. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then show that $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ are also coplanar.

(D) Watch Video Solution

163. Show that the
$\vec{a} \times(b \overrightarrow{\times} \vec{c}), \vec{b}(\vec{c} \times \vec{a})$ and $\vec{c} \times(\vec{a} \times \vec{b})$ are coplanar.

- Watch Video Solution

164. \vec{u}, \vec{v} and \vec{w} are three non-coplanar unit vecrtors and α, β and γ are the angles between \vec{u} and \vec{v}, \vec{v} and \vec{w}, and \vec{w} and \vec{u}, respectively, and \vec{x}, \vec{y} and \vec{z} are unit vectors along the bisectors of the angles $\begin{array}{ll}\alpha, \beta \text { and } \gamma \quad, \quad \text { respectively. } \quad \text { Prove } \\ {[\vec{x} \times \vec{y} \vec{y} \times \vec{z} \vec{z} \times \vec{x}]=} & \frac{1}{16}[\vec{u} \vec{v} \vec{w}]^{2} \sec ^{2}\left(\frac{\alpha}{2}\right) \sec ^{2}\left(\frac{\beta}{2}\right) \sec ^{2}\left(\frac{\gamma}{2}\right)\end{array}$

- Watch Video Solution

165. The angles of a triangle, two of whose sides are respresented by vectors $\sqrt{3}(\widehat{a} \times \vec{b})$ and $\hat{b}-(\widehat{a}$. Vecb $) \widehat{a}$ where \vec{b} is a non - zero vector and \vec{a} is a unit vector in the direction of \vec{a}. Are

- Watch Video Solution

166.

$\vec{x} \times \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1$ and $\vec{y} \cdot \vec{z}=1$ then find $\mathrm{x}, \mathrm{y}, \mathrm{z}$ in terms of \vec{a}, \vec{b} and γ.

- Watch Video Solution

167. Vectors $\vec{x}, \vec{y}, \vec{z}$ each of magnitude $\sqrt{2}$ make angles of 60° with each other. If $\vec{x} \times(\vec{y} \times \vec{z})=\vec{a}, \vec{y} \times(\vec{z} \times \vec{x})=\vec{b} \quad$ and $\vec{x} \times \vec{y}=\vec{c}$. Find $\vec{x}, \vec{y}, \vec{z}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.

- Watch Video Solution

168. Let \vec{u}, \vec{v} and \vec{w} be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{u} \times(\vec{v} \times \vec{w})=\vec{b},(\vec{u} \times \vec{v}) \times \vec{w}=\vec{c}, \vec{a} \cdot \vec{u}=$ Vector \vec{u} is

- Watch Video Solution

169. Solve the following simultaneous equation for vectors
\vec{x} and \vec{y}, if $\vec{x}+\vec{y}=\vec{a}, \vec{x} \times \vec{y}=\vec{b}, \vec{x} \cdot \vec{a}=1$

- Watch Video Solution

170.

Find
the scaslars
α and β
$\vec{a} \times(\vec{b} \times \vec{c})+(\vec{a} \cdot \vec{b}) \vec{b}=(\overrightarrow{4}-2 \beta-\sin \alpha) \vec{b}+\left(\beta^{2}-1\right) \vec{c}$ an
where \vec{b} and \vec{c} are non collinear and α, β are scalars

- Watch Video Solution

171. Find the set of vector reciprocal to the set off vectors $2 \hat{i}+3 \hat{j}-\hat{k}, \hat{i}-\hat{j}-2 \hat{k},-\hat{i}+2 \hat{j}+2 \hat{k}$.

- Watch Video Solution

172. Prove that:
$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{a} \times \vec{c}) \times(\vec{d} \times \vec{b})+(\vec{a} \times \vec{d}) \times(\vec{b}$
$=-2[\vec{b} \vec{c} \vec{d}] \vec{a}$

(.) Watch Video Solution

173. For any four vectors prove that

$$
(\vec{b} \times \vec{c}) \cdot(\vec{a} \times \vec{d})+(\vec{c} \times \vec{a}) \cdot(\vec{b} \times \vec{d})+(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d}
$$

- Watch Video Solution

174. Find vector \vec{r} if $\vec{r} \cdot \vec{a}=m$ and $\vec{r} \times \vec{b}=\vec{c}$, where $\vec{a} \cdot \vec{b} \neq 0$
175. Find \vec{r} such that $t \vec{r}+\vec{r}+\vec{a}=\vec{b}$.

- Watch Video Solution

176. Solve $r \times b=a$, where a and b are given vectors such that $a \cdot b=0$.

- Watch Video Solution

177. Solve $a \cdot r=x, b \cdot r=y, c \cdot r=z$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are given noncoplanar vectors.

- Watch Video Solution

178. Vectors \vec{A} and \vec{B} satisfying the vector equation $\vec{A}+\vec{B}=\vec{a}, \vec{A} \times \vec{B}=\vec{b}$ and $\vec{A} \cdot \vec{a}=1$. where vera and \vec{b} are
given vectosrs, are

- Watch Video Solution

179. Sholve the simultasneous vector equations for
\vec{x} and $\vec{y}: \vec{x}+\vec{c} \times \vec{y}=\vec{a}$ and $\vec{y}+\vec{c} \times \vec{x}=\vec{b}, \vec{c} \neq 0$

- Watch Video Solution

180. Solved $\lambda \vec{r}+(\vec{a} \cdot \vec{r}) \vec{b}=\vec{c}, \lambda \neq 0$

- Watch Video Solution

181. \vec{u} and \vec{n} are unit vectors and t is a scalar. If $\vec{n} \cdot \vec{a} \neq 0$ solve the equation $\vec{r} \times \vec{a}=\vec{u}, \vec{r} \cdot \vec{n}=t$

- Watch Video Solution

182. If $\vec{a}, \vec{b}, \vec{c}$ are vectors such that $\vec{a} \cdot \vec{b}=0$ and $\vec{a}+\vec{b}=\vec{c}$ then:

- Watch Video Solution

183. Let $\vec{a} \cdot \vec{b}=0$ where \vec{a} and \vec{b} are unit vectors and the vector \vec{c} is inclined an anlge θ to both
\vec{a} and $\vec{b} \cdot \operatorname{If} \vec{c}=m \vec{a}+n \vec{b}+p(\vec{a} \times \vec{b}),(m, n, p \in R)$ then

- Watch Video Solution

184. The edges of parallelopiped are of unit length and are parallel to non-coplanar unit vectors $\hat{a}, \hat{b}, \hat{c}$ such that $\hat{a} \cdot \vec{b}=\vec{b} \cdot \vec{c} \vec{c} \cdot \vec{a}=\frac{1}{2}$ then find volume of parallelopiped.

- Watch Video Solution

185. The number of distinct real values of α, for which the vectors $-\lambda^{2} \hat{i}+\hat{j}+\hat{k}, \hat{i}-\lambda^{2} \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\lambda^{2} \hat{k}$ are coplanar is

Watch Video Solution

186. Let two non-collinear unit vectors \vec{a} and \vec{b} form an acute angle. A point P moves so that at any time t , time position vector, $\overrightarrow{O P}$ (where O is the origin) is given by $\widehat{a} \cot t+\hat{b} \sin t$. When p is farthest fro origing o , let M be the length of $\overrightarrow{O P}$ and \widehat{u} be the unit vector along $\overrightarrow{O P}$.then

- Watch Video Solution

187. Let a, b, c be unit vectors such that $a+b+c=0$. Which one of the following is correct?

- Watch Video Solution

188. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{\hat{j}}-\hat{k}$ A vector in the plane of \vec{a} and \vec{b} whose projections on $\vec{c} i s 1 / \sqrt{3}$ is

- Watch Video Solution

189. If $\alpha+\beta+\gamma=2$ and $\vec{a}=\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}, \hat{k} \times(\hat{k} \times \vec{a})=\overrightarrow{0}$,then $\gamma=(\mathrm{A}) 1$ (B) -1 (C) 2 (D) none of these

- Watch Video Solution

190. The non-zero vectors \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=8 \vec{b}$ and $\vec{c}=-7 \vec{b}$ angle between \vec{a} and \vec{c} is

- Watch Video Solution

191. The vector $\vec{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of the vectors $\vec{b}=\hat{\mathrm{i}}+\hat{j}$ and $\vec{c}=\hat{j}+\hat{k}$ and bisects the angle between \vec{b} and \vec{c}.

Then which one of the following gives possible values of $\alpha \operatorname{and} \beta$? $\alpha=2, \beta=2$ (2) $\alpha=1, \beta=2$ (3) $\alpha=2, \beta=1$ (4) $\alpha=1, \beta=1$

- Watch Video Solution

192. If \vec{a}, \vec{b}, and $\leftrightarrow c$ are three unit vecrtors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{1} \vec{b}$, then $(\vec{b}$ and \vec{c} being non-parallel) angle between \vec{a} and \vec{b} is $\pi / 3$ b.anglebetween \vec{a} and \vec{c} is $\pi / 3 c$. a. angle between \vec{a} and \vec{b} is $\pi / 2$ d. a. angle between \vec{a} and \vec{c} is $\pi / 2$

- Watch Video Solution

193. The equation $\vec{r}^{2}-2 \vec{r} \cdot \vec{c}+h=0,|\vec{c}|>\sqrt{h}$ represents
(A) circle
(B) ellipse
(C) cone
(D) sphere
194. $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+4 \hat{i}+3 \hat{k}$ are one of the sides and medians respectively of a triangle through the same vertex, then area of the triangle is (A) $\frac{1}{2} \sqrt{83}$ (B) $\sqrt{83}$ (C) $\frac{1}{2} \sqrt{85}$ (D) $\sqrt{86}$

- Watch Video Solution

195. The values of a for which the points A, B, C with position vectors $2 \hat{i}+\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $a \hat{i}-3 \hat{j}+\hat{k}$ respectively are the vertices of a righat angled triangle at C are (A) 2 and 1 (B) -2 and -1 (C) -2 and 1 (D) 2 and -1

- Watch Video Solution

196. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors, then $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2} \quad$ does not exceed (A) $4(B) 9(C) 8(D) 6$
197. If $\vec{u}, \vec{v}, \vec{w}$ are noncoplanar vectors and p , q are real numbers, then the equality $[3 \vec{u}, p \vec{v}, p \vec{w}]-[p \vec{v}, \vec{w}, q \vec{u}]-[2 \vec{w}, q \vec{v}, q \vec{u}]=0$ holds for (1) exactly one value of $(p, q)(2)$ exactly two values of $(p, q)(3)$ more than two but not all values of $(\mathrm{p}, \mathrm{q})(4)$ all values of (p, q)

- Watch Video Solution

198. The projections of a vector on the three coordinate axis are $6,3,2$ respectively. The direction cosines of the vector are (1) $6,-3,2$
$\frac{6}{5}, \frac{-3}{5}, \frac{2}{5}$ (3) $\frac{6}{7}, \frac{-3}{7}, \frac{2}{7}$ (4) $\frac{-6}{7}, \frac{-3}{7}, \frac{2}{7}$

- Watch Video Solution

199. If $\vec{a}, \vec{c}, \vec{c}$ and \vec{d} are unit vectors such that $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})=1$ and $\vec{a} \cdot \vec{b}=\frac{1}{2}$ then
200. Let $P(3,2,6)$ be a point in space and Q be a point on line $\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of μ for which the vector $\overrightarrow{P Q}$ is parallel to the plane $x-4 y+3 z=1$ is

- Watch Video Solution

201. If θ is the angle between unit vectors \vec{a} and \vec{b} then $\sin \left(\frac{\theta}{2}\right)$ is (A) $\frac{1}{2}|\vec{a}-\vec{b}|$ (B) $\frac{1}{2}|\vec{a}+\vec{b}|$ (C) $\frac{1}{2}|\vec{a} \times \vec{b}|$ (D) $\frac{1}{\sqrt{2}} \sqrt{1-\vec{a} \cdot \vec{b}}$

- Watch Video Solution

202. Let $\vec{u}, \vec{v}, \vec{w}$ be three unit vectors such that $\vec{u}+\vec{v}+\vec{w}=\vec{a}, \vec{a} \cdot \vec{u}=\frac{3}{2}, \vec{a} \cdot \vec{v}=\frac{7}{4}|\vec{a}|=2, \quad$ then
$\vec{u} \cdot \vec{v}=\frac{3}{2}$ (B) $\vec{u} \cdot \vec{w}=0$ (C) $\vec{u} \cdot \vec{w}=-\frac{1}{4}$ (D) none of these

- Watch Video Solution

203. Let \vec{A} be a vector parallel to the line of intersection of the planes P_{1} and P_{2}. The plane P_{1} is parallel to vectors $2 \hat{j}+3 \hat{k}$ and $4 \hat{j}-3 \hat{k}$ while plane P_{2} is parallel to the vectors $\hat{j}-\hat{k}$ and $\hat{i}+\hat{j}$. The acute angle between \vec{A} and $2 \hat{i}+\hat{j}-2 \hat{k}$ is

- Watch Video Solution

204. Assertion: $\quad \overrightarrow{P Q} \times(\overrightarrow{R S}+\overrightarrow{S T}) \neq 0$, Reason
$\overrightarrow{P Q} \times \overrightarrow{R S}=\overrightarrow{0}$ and $\overrightarrow{P Q} \times \overrightarrow{S T} \neq \overrightarrow{0}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

205. Consider $\triangle A B C$. Let I bet he incentre and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the sides of the triangle opposite to angles A, B, C respectively. Let O be any point in the plane of $\triangle A B C$ within the triangle. AO, BO and CO meet the sides BC ,

CA and AB in D, E and F respectively. $a \overrightarrow{I A}=b \overrightarrow{I B}+c \overrightarrow{I C}=$
$-1(B) 0(C) 1(D) 3$

- Watch Video Solution

206. Consider $\triangle A B C$ Let l be the incentre and $\mathrm{a}, \mathrm{b} \mathrm{c}$ be the sides of the triangle opposite to the angle A, B, C respectively. Let O be any point in the plane of $\triangle A B C$ within the triangle. $\mathrm{AO}, \mathrm{BO}, \mathrm{CO}$ meet the sides BC, CA and AB in D, E and F respectively then $\frac{O D}{A D}+\frac{O E}{B E}+\frac{O F}{C F}=$

- Watch Video Solution

207. Consider $\triangle A B C$. Let I bet he incentre and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the sides of the triangle opposite to angles A, B, C respectively. Let O be any point in the plane of $\triangle A B C$ within the triangle. AO, BO and CO meet the sides BC , CA and AB in D, E and F respectively. If $3 \overrightarrow{B D}=2 \overrightarrow{D C}$ and $4 \overrightarrow{C E}=\overrightarrow{E A}$ then the ratio in which divides $\overrightarrow{A B}$ is $(A) 3: 4(B) 3: 2(C) 4: 1(D) 6: 1^{\prime}$

Exercise

1. Classify the following measures as scalars and vector: 5 sec onds.

- Watch Video Solution

2. Classify the following measures as scalars and vector: ${ }^{\prime} 3 \mathrm{~km} / \mathrm{hr}$

- Watch Video Solution

3. Classify the following measures as scalars and vector: $\frac{10 \mathrm{gm}}{\mathrm{cm}^{3}}$

- Watch Video Solution

4. Classify the following measures as scalars and vector: 10 Newton
5. Classify the following measures as scalars and vector: $20 \frac{m}{\sec \rightarrow}$ wardsn or $t h$

- Watch Video Solution

6. Classify the following measures as scalars and vector: $1000 \mathrm{~cm}^{3}$

- Watch Video Solution

7. Clasify the following quantities as scalars and vector: 10 kg

- Watch Video Solution

8. Clasify the following quantities as scalars and vector: $20 c \frac{m}{\sec ^{3}}$

- Watch Video Solution

9. Clasify the following quantities as scalars and vector: $50 \frac{m}{\sec o} n d$

- Watch Video Solution

10. Clasify the following quantities as scalars and vector: $20 \frac{\mathrm{~m}}{\mathrm{sec}}$ towards west

- Watch Video Solution

11. Clasify the following quantities as scalars and vector: ' 50 kg weight

- Watch Video Solution

12. Clasify the following quantities as scalars and vector: $100^{\circ} \mathrm{C}$

- Watch Video Solution

13. Clasify the following quantities as scalars and vector: 100 kg weight

- Watch Video Solution

14. Clasify the following quantities as scalars and vector: 30^{0}

- Watch Video Solution

15. Clasify the following quantities as scalars and vector: charge

- Watch Video Solution

16. Clasify the following quantities as scalars and vector: energy

- Watch Video Solution

17. Clasify the following quantities as scalars and vector: potential
18. Clasify the following quantities as scalars and vector: displacement

- Watch Video Solution

19. Represent graphically a displacement of $50 \mathrm{~km}, 50^{\circ}$ west of south.

- Watch Video Solution

20. Represent graphically: A displacement of 20 m , north east.

- Watch Video Solution

21. Represent graphically: A displacement of $50 \mathrm{~m}, 60^{\circ}$ south of east
22. Represent the following graphically: A displacement of $40 \mathrm{~km}, 30^{0}$ east of north A displacement of 50 km south east A displacement of $70 \mathrm{~km}, 40^{0}$ north of west

- Watch Video Solution

23. Represent graphically: a displacement of $40 \mathrm{~km}, 20^{\circ}$ east of south

- Watch Video Solution

24. Represent graphically a displacement of : 20 km south west

- Watch Video Solution

25. Represent graphically a displacement of : $60 \mathrm{~km}, 40^{\wedge} \mathrm{o}^{`}$ north of west
26. In the adjoining figure which of the vector are: collinear

27. In the adjoining figure which of the vector are: cointial

28. In the adjoining figure which of the vector are: equal

- Watch Video Solution

29. In the adjoining figure $A B C D$ is a rectangle. Examine which of the vector are: equal

- Watch Video Solution

30. In the adjoining figure $A B C D$ is a rectangle. Examine which of the vector are: collinear

- Watch Video Solution

31. In the adjoining figure $A B C D$ is a rectangle. Examine which of the vector are: coinitial

- Watch Video Solution

32. In the adjoining figure $A B C D$ is a rectangle. Examine which of the vector are: collinear but not equal

- Watch Video Solution

33. In the given figure $A B C D E F$ is a regular hexagon. Examine which vector are, equal
34. In the given figure $A B C D E F$ is a regular hexagon. Examine which vector are, collinear

- Watch Video Solution

35. In the given figure $A B C D E F$ is a regular hexagon. Examine which vector are, Cointial

- Watch Video Solution

36. In the given figure ABCDEF is a regular hexagon. Examine which vector are, Collinear but not equal

- Watch Video Solution

37. The position vector of foru points A, B, C, D are $\vec{a}, \vec{b}, 2 \vec{a}+3 \vec{b}$ and $\vec{a}-2 \vec{b}$ respectively. Expessthe $\longrightarrow r s$ $\operatorname{vec}(A C), \operatorname{vec}(D B), \operatorname{vec}(B C)$ and $\operatorname{vec}(C A) \in$ termsofveca and vecb.

- Watch Video Solution

38. If $A D, B E$ and $C F$ be the median of a $\triangle A B C$, prove that $\overrightarrow{A D}+\overrightarrow{B E}+\overrightarrow{C F}=0$

- Watch Video Solution

39. If G is the centroid of $\triangle A B C$, prove that $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=0$.

Further if G_{1} bet eh centroid of another $\triangle P Q R$, show that $\overrightarrow{A P}+\overrightarrow{B Q}+\overrightarrow{C R}=3 \overrightarrow{G G_{1}}$

- Watch Video Solution

40. Five forces $\vec{A} B, \vec{A} C, \vec{A} D, \vec{A} E$ and $\vec{A} F$ act at the vertex of a regular hexagon $A B C D E F$. Prove that the resultant is $6 \vec{A} O$, where O is the centre of hexagon.

- Watch Video Solution

41. If $A B C D E F$ is a regular hexagon, prove that $\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{E A}+\overrightarrow{F A}=3 \overrightarrow{A B}$

- Watch Video Solution

42. $A B C D$ is a parallelogram E and F are the middle points of $A D$ and $C D$ respectively. Express $\overrightarrow{B E}$ and $\overrightarrow{B F}$ in terms of \vec{a} and \vec{b}, where $\overrightarrow{B A}=\vec{a}$ and $\overrightarrow{B C}=\vec{b}$.

- Watch Video Solution

43. If D and E are the mid-points of sides AB and AC of a triangle $A B C$ respectively, show that $\vec{B} E+\vec{D} C=\frac{3}{2} \vec{B} C$.

- Watch Video Solution

44. In trapezium PQRS , given that $Q R|\mid P S$ and $2 Q R=P S$. If $\overrightarrow{P Q}=\vec{a}, \overrightarrow{Q R}=\vec{b}$ and $\overrightarrow{R S}=\vec{c}$, express \vec{a} in terms \vec{b} and \vec{c}

- Watch Video Solution

45. OX, OY and OZ are three edges of a cube andn P, Q, R are the vertices of rectangle OXPY, OXQZ and OYSZ respectively. If $\operatorname{vec}(O X)=v e c a l p h a$, $\operatorname{vec}(\mathrm{OY})=$ vecbeta and $\operatorname{vec}(\mathrm{OZ})=$ vecgamma express vec(OP), vec(OQ), vec(OR) and vec(OS) in erms of vecalpha, vecbeta and vecgamma.

- Watch Video Solution

$\vec{a}+2 \vec{b}+3 \vec{c}, 2 \vec{a}+8 \vec{b}+3 \vec{c}, 2 \vec{a}+5 \vec{b}-\vec{c}$ and $\vec{a}-\vec{b}-\vec{c}$ be the positions vectors A, B, C and D respectively, prove that $\overrightarrow{A B}$ and $\overrightarrow{C D}$ are parallel. Is ABCD a parallelogram?

- Watch Video Solution

47. If $A B C D$ is quadrilateral and $E a n d F$ are the mid-points of $A C a n d B D$ respectively, prove that $\vec{A} B+\vec{A} D+\vec{C} B+\vec{C} D=4 \vec{E} F$.

- Watch Video Solution

48. $A B C D$ is parallelogram and P is the point of intersection of its diagonals. If O is the origin of reference, show that $\vec{O} A+\vec{O} B+\vec{O} C+\overrightarrow{O D}=4 \vec{O} P$.

- Watch Video Solution

49. $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively of a paralleloram, $A B C D$, ifnd the position vector of D.

(Watch Video Solution

$$
\begin{aligned}
& \text { 50. } \begin{array}{l}
\text { Find } \\
\text { the } \\
\Longrightarrow \\
\Longrightarrow
\end{array} \hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k} \text { and } \vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}
\end{aligned}
$$

- Watch Video Solution

51. Find the scalar and vector components of the vector with initial point $A(2,1)$ and terminal point $B(-5,7)$.

(D) Watch Video Solution

52. If the position vectors of A and B respectively $\hat{i}+3 \hat{j}-7 \hat{k}$ and $5 \hat{i}-2 \hat{j}+4 \hat{k}$, then find
53. Find the vector joining the points $P(2,3,0)$ and $Q(1,2,4)$ directed from P to Q .

- Watch Video Solution

54. Find the values of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector

- Watch Video Solution

55. Find unit vector in the direction of vector $\rightarrow a=2 \hat{i}+3 \hat{j}+\hat{k}$.

- Watch Video Solution

56. Find a unit vector in the direction of the vector $\vec{a}=3 \hat{i}-2 \hat{j}+6 \hat{k}$.

- Watch Video Solution

57. Find the direction cosines of the vector: $\hat{i}+2 \hat{j}+6 \hat{k}$

- Watch Video Solution

58. Findthe vector in the directionof vector $-\hat{i}+2 \hat{j}+2 \hat{k}$ that has magnitude 7.

- Watch Video Solution

59. Find a vector in the direction of vector $\vec{a}=\hat{i}-2 \hat{j}$ that has magnitude 7 units.

- Watch Video Solution

60. If $\overrightarrow{O P}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\overrightarrow{O Q}=5 \hat{i}+4 \hat{j}-3 \hat{k}$. Find $\overrightarrow{P Q}$ and the direction cosines of $\overrightarrow{P Q}$.
61. The position vectors of two points A and B are $\hat{i}+\hat{j}+\hat{k}$ and $5 \hat{i}-3 \hat{j}+\hat{k}$. Find a unit vector in direction of $\overrightarrow{A B}$, and also find the direction cosines of $\overrightarrow{A B}$. What angles does $\overrightarrow{A B}$ make with the three axes?

- Watch Video Solution

62. Write the direction ratios of the vector $\rightarrow a=\hat{i}+\hat{j}-2 \hat{k}$ and hence calculate its direction cosines.

- Watch Video Solution

63. Find the unit vector in the direction of vector $\rightarrow P Q$, where P and Q are the points $(1,2,3)$ and ($4,5,6$), respectively.

- Watch Video Solution

64. If $P \equiv(1,5,4)$ and $Q \equiv(4,1,-2)$ find the direction ratios of $\overrightarrow{P Q}$

- Watch Video Solution

65. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$ find a unit vector parallel to ther vector $2 \vec{a}-\vec{b}+3 c$.

- Watch Video Solution

66. If $\vec{a}=\hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=3 \hat{i}+\hat{j}-\hat{k}$ find a unit vector int direction of $\vec{a}-\vec{b}$.

- Watch Video Solution

67. The position vectors of four points P, Q, R annd S are $2 a+4 c, 5 a+$ $3 \sqrt{3} b+4 c,-2 \sqrt{3} b+c$ and $2 a+c$ respectively, prove that PQ is parallel to RS.
68. Find the lengths of the sides of the triangle whose vertices are $A(2,4,-1),(4,5,1), C(3,6,-3)$ and show that the triangle is right angled.

Watch Video Solution

69. The vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ forms a/an

- Watch Video Solution

70. If position vectors of P, Q, R, S be respectively $2 \hat{i}+4 \hat{k}, 5 \hat{i}+4 \hat{j}+4 \hat{k},-4 \hat{i}-8 \hat{j}+\hat{k}, 2 \hat{i}+\hat{k}$, prove that RS is parallel to $P Q$ and is twice of $P Q$.

- Watch Video Solution

71. The position vectors of the points P, Q, R, S are $\hat{i}+\hat{j}+\hat{k}, 2 \hat{i}+5 \hat{j}, 3 \hat{i}+2 \hat{j}-3 \hat{k}$ and $\hat{i}-6 \hat{j}-\hat{k}$. Prove that lines $P Q$ and $R S$ are prallel and find the ratio of their lengths.

- Watch Video Solution

72. Prove that the three points whose positions vectors are $3 \hat{i}-\hat{j}+2 \hat{k}, \hat{i}-\hat{j}-3 \hat{k}$ and $4 \hat{i}-3 \hat{j}+\hat{k}$ form an isosceles tirangle.

- Watch Video Solution

73.

Prove
that the
vecotos
$3 \hat{i}+5 \hat{j}+2 \hat{k}, 2 \hat{i}-3 \hat{j}-5 \hat{k}$ and $5 \hat{i}+2 \hat{j}-3 \hat{k}$ form the sides of an equlateral triangle.

- Watch Video Solution

74. Prove that the points $\hat{i}-\hat{j}, 4 \hat{i}-3 \hat{j}+\hat{k}$ and $2 \hat{i}-4 \hat{j}+5 \hat{k}$ are the vertices of a right angled triangle.

- Watch Video Solution

75. Using dot product of vectors show that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$ form a righat angled triangle

- Watch Video Solution

76. Find as unit vector paralel to the sum of the vectors $2 \hat{i}+3 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$

- Watch Video Solution

77. The two adjacent sides of a parallelogram are $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$. Find the unit vector parallel to one of its diagonals. Also, find its area.

- Watch Video Solution

78. Find the unit vector in the direction of the sum of the vectors $\vec{a}=2 \hat{i}+2 \hat{j}-5 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+3 \hat{k}$.

- Watch Video Solution

79. Find a vector magnitude 5 units, and parallel to the resultant of the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

80. Let $\vec{a}=\hat{i}+2 \hat{j}$ and $\vec{b}=2 \hat{i}+\hat{j}$. $I s|\vec{a}|=|\vec{b}|$ Are the vectors \vec{a} and \vec{b} equal?.

- Watch Video Solution

81. Find the values of x, y and z so that the vectors $\vec{a}=x \hat{i}+2 \hat{j}+z \hat{k}$ and $\vec{b}=2 \hat{i}+y \hat{j}+\hat{k}$ are equal.

- Watch Video Solution

82. If \vec{a} and \vec{b} are non-collinear vectors and $\vec{A}=(p+4 q) \vec{a}+(2 p+q+1) \vec{b}$ and $\vec{B}=(-2 p+q+2) \vec{a}+(2 p-3$, and if $3 \vec{A}=2 \vec{B}$, then determine p and q.

- Watch Video Solution

83. Find the all the values of lamda such that $(x, y, z) \neq(0,0,0)$ and $x(\hat{i}+\hat{j}+3 \hat{k})+y(3 \hat{i}-3 \hat{j}+\hat{k})+z(-4 \hat{i}+5 \hat{j})=\lambda(x \hat{i}+y \hat{j}+z \hat{k})$

Watch Video Solution

84. Check whether the following sets of three points are collinear:
$-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}, 6 \vec{a}-\vec{c}$

- Watch Video Solution

85. Prove th the following sets of three points are collinear:
$2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+4 \hat{j}-3 \hat{k}$

- Watch Video Solution

86. The points with position vectors $60 \hat{i}+3 \hat{j}, 40 \hat{i}-8 \hat{j}, a \hat{i}-52 \hat{j}$ are collinear if (A) $a=-40$ (B) $a=40$ (C) $a=20$ (D) none of these
87. Prove that the ponts $A(1,2,3), B(3,4,7), C(-3,-2,-5)$ are collinear and find the ratio in which B divides $A C$.

- Watch Video Solution

88. Vectors \vec{a} and \vec{b} are non-collinear. Find for what value of x vectors $\vec{c}=(x-2) \vec{a}+\vec{b}$ and $\vec{d}=(2 x+1) \vec{a}-\vec{b}$ are collinear ?

- Watch Video Solution

89. If $\vec{a}, \vec{b}, \vec{c}$ are non zero and non coplanar vectors show that the following vector are coplanar:
$2 \vec{a}-3 \vec{b}+4 \vec{c},-\vec{a}+3 \vec{b}-5 \vec{c},-\vec{a}+2 \vec{b}-3 \vec{c}$

- Watch Video Solution

90. If $\vec{a}, \vec{b}, \vec{c}$ are non zero and non coplanar vectors show that the following vector are coplanar:
$5 \vec{a}+6 \vec{b}+7 \vec{c}, 7 \vec{a}-8 \vec{b}+9 \vec{c}, 3 \vec{a}+20 \vec{b}+5 \vec{c}$

- Watch Video Solution

91. If $\vec{a}, \vec{b}, \vec{c}$ are non zero and non coplanar vectors show that the following vector are coplanar:
$4 \vec{a}+5 \vec{b}+\vec{c},-\vec{b}-\vec{c}, 5 \vec{a}+9 \vec{b}+4 \vec{c}$

- Watch Video Solution

92. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors, check whether the following points are coplanar:
$6 \vec{a}+2 \vec{b}-\vec{c}, 2 \vec{a}+\vec{b}+3 \vec{c},-\vec{a}+2 \vec{b}-4 \vec{c},-12 \vec{a}-\vec{b}-3 \vec{c}$

- Watch Video Solution

93. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors, prove that the following points are coplanar:
$6 \vec{a}-4 \vec{b}+10 \vec{c},-5 \vec{a}+3 \vec{b}-10 \vec{c}, 4 \vec{a}-6 \vec{b}-10 \vec{c}, 2 \vec{b}+10 \vec{c}$

- Watch Video Solution

94. If the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}+a \hat{j}+5 \hat{k}$ are coplanar, the prove that $\mathrm{a}=4$.

- Watch Video Solution

95. If $\vec{a}, \vec{b}, \vec{c}$, be three on zero non coplanar vectors estabish a linear relation between the vectors:
$4 \vec{a}+5 \vec{b}+\vec{c},-\vec{b}-\vec{c}, 3 \vec{a}+9 \vec{b}+4 \vec{c},-4 \vec{a}+4 \vec{b}+4 \vec{c}$

- Watch Video Solution

96. If $\vec{a}, \vec{b}, \vec{c}$, be three on zero non coplanar vectors estabish a linear relation between the vectors:
$8 \vec{b}+6 \vec{c}, \vec{a}+\vec{b}+\vec{c}, 2 \vec{a}-\vec{b}+\vec{c}, \vec{a}-\vec{b}-\vec{c}$

- Watch Video Solution

97. Examine whather followig vectors are coplanar or not: $5 \vec{a}+6 \vec{b}+7 \vec{c}, 7 \vec{a}-8 \vec{b}+9 \vec{c}, 3 \vec{a}+20 \vec{b}+5 \vec{c}$

- Watch Video Solution

98. Examine whether the following vectors from a linearly dependent or independent set of vector: $\hat{i}+3 \hat{j}+5 \hat{k}, 2 \hat{i}+6 \hat{j}+10 \hat{k}$

- Watch Video Solution

99. Examine whether the following vectors from a linearly dependent or independent set of vector:
$\vec{a}=(1,-2,30), \vec{b}=(-2,3,-4), \vec{c}=(1,-1,5)^{`}$

- Watch Video Solution

100. Examine whether the following vectors from a linearly dependent or independent set of vector:
$\vec{a}-3 \vec{b}+2 \vec{c}, \vec{a}-9 \vec{b}-\vec{c}, 3 \vec{a}+2 \vec{b}-\vec{c}$ where $\vec{a}, \vec{b}, \vec{c} \quad$ are non zero non coplanar vectors

- Watch Video Solution

101. Find the mid point of the line segment joining the points $P(2 \hat{i}+3 \hat{j}+3 \hat{k})$ and $Q(4 \hat{i}+\hat{j}-2 \hat{k})$

- Watch Video Solution

102. Consider two points P and Q with position vectors
$\rightarrow O P=3 \rightarrow a-2 \rightarrow$ band $\quad \rightarrow O Q=\rightarrow a+\rightarrow b$ Find \quad the position vector of a point R which divides the line joining P and Q in the ratio 2:1, (i) internally, and (ii) externally.

- Watch Video Solution

103. Consider two points P and Q with position vectors $\rightarrow O P=3 \rightarrow a-2 \rightarrow$ band $\quad \rightarrow O Q=\rightarrow a+\rightarrow b$ Find \quad the position vector of a point R which divides the line joining P and Q in the ratio 2:1, (i) internally, and (ii) externally.

- Watch Video Solution

104. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$, respectively, in the ratio $2: 1$.
i. Internally
ii. Externally

- Watch Video Solution

105. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $\hat{i}+2 \hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$, respectively, in the ratio $2: 1$.
i. Internally
ii. Externally

- Watch Video Solution

106. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2 \vec{a}+\vec{b})$ and ($\vec{a}-3 \vec{b}$) respectively, externally in the ratio 1:2.Also, show that P is the mid-point of the line segment $R Q$.
107. $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the three points A, B, C respectiveluy. The point P divides the ilne segment $A B$ internally in the ratio 2:1 and the point Q divides the lines segment $B C$ externally in the ratio 3:2 show that $3 \overrightarrow{P Q}=-\vec{a}-8 \vec{b}+9 \vec{c}$.

- Watch Video Solution

108. Show that the perpendicular bisectors of the sides of a triangle are concurrent.

- Watch Video Solution

109. The line segment joining the mid-points of any two sides of a triangle in parallel to the third side and equal to half of it.

- Watch Video Solution

110. Prove that the segment joining the middle points of two non-parallel sides of a trapezium is parallel to the parallel sides and half of their sum.

- Watch Video Solution

111. Prove that the line segment joining the mid-points of the diagonals of a trapezium is parallel to each of the parallel sides and is equal to half the difference of these sides.

- Watch Video Solution

112. If P and Q are the mid points of the sides $A B$ and $C D$ of a parallelogram $A B C D$, prove that $D P$ and $B Q$ cut the trisection which also the points of trisection of $D P$ and $B Q$ respectively.

- Watch Video Solution

113. Write down a unit vector in XY-plane, making an angle of 30 with the positive direction of x-axis.

- Watch Video Solution

114. The horizontal force and the force inclined at an angle 60° with the vertical, whose resultant is in vertical direction of P kg , ar

- Watch Video Solution

115. . The velocity of a boat relative to water is represented by $3 \bar{i}+4 \bar{j}$ and that of water relative to the earth by $\bar{i}-3 \bar{j}$. What is the velocity of the boat relative to the earth, if \bar{i} and \bar{j} represent velocities of $1 \mathrm{~km} / \mathrm{hour}$ east and north respectively .

- Watch Video Solution

116. If $\lambda \vec{a}+\mu \vec{b}+\gamma \vec{c}=0$, where $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular and λ, μ, γ are scalars prove that $\lambda=\mu=\gamma=0$

Watch Video Solution

117. A, B, C and d are any four points prove that $\overrightarrow{A B} \cdot \overrightarrow{C D}+\overrightarrow{B C} \cdot \overrightarrow{A D}+\overrightarrow{C A} \cdot \overrightarrow{B D}=0$

- Watch Video Solution

118. Find the equation of the plane through the point $2 \vec{i}+3 \vec{j}-\vec{k}$ and perpendicular to the vector $3 \vec{i}-4 \vec{j}+7 \vec{k}$.

- Watch Video Solution

119. Find the equation of the plane through the $2 \vec{i}+3 \vec{j}-\vec{k}$ and perpendicular to the vector $3 \vec{i}+2 \vec{j}-2 \vec{k}$. Determine the
perpendicular distance of this plane from the origin.

- Watch Video Solution

120. If the position vectors of the point A and B are $3 \hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}-2 \hat{j}-4 \hat{k}$ respectively. Then the eqaution of the plane through B and perpendicular to $A B$ is

- Watch Video Solution

121. Find the cosine of the angle between the planes
$\vec{r} \cdot(2 \vec{i}-3 \vec{j}-6 \vec{k})=7$ and $\vec{r} \cdot(6 \vec{i}+2 \vec{j}-9 \vec{k})=5$

- Watch Video Solution

122. Let A, B, C represent the vertices of a triangle, where A is the origin and B and C have position b and c respectively.* Points M, N and P are taken on sides $A B, B C$ and $C A$ respectively, such that
$\frac{A M}{A B}=\frac{B N}{B C}=\frac{C P}{C A}=\alpha$. If \triangle represent the area enclosed by the three vectors AN, BP and CM , then the value of α, for which \triangle is least

- Watch Video Solution

123. If \vec{a}, \vec{b} and \vec{c} are the position vectors of the vertices A, B and C. respectively of $\triangle A B C$. Prove that the perpendicualar distance of the vertex A from the base $B C$ of the triangle $A B C$ is $\underline{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}$

$$
|\vec{c}-\vec{b}|
$$

- Watch Video Solution

124. Show that the perpendicular distance of any point \vec{a} from the line
$\vec{r}=\vec{b}+t \vec{c} i s(\mid(\vec{b}-\vec{a}) \times \vec{c}) \frac{\mid}{|\vec{c}|}$

- Watch Video Solution

125. Prove that the shortest distance between two lines $A B$ and $C D$ is

$$
\frac{|(\vec{c}-\vec{a}) \cdot(\vec{b}-\vec{a}) \times(\vec{d}-\vec{c})|}{|(\vec{b}-\vec{a}) \times \overrightarrow{d-\vec{c}}|} \text { where } \vec{a}, \vec{b}, \vec{c}, \vec{d} \text { are the }
$$ position vectors of points A, B, C, D respectively.

- Watch Video Solution

126. If $P Q R S$ is a quadrilteral such that
$\overrightarrow{P Q}=\vec{a}, \overrightarrow{P S}=\vec{b}$ and $\overrightarrow{P R}=x \vec{a}+y \vec{b}$ show that the area of the quadrilateral PQRS is $\left.\frac{1}{2} \right\rvert\,(x y| | \vec{a} \times \vec{b} \mid$

- Watch Video Solution

127. A rigid body is rotating at 5 radians per second about an axis $A B$ where A and B are the pont $2 \vec{i}+\vec{j}+\vec{k}$ and $8 \vec{i}-2 \vec{j}+3 \vec{k}$ respectively. Find the veclocity of the parcticle P of the body at the points $5 \vec{i}-\vec{j}+\vec{k}$
128.

$\vec{a}=\vec{i}-2 \vec{j}+\vec{k}, \vec{b}=\vec{i}+\vec{j}+\vec{k}$ and $\vec{c}=\vec{i}+2 \vec{j}+\vec{k}$ then show that $\vec{a} \cdot(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \cdot \vec{c}$.

- Watch Video Solution

129.

$\vec{a}=-\overrightarrow{2 i}-\overrightarrow{2 j}+\overrightarrow{4 k}, \vec{b}=-\overrightarrow{2 i}+\overrightarrow{4 j}-\overrightarrow{2 k}$ and $\vec{c}=\overrightarrow{4 i}-\overrightarrow{2 j}-\overrightarrow{2 k}$
Calculate the value of $[\vec{a} \vec{b} \vec{c}]$ and interpret the result.

- Watch Video Solution

130. Find the volume of the parallelopiped whose thre coterminus edges asre represented by $\overrightarrow{2 i}+\overrightarrow{3 j}+\vec{k}, \vec{i}-\vec{j}+\vec{k}, \overrightarrow{2 i}+\vec{j}-\vec{k}$.

- Watch Video Solution

131. Find the volume of the parallelopiped, whose three coterminous edges are represented by the vectors $\hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-\hat{k}$.

- Watch Video Solution

132. Find the value of the constant λ so that vectors $\vec{a}=\overrightarrow{2 i}-\vec{j}+\vec{k}, \vec{b}=\vec{i}+\overrightarrow{2 j}-\overrightarrow{3 j}$, and $\vec{c}=\overrightarrow{3 i}+\overrightarrow{\lambda j}+\overrightarrow{5 k}$ are coplanar.

- Watch Video Solution

133.

Show
that:
$(\vec{a}+\vec{b}) \cdot\{(\vec{b}+\vec{c}) \times(\vec{c}+\vec{a}) \mid=2\{\vec{a} \cdot(\vec{b} \times \vec{c})\}$

- Watch Video Solution

134. Show that the plane through the points $\vec{a}, \vec{b}, \vec{c}$ has the equation $[\vec{r} \vec{b} \vec{c}]+[\vec{r} \vec{c} \vec{a}]+[\vec{r} \vec{a} \vec{b}]=[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

135. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then show that $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ are also coplanar.

- Watch Video Solution

136. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then show that $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}$ and $\vec{c} \times \vec{a}$ are also coplanar.

- Watch Video Solution

137. If $\left.\left.\vec{A}=\frac{\vec{b} \times \vec{c}}{[\vec{b} \vec{c}} \vec{a}\right], \vec{B}=\frac{\vec{c} \times \vec{a}}{\left[\begin{array}{lll}\vec{c} & \vec{a} & \vec{b}\end{array}\right]}, \vec{C}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b}} \vec{c}\right] \quad$ find $[\vec{A} \vec{B} \vec{C}]$

- Watch Video Solution

138. If the three vectors $\vec{a}, \vec{b}, \vec{c}$ are non coplanar express each of $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$ in terms of $\vec{a}, \vec{b}, \vec{c}$.

- Watch Video Solution

139. If the three vectors $\overrightarrow{,} \vec{b}, \vec{c}$ are non coplanar express $\vec{b} \vec{b}, \vec{c}$ each in terms of the vectors $\vec{b} \times \vec{c}, \vec{c} \times \vec{a}, \vec{a} \times \vec{b}$

- Watch Video Solution

140. Prove that $[\vec{l} \vec{m} \vec{n}][\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{lll}\vec{l} \cdot \vec{a} & \vec{l} \cdot \vec{b} & \vec{l} \cdot \vec{c} \\ \vec{m} \cdot \vec{a} & \vec{m} \cdot \vec{b} & \vec{m} \cdot \vec{c} \\ \vec{n} \cdot \vec{a} & \vec{n} \cdot \vec{b} & \vec{n} \cdot \vec{c}\end{array}\right|$

- Watch Video Solution

141.

$\vec{a}=a_{1} \vec{l}+a_{2} \vec{m}+a_{3} \vec{n}, \vec{b}=b_{1} \vec{l}+b_{2} \vec{m}+b_{3} \vec{n}$ and $\vec{c}=c_{1} \vec{l}+v_{2} \vec{m}$ are three non coplnar vectors then show that
$[\vec{a} \vec{b} \vec{c}]=\left|\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|[\vec{l} \vec{m} \vec{n}]$

- Watch Video Solution

142. Let k be the length of any edge of a regular tetrahedron (a tetrahedron whose edges are equal in length is called a regular tetrahedron). Show that the angle between any edge and a face not containing the egge is $\cos ^{-1}(1 / \sqrt{3})$
143. If a, b, c be the eth, qth and rath terms respectively of a HP, show that the points (bc, p), (ca, q) and (ab, r) are collinear.

- Watch Video Solution

144. Prove that

$$
\left|\begin{array}{lll}
\cos (A-P) & \cos (A-Q) & \cos (A-R) \\
\cos (B-P) & \cos (B-Q) & \cos (B-R) \\
\cos (C-P) & \cos (C-Q) & \cos (C-R)
\end{array}\right|=0 .
$$

- Watch Video Solution

145. Prove that for any nonzero scalar a the vectors $a \vec{i}+2 a \vec{j}-3 a \vec{k},(2 a+1) \vec{i}+(2 a+3) \vec{j}+(a+1) \vec{k}$ and $(3 a+5) \vec{i}$ are non coplanar

- Watch Video Solution

146. If vectors \vec{a}, \vec{b} and \vec{c} are coplanar, show that $\left|\begin{array}{lll}\vec{a} & \vec{b} & \vec{c} \\ \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c}\end{array}\right|=\overrightarrow{0}$

- Watch Video Solution

147. Show that the points whose position vectors are $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ will be coplanar if $[\vec{a} \vec{b} \vec{c}]-[\vec{a} \vec{b} \vec{d}]+[\vec{a} \vec{c} \vec{d}]-[\vec{b} \vec{c} \vec{d}]=0$

- Watch Video Solution

148. Prove that $\vec{i} \times(\vec{j} \times \vec{k})=\overrightarrow{0}$

- Watch Video Solution

149.

Find
the
value
of
$(\vec{i}-2 j+\vec{k}) \times[(2 \vec{i}+\vec{j}+\vec{k}) \times(\vec{i}+2 \vec{j}-\vec{k})]$

(D) Watch Video Solution

150.

If
$\vec{A}=2 \vec{i}+\vec{j}-3 \vec{k} \vec{B}=\vec{i}-2 \vec{j}+\vec{k}$ and $\vec{C}=-\vec{i}+\vec{j}-\overrightarrow{4} k$ find $\vec{A} \times(\vec{B} \times \vec{C})$

- Watch Video Solution

151. Prove that $(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})=[\vec{a} \vec{b} \vec{c}] \vec{c}$

- Watch Video Solution

152. Prove that $(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})=[\vec{a} \vec{b} \vec{c}] \vec{c}$

- Watch Video Solution

153. Prove that: $[(\vec{a} \times \vec{b}) \times(\vec{a} \times \vec{c})] \cdot \vec{d}=[\vec{a} \vec{b} \vec{c}](\vec{a} \cdot \vec{d})$

- Watch Video Solution

154.

$\vec{a}=\vec{i}+\overrightarrow{2 j}-\vec{k}, \vec{b}=\overrightarrow{2 i}+\vec{j}+\overrightarrow{3 k}, \vec{c}=\vec{i}-\vec{j}+\vec{k}$ and $\vec{d}=\overrightarrow{3 i}$ then evaluate $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$

- Watch Video Solution

155.

If
$\vec{a}=\vec{i}+\overrightarrow{2 j}-\vec{k}, \vec{b}=\overrightarrow{2 i}+\vec{j}+\overrightarrow{3 k}, \vec{c}=\vec{i}-\vec{j}+\vec{k}$ and $\vec{d}=\overrightarrow{3 i}$
then evaluate $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$

D Watch Video Solution

156.

Prove
that
$\vec{a} \times\{\vec{b} \times(\vec{c} \times \vec{d})\}=(\vec{b} \cdot \vec{d})(\vec{a} \times \vec{c})-(\vec{b} \cdot \vec{c})(\vec{a} \times \vec{d})$
157. Prove that: $\vec{a} \times[\vec{b} \times(\vec{c} \times \vec{a})]=(\vec{a} \cdot \vec{b})(\vec{a} \times \vec{c})$

- Watch Video Solution

158. If the vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are coplanar show that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$

- Watch Video Solution

159. Show that the components of \vec{b} parallel to \vec{a} and perpendicular to it are $\frac{(\vec{a} \cdot \vec{b}) \vec{a}}{\vec{a}^{2}}$ and $((\vec{a} \times \vec{b}) \vec{a}) \frac{)}{a^{2}}$ respectively.

- Watch Video Solution

160. If \vec{a} and \vec{b} be two non collinear vectors such that $\vec{a}=\vec{c}+\vec{d}$, where \vec{c} is parallel to \vec{b} and \vec{d} is perpendicular to \vec{b} obtain expression for $\quad \vec{c}$ and $\vec{d} \quad$ in terms of \vec{a} and \vec{b} as:
$\vec{d}=\vec{a}-\frac{(\vec{a} \cdot \vec{b}) \vec{b}}{b^{2}}, \vec{c}=\frac{(\vec{a} \cdot \vec{b}) \vec{b}}{b^{2}}$

- Watch Video Solution

161. If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}, \vec{b}, \vec{c}$, are reciprocal system of vectors prove that $\vec{a} \times \vec{a}^{\prime}+\vec{b} \times \vec{b}{ }^{\prime}+\vec{c} \times \vec{c},=\overrightarrow{0}$

- Watch Video Solution

162. If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}, \vec{b}, \vec{c}$ ' are reciprocal system of vectors, then prove that $\vec{a}, \times \vec{b}, \times \vec{b}, \times \vec{c},+\vec{c}, \times \vec{a},=\frac{\vec{a}+\vec{b}+\vec{c}}{[\vec{a} \vec{b} \vec{c}]}$

- Watch Video Solution

$\vec{a},(\vec{b}+\vec{c})+\vec{b},(\vec{c}+\vec{a})+\vec{c}^{\prime} \cdot(\vec{a}+\vec{b})=0$

- Watch Video Solution

164. The condition for equations $\vec{r} \times \vec{a}=\vec{b}$ and $\vec{r} \times \vec{c}=\vec{d}$ to be consistent is

- Watch Video Solution

165. Solve $a \cdot r=x, b \cdot r=y, c \cdot r=z$, where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are givenn noncoplanar vectors.

- Watch Video Solution

166. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors each of magnitude 3 then $\mid \vec{a}+\vec{b}+\overrightarrow{\mid}$ is equal (A) 3 (B) 9 (C) $3 \sqrt{3}$ (D) none of these

(D) Watch Video Solution

167. Let the vectors $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of the vertices P, Q, R respectively of a triangle. Which of the following represents the area of
the triangle? (A) $\frac{1}{2}|\vec{a} \times \vec{b}|$
(B) $\frac{1}{2}|\vec{b} \times \vec{c}|$
(C) $\frac{1}{2}|\vec{c} \times \vec{a}|$ $\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$

Watch Video Solution

168. If the
vectors
$\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}-\widehat{3 k}$ and $\vec{c}=3 \hat{i}+\lambda \hat{j}+5 \hat{k} \quad$ are
coplanar the value of λ is (A) -1 (B) 3 (C) -4 (D) $-\frac{1}{4}$

- Watch Video Solution

169. Let \vec{a}, \vec{b} and \vec{c} be three units vectors such that $3 \vec{a}+4 \vec{b}+5 \vec{c}=0$. Then which of the following statements is true?
170. If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$, then $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is equal to (A) -1 (B) 3
(C) O (D) $-\frac{3}{2}$

- Watch Video Solution

171. If vector \vec{a} lies in the plane of vectors \vec{b} and \vec{c} which of the following is correct? (A) $\vec{a} \cdot(\vec{b} \times \vec{c})=-1$ (B) $\vec{a} \cdot(\vec{b} \times \vec{c})=0$ (C) $\vec{a} \cdot(\vec{b} \times \vec{c})=1$ (D) $\vec{a} \cdot(\vec{b} \times \vec{c})=2$

- Watch Video Solution

172. The value of λ so that unit vectors $\frac{2 \hat{i}+\lambda \hat{j}+\hat{k}}{\sqrt{5+\lambda^{2}}}$ and $\frac{\hat{i}-2 \hat{j}+3 \hat{k}}{\sqrt{14}}$ are orthogonl (A) $\frac{3}{7}$ (B) $\frac{5}{2}$ (C) $\frac{2}{5}$ (D) $\frac{2}{7}$
173. The vector $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})$ is equal to (A) $\frac{1}{2}(\vec{a} \times \vec{b})$
(B) $\vec{a} \times \vec{b}$ (C) $2(\vec{a}+\vec{b})$ (D) $2(\vec{a} \times \vec{b})$

- Watch Video Solution

174. For two vectors \vec{a} and $\vec{b}, \vec{a}, \vec{b}=|\vec{a}||\vec{b}|$ then (A) $\vec{a}|\mid \vec{b}$
$\vec{a} \perp \vec{b}$ (C) $\vec{a}=\vec{b}$ (D) none of these

- Watch Video Solution

175. A unit vector in the xy-plane that makes an angle of $\frac{\pi}{4}$ with the vector $\hat{i}+\hat{j}$ and an angle of ' $\mathrm{pi} / 3$ ' with the vector $3 \hat{i}-4 \hat{j}$ is

- Watch Video Solution

176. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular vectors, then the vector which is equally inclined to these vectors is

- Watch Video Solution

177. If $\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$ find the angle between \vec{a} and \vec{b}

- Watch Video Solution

178. If the sides of an angle are given by vectors $\vec{a}=\hat{i}-2 \hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+\hat{j}+2 \hat{k}$, then find the internal bisector of the angle.

- Watch Video Solution

179. Let $A B C$ be a triangle, the position vectors of whose vertices are respectively

$$
\hat{i}+2 \hat{j}+4 \hat{k},-2 \hat{i}+2 \hat{j}+\hat{k} \text { and } 2 \hat{i}+4 \hat{j}-3 \hat{k} . \quad \text { Then }
$$

$\triangle A B C$ is
180. $P(1,0,-1), Q(2,0,-3), R(-1,2,0)$ and $S(3,-2,-1)$ are four points and d is the projection of $\overrightarrow{P Q} o n \overrightarrow{R S}$ then which of the following is (are) true? (A) $d=\frac{6}{\sqrt{165}}$ (B) $d=\frac{6}{\sqrt{33}}$ (C) $\frac{8}{\sqrt{33}}$
$d=\frac{6}{\sqrt{5}}$

Watch Video Solution

181. If the angle between unit vectors \vec{a} and \vec{b} is 60°. Then find the value of $|\vec{a}-\vec{b}|$.

- Watch Video Solution

182. The vector (s) equally inclined to the vectors $\hat{i}-\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\hat{k}$ in the plane containing them is (are_(A) $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$ (B) \hat{i} (C) $\hat{i}+\hat{k}$ (D) $\hat{i}-\hat{k}$
183. If $\vec{a} \cdot \vec{b}=\beta$ and $\vec{a} \times \vec{b}=\vec{c}$, then \vec{b} is

- Watch Video Solution

184. If $\vec{a}, \vec{b}, \vec{c}$ are unity vectors such that $\vec{d}=\lambda \vec{a}+\mu \vec{b}+\gamma \vec{c}$ then

- Watch Video Solution

185. If $|\vec{a}+\vec{b}|<|\vec{a}-\vec{b}|$, then the angle between \vec{a} and \vec{b} can lie in the interval

- Watch Video Solution

186. If $a(\vec{\alpha} \times \vec{\beta}) \times(\vec{\beta} \times \vec{\gamma})+c(\vec{\gamma} \times \vec{\alpha})=0$ and at leasy one of a,b and c is non-zerp, then vector $\vec{\alpha}, \vec{\beta}$ and γ are

- Watch Video Solution

187. If \vec{a}, \vec{b} and \vec{c} are , mutually perpendicular vcetors and $\vec{a}=\alpha(\vec{a} \times \vec{b})+\beta(\vec{b} \times \vec{c})+\gamma(\vec{c} \times \vec{a})$ and $[\vec{a} \vec{b} \vec{c}]=1$, then find the value of $\alpha+\beta+\gamma$

- Watch Video Solution

188. If the vectors $a \hat{i}+b \hat{j}+c \hat{k}, b \hat{i}+c \hat{j}+a \hat{k}$ and $c \hat{i}+a \hat{j}+b \hat{k}$ are coplanar and $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are distinct then (A) $a^{3}+b^{3}+c^{3}=1$
$a+b+c=1$ (C) $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ (D) $a+b+c=0$ ©

- Watch Video Solution

189.

Given
three
vectors
$\vec{a}=6 \hat{i}-3 \hat{j}, \vec{b}=2 \hat{i}-6 \hat{j}$ and $\vec{c}=-2 \hat{i}+21 \hat{j} \quad$ such that
$\vec{\alpha}=\vec{a}+\vec{b}+\vec{c}$. Then the resolution of te vector $\vec{\alpha}$ into components
with respect to \vec{a} and \vec{b} is given by (A) $3 \vec{a}-2 \vec{b}$ (B) $2 \vec{a}-3 \vec{b}$
$3 \vec{b}-2 \vec{a}$ (D) none of these

- Watch Video Solution

190. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that veca is perpendicular to \vec{b} and \vec{c} and $|\vec{a}+\vec{b}+\vec{c}|=1$ then the angle between \vec{b} and \vec{c} is $(\mathrm{A}) \frac{\pi}{2}(B) \mathrm{pi}(C) \mathrm{o}(D)(2 \mathrm{pi}) / 3^{`}$

- Watch Video Solution

191. If $\vec{a}=(3,1)$ and $\vec{b}=(1,2)$ represent the sides of a parallelogram then the angle θ between the diagonals of the paralelogram is given by
(A) $\theta=\cos ^{-1}\left(\frac{1}{\sqrt{5}}\right)$ (B) $\theta=\cos ^{-1}\left(\frac{2}{\sqrt{5}}\right)$ (C) $\theta=\cos ^{-1}\left(\frac{1}{2 \sqrt{5}}\right)$
$\theta=\frac{\pi}{2}$

- Watch Video Solution

192. If vectors \vec{a} and \vec{b} are two adjecent sides of a paralleogram, then the vector representing the altitude of the parallelogram which is perpendicular to \vec{a} is

- Watch Video Solution

193. If A, B, C, D be any four points in space, prove that $|\vec{A} B \times \vec{C} D+\vec{B} C \times \vec{A} D+\vec{C} A \times \vec{B} D|=4$ (Area of triangle ABC)

- Watch Video Solution

194. Let \vec{a}, \vec{b} and \vec{c} be three non- coplanar vectors and \vec{r} be any arbitrary vector.

Then

$$
(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a})(\vec{r} \times
$$ is always equal to

195. If \vec{u}, \vec{v} and \vec{w} are vectors such that $\vec{u}+\vec{v}+\vec{w}=\overrightarrow{0}$ then
$[\vec{u}+\vec{v} \vec{v}+\vec{w} \vec{w}+\vec{u}])=$
(A) 1 (B) $[\vec{u} \vec{v} \vec{w}]$
(C) 0 (D) -1

- Watch Video Solution

196. If \vec{a}, \vec{b} and \vec{c} are three mutually perpendicular unit vectors then
$(\vec{r} \cdot \vec{a}) \vec{a}+(\vec{r} \cdot \vec{b}) \vec{b}+(\vec{r} \cdot \vec{c}) \vec{c}=$ (A) $\frac{[\vec{a} \vec{b} \vec{c}] \vec{r}}{2}$ (B) \vec{r}
$2[\vec{a} \vec{b} \vec{c}]$ (D) none of these

(D) Watch Video Solution

197. If \vec{a} and \vec{b} be any two mutually perpendiculr vectors and $\vec{\alpha}$ be any vector then

$$
\begin{align*}
& |\vec{a} \times \vec{b}|^{2} \frac{(\vec{a} \cdot \vec{\alpha}) \vec{a}}{|\vec{a}|^{2}}+|\vec{a} \times \vec{b}|^{2} \frac{(\vec{b} \cdot \vec{\alpha}) \vec{b}}{|\vec{b}|^{2}}-|\vec{a} \times \vec{b}|^{2} \vec{\alpha}= \tag{A}\\
& |(\vec{a} \cdot \vec{b}) \vec{\alpha}|(\vec{a} \times \vec{b}) \quad \text { (B) } \quad[\vec{a} \vec{b} \vec{\alpha}](\vec{b} \times \vec{a}) \\
& {[\vec{a} \vec{b} \vec{\alpha}](\vec{a} \times \vec{b}) \text { (D) none of these }}
\end{align*}
$$

(D) Watch Video Solution

198. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors then

$$
\frac{[\vec{a}+2 \vec{b} \vec{b}+2 c \vec{c} \vec{c}+2 \vec{a}]}{[\vec{a} \vec{b} \vec{c}]}=(\mathrm{A}) 3 \text { (B) } 9 \text { (C) } 8 \text { (D) } 6
$$

- Watch Video Solution

199. The vector $\vec{a}=\frac{1}{4}(2 \hat{i}-2 \hat{j}+\hat{k})$ (A) is a unit vector (B) makes an angle of $\frac{\pi}{3}$ with the vector $\left(\hat{i}+\frac{1}{2} \hat{j}-\hat{k}\right)$ (C) is parallel to the vector $\frac{7}{4} \hat{i}-\frac{7}{4} \hat{j}+\frac{7}{8} \hat{k}$ (D) none of these

- Watch Video Solution

200. The vector $\vec{a} \times(\vec{b} \times \vec{c})$ can be represented in the form (A) $\alpha \vec{a}$ (B) $\alpha \vec{b}$ (C) $a \operatorname{lh} a \vec{c}$ (D) $\alpha \vec{b}+\beta \vec{c}$
201. The points $A \equiv(3,10), B \equiv(12,-5)$ and $C \equiv(\lambda, 10) \quad$ are collinear then $\lambda=$ (A) 3 (B) 4 (C) 5 (D) none of these

- Watch Video Solution

202. Two vectors $\vec{\alpha}=3 \hat{i}+4 \hat{j}$ and $\vec{\beta}=5 \hat{i}+2 \hat{j}-14 \hat{k}$ have the same initial point then their angulr bisector having magnitude $\frac{7}{3}$ be (A)
$\frac{7}{3 \sqrt{6}}(2 \hat{i}+\hat{j}-\hat{k})$
(B) $\frac{7}{3 \sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$
(C) $\frac{7}{3 \sqrt{3}}(\hat{i}-\hat{j}+\hat{k})$
$\frac{7}{3 \sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$

- Watch Video Solution

203. If $\vec{d}=\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c}+\vec{c} \times \vec{a}$ is a non- zero vector and

$$
((\vec{d} \cdot \vec{c})(\vec{a} \times \vec{b})+(\vec{d} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{d} \cdot \vec{b})(\vec{c} \times \vec{a})=0
$$

then
204. If $\vec{a}, \vec{b}, \vec{c}$ are three coplanar unit vector such that $\vec{a} \times(\vec{b} \times \vec{c})=-\frac{\vec{b}}{2}$ then the angle between \vec{b} and \vec{c} can be
(A) $\frac{\pi}{2}$
(B) $\frac{\pi}{6}$
(C) π
(D) $\frac{2 \pi}{3}$

- Watch Video Solution

205.

The
two
lines
$\vec{r}=\vec{a}+\vec{\lambda}(\vec{b} \times \vec{c})$ and $\vec{r}=\vec{b}+\mu(\vec{c} \times \vec{a})$ intersect at a point where $\vec{\lambda}$ and μ are scalars then

- Watch Video Solution

206. If \vec{A}, \vec{B} and \vec{C} are vectors such that $|\vec{B}|=|\vec{C}|$ prove that $[(\vec{A}+\vec{B}) \times(\vec{A}+\vec{C})] \times(\vec{B}+\vec{C}) \cdot(\vec{B}+\vec{C})=0$
207. A parallelogram is construted on $3 \vec{a}+\vec{b}$ and $\vec{a}-4 \vec{b}$, where $|\vec{a}|=6$ and $|\vec{b}|=8$ and \vec{a} and \vec{b} are anti-parallel. Then the length of the longer diagonal is

- Watch Video Solution

208. If \vec{a} is any vector and \hat{i}, \hat{j} and \hat{k} are unit vectors along the x, y and z directions then $\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \vec{k})=(\mathrm{A})$ $\vec{a}(B)-\operatorname{veca}(C) 2 \operatorname{veca}(D) 0$

- Watch Video Solution

209. if $(\vec{a} \times \vec{b}) \times(\vec{b} \times \vec{c})=\vec{b}$, where \vec{a}, \vec{b} and \vec{c} are nonzero vectors, then

- Watch Video Solution

210. If \vec{a} is any then $|\vec{a} \cdot \hat{i}|^{2}+|\vec{a} \cdot \hat{j}|^{2}+|\vec{a} \cdot \hat{k}|^{2}=$
(A) $|\vec{a}|^{2}$
(B) $|\vec{a}|$
(C) $2|\vec{\alpha}|$
(D) none of these

- Watch Video Solution

211. Let \vec{a}, \vec{b} and \vec{c} are vectors such that $|\vec{a}|=3,|\vec{b}|=4$ and $|\vec{c}|=5$, and $(\vec{a}+\vec{b})$ is perpendicular to $\vec{c},(\vec{b}+\vec{c})$ is perpendiculatr to \vec{a} and $(\vec{c}+\vec{a})$ is perpendicular to \vec{b}. Then find the value of $|\vec{a}+\vec{b}+\vec{c}|$.

- Watch Video Solution

212.

$|\vec{a}|=2$ and $|\vec{b}|=3$ and $\vec{a} \cdot \vec{b}=0$, then $(\vec{a} \times(\vec{a} \times(\vec{a} \times(\vec{a})$ is equal to the given diagonal is $\vec{c}=4 \hat{k}=8 \hat{k}$ then, the volume of a parallelpiped is

- Watch Video Solution

213. If $|\vec{a} \cdot \vec{b}|=\sqrt{3}|\vec{a} \times \vec{b}|$ then the angle between \vec{a} and \vec{b} is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

- Watch Video Solution

214. If \hat{a} and \hat{b} are two unit vectors and θ is the angle between them then vector $2 \hat{b}+\hat{a}$ is a unit vector if
(A) $\theta=\frac{\pi}{3}$
(B) $\theta=\frac{\pi}{6}$
(C) $\theta=\frac{\pi}{2}$
(D) $\theta=\pi$

- Watch Video Solution

215. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=\frac{1}{2}$ for some non zero vector \vec{r} and $\vec{a}, \vec{b}, \vec{c}$ are non coplanar, then the area of the triangle whose vertices are $A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ is

- Watch Video Solution

216. If $\vec{\alpha}+\vec{\beta}+\vec{\gamma}=a \vec{\delta}$ and $\vec{\beta}+\vec{\gamma}+\vec{\delta}=b \vec{\alpha}, \vec{\alpha}$ and $\vec{\delta}$ are noncolliner, then $\vec{\alpha}+\vec{\beta}+\vec{\gamma}+\vec{\delta}$ equals a. $a \vec{\alpha}$ b. $b \vec{\delta}$ c. 0 d. $(a+b) \vec{\gamma}$

Watch Video Solution

217. Let $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=2 \hat{i}-\hat{k}$. Then the point of intersection of the lines $\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$ is (A) $(3,-1,10$
(B) $(3,1,-1)$
(C) $(-3,1,1)$
(D) $(-3,-1,-1)$

- Watch Video Solution

218. If non-zero vectors \vec{a} and \vec{b} are perpendicular to each other, then the solution of the equation $\vec{r} \times \vec{a}=\vec{b}$ is given by

- Watch Video Solution

219. if $\vec{\alpha}|\mid(\vec{\beta} \times \vec{\gamma})$, then $(\vec{\alpha} \times \vec{\gamma})$ equal to
220. If \vec{a}, \vec{b} and \vec{c} are three non coplanar vectors and \vec{r} is any vector in space, then
$(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r}$

- Watch Video Solution

221. Let $\vec{O} A=\vec{a}, \vec{O} B=10 \vec{a}+2 \vec{b}$, and $\vec{O} C=$ bwhere O is origin.

Let p denote the area of th quadrilateral $O A B C a n d q$ denote the area of teh parallelogram with $O A a n d O C$ as adjacent sides. Prove that $p=6 q$.

- Watch Video Solution

222. Let $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=10 \vec{a}+2 \vec{b}$ and $\overrightarrow{O C}=\vec{b}$ where, O , A and C are non-collinear points. Let p denote that area of the quadrilateral OABC.

And let q denote the area of the parallelogram with $O A$ and $O C$ as adjacent sides. If $\mathrm{p}=\mathrm{kq}$, then $\mathrm{k}=$

(D) Watch Video Solution

223. If $|\vec{c}|=2,|\vec{a}|=|\vec{b}|=1$ and $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$ then the acute angle between \vec{a} and \vec{c} is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{2 \pi}{3}$

- Watch Video Solution

224. If \vec{a}, \vec{b} and \vec{c} are non coplanar and unit vectors such that $\left.\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}\right)$ then the angle between vea and \vec{b} is
(A) $\frac{3 \pi}{4}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$ (D)
(D) π

- Watch Video Solution

225. If \vec{b} and \vec{c} are any two mutually perpendicular unit vectors and \vec{a} is any vector, then
$(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c}+\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|^{2}}(\vec{b} \times \vec{c})=$ (A) 0
$\vec{a}(C)$ veca $/ 2(D)$ 2veca`

- Watch Video Solution

226. The equation of the line throgh the point \vec{a} parallel to the plane $\vec{r} \cdot \vec{n}=\mathrm{q}$ and perpendicular to the line $\vec{r}=\vec{b}+t \vec{c}$ is (A) $\vec{r}=\vec{a}+\lambda(\vec{n} \times \vec{c})$
(B) $\quad(\vec{r}-\vec{a}) \times(\vec{n} \times \vec{c})=0$
$\vec{r}=\vec{b}+\lambda(\vec{n} \times \vec{c})$
(D) none of these

- Watch Video Solution

227. $\vec{P}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{R}=\hat{j}-\hat{k}$ are given vectors then a vector \vec{Q} satisfying the equation $\vec{P} \times \vec{Q}=\vec{R}$ and $\vec{P} \cdot \vec{Q}=3 \quad$ is (A) $\left(\frac{5}{3}, \frac{2}{3}, \frac{1}{3}\right)$ (в) $\left(\frac{2}{3}, \frac{5}{3}, \frac{2}{3}\right)$ (C) $\left(\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right)$ (D) $\left(\frac{2}{3}, \frac{2}{3}, \frac{5}{3}\right)$

- Watch Video Solution

228. The reflection of the point \vec{a} in the plane $\vec{r} \cdot \vec{n}=q$ is

- Watch Video Solution

229. The plane contaning the two straight lines $\vec{r}=\vec{a}+\lambda \vec{b}$ and $\vec{r}=\vec{b}+\mu \vec{a} \quad$ is (A) $\quad[\vec{r} \vec{a} \vec{b}]=0$
$\begin{array}{ll}{[\vec{r} \vec{a} \vec{a} \times \vec{b}]=0} & \text { (C) } \\ {[\vec{r} \vec{b} \vec{a} \times \vec{b}]=0} \\ \vec{r} \vec{a}+\vec{b} \vec{a} \times \vec{b}]=0 & \end{array}$

- Watch Video Solution

230. Let $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$, and $\vec{b}=\hat{i}+\hat{j}$ if c is a vector such that $\vec{a} \cdot \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2} \quad$ and the angle between $\vec{a} \times \vec{b}$ and $\vec{i} s 30^{\circ}$, then $|(\vec{a} \times \vec{b})| \times \vec{c} \mid$ is equal to

- Watch Video Solution

231. If $\vec{A}, \vec{B}, \vec{C}$ are three vectors respectively given by $2 \hat{i}+\hat{k}, \hat{i}+\hat{j}+\hat{k}$ and $4 \hat{i}-3 \hat{j}+7 \hat{k}$, then the vector \vec{R} which satisfies the relations $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}$ and $\vec{R} \cdot \vec{A}=0$ is (A) $2 \hat{i}-8 \hat{j}+2 \hat{k}$ (B) $\hat{i}-4 \hat{j}+2 \hat{k}(\mathrm{C})-\hat{i}-8 \hat{j}+2 \hat{k}(\mathrm{D})$ none of these

- Watch Video Solution

232. A rigid body is spinning about a fixed point ($3,-2-1$) with an anglar velocity of $4 \mathrm{rad} / \mathrm{s}$, the axis of rotation being in the direction of $(1,2,-2)$.

Find the velocity of the particle at point (4,1,1)/

- Watch Video Solution

233. A particle has an angular speed of $3 \mathrm{rad} / \mathrm{s}$ and the axis of rotation passes through the points $(1,1,2) \operatorname{and}(1,2,-2)$. Find the velocity of the particle at point $P(3,6,4)$.
234. If the area of triangle $A B C$ having vertices $A(\vec{a}), B(\vec{b}), C(\vec{c})$ is $t|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c}+\vec{c} \times \vec{a}| \operatorname{thent}\left[=\right.$ (A) 2 (B) $\frac{1}{2}$ (C) 1 none of these

- Watch Video Solution

235. The vector $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$ is (A) parallel to plane of $\triangle A B C$ (B) perpendicular to plane of $\triangle A B C(\mathrm{C})$ is neighater parallel nor perpendicular to the plane of $\triangle A B C$ (D) the vector area of $\triangle A B C$

- Watch Video Solution

236. If vertices of $\triangle \operatorname{ABCare} A(\vec{a}), B(\vec{b})$ and $C(\vec{c})$ then length of perpendicular from C to AB is (A) $\frac{|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}|}{|\vec{a}-\vec{b}|}$
$\frac{|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}|}{|\vec{a}+\vec{b}|}$ (C) $\frac{|\vec{b} \times \vec{c}|+|\vec{c} \times \vec{a}|+|\vec{a} \times \vec{b}|}{|\vec{a}-\vec{b}|}$
(D) none of these

- Watch Video Solution

237. If \widehat{u} and \hat{v} are unit vectors and θ is the acute angle between them, then $2 \widehat{u} \times 3 \hat{v}$ is a unit vector for (1) exactly two values of θ (2) more than two values of θ (3) no value of θ (4) exactly one value of θ

- Watch Video Solution

238. A tetrahedron has vertices $O(0,0,0), A(1,2,1), B(2,1,3)$ and $C(-1,1,2)$, the angle between faces $O A B$ and $A B C$ will be

- Watch Video Solution

239. Find the value of a so that the volume of the parallelopiped formed by vectors $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum.

Watch Video Solution

240.

$\vec{a}=(\hat{i}+\hat{j}+\hat{k})$, and $\vec{a} \cdot \vec{b}=1$ and $\vec{a} \times \vec{b}=-(\hat{i}-\hat{k})$ then \vec{b} is
(A) $\hat{i}-\hat{j}+\hat{k}$ (B) $2 \hat{j}-\hat{k}$ (C) \hat{j} (D) $2 \hat{i}$

- Watch Video Solution

241. The unit vector which is orthogonal to vector $3 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with the vectors $2 \hat{i}+2 \hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ is

- Watch Video Solution

242. The points with position vectors $60 \hat{i}+3 \hat{j}, 40 \hat{i}-8 \hat{j}, a \hat{i}-52 \hat{j}$ are collinear if (A) $a=-40$ (B) $a=40$ (C) $a=20$ (D) none of these

Watch Video Solution

243. A vector \vec{v} or magnitude 4 units is equally inclined to the vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}, \quad$ which of the following is correct? (A)
$\vec{v}=\frac{4}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$
(B) $\quad \vec{v}=\frac{4}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$
$\vec{v}=\frac{4}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$ (D) $\vec{v}=4(\hat{i}+\hat{j}+\hat{k})$

- Watch Video Solution

244. The position verctors of the points A and B with respect of O are $2 \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+4 \hat{j}+4 \hat{k}$, the length of the internal bisector of $\angle B O A$ of $\triangle A O B$ is

- Watch Video Solution

245. A particle acted upon by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$ is displaced from the point $\hat{i}+2 \hat{j}+3 \hat{k}$ to point $5 \hat{i}+4 \hat{j}+\hat{k}$. The total work done by the forces in SI unit is

- Watch Video Solution

246. If n forces $\overrightarrow{P A}_{1} \ldots \ldots . \overrightarrow{P A}_{n}$ divege from point P and other forces $\overrightarrow{A_{1} Q}, \overrightarrow{A_{2} Q}, ., \overrightarrow{A_{n} Q}$ vonverge to point Q, then the resultant of the 2 n forces is represent in magnitude and directed by (A) $n \overrightarrow{P Q}$ (B) $n \overrightarrow{Q P}$ (C) $2 n \overrightarrow{P Q}$ (D) $n^{2} \overrightarrow{P Q}$

- Watch Video Solution

247. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are linearly dependent vectors and $|\vec{c}|=\sqrt{3}$ then:

- Watch Video Solution

248. A vector $\vec{a}=t \hat{i}+t^{2} \hat{j}$ is rotated through a righat angle passing through the x-axis. What is the vector in its new position $(t>0) ?$ (A) $t^{2} \hat{i}-t \hat{j}$ (B) $\sqrt{t} \hat{i}-\frac{1}{\sqrt{t}} \hat{j}$ (C) $-t^{2} \hat{i}+t \hat{j}$ (D) $\frac{t^{2} \hat{i}-t \hat{j}}{t \sqrt{t^{2}+1}}$

- Watch Video Solution

249. If $\overrightarrow{A O}+\overrightarrow{O B}=\overrightarrow{B O}+\overrightarrow{O C}$ then $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ form a/an (A) equilaterla triangle (B) righat angled triangle (C) isosceles triangle (D) straighat line

- Watch Video Solution

250. The sides of a parallelogram are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$. The unit vector parallel to one of the diagonals is

- Watch Video Solution

251. \vec{a} and \vec{b} are two non collinear vectors then $x \vec{a}+y \vec{b}$ (where x and y are scalars) represents a vector which is (A) parallel to \vec{b} parallel to \vec{a} (C) coplanar with \vec{a} and \vec{b} (D) none of these

- Watch Video Solution

252. If D, E and F are respectively, the mid-points of $A B, A C$ and $B C$ in
$\triangle A B C$, then $\mathrm{BE}+\mathrm{AF}$ is equal to

- Watch Video Solution

253. If C is the mid point of $A B$ and P is any point outside $A B$ then (A) $\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}=0$ (B) $\overrightarrow{P A}+\overrightarrow{P B}+2 \overrightarrow{P C}=\overrightarrow{0}$ (С) $\overrightarrow{P A}+\overrightarrow{P B}=\overrightarrow{P C}$
(D) $\overrightarrow{P A}+\overrightarrow{P B}=2 \overrightarrow{P C}$

- Watch Video Solution

254. Consider points A, B, C annd D with position vectors $7 \hat{i}-4 \hat{j}+7 \hat{k}, \hat{i}-6 \hat{j}+10 \hat{k},-1 \hat{i}-3 \hat{j}+4 \hat{k}$ and $5 \hat{i}-\hat{j}+5 \hat{k}$, respectively. Then, ABCD is

- Watch Video Solution

255. If vectors $\overrightarrow{A B}=-3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a $\triangle A B C$, then the length of the median throught A is

- Watch Video Solution

256. If \vec{a}, \vec{b} and \rightarrow are non-coplanar vectors and λ is a real number, then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+\mu \vec{c}$ and $(2 \lambda-1) \vec{c}$ are coplanar when

- Watch Video Solution

257. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors which are positive noncollinear. If $\vec{a}+3 \vec{b}$ is collinear with \vec{c} and $\vec{b}+2 \vec{c}$ is collinear with \vec{a} then \vec{a} then $\vec{a}+3 \vec{b}+6 \vec{c}$ is:

- Watch Video Solution

258. If \vec{a}, \vec{b} and \vec{c} are three vectors of which every pair is non colinear. If the vector $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$ are collinear with the vector \vec{c} and \vec{a} respectively then which one of the following is correct? (A) $\vec{a}+\vec{b}+\vec{c}$ is a nul vector (B) $\vec{a}+\vec{b}+\vec{c}$ is a unit vector $\vec{a}+\vec{b}+\vec{c}$ is a vector of magnitude 2 units (D) $\vec{a}+\vec{b}+\vec{c}$ is a vector of magnitude 3 units

- Watch Video Solution

259. If $|\vec{a}|=3,|\vec{b}|=4$, and $|\vec{a}+\vec{b}|=5$, then $|\vec{a}-\vec{b}|$ is equal to (A) 6 (B) 5 (C) 4 (D) 3
260. Let \vec{u}, \vec{v} and \vec{w} be such that $|\vec{u}|=1,|\vec{v}|=2$ and $|\vec{w}|=3$ if the projection of \vec{v} along $h \vec{u}$ is equal to that of \vec{w} along \vec{u} and vectors \vec{v} and \vec{w} are perpendicular to each other then $|\vec{u}-\vec{v}+\vec{w}|$ equals

- Watch Video Solution

261. Let the vectors \vec{a}, \vec{b} and \vec{c} are perpendicular to $\vec{b}+\vec{c}, \vec{c}+\vec{a}$ and $\quad \vec{a}+\vec{b} \quad$ respectively. If $|\vec{a}+\vec{b}|=6,|\vec{b}+\vec{c}|=8 \quad$ and $|\vec{c}+\vec{a}|=10$, then the value of $|\vec{a}+\vec{b}+\vec{c}|$ is equal to

- Watch Video Solution

262. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicualar to each other, then the angle between \vec{a} and \vec{b} is
263. A unit vector in the $x y$-plane that makes an angle of $\frac{\pi}{4}$ with the vector $\hat{i}+\hat{j}$ and an angle of ' $\mathrm{pi} / 3$ ' with the vector $3 \hat{i}-4 \hat{j}$ is

- Watch Video Solution

264. The position vector of the pont where the line $\vec{r}=\hat{i}-j+\hat{k}+t(\hat{i}+\hat{j}-\hat{k})$ meets plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=5$ is (A) $5 \hat{i}+\hat{j}-\hat{k}$ (B) $5 \hat{i}+3 \hat{j}-3 \hat{k}$ (C) $5 \hat{i}+\hat{j}+\hat{k}$ (D) $4 \hat{i}+2 \hat{j}-2 \hat{k}$

- Watch Video Solution

265. The perpendicular distance between the line $\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k}) \quad$ and the plane $\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ is :
266. A unit vector int eh plane of the vectors $2 \hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}+\hat{k}$ and orthogonal to $5 \hat{i}+2 \hat{j}-6 \hat{k}$ is (A) $\frac{6 \hat{i}-5 \hat{k}}{\sqrt{6}}$ (B) $\frac{3 \hat{j}-\hat{k}}{\sqrt{10}}$ (C) $\frac{\hat{i}-5 \hat{j}}{\sqrt{29}}$ (D) $\frac{2 \hat{i}+\hat{j}-2 \hat{k}}{3}$

- Watch Video Solution

267. The work done by the forces $\vec{F}=2 \hat{i}-3 \hat{j}+2 \hat{k}$ in moving a particle from $(3,4,5)$ to $(1,2,3)$ is (A) 0 (B) $\frac{3}{2}$ (C) -4 (D) -2

- Watch Video Solution

268. If the work done by a force $\vec{F}=\hat{i}+\hat{j}-8 \hat{k}$ along a givne vector in the $x y$-plane is 8 units and the magnitude of the given vector is $4 \sqrt{3}$ then the given vector is represented as (A) $(4+2 \sqrt{2}) \hat{i}+(4-2 \sqrt{2}) \hat{j}$
$(4 \hat{i}+3 \sqrt{2} \hat{j})$
(C) $(4 \sqrt{2} \hat{i}+4 \hat{j})$
(D) $(4+2 \sqrt{2})(\hat{i}+\hat{j})$

- Watch Video Solution

269. If $\vec{a}, \vec{b}, \vec{c}$ are unit coplanar vectors then the scalar triple product $[2 \vec{a}-\vec{b}, 2 \vec{b}-c, \overrightarrow{2} c-\vec{a}]$ is equal to (A) 0 (B) 1 (C) $-\sqrt{3}$ (D) $\sqrt{3}$

- Watch Video Solution

270. Let vectors $\vec{a}, \vec{b} \vec{a}$ and \vec{d} be such that
$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$. Let P_{1} and P_{2} be planes
determined by the pairs of vectors \vec{a}, \vec{b} and \vec{c}, \vec{d}, respectively. Then the angle between P_{1} and P_{2} is

- Watch Video Solution

271. Let $\quad \vec{a}=\vec{i}-\vec{k}, \vec{b}=x \vec{i}+\vec{j}+(1-x) \vec{k} \quad$ and
$\vec{c}=y \vec{i}+x \vec{j}+(1+x-y) \vec{k}$. Then $[\vec{a} \vec{b} \vec{c}]$ depends on

- Watch Video Solution

272. Then number of vectors of unit length perpendicular to vectors $\vec{a}=(1,1,0)$ and $\vec{b}=(0,1,1)$ is

Watch Video Solution

273. If \vec{a} and \vec{b} are two unit vectors such that $\vec{a}+2 \vec{b}$ and $5 \vec{a}-4 \vec{b}$ are perpendicualar to each other, then the angle between \vec{a} and \vec{b} is

- Watch Video Solution

274.

The
point
of
intersection
of
$\vec{r} \times \vec{a}=\vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$
where
$\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=2 \hat{i}-\hat{k} \quad$ is (A) $3 \hat{i}+\hat{j}-\hat{k} \quad$ (B) $3 \hat{i}-\hat{k}$
$3 \hat{i}+2 \hat{j}+\hat{k}(\mathrm{D})$ none of these

- Watch Video Solution

275. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that
$\vec{a} \neq 0,|\vec{a}|=|\vec{c}|=1,|\vec{b}|=4$ and $|\vec{b} \times \vec{c}|=\sqrt{15}$.
$\vec{b}-2 \vec{c}=\lambda \vec{a}$ then find the value of λ.

- Watch Video Solution

276. $|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}=$ (A) $|\vec{a}|^{2}$ (B) $2|\vec{a}|^{2}$ (C) $3|\vec{a}|^{2}$
(D) $4|\vec{a}|^{2}$

- Watch Video Solution

277. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{W}=\hat{i}+3 \hat{k}$. if \vec{U} is a unit vector, then the maximum value of the scalar triple product $[\vec{U} \vec{V} \vec{W}]$ is

- Watch Video Solution

278. If $\vec{a} s \times \vec{b}=0$ and $\vec{a} \cdot \vec{b}=0$ then (A) $\vec{a} \perp \vec{b}$ (B) $\vec{a}|\mid \vec{b}$ (C)
$\vec{a}=0$ and $\vec{b}=0$ (D) $\vec{a}=0$ or $\vec{b}=0$

- Watch Video Solution

279. If $\vec{a}, \vec{b}, \vec{c}$ are unit coplanar vectors then the scalar triple product $[2 \vec{a}-\vec{b}, 2 \vec{b}-c, \overrightarrow{2} c-\vec{a}]$ is equal to (A) 0 (B) 1 (C) $-\sqrt{3}$ (D) $\sqrt{3}$

D Watch Video Solution

280. Which of the followind expression are meanigful ? (A) $\vec{u} \cdot(\vec{v} \times \vec{w})$
(B) $(\vec{u} \cdot \vec{v}) \times \vec{w}$ (C) $(\vec{u} \cdot \vec{v}) \cdot \vec{w}$ (D) $\vec{u} \times(\vec{v} \cdot \vec{w})$

(Watch Video Solution

281. Let $\vec{a}, \vec{b}, \vec{c}$ be three noncolanar vectors and $\vec{p}, \vec{q}, \vec{r}$ are vectors defined by the relations
$\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$ then the value of
the expression $(\vec{a}+\vec{b}) \cdot \vec{p}+(\vec{b}+\vec{c}) \cdot \vec{q}+(\vec{c}+\vec{a}) \cdot \vec{r}$. is equal to (A) 0 (B) 1 (C) 2 (D) 3

- Watch Video Solution

282. Let $\vec{a}, \vec{b}, \vec{c}$ be non coplanar vectors and $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$. What is the vane of
$(\vec{a}-\vec{b}-\vec{c}) \cdot \vec{p}+(\vec{b}-\vec{c}-\vec{a}) \cdot \vec{q}+(\vec{c}-\vec{a}-\vec{b}) \cdot \vec{r} ?$
(A) 0 (B) -3 (C) 3 (D) -9

- Watch Video Solution

283. Let $\quad \vec{a}=\vec{i}-\vec{k}, \vec{b}=x \vec{i}+\vec{j}+(1-x) \vec{k} \quad$ and
$\vec{c}=y \vec{i}+x \vec{j}+(1+x-y) \vec{k}$. Then $[\vec{a} \vec{b} \vec{c}]$ depends on

- Watch Video Solution

284. Let a, b and c be distinct non-negative numbers. If the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}$ and $c \hat{i}+c \hat{j}+c \hat{k}$ lie in a plane, then c is:

- Watch Video Solution

285. If the
vectors
$a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}, \hat{i}+\hat{j}+c \hat{k}(a \neq 1, b \neq 1, c \neq 1)$ are coplanar then the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ is (A) 0 (B) 1 (C) -1 (D) 2

- Watch Video Solution

286. If $\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0$ and vectors $\left(1, a, a^{2}\right),\left(1, b, b^{2}\right)$ and
$\left(1, c, c^{2}\right)$ are non-coplanar, then the product abc equal to:

- Watch Video Solution

287. If \vec{u}, \vec{v} and \vec{w} are three non coplanar vectors then $(\vec{u}+\vec{v}-\vec{w}) \cdot(\vec{u}-\vec{v}) \times(\vec{v}-\vec{w})$ equals (A) $\vec{u} \cdot(\vec{v} \times \vec{w})$
$\vec{u} \cdot \vec{w} \times \vec{v}$ (C) $2 \vec{u} \cdot(\vec{v} \times \vec{w})$ (D) 0

- Watch Video Solution

288. Let $\vec{u}=\hat{i}+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$. If \widehat{n} is a unit vector such that $\vec{u} \cdot \widehat{n}=0$ and $\vec{v} \cdot \widehat{n}=0,|\vec{w} \cdot \widehat{n}|$ is equal to (A) 0 (B) 1 (C) 2 (D) 3

- Watch Video Solution

289. If \vec{a} is perpendicuar to \vec{b} and $\vec{c}|\vec{a}|=2,|\vec{b}|=3,|\vec{c}|=4$ and the angle between \vec{b} and $\vec{c} i s \frac{2 \pi}{3}$, then $[\vec{a} \vec{b} \vec{c}]$ is equal to
(A) $4 \sqrt{3}$
(B) $6 \sqrt{3}$
(C) $12 \sqrt{3}$
(D) $18 \sqrt{3}$

Watch Video Solution

290. If a, b and c are non-coplanar vectors and λ is a real number, then $\left[\lambda(a+b)\left|\lambda^{2} b\right| \lambda c \mid \lambda c\right]=\left[\begin{array}{lll}a & a+c & b\end{array}\right]$ flor

- Watch Video Solution

291.

$\vec{V}=x(\vec{a} \times \vec{b})+y(\vec{b} \times \vec{c})+z(\vec{c} \times \vec{a})$ and $\vec{V} \cdot(\vec{a}+\vec{b}+\vec{c})$
The valueof $[\vec{a} \vec{b} \vec{c}]$ if $x+y+z \neq 0$ ils (A) 0 (B) 1 (C) -1 (D) 2

- Watch Video Solution

292. The scalar $\vec{A} \cdot(\vec{B} \cdot \vec{C}) \times(\vec{A}+\vec{B}+\vec{C})$ equals

- Watch Video Solution

293. If \vec{A}, \vec{B} and \vec{C} are three non coplanar then $(\vec{A}+\vec{B}+\vec{C}) \cdot\{(\vec{A}+\vec{B}) \times(\vec{A}+\vec{C})\} \quad$ equals: (A) 0
$[\vec{A} \vec{B} \vec{C}]$ (C) $2[\vec{A} \vec{B} \vec{C}]$ (D) $-[\vec{A} \vec{B} \vec{C}]$

- Watch Video Solution

294. Find the value of a so that the volume of the parallelopiped formed by vectors $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum.

- Watch Video Solution

295. For non-zero vectors \vec{a}, \vec{b} and $\vec{c},|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|$ holds if and only if

- Watch Video Solution

296. If \vec{a}, \vec{b} and \vec{c} are non coplanar and unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$ then the angle between \vec{a} and \vec{b} is (A) $\frac{3 \pi}{4}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) π

- Watch Video Solution

297. Let \vec{a}, \vec{b} and \vec{c} be non-zero vectors such that no two are collinear and $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$ if θ is the acute angle between vectors \vec{b} and \vec{c} then find value of $\sin \theta$.

- Watch Video Solution

298.

$\vec{A} \times(\vec{B} \times \vec{C})=\vec{B} \times(\vec{C} \times \vec{A})$ and $[\vec{A} \vec{B} \vec{C}] \neq 0$ then $\vec{A} \cdot(\vec{B} \times \vec{C}$
is equal to (A) 0 (B) $\vec{A} \times \vec{B}$ (C) $\vec{B} \times \vec{C}$ (D) $\vec{C} \times \vec{A}$

- Watch Video Solution

299.

$\widehat{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \hat{b}=\hat{i} \times(\vec{a} \times \hat{i})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})$ then length of \vec{b} is equal to (A) $\sqrt{12}$ (B) $2 \sqrt{12}$ (C) $2 \sqrt{14}$ (D) $3 \sqrt{12}$

- Watch Video Solution

300. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k}, \vec{c}=\hat{k}-\hat{i}$. If \hat{d} is a unit vector such that $\vec{a} \cdot \hat{d}=0=[\vec{b} \vec{c} \vec{d}]$ then \hat{d} equals

- Watch Video Solution

301. If $a=\hat{i}+\hat{j}+\hat{k}, b=\hat{i}+\hat{j}, c=\hat{i}$ and $(a \times b) \times c=\lambda a+\mu b$, then $\lambda+\mu$ is equal to

- Watch Video Solution

302. Given $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=5 \vec{c}+6 \vec{d}$ then the value of $\vec{a} \cdot(\vec{b} \times(\vec{a}+\vec{c}+2 \vec{d}))$ is (A) 7 (B) 16 (C) -1 (D) 4

- Watch Video Solution

303. If $\vec{a} \times[\vec{a} \times\{\vec{a} \times(\vec{a} \times \vec{b})\}]=|\vec{a}|^{4} \vec{b}$ how are \vec{a} and \vec{b} related? (A) \vec{a} and \vec{b} are coplanar (B) \vec{a} and \vec{b} are collinear (C) \vec{a} is perpendicular to \vec{b} (D) \vec{a} is parallel to \vec{b} but \vec{a} and \vec{b} are non collinear

- Watch Video Solution

304. If $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$, where $\vec{a}, \vec{b}, \vec{c}$ are any three vectors such that $\vec{a} \cdot \vec{b} \neq 0, \vec{b} \cdot \vec{c} \neq 0$, then \vec{a} and \vec{c} are (A) inclined at an angle $\frac{\pi}{3}$ to each other (B) inclined at an angle of $\frac{\pi}{6}$ to each other (C) perpendicular (D) parallel
305. If the vectors $\hat{i}-\hat{j}, \hat{j}+\hat{k}$ and a form a triangle, then a may be

- Watch Video Solution

306. If vectors \vec{a} and \vec{b} are non collinear then $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$ is (A) a unit vector (B) in the plane of \vec{a} and \vec{b} (C) equally inclined to \vec{a} and \vec{b} (D) perpendicular to $\vec{a} \times \vec{b}$

- Watch Video Solution

307. Vectors Perpendicular to $\hat{i}-\hat{j}-\hat{k}$ and in the plane of $\hat{i}+\hat{j}+\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ are

- Watch Video Solution

308. The vector $\hat{i}+x \hat{j}+3 \hat{k}$ is rotated through an angle θ and is doubled in magnitude. It now becomes $4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}$. The values of x are

Watch Video Solution

309. if side $\overrightarrow{A B}$ of an equilateral triangle $A B C$ lying in the x y plane is $3 \hat{i}$. Then side $\overrightarrow{C B}$ can be

- Watch Video Solution

310. if vectors $\vec{A}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{B}=\hat{i}+\hat{j}+5 \hat{k}$ and \vec{C} from a left handed system, then \vec{C} is

- Watch Video Solution

311. If $\vec{a}+2 \vec{b}+3 \vec{c}=0$, then $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=$
312. Unit vectors \vec{a} and \vec{b} are perpendicular, and unit vector \vec{c} is inclined at angle θ to both \vec{a} and \vec{b}. If $\vec{c}=\alpha \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b}), \quad$ then $a=\beta \quad$ b. $\gamma^{1}=1-2 \alpha^{2}$ c.
$\gamma^{2}=-\cos 2 \theta$ d. $\beta^{2}=\frac{1+\cos 2 \theta}{2}$

- Watch Video Solution

313. The equation of the line throgh the point \vec{a} parallel to the plane $\vec{r} \cdot \vec{n}=\mathrm{q}$ and perpendicular to the line $\vec{r}=\vec{b}+t \vec{c}$ is (A)

$$
\begin{aligned}
& \vec{r}=\vec{a}+\lambda(\vec{n} \times \vec{c}) \quad \text { (B) } \quad(\vec{r}-\vec{a}) \times(\vec{n} \times \vec{c})=0 \\
& \vec{r}=\vec{b}+\lambda(\vec{n} \times \vec{c}) \text { (D) none of these }
\end{aligned}
$$

- Watch Video Solution

314. If \vec{a} and \vec{b} are two non collinear vectors and $\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b}) \cdot \vec{b}$ and $\vec{v}=\vec{a} x \vec{b}$ then \vec{v} is
315. A line passes through the points whose position vectors are $\hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+\hat{k}$. The position vector of a point on it at unit distance from the first point is

- Watch Video Solution

316. A vector of magnitude 2 along a bisector of the angle between the two vectors $2 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+2 \hat{j}-2 \hat{k}$ is (A) $\frac{2}{\sqrt{10}}(3 \hat{i}-\hat{k})$
$\frac{2}{\sqrt{23}}(\hat{i}-3 \hat{j}+3 \hat{k})$ (C) $\frac{1}{\sqrt{26}}(\hat{i}-4 \hat{j}+3 \hat{k})$ (D) none of these

- Watch Video Solution

317. A unit vector which is equally inclined to the vector $\hat{i}, \frac{-2 \hat{i}+\hat{j}+2 \hat{k}}{3}$ and $\frac{-4 \hat{j}-3 \hat{k}}{5}$ (A) $\frac{1}{\sqrt{51}}(-\hat{i}+5 \hat{j}-5 \hat{k})$
$\frac{1}{\sqrt{51}}(\hat{i}-5 \hat{j}+5 \hat{k})$ (C) $\frac{1}{\sqrt{51}}(\hat{i}+5 \hat{j}-5 \hat{k})$ (D) $\frac{1}{\sqrt{51}}(\hat{i}+5 \hat{j}+5 \hat{k})$
318. Three points whose position vectors are $\vec{a}, \vec{b}, \vec{c}$ will be collinear if (A) $\lambda \vec{a}+\mu \vec{b}=(\lambda+\mu) \vec{c}$ (B) $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$ (C) $[\vec{a} \vec{b} \vec{c}]=0$ (D) none of these

- Watch Video Solution

319. Let $\vec{b}=4 \hat{i}+3 \hat{j}$ and \vec{c} be two vectors perpendicular to each other in the xy - plane. All vectors in the sme plane having projections 1 and 2 along \vec{b} and \vec{c}., respectively, are given by \qquad

- Watch Video Solution

320. If \vec{a}, \vec{b} and \vec{c} are non coplnar and non zero vectors and \vec{r} is any vector in space then $[\vec{c} \vec{r} \quad \vec{b}] \vec{a}+[\vec{a} \vec{r} \vec{c}] \vec{b}+[\vec{b} \vec{r} \quad \vec{a}] c=$
$\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
(B) $[\vec{a} \vec{b} \vec{c}] \vec{r}$ (C) $\frac{\vec{r}}{[\vec{a} \vec{b} \vec{c}]}$
(D) $\vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$
321. if $\vec{a}, \vec{b}, \vec{c}$ are non coplanar non-zero vectors such that $\vec{b} \times \vec{c}=\vec{a} \times \vec{b}=\vec{c}$ and $\vec{c} \times \vec{a}=\vec{b}$ then $|\vec{a}|+|\vec{b}|+|\vec{c}|$ is equal to

- Watch Video Solution

322. If $\vec{a}, \vec{b}, \vec{c}$ be non coplanar vectors and $\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}$,
$\vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}, \quad \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$ then \quad (A) $\vec{p} \cdot \vec{a}=1 \quad$ (B)
$\vec{p} \cdot \vec{a}+\vec{q} \cdot \vec{b}+\vec{r} \cdot \vec{c}=3$ (C) $\vec{p} \cdot \vec{a}+\vec{q} \cdot \vec{b}+\vec{r} \cdot \vec{c}=0$ (D) none of these

- Watch Video Solution

323. If $\vec{a}, \vec{b}, \vec{c}$ are any there vectors then $(\vec{a} \times \vec{b}) \times \vec{c}$ is a vector (A) perpendicular to $\vec{a} \times \vec{b}$ (B) coplanar with \vec{a} and \vec{b} (C) parallel to \vec{c} (D) parallel to either \vec{a} or \vec{b}

- Watch Video Solution

324. If $\vec{c}=\vec{a} \times \vec{b}$ and $\vec{b}=\vec{c} \times \vec{a}$ then (A) $\vec{a} \cdot \vec{b}=\vec{c}^{2}$
$\vec{c} \cdot \vec{a} \cdot=\vec{b}^{2}$ (C) $\vec{a} \perp \vec{b}$ (D) $\vec{a}|\mid \vec{b} \times \vec{c}$

- Watch Video Solution

325. If $\vec{x} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{x} \perp \vec{a}$ then \vec{x} is equal to (A)
$\frac{(\vec{b} \times \vec{c}) \times \vec{a}}{\vec{b} \cdot \vec{a}}$
(B) $\left(\frac{\vec{b} \times(\vec{a} \times \vec{c})}{\vec{b} \cdot \vec{c}}\right)$
(C) $\left(\frac{\vec{a} \times(\vec{c} \times \vec{b})}{\vec{a} \cdot \vec{b}}\right)$
(D) none of these

- Watch Video Solution

326. The resolved part of the vector \vec{a} along the vector $\vec{b} i s \vec{\lambda}$ and that perpendicular to $\vec{b} i s \vec{\mu}$. Then (A) $\vec{\lambda}=\frac{(\vec{a} \cdot \vec{b})}{\vec{a}^{2}}$
$\vec{\lambda}=\frac{(\vec{a} \cdot \vec{b}) \cdot \vec{b}}{\vec{b}^{2}}$
(C) $\vec{\mu}=\frac{(\vec{b} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}}{\vec{b}^{2}}$
$\vec{\mu}=\frac{\vec{b} \times(\vec{a} \times \vec{b})}{\vec{b}^{2}}$

- Watch Video Solution

327. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are any for vectors then $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$ is a vector (A) perpendicular to $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ (B) along the the line intersection of two planes, one containing \vec{a}, \vec{b} and the other containing \vec{c}, \vec{d}. (C) equally inclined both $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$ (D) none of these

- Watch Video Solution

328. If $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} x(\vec{b} \times \vec{c})$ then (A) $(\vec{c} \times \vec{a}) \times \vec{b}=0$
(B) $\vec{b} \times(\vec{c} \times \vec{a})=0$ (C) $\vec{c} \times(\vec{a} \times \vec{b})=0$ (D) none of these

- Watch Video Solution

329.

$\vec{b}=(\tan \alpha,-1,2 \sqrt{\sin \alpha / 2}) \operatorname{and} \vec{c}=\left(\tan \alpha, \tan \alpha,-\frac{3}{\sqrt{\sin \alpha / 2}}\right)$
are orthogonal and vector $\vec{a}=(1,3, \sin 2 \alpha)$ makes an obtuse angle with the z-axis, then the value of α is

- Watch Video Solution

330. If $a=\hat{i}+\hat{j}+\hat{k}$ and $b=\hat{i}-\hat{j}$, then vectors $((a \cdot \hat{i}) \hat{i}+(a \cdot \hat{j}) \hat{j}+(a \cdot \hat{k}) \hat{k}),\{(b \cdot \hat{i}) \hat{i}+(b \hat{j}) \hat{j}+(b \cdot \hat{k}) \hat{k}\}$ and $(\hat{i}$

- Watch Video Solution

331. If unit vectors \hat{i} and \hat{j} are at right angles to each other and $p=3 \hat{i}+4 \hat{j}, q=5 \hat{i}, 4 r=p+q$ and $2 s=p-q$, then

Watch Video Solution

332. If vectors \vec{a} and \vec{b} are non collinear then $\frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|}$ is (A) a unit vector (B) in the plane of \vec{a} and \vec{b} (C) equally inclined to \vec{a} and \vec{b} (D) perpendicular to $\vec{a} \times \vec{b}$

- Watch Video Solution

333. The position vectors of the points P and Q are $5 \hat{i}+7 \hat{j}-2 \hat{k}$ and $-3 \hat{i}+3 \hat{j}+6 \hat{k}$, respectively. Vector $\vec{A}=3 \hat{i}-\hat{j}+\hat{k} \quad$ passes through point P and vector $\vec{B}=-3 \hat{i}+2 \hat{j}+4 \hat{k}$ passes through point Q . A third vector $2 \hat{i}+7 \hat{j}-5 \hat{k}$ intersects vectors A and B. Find the position vectors of points of intersection.

(D) Watch Video Solution

334. The vectors $\vec{a}=3 \hat{i}-2 \hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}-2 \hat{k}$ are the adjacent sides of a paralleogram. The angle between its diagonals is. \qquad

Watch Video Solution

335. The vectors $a \hat{i}+2 a \hat{j}-3 a \hat{k},(2 a+1) \hat{i}+(2 a+3) \hat{j}+(a+1) \hat{k}$ and $(3 a+5) \hat{i}+(a+5) \hat{j}+(a+2) \hat{k}$ are non coplanasr for a belonging to the set (A) R-\{0\}(B) $(0, \infty)(\mathrm{C})(-\mathrm{oo}, 1)(D)(1, \mathrm{oo})^{\prime}$

- Watch Video Solution

336. The volume of the tetrahedron whose vertices are the points with positon vectors $\hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k} \quad$ and $7 \hat{i}-4 \hat{j}+7 \hat{k}$ is 11 cubic units if the value of λ is
337. If \vec{a} satisfies $\vec{a} \times(\hat{i}+2 \hat{j}+\hat{k})=\hat{i}-\hat{k}$ then \vec{a} is equal to

- Watch Video Solution

338. If $\overrightarrow{D A}=\vec{a}, \overrightarrow{A B}=\vec{b}$ and $\overrightarrow{C B}=k \vec{a}$ wherek >0 and X, Y are the midpoint of $D B$ and $A C$ respectively such that $|\vec{a}|=17$ and $|\overrightarrow{X Y}|=4$, then k is equal to (A) $\frac{9}{17}$ (B) $\frac{8}{17}$ (C) $\frac{25}{17}$ (D) $\frac{4}{17}$

- Watch Video Solution

339. \vec{a} and \vec{c} are unit vectors and $|\vec{b}|=4$ the angle between \vec{a} and $\vec{b} i s \cos ^{-1}(1 / 4)$ and $\vec{b}-2 \vec{c}=\lambda \vec{a}$ the value of λ is

- Watch Video Solution

340. If the resultant of three forces
$\vec{F}_{1}=p \hat{i}+3 \hat{j}-\hat{k}, \vec{F}_{2}=6 \hat{i}-\hat{k} a n d \vec{F}_{3}=-5 \hat{i}+\hat{j}+2 \hat{k}$ acting on a
particle has magnitude equal to 5 units, then the value of p is a. $-6 \mathrm{~b} .-4$
c. 2 d. 4

- Watch Video Solution

341. If \vec{a} and \vec{b} are two unit vectors perpendicular to each other and $\vec{c}=\lambda_{1} \vec{a}+\lambda_{2} \vec{b}+\lambda_{3}(\vec{a} \times \vec{b})$ then the following is (are) true

- Watch Video Solution

342. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ then
$(\vec{a}-\vec{d})=\lambda(\vec{b}-\vec{c}) \quad$ (B) $\quad \vec{a}+\vec{d}=\lambda(\vec{b}+\vec{c})$
$(\vec{a}-\vec{b})=\lambda(\vec{c}+\vec{d})$ (D) none of these

- Watch Video Solution

343. If A, B, C are three points with position vectors $\vec{i}+\vec{j}, \vec{i}-\hat{j}$ and $p \vec{i}+q \vec{j}+r \vec{k}$ respectiey then the points are
collinear if (A) $p=q=r=0$ (B) $p=q r=1$ (C) $p=q, r=0$
$p=1, q=2, r=0$

- Watch Video Solution

344. If $|\vec{a}|=4,|\vec{b}|=2 \quad$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$ then $(\vec{a} \times \vec{b})^{2}$ is (A) 48 (B) $(\vec{a})^{2}$ (C) 16 (D) 32

- Watch Video Solution

345. If unit vectors \vec{a} and \vec{b} are inclined at an angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$, then θ lies in the interval

- Watch Video Solution

346. The vectors $2 \hat{i}-m \hat{j}+3 \hat{k}$ and $(1+m) \hat{i}-2 m \hat{j}+\hat{k}$ include an acute angle for
347. The vectors $\vec{a}=x \hat{i}-2 \hat{j}+5 \hat{j}$ and $\vec{b}=\hat{i}+y \hat{j}-z \hat{k}$ are collinear if (A) $x=1, y=-2, z=-5$ (B) $x=\frac{1}{2}, y=-4, z=-10$
$x=-\frac{1}{2}, y=4, z=10$ (D) none of these

- Watch Video Solution

348. $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{j}+2 \hat{j}-\hat{k}, \vec{c}=\hat{i}+\hat{j}-2 \hat{k}$. A vector coplanar with \vec{b} and \vec{c}. Whose projection on \vec{a} is magnitude $\sqrt{\frac{2}{3}}$ is

- Watch Video Solution

349.

The
vectors
$(x, x+1, x+2),(x+3, x+3, x+5)$ and $(x+6, x+7, x+8)$ are coplanar for (A) all values of x (B) $x<0$ (C) $x>0$ (D) none of these
350. If $\vec{a}, \vec{b}, \vec{c}$ are three non coplanar vectors such that $\vec{r}_{1}=\vec{a}-\vec{b}+\vec{c}, \vec{r}_{2}=\vec{b}+\vec{c}-\vec{a}, \vec{r}_{3}=\vec{c}+\vec{a}+\vec{b}, \vec{r}=2 \vec{a}$ then
(A) $\lambda_{1}=\frac{7}{2}$
(B) $\lambda_{1}+\lambda_{2}=3$
(C) $\lambda_{2}+\lambda_{3}=2$
(D) $\lambda_{1}+\lambda_{2}+\lambda_{3}=4$

- Watch Video Solution

351. A parallelogram is constructed on the vectors
$\vec{a}=3 \vec{\alpha}-\vec{\beta}, \vec{b}=\vec{\alpha}+3 \vec{\beta} \cdot I f|\vec{\alpha}|=|\vec{\beta}|=2$ and angle between $\vec{\alpha}$ and $\vec{\beta}$ is $\frac{\pi}{3}$ then the length of a diagonal of the parallelogram is

- Watch Video Solution

352. If vector $\vec{a}+\vec{b}$ bisects the angle between \vec{a} and \vec{b}, then prove that $|\vec{a}|=|\vec{b}|$.
353. Assertion:Points A, B, C are collinear, Reason: $\overrightarrow{A B} \times \overrightarrow{A C}=0$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

354. Assetion: $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=[\vec{a} \vec{c} \vec{d}] \vec{b}-[\vec{b} \vec{c} \vec{d}] \vec{a}$ Reason: $(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{b} \cdot \vec{c}) \vec{a}$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

355. Assertion: If $|\vec{a}|=|\vec{b}|=|\vec{a}+\vec{b}|=1$, then angle between \vec{a} and $\vec{b} i s \frac{2 \pi}{3}$, Reason: $|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2(\vec{a} \cdot \vec{b}) \mid$

Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

356. Assertion: If the magnitude of the sum of two unit vectors is a unit vector, then magnitude of their differnce is $\sqrt{3}$ Reason: $|\vec{a}|+|\vec{b}|=|\vec{a}+\vec{b}|$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

357. Assertion : Suppose $\hat{a}, \hat{b}, \hat{c}$ are unit vectors such that $\hat{a}, \hat{b}=\hat{a} . \hat{c}=0$ and the angle between \hat{b} and $\hat{c} i s \frac{\pi}{6}$ than he vector \widehat{a} can be represented
as $\widehat{a}= \pm 2(\hat{b} \times \hat{c})$, Reason: $\widehat{a}= \pm \frac{\hat{b} \times \hat{c}}{|\hat{b} \times \hat{c}|}$
(A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

358. Assertion: Thevalue of expression
$\hat{i} .(\hat{j} \times \hat{k})+\hat{j} .(\hat{k} \times \hat{i})+\hat{k} .(\hat{i} \times \hat{j})$ is equal to 3, Reason: If $\hat{a}, \hat{b}, \hat{c}$ are mutually perpendicular unit vectors, then $[\hat{a} \hat{b} \hat{c}]=1$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

359. Assertion ABCDEF is a regular hexagon and $\overrightarrow{A B}=\vec{a}, \overrightarrow{B C}=\vec{b}$ and $\overrightarrow{C D}=\vec{c}$, then $\overrightarrow{E A}$ is equal to $-(\vec{b}+\vec{c})$,

Reason: $\overrightarrow{A E}=\overrightarrow{B D}=\overrightarrow{B C}+\overrightarrow{C D}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

360. Assertion: If $\vec{A}, \vec{B}, \vec{C}$ are any three non coplanar vectors then $\frac{\vec{A} \cdot(\vec{B} \times \vec{C})}{(\vec{C} \times \vec{A}) \cdot \vec{B}}+\frac{\vec{B} \cdot(\vec{A} \times \vec{c})}{\vec{C} \cdot(\vec{A} \times \vec{B})}=0$,
$[\vec{a} \vec{b} \quad \vec{c}] \neq[\vec{b} \vec{c} \vec{a} \quad \vec{a}]$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

361. Assertion: \vec{p}, \vec{q} and \vec{r} are coplanar. Reason: Vectros $\vec{p}, \vec{q}, \vec{r}$ are linearly independent. (A) Both A and R are true and R is the correct
explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

362. Assertion: $\vec{r} \cdot \vec{a}$ and \vec{b} are thre vectors such that \vec{r} is perpendicular to \vec{a}. If $\vec{r} \times \vec{a}=\vec{b}$ then $\vec{r}=\frac{\vec{a} \times \vec{b}}{\vec{a} . \vec{a}}$, Reason: $\vec{r} \cdot \vec{a}=0$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

363. Assertion:
$\vec{r}=l(\vec{a} \times \vec{b})+m(\vec{b} \times \vec{c})+n(\vec{c} \times \vec{a})$, wherel, $m, n \quad$ are scalars and $[\vec{a} \vec{b} \vec{c}]=\frac{1}{2}$, thenl $+m+n=2 \vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})$. Reason: $\vec{a}, \vec{b}, \vec{c}$ are coplanar (A) Both A and R are true and R is the
correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

364.

Assertion:
$\vec{x} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{x} \perp \vec{a}$ then $\vec{x}=\frac{(\vec{b} \times \vec{c}) \times \vec{a}}{\vec{a} \cdot \vec{b}}$, Reason:
$\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

365.

$\overrightarrow{A B}=3 \hat{i}-3 \hat{k}$ and $\overrightarrow{A C}=\hat{i}-2 \hat{j}+\hat{k}$, then,$|\overrightarrow{A M}|=\sqrt{6} \quad$ Reason, $\overrightarrow{A B}+\overrightarrow{A C}=2 \overrightarrow{A M}$
(A) Both A and R are true and R is the correct explanation of $A(B)$ Both A
and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

366.

Assertion: $\quad|\vec{a}+\vec{b}|<|\vec{a}-\vec{b}|$,
Reason:
$|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+|\vec{b}|^{2}+2 \vec{a} \cdot \vec{b}$. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

367. Assertion: In $\triangle A B C, \overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=0 \quad$ Reason: If $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}$ the $\overrightarrow{A B}=\vec{a}+\vec{b}$ (triangle law of addition) (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

368. Assertion: If I is the incentre of $\triangle A B C$, then $|\operatorname{vec}(B C)| \operatorname{vec}(I A)+|\operatorname{vec}(C A)| \operatorname{vec}(I B)+|\operatorname{vec}(A B)| \operatorname{vec}(I C)=0$

Reason:IfOisthe or ig \in, thentheposition \longrightarrow rofcentroidof /_ $\mathrm{ABCis} \frac{\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}}{3}$

- Watch Video Solution

369. Assertion: $\vec{a}=\hat{i}+p \hat{j}+2 \hat{k}$ and $\hat{b}=2 \hat{i}+3 \hat{j}+q \hat{k}$ are parallel vectors

$$
\text { if } p=\frac{3}{2}, q=4
$$

Reason:
If
$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ are parallel then $a_{-} 1 / b_{-} 1=a_{-} 2 / b_{-} 2=a_{-} 3 / b_{-} 3$. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

370. Assertion: Let $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=\hat{j}-\hat{k}$ be two vectors. Angle between $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}=90^{\circ}$

Reason: Projection of $\vec{a}+\vec{b}$ on $\vec{a}-\vec{b}$ is zero
(A) Both A and R are true and R is the correct explanation of A
(B) Both A and R are true R is not te correct explanation of A
(C) A is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

371. Assertion: $\vec{c}, 4 \vec{a}-\vec{b}$, and \vec{a}, \vec{c} are coplanar.

Reason Vector $\vec{a}, \vec{b}, \vec{c}$ are linearly dependent.
(A) Both A and R are true and R is the correct explanation of A
(B) Both A and R are true R is not te correct explanation of A
(C) A is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

372. Assertion: $|\vec{a}|=|\vec{b}|$ does not imply that $\vec{a}=\vec{b}$, Reason: If $\vec{a}=\vec{b}$, then $|\vec{a}|=|\vec{b}|$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

373. Assertion: If $\vec{a}, \vec{b}, \vec{c}$ are unit such that $\vec{a}+\vec{b}+\vec{c}=0$ then $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=-\frac{3}{2}$,
$(\vec{x}+\vec{y})^{2}=|\vec{x}|^{2}+|\vec{y}|^{2}+2(\vec{x} \cdot \vec{y})$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

374. Assertion: Three points with position vectors $\vec{a} s, \vec{b}, \vec{c}$ are collinear if $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=0$ Reason: Three points A, B, C
are collinear Iff $\overrightarrow{A B} \times \overrightarrow{A C}=\overrightarrow{0}$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

375. Assertion: If as force \vec{F} passes through $Q(\vec{b})$ then moment of force \vec{F} about $\mathrm{P}(\vec{a})$ is $\vec{F} \times \vec{r}$, where $\vec{r}=\overrightarrow{P Q}$, Reason Moment is a vector. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

376. Let $\mathrm{A}(\vec{a})$, $\mathrm{B}(\vec{b})$ and $\mathrm{C}(\vec{c})$ be the vertices of the triangle with circumcenter at origin. Assertion: The nine point centre wil be $\left(\frac{\vec{a}+\vec{b}+\vec{c}}{2}\right)$, Reason: Centroid of $\triangle A B C$ is $\left(\frac{\vec{a}+\vec{b}+\vec{c}}{3}\right)$
and nine point centre is the middle point of the line segment joining
circumcentre and orthocentre. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

377. Assertion: The scalar product of a force \vec{F} and displacement \vec{r} is equal to the work done.

Reason: Work done is not a scalar
(A) Both A and R are true and R is the correct explanation of A
(B) Both A and R are true R is not te correct explanation of A
(C) A is true but R is false.
(D) A is false but R is true.

- Watch Video Solution

378. Assertion: In a $\triangle A B C, \overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=0$, Reason: If $\overrightarrow{A B}=\vec{a}, \overrightarrow{)} B C)=\vec{b}$ then $\vec{C}=\vec{a}+\vec{b}$ (triangle law of addition) (A)

Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false.
(D) A is false but R is true.

(Watch Video Solution

379. Assertion: For $a=-\frac{1}{\sqrt{3}}$ the volume of the parallelopiped formed by vectors $\hat{i}+a \hat{j}, a \hat{i}+\hat{j}+\hat{k}$ and $\hat{j}+a \hat{k}$ is maximum. Reason. The volume o the parallelopiped having the three coterminous edges $\vec{a} \cdot \vec{b}$ and $\vec{c}=|[\vec{a} \vec{b} \vec{c}]|$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

380. Assertion: If \vec{a} is a perpendicular to \vec{b} and \vec{c}, then $\vec{a} \times(\vec{b} \times \vec{c})=0$ Reason: If \vec{b} is perpendicular to \vec{c} then $\vec{b} \times \vec{c}=0(\mathrm{~A})$ Both A and R are true and R is the correct
explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

381. Assertion: If $|\vec{a}|=2,|\vec{b}|=3|2 \vec{a}-\vec{b}|=5$, then $|2 \vec{a}+\vec{b}|=5$, Reason: $|\vec{p}-\vec{q}|=|\vec{p}+\vec{q}|$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

382. Statement I: If in a $\quad \triangle A B C, B C=\frac{p}{|p|}-\frac{q}{|q|} \quad$ and $C=\frac{2 p}{|p|},|p| \neq|q|$, then the value of $\cos 2 A+\cos 2 B+\cos 2 C$ is -1 .

Statement II: If in $\triangle A B C, \angle C-90^{\circ}$, then $\cos 2 A+\cos 2 B+\cos 2 C=-1$

- Watch Video Solution

$\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ the $(\vec{a}-\vec{d})$
perpendicular to $(\vec{b}-\vec{c})$., Reason : If \vec{p} is perpendicular to \vec{q} then $\vec{p} \cdot \vec{q}=0$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

384. Assertion: If $\vec{r} \cdot \vec{a}=0, \vec{r} \cdot \vec{b}=0, \vec{r} \cdot \vec{c}=0$ for some non zero vector \vec{r} e then $\vec{a}, \vec{b}, \vec{c}$ are coplanar vectors. Reason: If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then $\vec{a}+\vec{b}+\vec{c}=0$ (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

385. Assertion: If \vec{a} and \vec{b} re reciprocal vectors, then $\vec{a} \cdot \vec{b}=1$, Reason: If $\vec{a}=\lambda \vec{b}, \lambda \varepsilon R^{+}$and $|\vec{a}||\vec{b}|=1$, then \vec{a} and \vec{b} are reciprocal. (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

386. Assertion: Let \vec{a} and \vec{b} be any two vectors $(\vec{a} \times \hat{i}) \cdot(\vec{b} \times \hat{i})+(\vec{a} \times \hat{j}) \cdot(\vec{b} \times \hat{j})+(\vec{a} \times \hat{k}) \cdot(\vec{b} \times \hat{k})=2 \vec{a}$
(A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

387. Assertion: The vector product of a force \vec{F} and displacement \vec{r} is equal to the work done. Reason: Work is not a vector. (A) Both A and R are
true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of $A(C) A$ is true but R is false. (D) A is false but R is true.

- Watch Video Solution

388. Consider three vectors \vec{a}, \vec{b} and \vec{c}. Vectors \vec{a} and \vec{b} are unit vectors having an angle θ between them For vector veca, $|\vec{a}|^{2}=\vec{a} \cdot \vec{a}$ If $\vec{a} \perp \vec{b}$ and $\vec{a} \perp \vec{c}$ then $\vec{a}|\mid \vec{b} \times \vec{c} \quad$ If $\vec{a}| \mid \vec{b}$, then $\vec{a}=t \vec{b}$ Now answer the following question: The value of $\sin \left(\frac{\theta}{2}\right)$ is (A) $\frac{1}{2}|\vec{a}-\vec{b}|$ (B) $\frac{1}{2}|\vec{a}+\vec{b}|$ (C) $|\vec{a}-\vec{b}|$ (D) $|\vec{a}+\vec{b}|$

- Watch Video Solution

389. Consider three vectors \vec{a}, \vec{b} and \vec{c}. Vectors \vec{a} and \vec{b} are unit vectors having an angle θ between them For vector veca, $|\vec{a}|^{2}=\vec{a} \cdot \vec{a}$ If $\vec{a} \perp \vec{b}$ and $\vec{a} \perp \vec{c}$ then $\vec{a}|\mid \vec{b} \times \vec{c}$ If $\vec{a}| \mid \vec{b}$, then $\vec{a}=t \vec{b}$ Now answer the following question: If \vec{c} is a unit vector and equal to the
sum of \vec{a} and \vec{b} the magnitude of difference between \vec{a} and \vec{b} is (A)
1 (B) $\sqrt{2}$ (C) $\sqrt{3}$ (D) $\frac{1}{\sqrt{2}}$

- Watch Video Solution

390. Let \vec{a}, \vec{b} and \vec{c} be unit vectors such that $\vec{a} \cdot \vec{b}=0=\vec{a} \cdot \vec{c}$. It the angle between \vec{b} and $\vec{c} i s \frac{\pi}{6}$ then find \vec{a}.

- Watch Video Solution

391. Consider three vectors \vec{a}, \vec{b} and \vec{c}. Vectors \vec{a} and \vec{b} are unit vectors having an angle θ between them For vector $\vec{a},|\vec{a}|^{2}=\vec{a} \cdot \vec{a}$ If $\vec{a} \perp \vec{b}$ and $\vec{a} \perp \vec{c}$ then $\vec{a}|\mid \vec{b} \times \vec{c}$ If $\vec{a}| \mid \vec{b}$, then $\vec{a}=t \vec{b}$ Now answer the following question: If

$$
\begin{aligned}
& |\vec{c}|=4, \theta=\cos ^{-1}\left(\frac{1}{4}\right) \text { and } \vec{c}=2 \vec{b}+t \vec{a}, \text { thent }=\text { (A) } 3,-4 \text { (B) } \\
& -3,4 \text { (C) } 3,4 \text { (D) }-3,-4
\end{aligned}
$$

- Watch Video Solution

$\vec{a}, \vec{b}, \vec{c}, \vec{d}, \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ and $(\vec{a} \times \vec{b}$
Now answer the following question: $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$ is equal to
(A) $\vec{a} \cdot(\vec{b} \times(\vec{c} \times \vec{d}))$
(B) $|\vec{a}|(\vec{b} \cdot(\vec{c} \times \vec{d}))$
$|\vec{a} \times \vec{b}| \cdot|\vec{c} \times \vec{d}|$ (D) none of these

- Watch Video Solution

393.

For
vectors
$\vec{a}, \vec{b}, \vec{c}, \vec{d}, \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ and $(\vec{a} \times \vec{b}$
Now answer the following question: $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$ is equal to
(A) $\vec{a} \cdot(\vec{b} \times(\vec{c} \times \vec{d}))$
(B) $\quad|\vec{a}|(\vec{b} \cdot(\vec{c} \times \vec{d}))$
$|\vec{a} \times \vec{b}| \cdot|\vec{c} \times \vec{d}|$ (D) none of these

- Watch Video Solution

$\vec{a}, \vec{b}, \vec{c}, \vec{d}, \vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$ and $(\vec{a} \times \vec{b}$
Now answer the following question: $\{(\vec{a} \times \vec{b}) \times \vec{c}\} \cdot \vec{d}$ would be equal to (A) $\vec{a} \cdot(\vec{b} \times(\vec{c} \times \vec{d}))$ (B) $((\vec{a} \times \vec{c}) \times \vec{b}) \cdot \vec{d}$
$(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$ (D) none of these

- Watch Video Solution

395. Unit vector along \vec{a} is denoted by \hat{a} if $|\vec{a}|=1, \vec{a}$ is called a unit vector). Also $\frac{\vec{a}}{|\vec{a}|}=\widehat{a}$ and $\vec{a}=|\vec{a}| \widehat{a}$. Suppose $\vec{a}, \vec{b}, \vec{c}$ are three non parallel unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}$ and $\vec{p} \times(\vec{q} \times \vec{r})=(\vec{p} \cdot \vec{r} \cdot \vec{q})-(\vec{p} \cdot \vec{q}) \vec{r}]$. Angle between \vec{a} and \vec{b} is (A) 90° (B) 30° (C) 60° (D) none of these

- Watch Video Solution

396. Unit vector along \vec{a} is denoted by \hat{a} if $|\vec{a}|=1, \vec{a}$ is called a unit vector). Also $\frac{\vec{a}}{|\vec{a}|}=\widehat{a}$ and $\vec{a}=|\vec{a}| \widehat{a}$. Suppose $\vec{a}, \vec{b}, \vec{c}$ are three non parallel unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}$ and $\vec{p} \times(\vec{q} \times \vec{r})=(\vec{p} \cdot \vec{r} \cdot \vec{q})-(\vec{p} \cdot \vec{q}) \vec{r}]$. Angle between \vec{a} and \vec{c} is (A) 120° (B) 60° (C) 30° (D) none of these

- Watch Video Solution

397. Unit vector along \vec{a} is denoted by \hat{a} (if $|\vec{a}|=1, \vec{a}$ is called a unit vector). Also $\frac{\vec{a}}{|\vec{a}|}=\widehat{a}$ and $\vec{a}=|\vec{a}| \widehat{a}$. Suppose $\vec{a}, \vec{b}, \vec{c}$ are three non parallel unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{1}{2} \vec{b}$ and $\vec{p} \times(\vec{q} \times \vec{r})=(\vec{p} \cdot \vec{r}) \vec{q}-(\vec{p} \cdot \vec{q}) \vec{r} \cdot|\vec{a} \times \vec{c}|$ is equal to (A) $\frac{1}{2}$ (B) $\frac{\sqrt{3}}{2}$ (C) $\frac{3}{4}$ (D) none of these

- Watch Video Solution

398. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ their product would be a vector if one cross product is folowed by other cross product ie $(\vec{a} \times \vec{b}) \times \vec{c}$ or $(\vec{b} \times \vec{c}) \times \vec{a} \quad$ etc. For any four vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ the product would be a vector with the help of sequential cross product or by cross product of two vectors obtained by corss product of two pair ie. $(\vec{a} \times(\vec{b} \times \vec{c})) \times \vec{d}$ or $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$. Now answer the following question: $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$ would be a vector (A) perpendicular to $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ (B) parallel to \vec{a} and \vec{c} (C) parallel to \vec{b} and \vec{d} (D) none of these

- Watch Video Solution

399. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ their product would be a vector if one cross product is folowed by other cross product ie $(\vec{a} \times \vec{b}) \times \vec{c}$ or $(\vec{b} \times \vec{c}) \times \vec{a} \quad$ etc. For any four vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ the product would be a vector with the help of sequential cross product or by cross product of two vectors obtained by corss
$(\vec{a} \times(\vec{b} \times \vec{c})) \times \vec{d}$ or $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$.
$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$ would be a (A) equally inclined with
$\vec{a}, \vec{b}, \vec{c}, \vec{d}$ (B) perpendicular with $(\vec{a} \times \vec{b}) \times \vec{c}$ and \vec{c} (C) equally inclined with $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$ (D) none of these

- Watch Video Solution

400. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ their product would be a vector if one cross product is folowed by other cross product ie $(\vec{a} \times \vec{b}) \times \vec{c}$ or $(\vec{b} \times \vec{c}) \times \vec{a}$ etc. For any four vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ the product would be a vector with the help of sequential cross product or by cross product of two vectors obtained by corss product of two pair ie. $(\vec{a} \times(\vec{b} \times \vec{c})) \times \vec{d}$ or $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$. Now answer the following question: $(\vec{a} \times \vec{b}) x(\vec{c} \times \vec{d})$ would be a (A) equally inclined \quad with $\quad \vec{a}, \vec{b}, \vec{c}, \vec{d}$
(B) perpendicular
with
$(\vec{a} \times \vec{b}) \times \vec{c}$ and \vec{c} (C) equally inclined with $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$
(D) none of these

- Watch Video Solution

401. If O be the origin the vector $\overrightarrow{O P}$ is called the position vector of point P. Also $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$. Three points are said to be collinear if they lie on the same stasighat line.Points A, B, C are collinear if one of them divides the line segment joining the others two in some ratio. Also points A, B, C are collinear if and only if $\overrightarrow{A B} \times \overrightarrow{A C}=\overrightarrow{0}$ Let the points A, B, and C having position vectors \vec{a}, \vec{b} and \vec{c} be collinear Now answer the following queston: $t \vec{a}+s \vec{b}=(t+s) \vec{c}$ where t and s are scalar (A) $t \vec{a}+s \vec{b}=(t+s) \vec{c}$ where t and s are scalar (B) $\vec{a}=\vec{b}$ (C) $\vec{b}=\vec{c}$ (D) none of these

- Watch Video Solution

402. If O be the origin the vector $\overrightarrow{O P}$ is called the position vector of point P. Also $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$. Three points are said to be collinear if they lie on the same stasighat line.Points A, B, C are collinear if one of them divides the line segment joining the others two in some ratio. Also points A, B, C are collinear if and only if $\overrightarrow{A B} \times \overrightarrow{A C}=\overrightarrow{0}$ Let the points A, B, and C having position vectors \vec{a}, \vec{b} and \vec{c} be collinear Now answer the following queston: The exists scalars x, y, z such that (A)
$x \vec{a}+y \vec{b}+z c \vec{c}=0$ and $x+y+z \neq 0$
$x \vec{a}+y \vec{b}+z c \vec{c} \neq 0$ and $x+y+z \neq 0$
$x \vec{a}+y \vec{b}+z \vec{c}=0$ and $x+y+z=0$ (D) none of these

- Watch Video Solution

403. If O be the origin the vector $\overrightarrow{O P}$ is called the position vector of point P. Also $\overrightarrow{A B}=\overrightarrow{O B}-\overrightarrow{O A}$. Three points are said to be collinear if they lie on the same stasighat line.Points A, B, C are collinear if one of them divides the line segment joining the others two in some ratio. Also points A, B, C are collinear if and only if $\overrightarrow{A B} \times \overrightarrow{A C}=\overrightarrow{0}$ Let the points A, B, and C
having position vectors \vec{a}, \vec{b} and \vec{c} be collinear Now answer the following queston: (A) $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c} \quad$ (B) $\quad \vec{a} \times \vec{b}=\vec{c}$
$\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=\overrightarrow{0}$ (D) none of these

- Watch Video Solution

404. Prove that $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=2[\vec{a} \vec{b} \vec{c}]$

- Watch Video Solution

405. $\vec{a} \cdot(\vec{b} \times \vec{c})$ is called the scalar triple product of $\vec{a}, \vec{b}, \vec{c}$ and is denoted by $[\vec{a} \vec{b} \vec{c}]$. If $\vec{a}, \vec{b}, \vec{c}$ are coplanar then $[\vec{a}+\vec{b} \vec{b}+\vec{c} \vec{c}+\vec{a}]=$ (A) 1 (B) -1 (C) 0 (D) none of these

(Watch Video Solution

406. $\vec{a} \cdot(\vec{b} \times \vec{c})$ is called the scalar triple product of $\vec{a}, \vec{b}, \vec{c}$ and is denoted by $[\vec{a} \vec{b} \vec{c}]$. If $\vec{a}, \vec{b}, \vec{c}$ are cyclically permuted the vaslue of the scalar triple product remasin the same. In a scalar triple product, interchange of two vectors changes the sign of scalar triple product but not the magnitude. in scalar triple product the the position of the dot and cross can be interchanged privided the cyclic order of vectors is preserved. Also the scaslar triple product is ZERO if any two vectors are equal or parallel. (A) [vecb-vecc vecc-veca veca-vecb] (B) [veca vecb vecc] ${ }^{\top}$ (C) 0 (D) none of these

- Watch Video Solution

407. Let A, B, C be vertices of a triangle $A B C$ in which B is taken as origin of reference and position vectors of A and C are \vec{a} and \vec{c} respectively. A line AR parallel to $B C$ is drawn from $A P R$ (P is the mid point of $A B$) meets $A C$ and Q and area of triangle $A C R$ is 2 times area of triangle $A B C$ Position vector of R in terms \vec{a} and \vec{c} is (A) $\vec{a}+2 \vec{c}$ (B) $\vec{a}+3 \vec{c}$ (C) $\vec{a}+\vec{c}$ (D) $\vec{a}+4 \vec{c}$

(D) Watch Video Solution

408. Let A, B, C be vertices of a triangle $A B C$ in which B is taken as origin of reference and position vectors of A and C are \vec{a} and \vec{c} respectively. A line $A R$ parallel to $B C$ is drawn from $A P R$ (P is the mid point of $A B$) meets $A C$ and Q and area of triangle $A C R$ is 2 times area of triangle $A B C$ Positon vector of Q for position vector of R in (1) is (A) $\frac{2 \vec{a}+3 \vec{c}}{5}$ (B) $\frac{3 \vec{a}+2 \vec{c}}{5}$
(C) $\frac{\vec{a}+2 \vec{c}}{5}$ (D) none of these

- Watch Video Solution

409. Let A, B, C be vertices of a triangle $A B C$ in which B is taken as origin of reference and position vectors of A and C are \vec{a} and \vec{c} respectively. A line $A R$ parallel to $B C$ is drawn from $A P R$ (P is the mid point of $A B$) meets
$A C$ and Q and area of triangle $A C R$ is 2 times area of triangle $A B C$: ($\mathrm{PQ}) /(\mathrm{QR})) .\left((\mathrm{AQ}) /(\mathrm{QC})\right.$ isequal $\rightarrow(B) \frac{1}{10}$ (C) $\frac{2}{5}$ (D) $\frac{3}{5}$

- Watch Video Solution

410. Let A, B, C represent the vertices of a triangle, where A is the origin and B and C have position b and c respectively.* Points M, N and P are taken on sides $A B, B C$ and $C A$ respectively, such that $\frac{A M}{A B}=\frac{B N}{B C}=\frac{C P}{C A}=\alpha$. If \triangle represent the area enclosed by the three vectors AN, BP and CM , then the value of α, for which \triangle is least

(Watch Video Solution

411. Let A, B, C represent the vertices of a triangle, where A is the origin and B and C have position b and c respectively.* Points M, N and P are taken on sides $A B, B C$ and $C A$ respectively, such that $\frac{A M}{A B}=\frac{B N}{B C}=\frac{C P}{C A}=\alpha$. If \triangle represent the area enclosed by the three vectors AN, BP and CM, then the value of α, for which \triangle is least

- Watch Video Solution

412. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=|\vec{b}|=|\vec{c}|=4$ and angle between \vec{a} and $\vec{b} i s \frac{\pi}{3}$ angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ and angle between \vec{c} and \vec{a} is $\frac{\pi}{3}$. The volume of the parallelopiped whose adjacent edges are represented by the vectors \vec{a}, \vec{b} and \vec{c} is (A) $24 \sqrt{2}$ (B) $24 \sqrt{3}$ (C) $32 \sqrt{92}$) (D) $32 \sqrt{ }$

- Watch Video Solution

413. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=|\vec{b}|=|\vec{c}|=4$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$ angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ and angle between \vec{c} and \vec{a} is $\frac{\pi}{3}$. The heighat of the parallelopiped whose adjacent edges are represented by the ectors \vec{a}, \vec{b} and \vec{c} is (A) $4 \sqrt{\frac{2}{3}}$
(B) $3 \sqrt{\frac{2}{3}}$ (C) $4 \sqrt{\frac{3}{2}}$ (D) $3 \sqrt{\frac{3}{2}}$

- Watch Video Solution

414. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=|\vec{b}|=|\vec{c}|=4$ and angle between \vec{a} and \vec{b} is $\frac{\pi}{3}$ angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ and angle between \vec{c} and \vec{a} is $\frac{\pi}{3}$. The volume of the tetrhedron whose adjacent edges are represented by the vectors \vec{a}, \vec{b} and \vec{c} is (A) $\frac{4 \sqrt{3}}{2}$ (B) $\frac{8 \sqrt{2}}{3}$
(C) $\frac{16}{\sqrt{3}}$ (D) $\frac{16 \sqrt{2}}{3}$

- Watch Video Solution

415. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that $|\vec{a}|=|\vec{b}|=|\vec{c}|=4$ and angle between \vec{a} and $\vec{b} i s \frac{\pi}{3}$ angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ and angle between \vec{c} and \vec{a} is $\frac{\pi}{3}$. The volume of the triangular prism whose adjacent edges are represented by the vectors \vec{a}, \vec{b} and \vec{c} is (A) $12 \sqrt{12}$ (B) $12 \sqrt{3}$ (C) $16 \sqrt{2}$ (D) $16 \sqrt{3}$

- Watch Video Solution

416. If \vec{a}, \vec{b} and \vec{c} be any three non coplanar vectors. Then the system of vectors \vec{a}, \vec{b}, and \vec{c}, which satisfies $\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{b}^{\prime}=\vec{c} \cdot \vec{c}^{\prime}=1$ and $\vec{a} \cdot \vec{b}^{\prime}=\vec{a} \cdot \vec{c}^{\prime}=\vec{b} \cdot \vec{a}^{\prime}=\vec{b} \cdot$ is called the reciprocal system to the vectors \vec{a}, \vec{b}, and \vec{c}. The value of $[\vec{a}, \vec{b}, \vec{c},]^{-1}$ is (A) $2[\vec{a} \vec{b} \vec{c}]$ (B) $[\vec{a} \vec{b} \vec{c}]$ (C) $3[\vec{a} \vec{b} \vec{c}]$ (D) 0

(Watch Video Solution

417. If \vec{a}, \vec{b} and \vec{c} be any three non coplanar vectors. Then the system of vectors \vec{a}, \vec{b}, and \vec{c}, which satisfies
$\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{b},=\vec{c} \cdot \vec{c}^{\prime}=1$
$\vec{a} \cdot \vec{b},=\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{a},=\vec{b} \cdot \vec{c},=\vec{c} \cdot \vec{a},=\vec{c} \cdot \vec{b},=0$
is
called the reciprocal system to the vectors \vec{a}, \vec{b}, and \vec{c}. The value of
$\left(\vec{a} \times \vec{a}^{\prime}\right)+\left(\vec{b} \times \vec{b}^{\prime}\right)+\left(\vec{c} \times \vec{c}^{\prime}\right)$ is (A) $\vec{a}+\vec{b}+\vec{c}$
$\vec{a}^{\prime}+\vec{b}^{\prime}+\vec{c}^{\prime}$ (C) 0 (D) none of these

- Watch Video Solution

418. If \vec{a}, \vec{b} and \vec{c} be any three non coplanar vectors. Then the system of vectors \vec{a}, \vec{b}, and \vec{c}, which satisfies $\vec{a} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{b}^{\prime}=\vec{c} \cdot \vec{c}^{\prime}=1 \vec{a} \cdot \vec{b}^{\prime}=\vec{a} \cdot \vec{b}^{\prime}=\vec{b} \cdot \vec{a}^{\prime}=\vec{b} \cdot \vec{c}^{\prime}=$ is called the reciprocal system to the vectors \vec{a}, \vec{b}, and \vec{c}. $[\vec{a}, \vec{b}, \vec{c}]\left(\left(\vec{a}, \times \vec{b}^{\prime}\right)+\left(\vec{b}^{\prime} \times \vec{c}^{\prime}\right)+\left(\vec{c}, \times \vec{a}^{\prime}\right)\right)=$
$\vec{a}+\vec{b}+\vec{c}$
(B) $\vec{a}+\vec{b}-\vec{c}$
(C) $2(\vec{a}+\vec{b}+\vec{c})$
$3\left(\vec{a}^{\prime}+\vec{b}^{\prime}+\vec{c}^{\prime}\right)$

Watch Video Solution

419. The vector equation of the plane through the point $2 \hat{i}-\hat{j}-4 \hat{k}$ and parallel to the plane $r \cdot(4 \hat{i}-12 \hat{j}-3 \hat{k})-7=0$ is

- Watch Video Solution

