d'doubtnut

MATHS

BOOKS - KC SINHA ENGLISH

VECTOR AND 3D - JEE MAINS AND ADVANCED QUESTIONS

Exercise

1. Given, two vectors are $\hat{i}-\hat{j}$ and $\hat{i}+2 \hat{j}$, the unit vector coplanar with the two vectors and perpendicular to first is:

- Watch Video Solution

2. The vector $\hat{i}+x \hat{j}+3 \hat{k}$ is rotated through an angle θ and is doubled in magnitude. It now becomes $4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}$. The values of x are
3. If the vectors \vec{a}, \vec{b} and \vec{c} form the sides, BC, CA and AB , respectively, of triangle $A B C$, then

Watch Video Solution

4. If the vectors $\vec{c}, \vec{a}=x \hat{i}+y \hat{j}+z \hat{k}$ and $\vec{b}=\hat{j}$ are such that \vec{a}, \vec{c} and \vec{b} form a right handed system then \vec{c} is

- Watch Video Solution

5. If $\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0$ and vectors $\left(1, a, a^{2}\right),\left(1, b, b^{2}\right)$ and $\left(1, c, c^{2}\right)$ are non-coplanar, then the product abc equal to:

- Watch Video Solution

6. $\vec{a}, \vec{b}, \vec{c}$ are 3 vectors, such that
$\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=1,|\vec{b}|=2,|\vec{c}|=3$, then $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c}$. is equal to (A) $0(B)-7(C) 7(D) 1$

- Watch Video Solution

7. If \vec{u}, \vec{v} and \vec{w} are three non coplanar vectors then $(\vec{u}+\vec{v}-\vec{w}) \cdot(\vec{u}-\vec{v}) \times(\vec{v}-\vec{w})$ equals (A) $\vec{u} \cdot(\vec{v} \times \vec{w})$
$\vec{u} \cdot \vec{w} \times \vec{v}$ (C) $2 \vec{u} \cdot(\vec{v} \times \vec{w})$ (D) 0

- Watch Video Solution

8. Consider points A, B, C annd D with position vectors $7 \hat{i}-4 \hat{j}+7 \hat{k}, \hat{i}-6 \hat{j}+10 \hat{k},-1 \hat{i}-3 \hat{j}+4 \hat{k}$ and $5 \hat{i}-\hat{j}+5 \hat{k}$, respectively. Then, ABCD is

- Watch Video Solution

9. If vectors $\overrightarrow{A B}=-3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a $\triangle A B C$, then the length of the median throught A is

- Watch Video Solution

10. Let $\vec{u}=\hat{i}+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$. If \widehat{n} is a unit vector such that $\vec{u} \cdot \widehat{n}=0$ and $\vec{v} \cdot \widehat{n}=0,|\vec{w} \cdot \widehat{n}|$ is equal to (A) 0 (B) 1 (C) 2 (D) 3

- Watch Video Solution

11. If \vec{a}, \vec{b} and \rightarrow are non-coplanar vectors and λ is a real number, then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+\mu \vec{c}$ and $(2 \lambda-1) \vec{c}$ are coplanar when

- Watch Video Solution

12. Let \vec{u}, \vec{v} and \vec{w} be such that $|\vec{u}|=1,|\vec{v}|=2$ and $|\vec{w}|=3$ if the projection of \vec{v} along $h \vec{u}$ is equal to that of \vec{w} along \vec{u} and vectors \vec{v} and \vec{w} are perpendicular to each other then $|\vec{u}-\vec{v}+\vec{w}|$ equals

- Watch Video Solution

13. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors which are positive noncollinear. If $\vec{a}+3 \vec{b}$ is collinear with \vec{c} and $\vec{b}+2 \vec{c}$ is collinear with \vec{a} then \vec{a} then $\vec{a}+3 \vec{b}+6 \vec{c}$ is:

- Watch Video Solution

14. If C is the mid point of $A B$ and P is any point outside $A B$ then (A)

$$
\begin{aligned}
& \overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}=0 \text { (B) } \overrightarrow{P A}+\overrightarrow{P B}+2 \overrightarrow{P C}=\overrightarrow{0} \text { (C) } \overrightarrow{P A}+\overrightarrow{P B}=\overrightarrow{P C} \\
& \text { (D) } \overrightarrow{P A}+\overrightarrow{P B}=2 \overrightarrow{P C}
\end{aligned}
$$

- Watch Video Solution

15. For any vector \vec{a} the value of $(\vec{a} \times \hat{i})^{2}+(\vec{a} \times \hat{j})^{2}+(\vec{a} \times \hat{k})^{2}$ is equal to

- Watch Video Solution

16. Let $\vec{a}=\vec{i}-\vec{k}, \vec{b}=x \vec{i}+\vec{j}+(1-x) \vec{k} \quad$ and $\vec{c}=y \vec{i}+x \vec{j}+(1+x-y) \vec{k}$. Then $[\vec{a} \vec{b} \vec{c}]$ depends on

- Watch Video Solution

17. The value of a, for which the points A, B, C with position vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $a \hat{i}-3 \hat{j}+\hat{k}$ respectively are the vertices of a right angled triangles with $C=\frac{\pi}{2}$ are

- Watch Video Solution

18. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}=x \hat{i}+(x-2) \hat{j}-\hat{k}$. If the vector \vec{c} lies in the plane of \vec{a} and \vec{b}, then x is equal to:

(D) Watch Video Solution

19. The non-zero vectors \vec{a}, \vec{b} and \vec{c} are related by $\vec{a}=8 \vec{b}$ and $\vec{c}=-7 \vec{b}$ angle between \vec{a} and \vec{c} is

Watch Video Solution

20. If $\vec{u}, \vec{v}, \vec{w}$ are noncoplanar vectors and p, q are real numbers, then the equality $[3 \vec{u}, p \vec{v}, p \vec{w}]-[p \vec{v}, \vec{w}, q \vec{u}]-[2 \vec{w}, q \vec{v}, q \vec{u}]=0$ holds for (1) exactly one value of $(p, q)(2)$ exactly two values of $(p, q)(3)$ more than two but not all values of $(p, q)(4)$ all values of (p, q)

- Watch Video Solution

21.
22. The vectors \vec{a} and \vec{b} are not perpendicular and \vec{c} and \vec{d} are two vectors satisfying : $\vec{b} \times \vec{c}=\vec{b} \times \vec{d}$ and $\vec{a} \cdot \vec{d}=0$. Then the \vec{d} is equal to (A) $\vec{c}+\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \vec{b}$ (B) $\vec{b}+\frac{\vec{b} \cdot \vec{c}}{\frac{\vec{a} \cdot \vec{b}}{c}} \vec{c}$ (C) $\vec{c}-\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \vec{b}$
$\vec{b}-\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \vec{c}$

- Watch Video Solution

23. If the vectors $p \hat{i}+\hat{j}+\hat{k}, \hat{i}+q \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+\hat{k}$ (where, $p \neq q \neq r \neq 1$ are coplanar), then the valueof $p q x-\{p+q-r\}$ is:

- Watch Video Solution

24. Let a and b be two unit vectors. If the vectors $c=a+2 b$ and $d=5 a-4 a$ are perpendicular to each other, then the angle between a and b is
25. Let $A B C D$ be a parallelogram such that
$\vec{A} B=\vec{q}, \vec{A} D=\vec{p}$ and $\angle B A D$ be an acute angle. If \vec{r} is the vector that coincides with the altitude directed from the vertex B to the side AD, then \vec{r} is given by
(1) $\vec{r}=3 \vec{q}-\frac{3(\vec{p} \dot{\vec{q}})}{(\vec{p} \dot{\vec{p}})} \vec{p}$
(3) $\quad \vec{r}=\vec{q}+\binom{\vec{p} \dot{\vec{q}}}{\vec{p} \dot{\vec{p}}} \vec{p}$
$\begin{aligned} \vec{r} & =-\vec{q}+\left(\frac{\vec{p} \dot{\vec{q}}}{\vec{p} \dot{\vec{p}}}\right) \vec{p} \\ \vec{r} & =-3 \vec{q}+\frac{3(\vec{p} \dot{\vec{q}})}{(\vec{p} \dot{\vec{p}})} \vec{p}\end{aligned}$

- Watch Video Solution

26. If vectors $\overrightarrow{A B}=-3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a $\triangle A B C$, then the length of the median throught A is
27. If $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=\lambda[\vec{a} \vec{b} \vec{c}]^{2}$ then λ is equal to (A) 1

2 (C) 3 (D) 0

- Watch Video Solution

28. Let \vec{a}, \vec{b} and \vec{c} be non-zero vectors such that no two are collinear and $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}$ if θ is the acute angle between vectors \vec{b} and \vec{c} then find value of $\sin \theta$.

- Watch Video Solution

29. let \vec{a}, \vec{b} and \vec{c} be three unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$. If \vec{b} is not parallel to \vec{c}, then the angle between \vec{a} and \vec{b} is:

- Watch Video Solution

30. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$. Let \vec{c} be a vector such that $|\vec{c}-\vec{a}|=3,|(\vec{a} \times \vec{b}) \times \vec{c}|=3$ and the angle between \vec{c} and $\vec{a} \times \vec{b}$ is 30° Find $\vec{a} \cdot \vec{c}$

- Watch Video Solution

31. Let \vec{a}, \vec{b}, and \vec{c} be three non-coplanar ubit vectors such the angle between every pair of them is $\frac{\pi}{3}$. if $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$, where p, q and r are scalars, then the value of $\frac{p^{2}+2 q^{2}+r^{2}}{q^{2}}$ is

- Watch Video Solution

32. If R^{2} if the magnitude of the projection vector of the vecrtor $\alpha \hat{i}+\beta \hat{j} o n \sqrt{3} \hat{i}+\hat{j} i s \sqrt{3}$ and if $\alpha=2+\sqrt{3} \beta$ then possible value (s) of $|\alpha|$ is /are

- Watch Video Solution

33. Let $\sqrt{3} \hat{i}+\hat{j}, \hat{i}+\sqrt{3} \hat{j}$ and $\beta \hat{i}+(1-\beta) \hat{j}$ respectively be the position vedors of the points A, B and C with respect the origin O. If the distance of C from the bisector of the acute angle between $O A$ and $O B$ is $\frac{3}{\sqrt{2}}$, then the sum all possible values of β is \qquad .

- Watch Video Solution

34. If the four points with position vectors
$-2 \hat{i}+\hat{j}+\hat{k}, \hat{i}+\hat{j}+\hat{k}, \hat{j}-\hat{k}$ and $\lambda \hat{j}+\hat{k}$ are coplanar then $\lambda=(\mathrm{A}) 1$
(B) $2 / 3$ (C) -1 (D) 0

- Watch Video Solution

35. Let O be the origin and let $P Q R$ be an arbitrary triangle. The point S is such that $\quad \overrightarrow{O P} \vec{O} Q+\vec{O} R \vec{O} S=\vec{O} R \vec{O} P+\vec{O} Q \vec{O} S=\vec{O} Q$
$\vec{O} R+\overrightarrow{O P} \vec{O} S$ Then the triangle PQ has S as its: circumcentre (b) orthocentre (c) incentre (d) centroid

(Watch Video Solution

36. A plane which passes through the point $(3,2,0)$ nd the line $\frac{x-4}{1}=\frac{y-7}{5}=\frac{z-4}{4}$ is (A) $x-y+z=1$ (B) $\mathrm{x}+\mathrm{y}+\mathrm{z}=5(C) \mathrm{x}+2 \mathrm{y}-\mathrm{z}=1$ (D) $2 x-y+z=5^{`}$

- Watch Video Solution

37. A rectangular parallelepiped is formed by planes drawn through the points $(2,3,5)$ and ($5,9,7$) parallel to the coordinate planes. The length of a diagonal of the parallelepiped is

- Watch Video Solution

38. The equation of the plane containing the line $\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}$
$a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$, where $a x_{1}+b y_{1}+c z_{1}=0 \mathrm{~b}$. $a l+b m+c n=0$ c. $\frac{a}{l}=\frac{b}{m}=\frac{c}{n}$ d. $l x_{1}+m y_{1}+n z_{1}=0$

- Watch Video Solution

39. The radius of the circle in which the sphere $x^{2}=y^{2}+z^{2}+2 z-2 y-4 z-19=0 \quad$ is cut by the plane $x+2 y+2 z+7=0$ is

Watch Video Solution

40. The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar, if

- Watch Video Solution

41. The two

$$
x=a y+b, z=c y+d \text { and } x=a^{\prime} y+b^{\prime}, z=c^{\prime} y+d^{\prime}
$$

pendicular to each other if

- Watch Video Solution

42. The shortest distance from the plane $12 x+y+3 z=327$ to the sphere $x^{2}+y^{2}+z^{2}+4 x-2 y-6 z=155$ is

- Watch Video Solution

43. Two systems of rectangular axes have the same origin. If a plane cuts them at distance a, b, candd $, b^{\prime}, c^{\prime}$ from the origin, then a.
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$
b.
$\frac{1}{a^{2}}-\frac{1}{b^{2}}-\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}-\frac{1}{a^{\prime 2}}-\frac{1}{b^{\prime 2}}-\frac{1}{c^{\prime 2}}=0$
c.
d.
$\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}+\frac{1}{a^{\prime 2}}+\frac{1}{b^{\prime 2}}+\frac{1}{c^{\prime 2}}=0$

- Watch Video Solution

44. A tetrahedron has vertices $\mathrm{O}(0,0,0), \mathrm{A}(1,2,1),, \mathrm{B}(2,1,3)$ and $\mathrm{C}(-1,1,2)$, the angle between faces $O A B$ and $A B C$ will be

- Watch Video Solution

$$
\begin{aligned}
& \text { 45. Distance between two parallel planes } \\
& 2 x+y+2 z=8 \text { and } 4 x+2 y+4 z+5=0 \text { is }
\end{aligned}
$$

- Watch Video Solution

46. A line makes an angle θ with each of the x -and z -axes. If the angle β, which it makes with the y-axis, is such that $\sin ^{2} \beta=3 \sin ^{2} \theta$, then $\cos ^{2} \theta$ equals a. $\frac{2}{3}$ b. $\frac{1}{5}$ c. $\frac{3}{5}$ d. $\frac{2}{5}$

- Watch Video Solution

47. A line with direction cosines proportional to $2,1,2$ meet each of the lines $x=y+a=z$ and $x+a=2 y=2 z$. The coordinastes of each of the points of intersection are given by (A) $(3 a, 2 a, 3 a),(a, a, 2 a)$
$(3 a, 2 a, 3 a),(a, a, a 0$ (C) $(3 a, 3 a, 3 a),(a, a, a)$ (D) $92 \mathrm{a}, 3 \mathrm{a}, 3 \mathrm{a}),(2 \mathrm{a}, \mathrm{a}, \mathrm{a})$

- Watch Video Solution

48.

$x=-1+s, y=3-\lambda s, z=1+\lambda s$ and $x=\frac{t}{2}, y=1+t, z=2-t$
, with parameters s and t, respectively, are coplanar, then find λ.

- Watch Video Solution

$$
\begin{aligned}
& \text { 49. The } \begin{array}{c}
\text { intersection } \\
x^{2}+y^{2}+z^{2}+7 x-2 y-z=13 a n d x^{2}+y^{2}+z^{2}-3 x+3 y+4 z=8
\end{array}
\end{aligned}
$$ is the same as the intersection of one of the spheres and the plane a.

$$
x-y-z=1 \text { b. } x-2 y-z=1 \text { c. } x-y-2 z=1 \text { d. } 2 x-y-z=1
$$

50. If the plane $2 a x-3 a y+4 a z+6=0$ passes through the mid point of the line joining the centre of the spheres $x^{2}+y^{2}+z^{2}+6 x-8 y-2 z=13$ and $x^{2}+y^{2}+z^{2}-10 x+4 y-2 z=\{$
, then α equals

Watch Video Solution

51. The perpendicular distance between the line
$\vec{r}=2 \hat{i}-2 \hat{j}+3 \hat{k}+\lambda(\hat{i}-\hat{j}+4 \hat{k}) \quad$ and \quad the plane
$\vec{r} \cdot(\hat{i}+5 \hat{j}+\hat{k})=5$ is :

- Watch Video Solution

52. If $\angle \theta$ between the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ is such that $\sin \theta=\frac{1}{3}$, the value of λ is

- Watch Video Solution

53. The angle between the lines $2 x=3 y=-z$ and $6 x=-y=-4 z$ is

- Watch Video Solution

54. The plane $x+2 y-z=4$ cuts the sphere $x^{2}+y^{2}+z^{2}-x+z-2=0$ in a circle of radius

- Watch Video Solution

55. pendicular to each other if

- Watch Video Solution

56. the image of the point $(-1,3,4)$ in the plane $x-2 y=0$ a. $\left(-\frac{17}{3}, \frac{19}{3}, 4\right)$ b. $(15,11,4)$ c. $\left(-\frac{17}{3}, \frac{19}{3}, 1\right)$ d. $\left(\frac{9}{5},-\frac{13}{5}, 4\right)$

- Watch Video Solution

57. If a line makes an angle of $\frac{\pi}{4}$ with the positive directions of each of x axis and y-axis, then the angle that the line makes with the positive direction of the z-axis is (1) $\frac{\pi}{6}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{4}$ (4) $\frac{\pi}{2}$

- Watch Video Solution

58. If $(2,3,5)$ is one end of a diameter of the sphere $x^{2}+y^{2}+z^{2}-6 x-12 y-2 z+20=0$, then the coordinates of the other end of the diameter are $(1)(4,9,-3)(2)(4,-3,3)(3)(4,3,5)$
(4) $(4,3,-3)$

- Watch Video Solution

59. Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angles α with the positive x -axis, then \cos α equals a. $\frac{1}{\sqrt{3}}$ b. $\frac{1}{2}$ c. 1 d. $\frac{1}{\sqrt{2}}$

- Watch Video Solution

60. The line passing through the points ($5,1, a$) and $(3, b, 1)$ crosses the yzplane at the point $\left(0, \frac{17}{2}, \frac{-13}{2}\right)$.Then (1) $a=2, b=8$ $a=4, b=6$ (3) $a=6, b=4$ (4) $a=8, b=2$

- Watch Video Solution

61. If the straight lines $\frac{x-1}{k}=\frac{y-2}{2}=\frac{z-3}{3} \quad$ and $\frac{x-2}{3}=\frac{y-3}{k}=\frac{z-1}{2}$ intersect at a point, then the integer k is equal to (1) -5 (2) 5 (3) 2 (4) -2

(D) Watch Video Solution

62. Let the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-\alpha z+\beta=0$. Then, (α, β) equals

- Watch Video Solution

63. The projections of a vector on the three coordinate axis are $6,3,2$ respectively. The direction cosines of the vector are (1) $6,-3,2$ (2) $\frac{6}{5}, \frac{-3}{5}, \frac{2}{5}$ (3) $\frac{6}{7}, \frac{-3}{7}, \frac{2}{7}$ (4) $\frac{-6}{7}, \frac{-3}{7}, \frac{2}{7}$

- Watch Video Solution

64. A line $A B$ in three-dimensional space makes angles 45° and 120° with the positive X-axis and The positive Y-axis, respectively. If $A B$ makes an acute angle θ with the positive Z-axis, then θ equals

- Watch Video Solution

65. Asertion: The point $A(3,1,6)$ is the mirror image of the point $B(1,3,4)$ in the plane $x-y+z=5$. Reason: The plane $x-y+z=5$ bisects he segment joining ${ }^{\wedge}(3,1,6)$ and $B(1,3,4)$. (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

- Watch Video Solution

66. If the angle between the line $x=\frac{y-1}{2}=(z-3)(\lambda)$ and the plane $x+2 y+3 z=4 i s \cos ^{-1}\left(\sqrt{\frac{5}{14}}\right)$, then λ equals

- Watch Video Solution

67. Statement-I The point $A(1,0,7)$ is the mirror image of the point $B(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$.

Statement-II The line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ bisect the line segment joining $A(1,0,7)$ and $B(1,6,3)$.

- Watch Video Solution

68. The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=z$ is

- Watch Video Solution

69. The length of the perpendicular drawn from the point $(3,-1,11)$ to the line $\frac{x}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ is

- Watch Video Solution

70. If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then the value of k is
71. An equation of the plane through the point $(1,0,0)$ and $(0,2,0)$ and at a distance $\frac{6}{7}$ units from origin is (A) $x-2 y+2 z+1=0$ $x-2 y+2 z-1=0(C) x-2 y+2 z+5=0(D)$ None of above`

- Watch Video Solution

72. Distance between two parallel planes
$2 x+y+2 z=8$ and $4 x+2 y+4 z+5=0$ is

- Watch Video Solution

73.

If
the
lines
$\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$
are
coplanar, then k can have
74. The image of the line $\frac{x-1}{3}=\frac{y-3}{1}=\frac{z-4}{-5}$ in the plane $2 x-y+z+3=0$ is the line

- Watch Video Solution

75. The angle between the lines whose direction cosines satisfy the equations $l+m+n=0$ and $l^{2}=m^{2}+n^{2}$ is

- Watch Video Solution

76. The distance of the point $(1,0,2)$ from the point of intersection of the line $\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane $x-y+z=16$, is

- Watch Video Solution

77. The equation of the plane containing the line $2 x-5 y+z=3 ; x+y+4 z=5 \quad$, and parallel to the plane,
$x+3 y+6 z=1$, is : (1) $2 x+6 y+12 z=13$ (2) $x+3 y+6 z=-7$ (3) $x+3 y+6 z=7(4) 2 x+6 y+12 z=-13$

- Watch Video Solution

78. If the line, $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the plane, $l x+m y-n=9$, then $l^{2}+m^{2}$ is equal to

- Watch Video Solution

79. The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=z$ is

- Watch Video Solution

80. If the image of the point $P(1,-2,3)$ in the plane, $2 x+3 y-4 z+22=0$ measured parallel to the line, $\frac{x}{1}=\frac{y}{4}=\frac{z}{5}$ is Q , then $P Q$ is equal to : $\sqrt{42}$ (2) $6 \sqrt{5}$ (3) $3 \sqrt{5}$ (4) $3 \sqrt{42}$

Watch Video Solution

81. The distance of the point $(1,3,-7)$ from the plane passing through the point $(1,-1,-1)$ having normal perpendicular to both the lines $\frac{x-1}{1}=\frac{y+2}{-2}=\frac{z-4}{3}$ and $\frac{x-2}{2}=\frac{y+1}{-1}=\frac{z+7}{-1}$ is

- Watch Video Solution

82. From a point $P(\lambda, \lambda, \lambda)$, perpendicular PQ and PR are drawn respectively on the lines $y=x, z=1$ and $y=-x, z=-1$. If P is such that $\angle Q P R$ is a right angle, then the possible value(s) of λ is (are)

- Watch Video Solution

83. In R_{3}, consider the planes $P_{1}: y=0$ and $P_{2}: x+z=1 . \operatorname{Let} P_{3}$ be a plane , different from P_{1} and P_{2}, which passes through the interesection of P_{1} and P_{2} I fhte distance of the ($0,1,0$) from p_{3} is 1 and
the distance of a point (α, β, γ) from P_{3} is 2 , then which of the following relations is (are) true?

- Watch Video Solution

84. The value of λ or which the straighat line $\frac{x-\lambda}{3}=\frac{y-1}{2+\lambda}=\frac{z-3}{-1}$ may lie on the plane $x-2 y=0$ (A) 2 (B) 0 (C) $-\frac{1}{2}$ (D) there is no such λ

- Watch Video Solution

85. Let P be the image of the point $(3,1,7)$ with respect to the plane x $y+z=3$. then the equation o the plane passing through P and containing the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$

- Watch Video Solution

