

MATHS

BOOKS - KC SINHA ENGLISH

VECTOR AND 3D - PREVIOUS YEAR QUESTIONS

Exercise

1. Let
$$\overrightarrow{a} = 2\hat{i} + \hat{j} + \hat{k}$$
, and $\overrightarrow{b} = \hat{i} + \hat{j}$ if c is a vector such that
 $\overrightarrow{a} \cdot \overrightarrow{c} = \left|\overrightarrow{c}\right|, \left|\overrightarrow{c} - \overrightarrow{a}\right| = 2\sqrt{2}$ and the angle between
 $\overrightarrow{a} \times \overrightarrow{b}$ and $\overrightarrow{i} s 30^{\circ}$, then $\left|\left(\overrightarrow{a} \times \overrightarrow{b}\right)\right| \times \overrightarrow{c}$ is equal to

Watch Video Solution

2. Let $e\overrightarrow{a} = \hat{i} + \hat{j} - \hat{k}$, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$ and \overrightarrow{c} be as unit vector perpendicular to veca and vecb*the*vecc=(*A*)1/sqrt(j+k)(*B*)1/sqrt(2)(j-k)(*C*)

1/sqrt(6) (i-2jk)(D)1/sqrt(6) (2i-j+k)`

3. ABCDEF is a regular hexagon with centre of the origin such that $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC}$ is equal to $\lambda(ED)$, then λ is:

Watch Video Solution

4. A non vector \overrightarrow{a} is parallel to the line of intersection of the plane determined by the vectors \overrightarrow{i} , \overrightarrow{i} + \overrightarrow{j} and thepane determined by the vectors \overrightarrow{i} - \overrightarrow{j} , \overrightarrow{i} + \overrightarrow{k} then angle between \overrightarrow{a} and \overrightarrow{i} - $2\overrightarrow{j}$ + $2\overrightarrow{k}$ is = (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$

5. If
$$\overrightarrow{a} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}}$$
 and $\overrightarrow{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$, then the value of $\left(2\overrightarrow{a} + \overrightarrow{b}\right) \cdot \left[\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{a} - 2\overrightarrow{b}\right)\right]$

6. Let P, Q, R and S be the points on the plane with position vectors -2i - j, 4i, 3i + 3jand - 3j + 2j, respectively. The quadrilateral PQRS must be a Parallelogram, which is neither a rhombus nor a rectangle Square Rectangle, but not a square Rhombus, but not a square

Watch Video Solution

7. Two adjacent sides of a parallelogram ABCD are given by $\overrightarrow{A}B = 2\hat{i} + 10\hat{j} + 11\hat{k}and\overrightarrow{A}D = -\hat{i} + 2\hat{j} + 2\hat{k}$. The side AD is rotated by an acute angle α in the plane of the parallelogram so that ADbecomes AD'. If AD' makes a right angle with the side AB, then the cosine of the angel α is given by $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4\sqrt{5}}{9}$

8. Let
$$\overrightarrow{a} = \overrightarrow{i} - \overrightarrow{k}, \overrightarrow{b} = x\overrightarrow{i} + \overrightarrow{j} + (1 - x)\overrightarrow{k}$$

 $\overrightarrow{c} = y\overrightarrow{i} + x\overrightarrow{j} + (1 + x - y)\overrightarrow{k}$. Then $\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$ depends on

and

Watch Video Solution

9. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three vectors of which every pair is non colinear. If the vector $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{b} + \overrightarrow{c}$ are collinear with the vector \overrightarrow{c} and \overrightarrow{a} respectively then which one of the following is correct? (A) $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ is a nul vector(B)veca+vecb+vecc*isaunit* \Longrightarrow r(C)veca+vecb+vecc $isa \longrightarrow rofmagnitude2units(D)$ veca+vecb+vecc` isd a vector of magnitude 3 units

Watch Video Solution

10.
$$\overrightarrow{a} = \frac{1}{\sqrt{10}} \left(3\hat{i} + \hat{k} \right)$$
 and $\overrightarrow{b} = \frac{1}{7} \left(2\hat{i} + 3\hat{j} - 6\hat{k} \right)$, then the value of $\left(2\overrightarrow{a} - \overrightarrow{b} \right)$. $\left[\left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \left(\overrightarrow{a} + 2\overrightarrow{b} \right) \right]$ is:

11. The vectors \overrightarrow{a} and \overrightarrow{b} are not perpendicular and \overrightarrow{c} and \overrightarrow{d} are two vectors satisfying : $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ and $\overrightarrow{a} \cdot \overrightarrow{d} = 0$. Then the \overrightarrow{d} is equal to (A) $\overrightarrow{c} + \frac{\overrightarrow{a} \cdot \overrightarrow{c}}{\overrightarrow{a} \cdot \overrightarrow{b}} \overrightarrow{b}$ (B) $\overrightarrow{b} + \frac{\overrightarrow{b} \cdot \overrightarrow{c}}{\overrightarrow{a} \cdot \overrightarrow{b}} \overrightarrow{c}$ (C) $\overrightarrow{c} - \frac{\overrightarrow{a} \cdot \overrightarrow{c}}{\overrightarrow{a} \cdot \overrightarrow{b}} \overrightarrow{b}$ (D) $\overrightarrow{b} - \frac{\overrightarrow{b} \cdot \overrightarrow{c}}{\overrightarrow{a} \cdot \overrightarrow{b}} \overrightarrow{c}$

Watch Video Solution

- 12. If the vector $8\hat{i} + a\hat{j}$ of magnitude 10 is the directionn of the vector
- $4\hat{i}-3\hat{j}$, then the value of a is equal to (A) 6 (B) 3 (C) -3 (D) -6

Watch Video Solution

13. If the angle between \overrightarrow{a} and \overrightarrow{c} is 25^0 the angle between \overrightarrow{b} and \overrightarrow{c} is 65^0 and $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c}$, then the angle between \overrightarrow{a} and \overrightarrow{b} is (A) 40^0 (B) 115^0 (C) 25^0 (D) 90^0

14. The positon vector of the centroid of the triangle ABC is 2i + 4j + 2k. If the position vector of the vector A is 2i + 6j + 4k., then the position $\xrightarrow{\longrightarrow} rofmidp \oint of BCis(A)2i+3j+k(B)$ 2i+3jk(C)2i-3j-k(D)-2i-3j-k

Watch Video Solution

15. The projection of the vector $2\hat{i}+a\hat{j}-\hat{k}$ on the vector $\hat{i}-2\hat{j}+\hat{k}is$

-5/sqrt(6)` then the value of a is equal to (A) 1 (B) 2 (C) -2 (D) 3

Watch Video Solution

16. Let
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} - \hat{j} - \hat{k}$ be three vectors. A vectors \overrightarrow{v} in the plane of \overrightarrow{a} and \overrightarrow{b} , whose projection on \overrightarrow{c} is $\frac{1}{\sqrt{3}}$ is given by

17. The vector(s) which is /are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$ and perpendicular to vector $\hat{i} + \hat{j} + \hat{k}$, is /are

Watch Video Solution

18. The angle between the line $\overrightarrow{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(2\hat{i} + 3\hat{j} + 4\hat{k})$ and the plane \overrightarrow{r} . $(\hat{i} + 2\hat{j} - 2\hat{k}) = 3$ is (A) 0^0 (B) 60^0 (C) 30^0 (D) 90^0

Watch Video Solution

19.Statement1:Lines
$$\overrightarrow{r} = \hat{i} + \hat{j} - \hat{k} + \lambda \left(3\hat{i} - \hat{j} \right)$$
 and $\overrightarrow{r} = 4\hat{i} - \hat{k} + \mu \left(2\hat{i} + 3\hat{k} \right)$ intersect.intersect.Statement2:If $\overrightarrow{b} \times \overrightarrow{d} = \overrightarrow{0}$,thenlines

 $\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$ and $\overrightarrow{r} = \overrightarrow{c} + \lambda \overrightarrow{d}$ do not intersect.

20. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \sqrt{29}$ and $\overrightarrow{a} \times \left(2\hat{i} + 3\hat{j} + 4\hat{k}\right) = \left(2\hat{i} + 3\hat{j} + 4\hat{k}\right) \times \overrightarrow{b}$, then possible value of $\left(\overrightarrow{a} + \overrightarrow{b}\right)$. $\left(-7\hat{i} + 2\hat{j} + 3\hat{k}\right)$ is (A) 0 (B) 3 (C) 4 (D) 8

21. If
$$\overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} are unit vectors satisfying $\left|\overrightarrow{a} - \overrightarrow{b}\right|^2 + \left|\overrightarrow{b} - \overrightarrow{c}\right|^2 + \left|\overrightarrow{c} - \overrightarrow{a}\right|^2 = 9$ then find the value of $\left|2\overrightarrow{a} + 5\right|^2$

Watch Video Solution

22. Let $\overrightarrow{PR} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\overrightarrow{SQ} = \hat{i} - 3\hat{j} - 4\hat{k}$ determine diagonals of a parallelogram PQRS. And $\overrightarrow{PT} = \hat{i} + 2\hat{j} + 3\hat{k}$ be onther vector. Then

the volume of the parallelepiped determined by the vectors $\overrightarrow{PT}, \overrightarrow{PQ}$ and \overrightarrow{PS} is

Watch Video Solution

23. Consider the set of eight vectors $V\Big[a\hat{i}+b\hat{j}+c\hat{k}\!:\!a,b,c\in\{1-1\}\Big].$

Three non-coplanar vectors cann be chosen from V in 2^p ways, then p is

Watch Video Solution

24. If \overrightarrow{a} and \overrightarrow{b} are non-collinear vector, find the value of x such that the vectors $\overrightarrow{\alpha} = (x-2)\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{\beta} = (3+2x)\overrightarrow{a} - 2\overrightarrow{b}$ are collinear.

Watch Video Solution

25. If vectors $\overrightarrow{AB} = -3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides

of a ΔABC , then the length of the median throught A is

26. If
$$\overrightarrow{a} \perp \overrightarrow{b}$$
 and $(\overrightarrow{a} + \overrightarrow{b}) \perp (\overrightarrow{a} + m\overrightarrow{b})$, then m= (A) -1 (B) 1 (C)
$$\frac{-|\overrightarrow{a}|^2}{|\overrightarrow{b}|^2}$$
 (D) 0

27. if \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit vector such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$. Then find the value of \overrightarrow{a} . $\overrightarrow{b} + \overrightarrow{b}$. $\overrightarrow{c} = \overrightarrow{c}$. \overrightarrow{a} .

Watch Video Solution

28. If
$$\overrightarrow{a}$$
 is perpendiculasr to both \overrightarrow{b} and \overrightarrow{c} then (A)
 $\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \overrightarrow{0}$ (B) $\overrightarrow{a} \times \left(\overrightarrow{b} x \overrightarrow{c}\right) = \overrightarrow{0}$ (C)
 $\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{0}$ (D) $\overrightarrow{a} + \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{0}$

29. If \overrightarrow{a} and \overrightarrow{b} are two non collinear unit vectors such that $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \sqrt{3}$, find $\left(2\overrightarrow{a} - 5\overrightarrow{b}\right)$. $\left(3\overrightarrow{a} + \overrightarrow{b}\right)$

Watch Video Solution

30. If the position vectors of the vertices of a triangle be $2\hat{i} + 4\hat{j} - \hat{k}$, $4\hat{i} + 5\hat{j} + \hat{k}$ and $3\hat{i} + 6\hat{j} - 3\hat{k}$, then the triangle is

Watch Video Solution

31. If (1, 2, 4) and $(2, -\lambda, -3)$ are the initial and terminal points of the vector $\hat{i} + 5\hat{j} - 7\hat{k}$ then the value λ is equal to (A) 7 (B) -7 (C) -5 (D) 5

$$\overrightarrow{u} = 5\overrightarrow{a} + 6\overrightarrow{b} + 7\overrightarrow{c}, v = 7\overrightarrow{a} + \overrightarrow{b} + 9\overrightarrow{c}$$
 and $\overrightarrow{w} = 3\overrightarrow{a} + 11\overrightarrow{b} + 5\overrightarrow{c}$
where $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non zero vectors. If $\overrightarrow{u} = l\overrightarrow{v} + m\overrightarrow{w}$ then the values
of I and m respectively are (A) $\frac{1}{2}, \frac{1}{2}$ (B) $\frac{1}{2}, -\frac{1}{2}$ (C) $-\frac{1}{2}, \frac{1}{2}$ (D) $\frac{1}{3}, \frac{1}{3}$

33. If
$$3\overrightarrow{p} + 2\overrightarrow{q} = \hat{i} + \hat{j} + \hat{k}$$
 and $3\overrightarrow{p} - 2\overrightarrow{q} = \hat{i} - \hat{j} - \hat{k}$ then the angle between \overrightarrow{p} and \overrightarrow{q} is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

Watch Video Solution

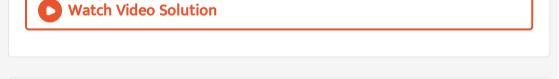
34. Equation of the plane containing the straight line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$ and $\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$ is

Watch Video Solution

Let

35. If the distance between the plane Ax - 2y + z = d. and the plane containing the lies $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and $\frac{x-2}{3} = \frac{4-3}{4} = \frac{z-4}{5}$ is $\sqrt{6}$, then |d| is **Watch Video Solution**

36. A parallelopied is formed by planes drawn through the points (2, 4, 5) and (5, 9, 7) parallel to the coordinate planes. The length of the diagonal of parallelopiped is



37. If P(x, y, z) is a point on the line segment joining Q(2,2,4) and R(3,5,6) such that the projection of \overrightarrow{OP} on the axes are $\frac{13}{9}, \frac{19}{5}, \frac{26}{5}$ respectively, then P divides QR in the ratio:

38. If the angle between the line $x=rac{y-1}{2}=(z-3)(\lambda)$ and the plane $x+2y+3z=4is\cos^{-1}\left(\sqrt{rac{5}{14}}
ight)$, then λ equals

Watch Video Solution

39. Find the equation of the plane passing through the points (1,0,0) and

(0,2,0) and c at a distance 6/7 units from the origin

Watch Video Solution

40. The lines
$$\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$$
 and $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$

are coplanar, if

Watch Video Solution

41. A line from the origin meets the lines

$$rac{x-2}{1} = rac{y-1}{-2} = rac{z+1}{1}$$
 and $rac{x-rac{8}{3}}{2} = rac{y+3}{-1} = rac{z-1}{1}$ at P and Q

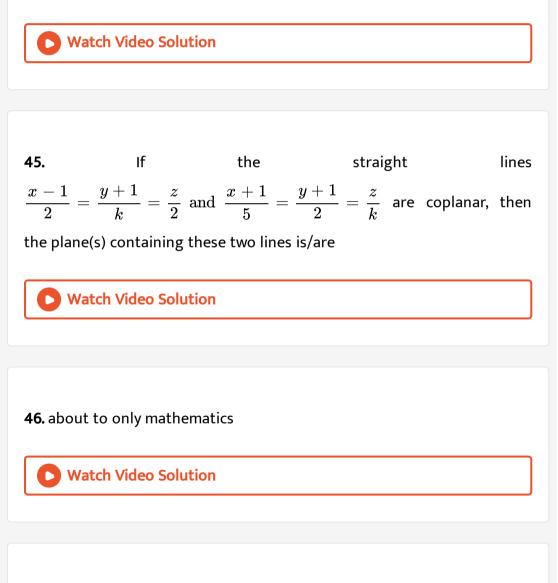
respectively. If length PQ = d then d^2 is equal to

Watch Video Solution

42. Assertion: The point A(3, 1, 6) is the mirror image of the point B(1, 3, 4) in the plane x - y + z = 5. Reason: The plane x - y + z = 5 bisects the line segment joining A(3, 1, 6) and B(1, 3, 4) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

Watch Video Solution

43. Statement-I The point A(1, 0, 7) is the mirror image of the point B(1, 6, 3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$. Statement-II The line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$ bisect the line segment joining A(1, 0, 7) and B(1, 6, 3). **44.** The equation of a plane passing through the line of intersection of the planes x+2y+3z = 2 and x - y+z = 3 and at a distance $2/\sqrt{3}$ from the point (3, 1, -1) is ?



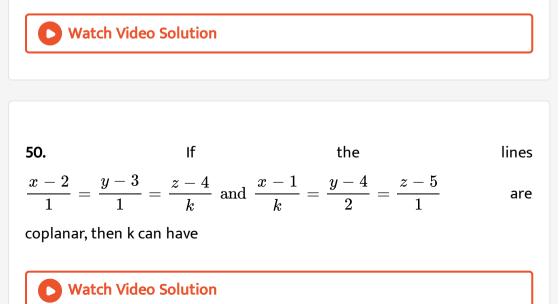
47. about to only mathematics

48. Two lines $L_1: x = 5, \frac{y}{3-\alpha} = \frac{z}{-2}$ and $L_2: x = \alpha, \frac{y}{-1} = \frac{z}{2-\alpha}$

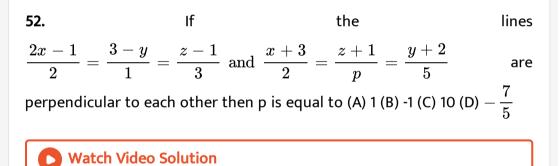
are coplanar. Then α can take value (s) a. 1 b. 2 c. 3 d. 4

Watch Video Solution

49. If the projection of a line segment of the x,y and z-axes in 3dimensional space are 12,4, and 3 respectively, then the length of the line segmetn is (A) 13 (B) 9 (C) 6 (D) 7



51. The point of intersection of the straighat line $\frac{x-2}{2} = \frac{y-1}{-3} = \frac{z+2}{1}$ with the plane x + 3y - z + 1 = 0 (A) (3,-1,1) (B) (-5,1,-1) (C) (2,0,3) (D) (4,-2,-1)



53. If O be the origin and OP makes an angle of 45^0 and 60^0 with the positive direction of x and y axes respectively and OP=12 units, find the coordinates of P.

54. The distance between the plane

$$\overrightarrow{r}$$
. $(\hat{i} + 2\hat{j} - 2\hat{k}) + 5 = 0$ and \overrightarrow{r} . $(2\hat{i} + 4\hat{j} - 4\hat{k}) - 16 = 0$ is (A) 3
(B) $\frac{11}{3}$ (C) 13 (D) $\frac{13}{3}$

55. If the straight lines

$$\frac{x+1}{2} = \frac{-y+1}{3} = \frac{z+1}{-2} \text{ and } \frac{x-3}{1} = \frac{y-\lambda}{2} = \frac{z}{3} \text{ intersect then}$$
the value of λ is (A) $-\frac{5}{8}$ (B) $-\frac{17}{8}$ (C) $-\frac{13}{8}$ (D) $-\frac{15}{8}$

Watch Video Solution

56. If $\angle \theta$ between the line $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z-2}{2}$ and the plane $2x - y + \sqrt{\lambda}z + 4 = 0$ is such that $\sin \theta = \frac{1}{3}$, the value of λ is

57. The ratio in which the plane y-1=0 divides the straight line joining

(1,-1,3) and (-2,5,4)is(A)1:2(B)3:1(C)5:2(D)1:3`

Watch Video Solution

58. Equation of theine passing through $\hat{i} + \hat{j} - 3\hat{k}$ and perpendiculr to the plane 2x-4y+3z+5=0 is (A) $\frac{x-1}{2} = \frac{1-y}{-4} = \frac{z-3}{3}$ (B) $\frac{x-1}{2} = \frac{1-y}{4} = \frac{z+3}{3}$ (C) $\frac{x-2}{1} = \frac{y+4}{1} = \frac{z-3}{3}$ (D) $\frac{x-1}{-2} = \frac{1-y}{-4} = \frac{z-3}{3}$