© 'doubtnut

MATHS

BOOKS - KC SINHA ENGLISH

VECTOR AND 3D - PREVIOUS YEAR QUESTIONS

Exercise

1. Let $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$, and $\vec{b}=\hat{i}+\hat{j}$ if c is a vector such that $\vec{a} \cdot \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2} \quad$ and the angle between $\vec{a} \times \vec{b}$ and $\vec{i} s 30^{\circ}$, then $|(\vec{a} \times \vec{b})| \times \vec{c} \mid$ is equal to

- Watch Video Solution

2. Let $e \vec{a}=\hat{i}+\hat{j}-\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and \vec{c} be as unit vector perpendicular to veca and vecbthevecc $=(A) 1 / \mathrm{sqrt}(\mathrm{j}+\mathrm{k})(B) 1 / \mathrm{sqrt}(2)(\mathrm{j}-\mathrm{k})(C)$

- Watch Video Solution

3. ABCDEF is a regular hexagon with centre of the origin such that $\overrightarrow{A D}+\overrightarrow{E B}+\overrightarrow{F C}$ is equal to $\lambda(E D)$, then λ is:

- Watch Video Solution

4. A non vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors $\vec{i}, \vec{i}+\vec{j}$ and thepane determined by the vectors $\vec{i}-\vec{j}, \vec{i}+\vec{k}$ then angle between \vec{a} and $\vec{i}-2 \vec{j}+2 \vec{k}$ is
$=$ (A) $\frac{\pi}{2}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{6}$ (D) $\frac{\pi}{4}$

- Watch Video Solution

5. If $\vec{a}=\frac{\hat{i}-2 \hat{j}}{\sqrt{5}}$ and $\vec{b}=\frac{2 \hat{i}+\hat{j}+3 \hat{k}}{\sqrt{14}}$, then the value of
$(2 \vec{a}+\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times(\vec{a}-2 \vec{b})]$

(D) Watch Video Solution

6. Let P, Q, R and S be the points on the plane with position vectors $-2 i-j, 4 i, 3 i+3 j a n d-3 j+2 j, \quad$ respectively. The quadrilateral PQRS must be a Parallelogram, which is neither a rhombus nor a rectangle Square Rectangle, but not a square Rhombus, but not a square

- Watch Video Solution

7. Two adjacent sides of a parallelogram $A B C D$ are given by $\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$. The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$ becomes $A D^{\prime}$. If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel α is given by $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4 \sqrt{5}}{9}$

- Watch Video Solution

8. Let $\vec{a}=\vec{i}-\vec{k}, \vec{b}=x \vec{i}+\vec{j}+(1-x) \vec{k} \quad$ and $\vec{c}=y \vec{i}+x \vec{j}+(1+x-y) \vec{k}$. Then $[\vec{a} \vec{b} \vec{c}]$ depends on

- Watch Video Solution

9. If \vec{a}, \vec{b} and \vec{c} are three vectors of which every pair is non colinear. If the vector $\vec{a}+\vec{b}$ and $\vec{b}+\vec{c}$ are collinear with the vector \vec{c} and \vec{a} respectively then which one of the following is correct? (A) $\vec{a}+\vec{b}+\vec{c}$ is a nul vector (B) veca+vecb+veccisaunit $\longrightarrow r(C)$ veca+vecb+vecc isa \longrightarrow rofmagnitude 2 units (D) veca+vecb+vecc` isd a vector of magnitude 3 units

- Watch Video Solution

10. $\vec{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k})$ and $\vec{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})$, then the value of $(2 \vec{a}-\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times(\vec{a}+2 \vec{b})]$ is:
11. The vectors \vec{a} and \vec{b} are not perpendicular and \vec{c} and \vec{d} are two vectors satisfying : $\vec{b} \times \vec{c}=\vec{b} \times \vec{d}$ and $\vec{a} \cdot \vec{d}=0$. Then the \vec{d} is equal to (A) $\vec{c}+\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \vec{b}$ (B) $\vec{b}+\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \vec{c}$ (C) $\vec{c}-\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \vec{b}$
$\vec{b}-\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}} \vec{c}$

- Watch Video Solution

12. If the vector $8 \hat{i}+a \hat{j}$ of magnitude 10 is the directionn of the vector $4 \hat{i}-3 \hat{j}$, then the value of a is equal to (A) 6 (B) 3 (C) -3 (D) -6

- Watch Video Solution

13. If the angle between \vec{a} and \vec{c} is 25^{0} the angle between \vec{b} and \vec{c} is 65^{0} and $\vec{a}+\vec{b}=\vec{c}$, then the angle between \vec{a} and \vec{b} is (A) 40^{0}
(B) 115^{0} (C) 25^{0} (D) 90^{0}
14. The positon vector of the centroid of the triangle ABC is $2 i+4 j+2 k$. If the position vector of the vector A is $2 i+6 j+4 k .$, thentheposition $\longrightarrow \operatorname{rofmidp} \oint o f B C i s(A) 2 \mathrm{i}+3 \mathrm{j}+\mathrm{k}(B)$ $2 \mathrm{i}+3 \mathrm{jk}(C) 2 \mathrm{i}-3 \mathrm{j}-\mathrm{k}(D)-2 \mathrm{i}-3 \mathrm{j}-\mathrm{k}$

- Watch Video Solution

15. The projection of the vector $2 \hat{i}+a \hat{j}-\hat{k}$ on the vector $\hat{i}-2 \hat{j}+\hat{k} i s$ $-5 / \mathrm{sqrt}(6)^{\prime}$ then the value of a is equal to (A) 1 (B) 2 (C) -2 (D) 3

(Watch Video Solution

16. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-\hat{j}-\hat{k}$ be three vectors. A vectors \vec{v} in the plane of \vec{a} and \vec{b}, whose projection on $\vec{c} i s \frac{1}{\sqrt{3}}$ is given by
17. The vector(s) which is /are coplanar with vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ and perpendicular to vector $\hat{i}+\hat{j}+\hat{k}$, is /are

- Watch Video Solution

18. The angle between the line $\vec{r}=(\hat{i}+2 \hat{j}+3 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$ and the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-2 \hat{k})=3$ is (A) 0^{0} (B) 60° (C) 30^{0} (D) 90^{0}

- Watch Video Solution

19.

Statement 1

Lines
$\vec{r}=\hat{i}+\hat{j}-\hat{k}+\lambda(3 \hat{i}-\hat{j})$ and $\vec{r}=4 \hat{i}-\hat{k}+\mu(2 \hat{i}+3 \hat{k})$ intersect.

Statement 2 : If $\vec{b} \times \vec{d}=\overrightarrow{0}$, then lines $\vec{r}=\vec{a}+\lambda \vec{b}$ and $\vec{r}=\vec{c}+\lambda \vec{d}$ do not intersect.
20. If \vec{a} and \vec{b} are vectors such that $|\vec{a}+\vec{b}|=\sqrt{29}$ and $\vec{a} \times(2 \hat{i}+3 \hat{j}+4 \hat{k})=(2 \hat{i}+3 \hat{j}+4 \hat{k}) \times \vec{b}$, then possible value of $(\vec{a}+\vec{b}) \cdot(-7 \hat{i}+2 \hat{j}+3 \hat{k})$ is (A) 0 (B) 3 (C) 4 (D) 8

- Watch Video Solution

21. If \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$ then find the value of $\mid 2 \vec{a}+5$

- Watch Video Solution

22. Let $\overrightarrow{P R}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\overrightarrow{S Q}=\hat{i}-3 \hat{j}-4 \hat{k}$ determine diagonals of a parallelogram PQRS. And $\overrightarrow{P T}=\hat{i}+2 \hat{j}+3 \hat{k}$ be onther vector. Then
the volume of the parallelepiped determined by the vectors $\overrightarrow{P T}, \overrightarrow{P Q}$ and $\overrightarrow{P S}$ is

- Watch Video Solution

23. Consider the set of eight vectors $V[a \hat{i}+b \hat{j}+c \hat{k}: a, b, c \in\{1-1\}]$. Three non-coplanar vectors cann be chosen from V in 2^{p} ways, then p is

- Watch Video Solution

24. If \vec{a} and \vec{b} are non-collinear vector, find the value of x such that the vectors $\vec{\alpha}=(x-2) \vec{a}+\vec{b}$ and $\vec{\beta}=(3+2 x) \vec{a}-2 \vec{b}$ are collinear.

- Watch Video Solution

25. If vectors $\overrightarrow{A B}=-3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a $\triangle A B C$, then the length of the median throught A is
26. If $\vec{a} \perp \vec{b}$ and $(\vec{a}+\vec{b}) \perp(\vec{a}+m \vec{b})$, then $\mathrm{m}=(\mathrm{A})-1$ (B) 1 (C) $\frac{-|\vec{a}|^{2}}{|\vec{b}|^{2}}$ (D) 0

- Watch Video Solution

27. if \vec{a}, \vec{b} and \vec{c} are unit vector such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$. Then find the value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$.

- Watch Video Solution

28. If \vec{a} is perpendicular to both \vec{b} and \vec{c} then (A)
$\vec{a} \cdot(\vec{b} \times \vec{c})=\overrightarrow{0}$
(B) $\quad \vec{a} \times(\vec{b} x \vec{c})=\overrightarrow{0}$
$\vec{a} \times(\vec{b}+\vec{c})=\overrightarrow{0}$ (D) $\vec{a}+(\vec{b}+\vec{c})=\overrightarrow{0}$

- Watch Video Solution

29. If \vec{a} and \vec{b} are two non collinear unit vectors such that $|\vec{a}+\vec{b}|=\sqrt{3}$, find $(2 \vec{a}-5 \vec{b}) \cdot(3 \vec{a}+\vec{b})$

- Watch Video Solution

30. If the position vectors of the vertices of a triangle be $2 \hat{i}+4 \hat{j}-\hat{k}, 4 \hat{i}+5 \hat{j}+\hat{k}$ and $3 \hat{i}+6 \hat{j}-3 \hat{k}$, then the triangle is

- Watch Video Solution

31. If $(1,2,4)$ and $(2,-\lambda,-3)$ are the initial and terminal points of the vector $\hat{i}+5 \hat{j}-7 \hat{k}$ then the value λ is equal to (A) 7 (B) -7 (C) -5 (D) 5

- Watch Video Solution

$\vec{u}=5 \vec{a}+6 \vec{b}+7 \vec{c}, v=7 \vec{a}+\vec{b}+9 \vec{c}$ and $\vec{w}=3 \vec{a}+11 \vec{b}+5 \vec{c}$ where $\vec{a}, \vec{b}, \vec{c}$ are non zero vectors.If $\vec{u}=l \vec{v}+m \vec{w}$ then the values of I and m respectively are (A) $\frac{1}{2}, \frac{1}{2}$ (B) $\frac{1}{2},-\frac{1}{2}$ (C) $-\frac{1}{2}, \frac{1}{2}$ (D) $\frac{1}{3}, \frac{1}{3}$

- Watch Video Solution

33. If $3 \vec{p}+2 \vec{q}=\hat{i}+\hat{j}+\hat{k}$ and $3 \vec{p}-2 \vec{q}=\hat{i}-\hat{j}-\hat{k}$ then the angle between \vec{p} and \vec{q} is (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

- Watch Video Solution

34. Equation of the plane containing the straight line $\frac{x}{2}=\frac{y}{3}=\frac{z}{4}$ and perpendicular to the plane containing the straight lines $\frac{x}{3}=\frac{y}{4}=\frac{z}{2}$ and $\frac{x}{4}=\frac{y}{2}=\frac{z}{3}$ is

- Watch Video Solution

35. If the distance between the plane $A x-2 y+z=d$. and the plane containing the lies $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{4-3}{4}=\frac{z-4}{5}$ is $\sqrt{6}$, then $|d|$ is

- Watch Video Solution

36. A parallelopied is formed by planes drawn through the points $(2,4,5)$ and $(5,9,7)$ parallel to the coordinate planes. The length of the diagonal of parallelopiped is

- Watch Video Solution

37. If $P(x, y, z)$ is a point on the line segment joining $\mathrm{Q}(2,2,4)$ and $\mathrm{R}(3,5,6)$ such that the projection of $\overrightarrow{O P}$ on the axes are $\frac{13}{9}, \frac{19}{5}, \frac{26}{5}$ respectively, then P divides QR in the ratio:

- Watch Video Solution

38. If the angle between the line $x=\frac{y-1}{2}=(z-3)(\lambda)$ and the plane $x+2 y+3 z=4 i s \cos ^{-1}\left(\sqrt{\frac{5}{14}}\right)$, then λ equals

- Watch Video Solution

39. Find the equation of the plane passing through the points $(1,0,0)$ and $(0,2,0)$ and c at a distance $6 / 7$ units from the origin

- Watch Video Solution

40. The lines $\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{-k}$ and $\frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}$ are coplanar, if

- Watch Video Solution

41. A line from the origin meets the lines
$\frac{x-2}{1}=\frac{y-1}{-2}=\frac{z+1}{1}$ and $\frac{x-\frac{8}{3}}{2}=\frac{y+3}{-1}=\frac{z-1}{1}$ at P and Q
respectively. If length $P Q=d$ then d^{2} is equal to

- Watch Video Solution

42. Assertion: The point $A(3,1,6)$ is the mirror image of the point $B(1,3,4)$ in the plane $x-y+z=5$. Reason: The plane $x-y+z=5$ bisects the line segment joining $A(3,1,6)$ and $B(1,3,4)$ (A) Both A and R are true and R is the correct explanation of $A(B)$ Both A and R are true R is not the correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

(D) Watch Video Solution

43. Statement-I The point $A(1,0,7)$ is the mirror image of the point $B(1,6,3)$ in the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$.
Statement-II The line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ bisect the line segment joining $A(1,0,7)$ and $B(1,6,3)$.
44. The equation of a plane passing through the line of intersection of the planes $x+2 y+3 z=2$ and $x-y+z=3$ and at a distance $2 / \sqrt{ } 3$ from the point ($3,1,-1$) is ?

- Watch Video Solution

45.

If
the
straight
lines
$\frac{x-1}{2}=\frac{y+1}{k}=\frac{z}{2}$ and $\frac{x+1}{5}=\frac{y+1}{2}=\frac{z}{k}$ are coplanar, then
the plane(s) containing these two lines is/are

- Watch Video Solution

46. about to only mathematics

- Watch Video Solution

47. about to only mathematics

- Watch Video Solution

48. Two lines $L_{1}: x=5, \frac{y}{3-\alpha}=\frac{z}{-2}$ and $L_{2}: x=\alpha, \frac{y}{-1}=\frac{z}{2-\alpha}$ are coplanar. Then α can take value (s) a. 1 b .2 c .3 d .4

- Watch Video Solution

49. If the projection of a line segment of the x, y and z-axes in 3 dimensional space are 12,4 , and 3 respectively, then the length of the line segmetn is (A) 13 (B) 9 (C) 6 (D) 7

- Watch Video Solution

50. If the lines

$$
\frac{x-2}{1}=\frac{y-3}{1}=\frac{z-4}{k} \text { and } \frac{x-1}{k}=\frac{y-4}{2}=\frac{z-5}{1}
$$

coplanar, then k can have
51. The point of intersection of the straighat line $\frac{x-2}{2}=\frac{y-1}{-3}=\frac{z+2}{1}$ with the plane $x+3 y-z+1=0$ (A) $(3,-1,1)$ (B) $(-5,1,-1)(C)(2,0,3)(D)(4,-2,-1)$

- Watch Video Solution

52. If the lines $\frac{2 x-1}{2}=\frac{3-y}{1}=\frac{z-1}{3}$ and $\frac{x+3}{2}=\frac{z+1}{p}=\frac{y+2}{5}$ perpendicular to each other then p is equal to (A) 1 (B) -1 (C) 10 (D) $-\frac{7}{5}$

Watch Video Solution

53. If O be the origin and OP makes an angle of 45° and 60° with the positive direction of x and y axes respectively and $O P=12$ units, find the coordinates of P .

- Watch Video Solution

54. The distance between the plane $\vec{r} \cdot(\hat{i}+2 \hat{j}-2 \hat{k})+5=0$ and $\vec{r} \cdot(2 \hat{i}+4 \hat{j}-4 \hat{k})-16=0$ is (A) 3
(B) $\frac{11}{3}$ (C) 13 (D) $\frac{13}{3}$

- Watch Video Solution

55.

the
straight
lines
$\frac{x+1}{2}=\frac{-y+1}{3}=\frac{z+1}{-2}$ and $\frac{x-3}{1}=\frac{y-\lambda}{2}=\frac{z}{3}$ intersect then the value of λ is (A) $-\frac{5}{8}$ (B) $-\frac{17}{8}$ (C) $-\frac{13}{8}$ (D) $-\frac{15}{8}$

Watch Video Solution

56. If $\angle \theta$ between the line $\frac{x+1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$ and the plane $2 x-y+\sqrt{\lambda} z+4=0$ is such that $\sin \theta=\frac{1}{3}$, the value of λ is

- Watch Video Solution

57. The ratio in which the plane $y-1=0$ divides the straight line joining (1,-1,3) and (-2,5,4)is(A)1:2(B)3:1(C)5:2(D)1:3`

Watch Video Solution

58. Equation of theine passing through $\hat{i}+\hat{j}-3 \hat{k}$ and perpendiculr to the plane $2 x-4 y+3 z+5=0 \quad$ is (A) $\quad \frac{x-1}{2}=\frac{1-y}{-4}=\frac{z-3}{3}$

$$
\begin{align*}
& \left.\frac{x-1}{2}=\frac{1-y}{4}=\frac{z+3}{3} \quad \text { (C) } \quad \frac{x-2}{1}=\frac{y+4}{1}\right)=\frac{z-3}{3} \tag{D}\\
& \frac{x-1}{-2}=\frac{1-y}{-4}=\frac{z-3}{3} \tag{B}
\end{align*}
$$

- Watch Video Solution

