

MATHS

BOOKS - KC SINHA ENGLISH

VECTOR PRODUCT OF TWO VECTORS

Solved Examples

1. If
$$\left|\overrightarrow{a}\right| = 2$$
, $\left|\overrightarrow{b}\right| = 7$ and $\left(\overrightarrow{a} \times \overrightarrow{b}\right) = 3\hat{i} + 2\hat{j} + 6\hat{k}$ find the angle between \overrightarrow{a} and \overrightarrow{b}

Watch Video Solution

2. IF
$$\overrightarrow{a}$$
 and \overrightarrow{b} re two vectors show that $\left|\overrightarrow{a} \times \overrightarrow{b}\right|^2 = a^2 b^2 - \left(\overrightarrow{a}, \overrightarrow{b}\right)^2$

3. If
$$|a| = \sqrt{26}, |b| = 7$$
 and $|a \times b| = 35$, find $a \cdot b$.

4. If
$$\overrightarrow{a}$$
. $\overrightarrow{b} = 0$ and $\overrightarrow{a} \times \overrightarrow{b} = 0$ prove that $\overrightarrow{a} = \overrightarrow{0}$ or $\overrightarrow{b} = \overrightarrow{0}$.

5. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are three such that $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}, \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$ and $\overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{b}$, show that $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$

foem an orthogonal righat handed triad of unit vectors.

Watch Video Solution

6. If
$$\overrightarrow{a} = 2\hat{i} + 3\hat{j} - \hat{k}$$
 and $\overrightarrow{\hat{i}} + 2\hat{j} + 3\hat{k}$ find $\overrightarrow{a} \times \overrightarrow{b}$.

7. If
$$\overrightarrow{a} = 3\hat{i} + \hat{j} - 4\hat{k}$$
 and $\overrightarrow{b} = 6\hat{i} + 5\hat{j} - 2\hat{k}$ find $\left|\overrightarrow{a} X\overrightarrow{b}\right|$

8. If
$$\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}$$
 and $\overrightarrow{b} = 2\hat{i} + 3\hat{j} - 5\hat{k}$ then find $\overrightarrow{a} \times \overrightarrow{b}$ and verify that $\overrightarrow{a} \times \overrightarrow{b}$ is perpendicular to each one of \overrightarrow{a} and \overrightarrow{b} .

Watch Video Solution

9. If
$$\overrightarrow{a} = 4\hat{i} + 3\hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} + 2\hat{k}$, find $\left|\overrightarrow{b} \times 2\overrightarrow{a}\right|$

Watch Video Solution

10. Find the sine of the angle between the vectors $\overrightarrow{a}=2\hat{i}-\hat{j}+3\hat{k}$ and $\overrightarrow{b}=\hat{i}+3\hat{j}+2\hat{k}.$

11. Find a unit vector perpendicular to the plane of two vectros. $\vec{a} = \hat{i} - \hat{j} + 2\hat{k}$ and $\vec{b} = 2\hat{i} + 3\hat{j} - \hat{k}$

Watch Video Solution

12. Show that a unilt vector perpendicular to each to the vector $3\hat{i} + \hat{j} + 2\hat{k}$ and $2\hat{i} - 2\hat{j} + 4\hat{k}is\frac{1}{\sqrt{3}}(\hat{i} - \hat{j} - \hat{k})$ and the sine of the angle between them is $\frac{2}{\sqrt{7}}$.

Watch Video Solution

13. Find a vector of magnitude 15 which isperpendicular to both vectors

$$4\hat{i}-\hat{j}+8\hat{k} ext{ and } -\hat{j}+\hat{k}.$$

14. If
$$\overrightarrow{a} = 3\hat{i} + 4\hat{j} - 5\hat{k}$$
 and $\overrightarrow{b} = 7\hat{i} - 3\hat{j} + 6\hat{k}$ find a unit vector along $\left(\overrightarrow{a} + \overrightarrow{b}\right) \times \left(\overrightarrow{a} - \overrightarrow{b}\right)$.

15. Find a unit vector pependicular to the plane determined by the points

(1,-1,2), (2,0,-1) and (0,2,1).

Watch Video Solution

16. Find the values of
$$\lambda$$
 and μ for which $\left(2\hat{i}+6\hat{j}+27\hat{k}\right) imes\left(\hat{i}+\lambda\hat{j}+\mu\hat{k}\right)=0$

Watch Video Solution

17. if $\overrightarrow{a} = \hat{i} - \hat{j} - 3\hat{k}$, $\overrightarrow{b} = 4\hat{i} - 3\hat{j} + \hat{k}$ and $\overrightarrow{c} = 2\hat{i} + \hat{j} + 2\hat{k}$, verify that $\overrightarrow{a} \times \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$

18. If
$$\overrightarrow{a} = 3\hat{i} - \hat{j} + 2\hat{k}, \ \overrightarrow{b} = 2\hat{i} + \hat{j} - \hat{k}, \ \overrightarrow{c} = \hat{i} - 2\hat{j} + 2\hat{k}, \ \text{find}$$

 $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}$ and $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ and hence show that $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c} \neq \overrightarrow{a} \left(\overrightarrow{b} \times \overrightarrow{c}\right)$

Watch Video Solution

19. If
$$\overrightarrow{a} a = \hat{i} + 2\hat{j} + 3\hat{k}$$
, $\overrightarrow{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} + \hat{j} - 2\hat{k}$, verify that $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right)\overrightarrow{b} - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)\overrightarrow{c}$.

Watch Video Solution

20. Given
$$\overrightarrow{a} = \hat{i} + 2\hat{j} + \hat{k}$$
, $\overrightarrow{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\overrightarrow{c} = 3\hat{i} + \hat{j}$. Find
a unity vector in the direction f resultant of these vectors. Also find a
vector \overrightarrow{r} which is normal to both \overrightarrow{a} and \overrightarrow{b} .

21. The position vectors of the points A,B,C are respectively (1,1,1),(1,-1,2), (0,2,-1). Find a unit vector parallel totehplane determined by A,B,C and perpendicular to the vector (1,0,1).

Watch	Video	Solution
THEFT	11460	50141011

22. Find the length of perpendicular from the piont A(1, 4, -2) to the

line joining P(2, 1, -2) and Q(0, -5, 1)

Watch Video Solution

23. If either $\ o \ a = \ o \ 0$ and $\ o \ b = \ o \ 0$ then $\ o \ a imes \ o \ b = \ o \ 0$

. Is Is the converse true? Justify your answer with an example.

24. Prove that

$$\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) + \overrightarrow{b} \times (\overrightarrow{c} + \overrightarrow{a}) + \overrightarrow{c} \times (\overrightarrow{a} + \overrightarrow{b}) = 0$$

Watch Video Solution
25. For three vectors $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = 0$, check if
 $(\overrightarrow{a} \times \overrightarrow{b}) = (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{c} \times \overrightarrow{a})$
Watch Video Solution

26. Evaluate the expression
$$\left(\overrightarrow{a} - \overrightarrow{b}\right) imes \left(\overrightarrow{a} + \overrightarrow{b}\right) =$$

27. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{d}$$
 and $\overrightarrow{a} \times \overrightarrow{c} = \overrightarrow{b} \times \overrightarrow{d}$ show that $\left(\overrightarrow{a} - \overrightarrow{d}\right)$ is parallel to $\left(\overrightarrow{b} - \overrightarrow{c}\right)$.

28. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$$
, $\overrightarrow{a} \neq 0$ and $\overrightarrow{b} \neq \overrightarrow{c}$, prove that $\overrightarrow{b} = \overrightarrow{c} + \lambda \overrightarrow{a}$.

29. given that
$$\overrightarrow{a}$$
. $\overrightarrow{b} = \overrightarrow{a}$. \overrightarrow{c} , $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$ and \overrightarrow{a} is not a zero vector. Show that $\overrightarrow{b} = \overrightarrow{c}$.

Watch Video Solution

30. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{c} \neq \overrightarrow{0}$$
, then prove that $\overrightarrow{a} + \overrightarrow{c} = t\overrightarrow{b}$, where t

is a scalar.

31. A solution of the vector equation $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{b}$, where $\overrightarrow{a}, \overrightarrow{b}$ are two given vectors is where λ is a parameter. **Watch Video Solution**

32. Prove that the points A,B,C wth positon vectros $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are collinear if and only if $\left(\overrightarrow{b} \times \overrightarrow{c}\right) + \left(\overrightarrow{c} \times \overrightarrow{a}\right) + \left(\overrightarrow{a} \times \overrightarrow{b}\right) = \overrightarrow{0}$

Watch Video Solution

33. Show that the points A, B and C with position vectors $-2\hat{i} + 3\hat{j} + 5\hat{k}, \hat{i} + 2\hat{j} + 3\hat{k}$ and $7\hat{i} - \hat{k}$ respectively are collinear

34. Show that the points having position vectors
$$\left(\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}\right), \left(-2\overrightarrow{a} + 3\overrightarrow{b} + 2\overrightarrow{c}\right), \left(-8\overrightarrow{a} + 13\overrightarrow{b}\right)$$
 re collinear whatever $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ may be
35. Using vector method, show that the points $A(2, -1, 3), B(4, 3, 1)$ and $C(3, 1, 2)$ are collinear
Watch Video Solution

36. Find the area of the parallel whose adjacent sides are represented by

the vectors $3\hat{i}+\hat{j}-2\hat{k}~~{
m and}~~\hat{i}-3\hat{j}+4\hat{k}$

37. Show that the area of a parallelogram having diagonals $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + 4\hat{k}$ is $5\sqrt{3}$ square units.

Watch Video Solution

38. Find the area of the triangle whose adjascent sides are determined by

the vectors $\overrightarrow{a} = -2\hat{i} - 5\hat{k}$ and $\overrightarrow{b} = \hat{i} - 2\hat{j} - \hat{k}$.

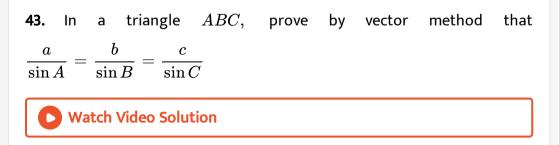
Watch Video Solution

39. Using vector method find the area of the triangle whose vrtices are

A(1, 1, 1), B(1, 2, 3) and C(2, 3, 1)

Watch Video Solution

40. Prove by vector method that the area of $\triangle ABCis \frac{a^2 \sin B \sin C}{2 \sin A}$ where symbols have their usual meanings.


41. Prove by vector method that the parallelogram on the same base and

between the same parallels are equal in area.

Watch Video Solution

42. AD, BE and CF asre the medians of a triangle ASBC intersectiing in G.

Show that
$$\triangle AGB = \triangle BGC = \triangle CGA = \frac{1}{3} \triangle ABC.$$

44. Prove by vector methods that $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$

45. A force $F=2\hat{i}+\hat{j}-\hat{k}$ acts at point A whose position vector is

 $2\hat{i}-\hat{j}$. Find the moment of force F about the origin.

Watch Video Solution

46. Forces $2\hat{i} + \hat{j}$, $2\hat{i} - 3\hat{j} + 6\hat{k}$ and $-\hat{i} + 2\hat{j} - \hat{k}$ act at a point P, with position vector $4\hat{i} - 3\hat{j} - \hat{k}$. Find the vector moment of the resultant of these forces about the point Q whose position vector is $6\hat{i} + \hat{j} = 3\hat{k}$

1. If \overrightarrow{a} and \overrightarrow{b} asre two vectors such that $|\overrightarrow{a}| = 2$, $|\overrightarrow{b}| = 7$ and $\overrightarrow{a} \times \overrightarrow{b} = 3\hat{i} + 6\hat{k}$ find the angle between \overrightarrow{a} and \overrightarrow{b}

Watch Video Solution

2. If
$$\left| \overrightarrow{a} \right| = 10$$
, $\left| \overrightarrow{b} \right| = 2$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 12$, then the value of $\left| \overrightarrow{a} \times \overrightarrow{b} \right|$ is

Watch Video Solution

3. Find
$$\overrightarrow{a}$$
. \overrightarrow{b} if $\left|\overrightarrow{a}\right| = 2$, $\left|\overrightarrow{b}\right| = 5$, and $\left|\overrightarrow{a} \times \overrightarrow{b}\right| = 8$

Watch Video Solution

4. If \overrightarrow{a} and \overrightarrow{b} are two such that $\left|\overrightarrow{a}\right| = 5$, $\left|\overrightarrow{b}\right| = 4$ and $\left|\overrightarrow{a}, \overrightarrow{b}\right| = 10$, find the angle between \overrightarrow{a} and \overrightarrow{b} and hence find $\left|\overrightarrow{a} \times \overrightarrow{b}\right|$

5. If
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$$
 and $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$, $showt \widehat{\overrightarrow{a}}, \overrightarrow{b}, \overrightarrow{c}$ are orthogonal

in pairs. Also show that |vecc|=|veca| and |vecb|=1`

Watch Video Solution

6. Find
$$\overrightarrow{a} \times \overrightarrow{b}$$
 and $\left| \overrightarrow{a} \times \overrightarrow{b} \right|$ if

$$\overrightarrow{a}=2\hat{i}+\hat{j}+3\hat{k}\,\, ext{and}\,\,\,\overrightarrow{b}=3\hat{i}+5\hat{j}-2\hat{k}$$

Watch Video Solution

7. Find
$$\left| \overrightarrow{a} \times \overrightarrow{b} \right|$$
, if $\overrightarrow{a} = \hat{i} - 7\hat{j} + 7\hat{k}$ and $\overrightarrow{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$.

Watch Video Solution

8. If
$$\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} + 4\hat{j} - \hat{k}$, prove that $\overrightarrow{a} \times \overrightarrow{b}$
represents a vector which perpendicular to both \overrightarrow{a} and \overrightarrow{b} .

9. If
$$\overrightarrow{a} = 7\hat{i} + 3\hat{j} - 6\hat{k}$$
, $\overrightarrow{b} = 2\hat{i} + 5\hat{j} - \hat{k}$ and $\overrightarrow{c} = -\hat{i} + 2\hat{j} + 4\hat{k}$.
Find $\left(\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{c} - \overrightarrow{b}\right)$.

10. Two vectros \overrightarrow{A} and \overrightarrow{B} are obtained by joining the origin to the points whose coordinates are (1,0,-1) and (-1,1,1). Find the magnitude of the vectors $\overrightarrow{A} \times \overrightarrow{B}$ and the direction cosines of this vector.

Watch Video Solution

11. If
$$\overrightarrow{A} = 2\hat{i} - 3\hat{j} + \hat{k}$$
 and $\overrightarrow{B} = 3\hat{i} + 2\hat{j}$. Find $\overrightarrow{A} \cdot \overrightarrow{B}$ and $\overrightarrow{A} \times \overrightarrow{B}$

12. Find a unit vector perpendicular to the plane of two vectors \vec{a} and \vec{b} where $\vec{a} = 4\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = -2\hat{i} + \hat{j} - \hat{k}$

Watch Video Solution

13. Find a unit vector perpendicular to the plane of two vectors \overrightarrow{a} and \overrightarrow{b} where $\overrightarrow{a} = \hat{i} - \hat{j}$ and $\overrightarrow{b} = \hat{j} + \hat{k}$

Watch Video Solution

14. Find unit vectors perpendicular to each of the vector in the following:

 $2\hat{i}+3\hat{j}-\hat{k},\,\hat{i}+2\hat{j}+3\hat{k}$

15. Find unit vectors perpendicular to each of the vector in the following:

$$2\hat{i}-\hat{j}-\hat{k},2\hat{i}-\hat{j}+3\hat{k}$$

16. Find unit vectors perpendicular to each of the vector in the following:

$$4\hat{i}-\hat{j}+3\hat{k},2\hat{i}+2\hat{j}-\hat{k}$$

Watch Video Solution

17. Find a unit vector which is perpendicular to each of the vectors in the

following: $\hat{i} - \hat{j} + \hat{k}$ and $2\hat{i} + 3\hat{j} - \hat{k}$

18. Find a unit vector which is perpendicular to each of the vectors in the

following: $\hat{i} + \hat{j} - 2\hat{k}$ and $2\hat{i} - 2\hat{j} + \hat{k}$

19. Find a unity vector perpendicular to each of the vectors
$$\left(\overrightarrow{a} + \overrightarrow{b}\right)$$
 and $\left(\overrightarrow{a} - \overrightarrow{b}\right)$, where $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{b} = \hat{i} + 2\hat{j} + 3\hat{k}$

20. Determine the angle between the vectors $\hat{i}+2\hat{j}+\hat{k}~{
m and}~3\hat{i}+\hat{j}-\hat{k}$

. Also find the unit vector perpendicular to each of the two vectors.

Watch Video Solution

21. Find a unit vectro perpendicular to the vectors $\vec{a} = 3\hat{i} + 2\hat{j} - \hat{k}$ and $\vec{b} = 12\hat{i} + 5\hat{j} - 5\hat{k}$ Also determine the sine of the angle between \vec{a} and \vec{b} .

22. What is the unit vector perpendicular to each of the vectors $2\hat{i} - \hat{j} + \hat{k}$ and $3\hat{i} + 4\hat{j} - \hat{k}$? Prove that the sine of the angle between these two vectors is $\sqrt{\frac{155}{156}}$

Watch Video Solution

23. If A,B,C are points (1,0,-1), (0,1,-1) and (-1,0,1)` respectively find the sine of

the angle between the lines AB and AC.

Watch Video Solution

24. Calculate the components of a vector of magnitude unity which is at

right angles to the vectors $2\hat{i} + \hat{j} - 4\hat{k}$ and $3\hat{i} + \hat{j} - \hat{k}$.

25. If the position vectors of the three points A,B,C are $2\hat{i} + 4\hat{j} - \hat{k}$, $\hat{i} + 2\hat{j} - 3\hat{k}$ and $3\hat{i} + \hat{j} + 2\hat{k}$ respectively, find a vector perpendicular to the plane ABC.

Watch Video Solution

26. Given

$$\overrightarrow{a} = \frac{1}{7} \left(2\hat{i} + 3\hat{j} + 6\hat{k} \right), \implies \frac{1}{7} \left(3\hat{i} - 6\hat{j} + 2\hat{k} \right) \text{ and } \overrightarrow{c} \frac{1}{7} \left(6\hat{i} + 2\hat{j} - 3\hat{k} \right)$$

. Show that $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are of unit length mutually perpendicular and that
 $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$.

Watch Video Solution

27. If
$$\overrightarrow{a} = 7\hat{i} + 3\hat{j} - 5\hat{k}$$
, $\overrightarrow{b} = 2\hat{i} + 5\hat{j} - \hat{k}$ and $\overrightarrow{c} - \hat{i} + 2\hat{j} + 4\hat{k}$,
then verify that $\overrightarrow{a} \times (b+c) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$

28.

$$\overrightarrow{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \ \overrightarrow{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k} \ ext{and} \ \overrightarrow{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$$

then show that $\overrightarrow{a} imes \left(\overrightarrow{b} + \overrightarrow{c}\right) = \overrightarrow{a} imes b + \overrightarrow{a} imes \overrightarrow{c}$

Watch Video Solution

29. If
$$\overrightarrow{a} = 2\hat{i} + 5\hat{j} - 7\hat{k}$$
, $\overrightarrow{b} = -3\hat{i} + 4\hat{j} + \hat{k}$ and $\overrightarrow{c} = \hat{i} - 2\hat{j} - 3\hat{k}$, show that $\left(\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}\right)$, $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ are not same.

Watch Video Solution

30. If
$$\overrightarrow{a} = 2\hat{i} + 2\hat{j} - \hat{k}$$
, $\overrightarrow{b} = 3\hat{i} - \hat{j} - \hat{k}$ and $\overrightarrow{c} = \hat{i} + 2\hat{j} - 3\hat{k}$ then verify that $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right)\overrightarrow{b} - \left(\overrightarrow{a} \cdot \overrightarrow{b}\right)\overrightarrow{c}$.

Watch Video Solution

31. Find the perpendicular distance of $P\left(-\hat{i}+2\hat{j}+6\hat{k}\right)$ from the line joining $A\left(2\hat{i}+3\hat{j}-4\hat{k}\right)$ and $B\left(8\hat{i}+6\hat{j}-8\hat{k}\right)$

32. Let
$$\overrightarrow{a} = (3, -1, 0)$$
 and $\overrightarrow{b} = \left(\frac{1}{2}, \frac{3}{2}, 1\right)$ Fidnthe vector \overrightarrow{c} satisfying $\overrightarrow{a} \times \overrightarrow{c} = 4\overrightarrow{b}$ and $\overrightarrow{a} \cdot \overrightarrow{c} = 1$

33. If
$$\overrightarrow{a} = \hat{i} - \hat{j} + \hat{k}$$
 and $\overrightarrow{b} = \hat{j} - \hat{k}$, then find a vector \overrightarrow{a} such that $\overrightarrow{a} \times \overrightarrow{c} = b$ and $\overrightarrow{a} \cdot \overrightarrow{c} = 3$.

Watch Video Solution

34. If $\overrightarrow{a} = (0, 1, -1,)$ and $\overrightarrow{c} = (1, 1, 1)$ are given vectors then find a vector \overrightarrow{b} satisfying $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$ and $\overrightarrow{a} \cdot \overrightarrow{b} = 3$

35. Show that:

$$\left(\overrightarrow{a} - \overrightarrow{d}\right) \times \left(\overrightarrow{b} - \overrightarrow{c}\right) + \left(\overrightarrow{b} - \overrightarrow{d}\right) \times \left(\overrightarrow{c} - \overrightarrow{a}\right) + \left(\overrightarrow{c} - \overrightarrow{d}\right) \times \left(\overrightarrow{a} - \overrightarrow{a}\right) + \left(\overrightarrow{c} - \overrightarrow$$

36. Prove that
$$\left(\overrightarrow{a}+3\overrightarrow{b}\right) \times \left(\overrightarrow{a}+\overrightarrow{b}\right) + \left(3\overrightarrow{a}-5\overrightarrow{b}\right) \times \left(\overrightarrow{a}-\overrightarrow{b}\right) = 0$$

Watch Video Solution

37. Prove that:
$$\left| \left(\overrightarrow{a} + \overrightarrow{b} \right) \times \left(\overrightarrow{a} - \overrightarrow{b} \right) \right| = 2ab \text{ if } \overrightarrow{a} \perp \overrightarrow{b}$$

Watch Video Solution

38. given that \overrightarrow{a} . $\overrightarrow{b} = \overrightarrow{a}$. \overrightarrow{c} , $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$ and \overrightarrow{a} is not a zero vector. Show that $\overrightarrow{b}=\overrightarrow{c}$.

39. Find the value of
$$\left|\left(\hat{i}+\hat{j}
ight) imes\left(\hat{i}+2\hat{j}+\hat{k}
ight)
ight|$$

40. Find the value of
$$\left|\left(3\hat{i}+\hat{j}
ight) imes\left(2\hat{i}-\hat{j}
ight)
ight|$$

Watch Video Solution

41. Find the value of
$$\left| \hat{i} imes \left(\hat{i} + \hat{j} + \hat{k}
ight)
ight|$$

Watch Video Solution

42. Find the value of $\left| \hat{i} imes \hat{j}
ight| + \hat{j} imes \hat{k}
ight|$

43. Prove that:
$$\left(2\hat{i}+3\hat{j}
ight) imes\left(\hat{i}+2\hat{j}
ight)=\hat{k}$$

44. Prove that:
$$\left(2\overrightarrow{a} - \overrightarrow{b}\right) \times \left(\overrightarrow{a} + 2\overrightarrow{b}\right) = 5\overrightarrow{a} \times \overrightarrow{b}$$
.

Watch Video Solution

45. Show that the three points whose position vectors are $-3\hat{i} + \hat{j} + 5\hat{k}, 2\hat{i} + 3\hat{k}, -13\hat{i} + 3\hat{j} + 9\hat{k}$ are collinear

Watch Video Solution

46. Show that the three points whose position vectors are $\overrightarrow{a} - 2\overrightarrow{b} + 3\overrightarrow{c}, 2\overrightarrow{a} + 3\overrightarrow{b} - 4\overrightarrow{c}, -7\overrightarrow{b} + 10\overrightarrow{c}$ are collinear

47. Find the area of the prallelogram whose adjacent sides are $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$.

Watch Video Solution

48. Find the area of the parallelogram whose adjacent sides are given by

the vectors $\overrightarrow{a} = 3\hat{i} + \hat{j} + 4\hat{k} \, ext{ and } \, \overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}.$

Watch Video Solution

49. Find the area of the parallelogram whose adjacent sides are given by

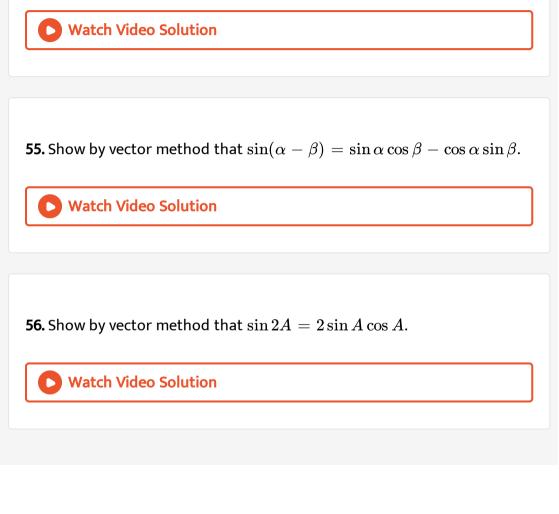
the vectors
$$\overrightarrow{a} = \hat{i} - \hat{j} + 3\hat{k} \, ext{ and } \, \overrightarrow{b} = 2\hat{i} - 7\hat{j} + \hat{k}$$

Watch Video Solution

50. Find the area of the parallelogram having diagonals $2\hat{i} - \hat{j} + \hat{k}$ and $3\hat{i} + 3\hat{j} - \hat{k}$

51. Find the area of a parallelogram whose diagonals are the vectors $2\overrightarrow{m} - \overrightarrow{n}$ and $4\overrightarrow{m} - 5\overrightarrow{n}$, where \overrightarrow{m} and \overrightarrow{n} are unit vectors forming an angle of 45^0

Watch Video Solution


52. Show that the area of the triangle whose two adjacent sides are determined by the vectors $\vec{a} = 3\hat{i} + 4\hat{j}$, $\vec{b} = -5\hat{i} + 7\hat{j}$ is $20\frac{1}{2}$ square units.

Watch Video Solution

53. Find the vector area of the triangle, the position vectors of whose vertices are $\hat{i} + \hat{j} + 2\hat{k}$, $2\hat{i} + 2\hat{j} - 3\hat{k}$ and $3\hat{i} - \hat{j} - \hat{k}$

54. Find the area of the triangle with vertices A(1, 1, 2), B(2, 3, 5) and C(1, 5,

5).

