©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - KC SINHA ENGLISH

VECTOR PRODUCT OF TWO VECTORS

Solved Examples

1. If $|\vec{a}|=2,|\vec{b}|=7$ and $(\vec{a} \times \vec{b})=3 \hat{i}+2 \hat{j}+6 \hat{k}$ find the angle between \vec{a} and \vec{b}

- Watch Video Solution

2. IF \vec{a} and \vec{b} re two vectors show that $|\vec{a} \times \vec{b}|^{2}=a^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}$
3. If $|a|=\sqrt{26},|b|=7$ and $|a \times b|=35$, find $a \cdot b$.

- Watch Video Solution

4. If $\vec{a} \cdot \vec{b}=0$ and $\vec{a} \times \vec{b}=0$ prove that $\vec{a}=\overrightarrow{0}$ or $\vec{b}=\overrightarrow{0}$.

- Watch Video Solution

5. If $\vec{a}, \vec{b}, \vec{c}$ are three such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}$ and $\vec{c} \times \vec{a}=\vec{b}$, show that $\vec{a}, \vec{b}, \vec{c}$ foem an orthogonal righat handed triad of unit vectors.

- Watch Video Solution

6. If $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\overrightarrow{\hat{i}}+2 \hat{j}+3 \hat{k}$ find $\vec{a} \times \vec{b}$.

- Watch Video Solution

7. If $\vec{a}=3 \hat{i}+\hat{j}-4 \hat{k}$ and $\vec{b}=6 \hat{i}+5 \hat{j}-2 \hat{k}$ find $|\vec{a} X \vec{b}|$

- Watch Video Solution

8. If $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-5 \hat{k}$ then find $\vec{a} \times \vec{b}$ and verify that $\vec{a} \times \vec{b}$ is perpendicular to each one of \vec{a} and \vec{b}.

- Watch Video Solution

9. If $\vec{a}=4 \hat{i}+3 \hat{j}+2 \hat{k}$ and $\vec{b}=3 \hat{i}+2 \hat{k}$, find $|\vec{b} \times 2 \vec{a}|$

- Watch Video Solution

10. Find the sine of the angle between the vectors $\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=\hat{i}+3 \hat{j}+2 \hat{k}$.

- Watch Video Solution

11. Find a unit vector perpendicular to the plane of two vectros.
$\vec{a}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}+3 \hat{j}-\hat{k}$

- Watch Video Solution

12. Show that a unilt vector perpendicular to each to the vector $3 \hat{i}+\hat{j}+2 \hat{k}$ and $2 \hat{i}-2 \hat{j}+4 \hat{k} i s \frac{1}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$ and the sine of the angle between them is $\frac{2}{\sqrt{7}}$.

- Watch Video Solution

13. Find a vector of magnitude 15 which isperpendicular to both vectors $4 \hat{i}-\hat{j}+8 \hat{k}$ and $-\hat{j}+\hat{k}$.

- Watch Video Solution

14. If $\vec{a}=3 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{b}=7 \hat{i}-3 \hat{j}+6 \hat{k}$ find a unit vector along $(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})$.

(Watch Video Solution

15. Find a unit vector pependicular to the plane determined by the points (1,-1,2), (2,0,-1) and ($0,2,1$) .

- Watch Video Solution

16. Find the values of λ and μ for which $(2 \hat{i}+6 \hat{j}+27 \hat{k}) \times(\hat{i}+\lambda \hat{j}+\mu \hat{k})=0$

- Watch Video Solution

17. if $\vec{a}=\hat{i}-\hat{j}-3 \hat{k}, \vec{b}=4 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{c}=2 \hat{i}+\hat{j}+2 \hat{k}$, verify that $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

Watch Video Solution

18. If $\vec{a}=3 \hat{i}-\hat{j}+2 \hat{k}, \vec{b}=2 \hat{i}+\hat{j}-\hat{k}, \vec{c}=\hat{i}-2 \hat{j}+2 \hat{k}$, find $(\vec{a} \times \vec{b}) \times \vec{c}$ and $\vec{a} \times(\vec{b} \times \vec{c})$ and hence show that $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a}(\vec{b} \times \vec{c})$

- Watch Video Solution

19. If $\vec{a} a=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{c}=\hat{i}+\hat{j}-2 \hat{k}$, verify that $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$.

- Watch Video Solution

20. Given $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=3 \hat{i}+\hat{j}$. Find a unity vector in the directionof resultant of these vectors. Also find a vector \vec{r} which is normal to both \vec{a} and \vec{b}.
21. The position vectors of the points A, B, C are respectively (1,1,1),(1,-1,2), $(0,2,-1)$. Find a unit vector parallel totehplane determined by A, B, C and perpendicular to the vector $(1,0,1)$.

- Watch Video Solution

22. Find the length of perpendicular from the piont $A(1,4,-2)$ to the line joining $P(2,1,-2)$ and $Q(0,-5,1)$

- Watch Video Solution

23. If either $\rightarrow a=\rightarrow 0$ and $\rightarrow b=\rightarrow 0$ then $\rightarrow a \times \rightarrow b=\rightarrow 0$. Is Is the converse true? Justify your answer with an example.

- Watch Video Solution

24.

$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times(\vec{c}+\vec{a})+\vec{c} \times(\vec{a}+\vec{b})=0$

- Watch Video Solution

25. For three vectors $\vec{a}+\vec{b}+\vec{c}=0$, check if
$(\vec{a} \times \vec{b})=(\vec{b} \times \vec{c})=(\vec{c} \times \vec{a})$

- Watch Video Solution

26. Evaluate the expression $(\vec{a}-\vec{b}) \times(\vec{a}+\vec{b})=$

- Watch Video Solution

27. If $\vec{a} \times \vec{b}=\vec{c} \times \vec{d}$ and $\vec{a} \times \vec{c}=\vec{b} \times \vec{d}$ show that $(\vec{a}-\vec{d})$ is parallel to $(\vec{b}-\vec{c})$.
28. If $\vec{a} \times \vec{b}=\vec{a} \times \vec{c}, \vec{a} \neq 0$ and $\vec{b} \neq \vec{c}$, prove that $\vec{b}=\vec{c}+\lambda \vec{a}$.

- Watch Video Solution

29. given that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ and \vec{a} is not a zero vector. Show that $\vec{b}=\vec{c}$.

- Watch Video Solution

30. If $\vec{a} \times \vec{b}=\vec{b} \times \vec{c} \neq \overrightarrow{0}$, then prove that $\vec{a}+\vec{c}=t \vec{b}$, where t is a scalar.

- Watch Video Solution

31. A solution of the vector equation $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$, where \vec{a}, \vec{b} are two given vectors is where λ is a parameter.

- Watch Video Solution

32. Prove that the points A, B, C wth positon vectros $\vec{a}, \vec{b}, \vec{c}$ are collinear if and only if $(\vec{b} \times \vec{c})+(\vec{c} \times \vec{a})+(\vec{a} \times \vec{b})=\overrightarrow{0}$

(Watch Video Solution

33. Show that the points A, B and C with position vectors $-2 \hat{i}+3 \hat{j}+5 \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}$ and $7 \hat{i}-\hat{k}$ respectively are collinear

- Watch Video Solution

34. Show that the points having position vectors $(\vec{a}-2 \vec{b}+3 \vec{c}),(-2 \vec{a}+3 \vec{b}+2 \vec{c}),(-8 \vec{a}+13 \vec{b}) \quad$ re collinear whatever $\vec{a}, \vec{b}, \vec{c}$ may be

- Watch Video Solution

35. Using vector method, show that the points $A(2,-1,3), B(4,3,1)$ and $C(3,1,2)$ are collinear

- Watch Video Solution

36. Find the area of the parallel whose adjacent sides are represented by the vectors $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$

- Watch Video Solution

37. Show that the area of a parallelogram having diagonals $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$ is $5 \sqrt{3}$ square units.

- Watch Video Solution

38. Find the area of the triangle whose adjascent sides are determined by the vectors $\vec{a}=-2 \hat{i}-5 \hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}-\hat{k}$.

- Watch Video Solution

39. Using vector method find the area of the triangle whose vrtices are $A(1,1,1), B(1,2,3)$ and $C(2,3,1)$

- Watch Video Solution

40. Prove by vector method that the area of $\triangle A B C i s \frac{a^{2} \sin B \sin C}{2 \sin A}$ where symbols have their usual meanings.
41. Prove by vector method that the parallelogram on the same base and between the same parallels are equal in area.

- Watch Video Solution

42. AD, BE and CF asre the medians of a triangle ASBC intersectiing in G.

Show that $\triangle A G B=\triangle B G C=\triangle C G A=\frac{1}{3} \triangle A B C$.

- Watch Video Solution

43. In a triangle $A B C$, prove by vector method that $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

- Watch Video Solution

44. Prove by vector methods that $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$

- Watch Video Solution

45. A force $F=2 \hat{i}+\hat{j}-\hat{k}$ acts at point A whose position vector is $2 \hat{i}-\hat{j}$. Find the moment of force F about the origin.

- Watch Video Solution

46. Forces $2 \hat{i}+\hat{j}, 2 \hat{i}-3 \hat{j}+6 \hat{k}$ and $-\hat{i}+2 \hat{j}-\hat{k}$ act at a point P , with position vector $4 \hat{i}-3 \hat{j}-\hat{k}$. Find the vector moment of the resultant of these forces about thepoint Q whose position vector is $6 \hat{i}+\hat{j}=3 \hat{k}$

- Watch Video Solution

Exercise

1. If \vec{a} and \vec{b} asre two vectors such that $|\vec{a}|=2,|\vec{b}|=7$ and $\vec{a} \times \vec{b}=3 \hat{i}+6 \hat{k}$ find the angle between \vec{a} and \vec{b}

- Watch Video Solution

2. If $|\vec{a}|=10,|\vec{b}|=2$ and $\vec{a} \cdot \vec{b}=12$, then the value of $|\vec{a} \times \vec{b}|$ is

- Watch Video Solution

3. Find $\vec{a} \cdot \vec{b}$ if $|\vec{a}|=2,|\vec{b}|=5$, and $|\vec{a} \times \vec{b}|=8$

- Watch Video Solution

4. If \vec{a} and \vec{b} are two such that $|\vec{a}|=5,|\vec{b}|=4$ and $|\vec{a} \cdot \vec{b}|=10$, find the angle between \vec{a} and \vec{b} and hence find $|\vec{a} \times \vec{b}|$

- Watch Video Solution

5. If $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \vec{c}=\vec{a}$, showt $\widehat{\vec{a}}, \vec{b}, \vec{c}$ are orthogonal in pairs. Also show that \mid vecc|=|veca| and \mid vecb $\mid=1^{`}$

- Watch Video Solution

6.

Find

$$
\vec{a} \times \vec{b} \text { and }|\vec{a} \times \vec{b}|
$$

$\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$

- Watch Video Solution

7. Find $|\vec{a} \times \vec{b}|$, if $\vec{a}=\hat{i}-7 \hat{j}+7 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+2 \hat{k}$.

- Watch Video Solution

8. If $\vec{a}=2 \hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=3 \hat{i}+4 \hat{j}-\hat{k}$, prove that $\vec{a} \times \vec{b}$ represents a vector which perpendicular to both \vec{a} and \vec{b}.

- Watch Video Solution

9. If $\vec{a}=7 \hat{i}+3 \hat{j}-6 \hat{k}, \vec{b}=2 \hat{i}+5 \hat{j}-\hat{k}$ and $\vec{c}=-\hat{i}+2 \hat{j}+4 \hat{k}$.

Find $(\vec{a}-\vec{b}) \times(\vec{c}-\vec{b})$.

(Watch Video Solution

10. Two vectros \vec{A} and \vec{B} are obtained by joining the origin to the points whose coordinates are $(1,0,-1)$ and $(-1,1,1)$. Find the magnitude of the vectors $\vec{A} \times \vec{B}$ and the direction cosines of this vector.

- Watch Video Solution

11. If $\vec{A}=2 \hat{i}-3 \hat{j}+\hat{k}$ and $\vec{B}=3 \hat{i}+2 \hat{j}$. Find $\vec{A} \cdot \vec{B}$ and $\vec{A} \times \vec{B}$

- Watch Video Solution

12. Find a unit vector perpendicular to the plane of two vectors \vec{a} and \vec{b} where $\vec{a}=4 \hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=-2 \hat{i}+\hat{j}-\hat{k}$

- Watch Video Solution

13. Find a unit vector perpendicular to the plane of two vectors \vec{a} and \vec{b} where $\vec{a}=\hat{i}-\hat{j}$ and $\vec{b}=\hat{j}+\hat{k}$

- Watch Video Solution

14. Find unit vectors perpendicular to each of the vector in the following:
$2 \hat{i}+3 \hat{j}-\hat{k}, \hat{i}+2 \hat{j}+3 \hat{k}$

- Watch Video Solution

15. Find unit vectors perpendicular to each of the vector in the following:
$2 \hat{i}-\hat{j}-\hat{k}, 2 \hat{i}-\hat{j}+3 \hat{k}$
16. Find unit vectors perpendicular to each of the vector in the following:
$4 \hat{i}-\hat{j}+3 \hat{k}, 2 \hat{i}+2 \hat{j}-\hat{k}$

- Watch Video Solution

17. Find a unit vector which is perpendicular to each of the vectors in the following: $\hat{i}-\hat{j}+\hat{k}$ and $2 \hat{i}+3 \hat{j}-\hat{k}$

- Watch Video Solution

18. Find a unit vector which is perpendicular to each of the vectors in the following: $\hat{i}+\hat{j}-2 \hat{k}$ and $2 \hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

19. Find a unity vector perpendicular to each of the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$, where
$\vec{a}=\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}$

- Watch Video Solution

20. Determine the angle between the vectors $\hat{i}+2 \hat{j}+\hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$
. Also find the unit vector perpendicular to each of the two vectors.

- Watch Video Solution

21. Find a unit vectro perpendicular to the vectors $\vec{a}=3 \hat{i}+2 \hat{j}-\hat{k}$ and $\vec{b}=12 \hat{i}+5 \hat{j}-5 \hat{k}$ Also determine the sine of the angle between \vec{a} and \vec{b}.

- Watch Video Solution

22. What is the unit vector perpendicular to each of the vectors $2 \hat{i}-\hat{j}+\hat{k}$ and $3 \hat{i}+4 \hat{j}-\hat{k}$? Prove that the sine of the angle between these two vectors is $\sqrt{\frac{155}{156}}$

- Watch Video Solution

23. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are points $(1,0,-1),(0,1,-1)$ and $(-1,0,1)^{\text {' }}$ respectively find the sine of the angle between the lines $A B$ and $A C$.

- Watch Video Solution

24. Calculate the components of a vector of magnitude unity which is at right angles to the vectors $2 \hat{i}+\hat{j}-4 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$.

- Watch Video Solution

25. If the position vectors of the three points A, B, C are $2 \hat{i}+4 \hat{j}-\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}+2 \hat{k}$ respectively, find a vector perpendicular to the plane ABC.

- Watch Video Solution

26.

Given
$\vec{a}=\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \Longrightarrow \frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k})$ and $\vec{c} \frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k})$
. Show that $\vec{a}, \vec{b}, \vec{c}$ are of unit length mutually perpendicular and that
$\vec{a} \times \vec{b}=\vec{c}$.

- Watch Video Solution

27. If $\vec{a}=7 \hat{i}+3 \hat{j}-5 \hat{k}, \vec{b}=2 \hat{i}+5 \hat{j}-\hat{k}$ and $\vec{c}-\hat{i}+2 \hat{j}+4 \hat{k}$, then verify that $\vec{a} \times(b+c)=\vec{a} \times \vec{b}+\vec{a} \times \vec{c}$

- Watch Video Solution

$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ then show that $\vec{a} \times(\vec{b}+\vec{c})=\vec{a} \times b+\vec{a} \times \vec{c}$

- Watch Video Solution

29. If $\vec{a}=2 \hat{i}+5 \hat{j}-7 \hat{k}, \vec{b}=-3 \hat{i}+4 \hat{j}+\hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}-3 \hat{k}$, show that $((\vec{a} \times \vec{b}) \times \vec{c}), \vec{a} \times(\vec{b} \times \vec{c})$ are not same.

- Watch Video Solution

30. If $\vec{a}=2 \hat{i}+2 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}-\hat{j}-\hat{k}$ and $\vec{c}=\hat{i}+2 \hat{j}-3 \hat{k}$ then verify that $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}$.

- Watch Video Solution

31. Find the perpendicular distance of $P(-\hat{i}+2 \hat{j}+6 \hat{k})$ from the line joining $A(2 \hat{i}+3 \hat{j}-4 \hat{k})$ and $B(8 \hat{i}+6 \hat{j}-8 \hat{k})$

(D) Watch Video Solution

32. Let $\vec{a}=(3,-1,0)$ and $\vec{b}=\left(\frac{1}{2}, \frac{3}{2}, 1\right)$ Fidnthe vector \vec{c} satisfying $\vec{a} \times \vec{c}=4 \vec{b}$ and $\vec{a} \cdot \vec{c}=1$

- Watch Video Solution

33. If $\vec{a}=\hat{i}-\hat{j}+\hat{k}$ and $\vec{b}=\hat{j}-\hat{k}$, then find a vector \vec{a} such that $\vec{a} \times \vec{c}=b$ and $\vec{a} \cdot \vec{c}=3$.

- Watch Video Solution

34. If $\vec{a}=(0,1,-1$,$) and \vec{c}=(1,1,1)$ are given vectors then find a vector \vec{b} satisfying $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{a} \cdot \vec{b}=3$

- Watch Video Solution

35.

$(\vec{a}-\vec{d}) \times(\vec{b}-\vec{c})+(\vec{b}-\vec{d}) \times(\vec{c}-\vec{a})+(\vec{c}-\vec{d}) \times(\vec{a}$
is independent of \vec{d}.

- Watch Video Solution

36.

Prove
that
$(\vec{a}+3 \vec{b}) \times(\vec{a}+\vec{b})+(3 \vec{a}-5 \vec{b}) \times(\vec{a}-\vec{b})=0$

(Watch Video Solution

37. Prove that: $|(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|=2 a b$ if $\vec{a} \perp \vec{b}$

(Watch Video Solution

38. given that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}, \vec{a} \times \vec{b}=\vec{a} \times \vec{c}$ and \vec{a} is not a zero vector. Show that $\vec{b}=\vec{c}$.
39. Find the value of $|(\hat{i}+\hat{j}) \times(\hat{i}+2 \hat{j}+\hat{k})|$

- Watch Video Solution

40. Find the value of $|(3 \hat{i}+\hat{j}) \times(2 \hat{i}-\hat{j})|$

- Watch Video Solution

41. Find the value of $|\hat{i} \times(\hat{i}+\hat{j}+\hat{k})|$

- Watch Video Solution

42. Find the value of $|\hat{i} \times \hat{j}|+\hat{j} \times \hat{k} \mid$
43. Prove that: $(2 \hat{i}+3 \hat{j}) \times(\hat{i}+2 \hat{j})=\hat{k}$

Watch Video Solution

44. Prove that: $(2 \vec{a}-\vec{b}) \times(\vec{a}+2 \vec{b})=5 \vec{a} \times \vec{b}$.

- Watch Video Solution

45. Show that the three points whose position vectors are $-3 \hat{i}+\hat{j}+5 \hat{k}, 2 \hat{i}+3 \hat{k},-13 \hat{i}+3 \hat{j}+9 \hat{k}$ are collinear

- Watch Video Solution

46. Show that the three points whose position vectors are $\vec{a}-2 \vec{b}+3 \vec{c}, 2 \vec{a}+3 \vec{b}-4 \vec{c},-7 \vec{b}+10 \vec{c}$ are collinear
47. Find the area of the prallelogram whose adjacent sides are $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$.

- Watch Video Solution

48. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a}=3 \hat{i}+\hat{j}+4 \hat{k}$ and $\vec{b}=\hat{i}-\hat{j}+\hat{k}$.

- Watch Video Solution

49. Find the area of the parallelogram whose adjacent sides are given by the vectors $\vec{a}=\hat{i}-\hat{j}+3 \hat{k}$ and $\vec{b}=2 \hat{i}-7 \hat{j}+\hat{k}$

- Watch Video Solution

50. Find the area of the parallelogram having diagonals $2 \hat{i}-\hat{j}+\hat{k}$ and $3 \hat{i}+3 \hat{j}-\hat{k}$
51. Find the area of a parallelogram whose diagonals are the vectors $2 \vec{m}-\vec{n}$ and $4 \vec{m}-5 \vec{n}$, where \vec{m} and \vec{n} are unit vectors forming an angle of 45^{0}

Watch Video Solution

52. Show that the area of the triangle whose two adjacent sides are determined by the vectors $\vec{a}=3 \hat{i}+4 \hat{j}, \vec{b}=-5 \hat{i}+7 \hat{j}$ is $20 \frac{1}{2}$ square units.

- Watch Video Solution

53. Find the vector area of the triangle, the position vectors of whose vertices are $\hat{i}+\hat{j}+2 \hat{k}, 2 \hat{i}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}-\hat{j}-\hat{k}$
54. Find the area of the triangle with vertices $\mathrm{A}(1,1,2), \mathrm{B}(2,3,5)$ and $\mathrm{C}(1,5$, 5).

- Watch Video Solution

55. Show by vector method that $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$.

- Watch Video Solution

56. Show by vector method that $\sin 2 A=2 \sin A \cos A$.

- Watch Video Solution

