

MATHS

BOOKS - RESONANCE DPP ENGLISH

VECTOR ALGEBRA

Others

1. The length of the shortest distance between the lines, $\overrightarrow{r}_1 = -2\hat{i} + 7\hat{k} + \lambda\left(-4\hat{i} + 3\hat{j} + 2\hat{k}\right)$ and $\overrightarrow{r}_2 = -3\hat{i} + 6\hat{j} + \mu\left(-4\hat{i} + \hat{j} + \hat{k}\right)$ is 9 (b) 6 (c) 3 (d) None of

these

Watch Video Solution

2. Let $\overrightarrow{V} = 2\hat{i} + \hat{j} - \hat{k}and \overrightarrow{W} = \hat{i} + 3\hat{k}$. If \overrightarrow{U} is a unit vector, then the maximum value of the scalar triple product [UVW] is a.-1 b. $\sqrt{10} + \sqrt{6}$ c. $\sqrt{59}$ d. $\sqrt{60}$

Watch Video Solution

3. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three unit vectors such that $\left| \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right| = 1$ and $\overrightarrow{a} \perp \overrightarrow{b}$. If \overrightarrow{c} makes angles α, β with $\overrightarrow{a}, \overrightarrow{b}$ respectively then $\cos \alpha + \cos \beta$ is equal to (a) $\frac{3}{2}$ (b) 1 (c) -1 (d) None of these

Watch Video Solution

4. The magnitudes of vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are respectively 1, 1 and 2. If $\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + \overrightarrow{b} = \overrightarrow{0}$, then the acute angle between $\overrightarrow{a} \& \overrightarrow{c}$ is (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{4}$ (d) None of these

Watch Video Solution

5. If *aandb* are nonzero non-collinear vectors, then

$$\begin{bmatrix} \overrightarrow{a} \overrightarrow{b} \hat{i} \end{bmatrix} \hat{i} + \begin{bmatrix} \overrightarrow{a} \overrightarrow{b} \hat{j} \end{bmatrix} \hat{j} + \begin{bmatrix} \overrightarrow{a} \overrightarrow{b} \hat{k} \end{bmatrix} \hat{k} \text{ is equal to } a.\overrightarrow{a} \times \overrightarrow{b} \text{ b. } \overrightarrow{a} + \overrightarrow{b}$$
c. $\overrightarrow{a} - \overrightarrow{b}$ d. $\overrightarrow{b} \times \overrightarrow{a}$

Watch Video Solution

6. Let
$$\overrightarrow{a} = \hat{i} - \hat{k}, \overrightarrow{b} = x\hat{i} + \hat{j} + (1-x)\hat{k}$$
 and
 $\overrightarrow{c} = y\hat{i} + x\hat{j} + (1+x-y)\hat{k}$. Then $\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$ depends on

Watch Video Solution

7. \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} are three non-coplanar unit vecrtors and α , β and γ are the angles between \overrightarrow{u} and \overrightarrow{v} , \overrightarrow{v} and \overrightarrow{w} , $and \overrightarrow{w}$ and \overrightarrow{u} , respectively, and \overrightarrow{x} , \overrightarrow{y} and \overrightarrow{z} are unit vectors along the bisectors of the angles α , $\beta and \gamma$, respectively. Prove that

$$\left[\overrightarrow{x} imes\overrightarrow{y}\overrightarrow{y} imes\overrightarrow{z}\overrightarrow{z} imes\overrightarrow{x}
ight] = rac{1}{16} \left[\overrightarrow{u}\,\overrightarrow{v}\,\overrightarrow{w}
ight]^2 \mathrm{sec}^2 \Big(rac{lpha}{2}\Big) \mathrm{sec}^2 \Big(rac{eta}{2}\Big) \mathrm{sec}^2 \Big(rac{\gamma}{2}\Big)$$

Watch Video Solution

.

8. The minimum value of $x^2 + y^2 + z^2$ if ax + by + cz = p, is :

Watch Video Solution

9. Let
$$a, b, c, d, e, f \in R$$
 such that
 $ad + be + cf = \sqrt{(a^2 + b^2 + c^2)(d^2 + e^2 + f^2)}$ Use vector to
prove that $\frac{a + b + c}{\sqrt{b^2 + b^2 + c^2}} = \frac{d + e + f}{\sqrt{d^2 + e^2 + f^2}}$

Watch Video Solution