

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

ALGEBRA OF VECTORS

1. If ABCD is a rhombus whose diagonals cut at the origin O, then proved that $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C + \overrightarrow{O}D$ =0

A.
$$\overrightarrow{AB} + \overrightarrow{AC}$$

B. $\overrightarrow{0}$
C. $2\left(\overrightarrow{AB} + \overrightarrow{BC}\right)$
D. $\overrightarrow{AC} + \overrightarrow{BD}$

Answer: B

2. If C is the mid point of AB and P is any point outside AB then (A) $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = 0$ (B) $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}$ (C) $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$ (D) $\overrightarrow{PA} + \overrightarrow{PB} = 2\overrightarrow{PC}$

A.
$$\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{0}$$

B. $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}$
C. $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$
D. $\overrightarrow{PA} + \overrightarrow{PB} = 2\overrightarrow{PC}$

Answer: D

Watch Video Solution

3. If the sum of two unit vectors is a unit vector, then the magnitude of their difference is

A. 1

B. 2

 $C.\sqrt{3}$

D. $2\sqrt{3}$

Answer: C

Watch Video Solution

4. The non-zero vectors a,b and c are related by a=8b and c=-7b angle between a and c is

A. 0

B. $\pi/4$

C. $\pi/2$

D. π

Answer: D

5. If ABCDEF is a regular hexagon with $\overrightarrow{AB} = \overrightarrow{a}$ and $\overrightarrow{BC} = \overrightarrow{b}$, then \overrightarrow{CE} equals

A. $\overrightarrow{b} - \overrightarrow{a}$ B. $-\overrightarrow{b}$ C. $\overrightarrow{b} - 2\overrightarrow{a}$

D. none of these

Answer: C

Watch Video Solution

6. \overrightarrow{a} and \overrightarrow{b} are the position vectors of A,B respectively and C is a point on AB produced such that AC=3 AB. Then the position vector of C is

A. $3\overrightarrow{a}-2\overrightarrow{b}$

$$B. \overrightarrow{3b} - 2\overrightarrow{a}$$
$$C. \overrightarrow{3a} + 2\overrightarrow{a}$$
$$D. 2\overrightarrow{a} - \overrightarrow{3b}$$

Answer: B

Watch Video Solution

7. Let \overrightarrow{AD} be the angle bisector of the angle A of $\triangle ABC$, then $\overrightarrow{AD} = \alpha \overrightarrow{AB} + \beta \overrightarrow{AC}$, where

$$A. \alpha = \frac{\left|\overrightarrow{AB}\right|}{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}, \beta = \frac{\left|\overrightarrow{AC}\right|}{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}$$
$$B. \alpha = \frac{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}{\left|\overrightarrow{AB}\right|}, \beta = \frac{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}$$
$$C. \alpha = \frac{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}, \beta = \frac{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}{\left|\overrightarrow{AB}\right| + \left|\overrightarrow{AC}\right|}$$

$$\mathsf{D}.\,\alpha = \frac{\left|\overrightarrow{AB}\right|}{\left|\overrightarrow{AC}\right|},\,\beta = \frac{\left|\overrightarrow{AC}\right|}{\left|\overrightarrow{AB}\right|}$$

Answer: C

8. Let D, EandF be the middle points of the sides BC, CAandAB, respectively of a triangle ABC. Then prove that $\overrightarrow{A}D + \overrightarrow{B}E + \overrightarrow{C}F = \overrightarrow{0}$.

A. $\overrightarrow{0}$

B. 0

C. 2

D. none of these

Answer: A

9. G is a point inside the plane of the triangle ABC, $\overrightarrow{G}A + \overrightarrow{G}B + \overrightarrow{G}C = 0$, then show that G is the centroid of triangle ABC.

A. $\overrightarrow{0}$ B. $3\overrightarrow{GA}$ C. $3\overrightarrow{GB}$

D. $3\overrightarrow{GC}$

Answer: A

Watch Video Solution

10. If the vectors $\overrightarrow{A}B=3\hat{i}+4\hat{k}\,\, ext{and}\,\,\overrightarrow{AC}=5\hat{i}-2\hat{j}+4\hat{k}$ are the sides

of a triangle ABC, then the length of the median through A is

A. $\sqrt{18}$

B. $\sqrt{72}$

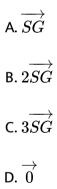
C. $\sqrt{33}$

D. $\sqrt{45}$

Answer: C

Watch Video Solution

11. Let ABC be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then $\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} =$



Answer: C

12. If O and O' are circumcentre and orthocentre of ABC, then $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C$ equals $2\overrightarrow{O}O'$ b. $\overrightarrow{O}O'$ c. $\overrightarrow{O}'O$ d. $2\overrightarrow{O}'O$ A. $\overrightarrow{O'O}$ B. $\overrightarrow{OO'}$ C. $2\overrightarrow{OO'}$ D. \overrightarrow{O}

Answer: B

13. If o is the circumcenter, G is the centroid and O' is orthocenter or triangle ABC then prove that:

A. $\overrightarrow{O'O}$ B. $\overrightarrow{OO'}$

 $C.2\overrightarrow{OO'}$

Answer: C

Watch Video Solution

14. Let ABC be a triangle whose circumcentre is at P. If the position vectors of A, B, C and P are \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and $\frac{\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}}{4}$ respectively, then the position vector of the orthocentre of this triangle is

A.
$$\overrightarrow{0}$$

B. $-\frac{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}}{2}$
C. $\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}$
D. $\frac{\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}}{2}$

Answer: C

15. Consider $\triangle ABC$ and $\triangle A_1B_1C_1$ in such a way that $\overline{AB} = \overline{A_1B_1}$ and M, N, M_1, N_1 be the midpoints of AB, BC, A_1B_1 and B_1C_1 respectively, then

A.
$$\overrightarrow{MM_1} = \overrightarrow{NN_1}$$

B. $\overrightarrow{CC_1} = \overrightarrow{MM_1}$
C. $\overrightarrow{CC_1} = \overrightarrow{NN_1}$
D. $\overrightarrow{MM_1} = \overrightarrow{BB_1}$

Answer: D

Watch Video Solution

16. Let ABCD be a parallelogram whose diagonals intersect at P and let O be the origin. Then prove that $\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C + \overrightarrow{O}D = 4\overrightarrow{O}P$.

A.
$$\overrightarrow{OP}$$

B. $2\overrightarrow{OP}$

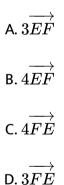
C. $3\overrightarrow{OP}$

D. $4\overrightarrow{OP}$

Answer: D

Watch Video Solution

17. If ABCD is quadrilateral and E and F are the mid-points of AC and BD respectively, prove that $\overrightarrow{A}B + \overrightarrow{A}D + \overrightarrow{C}B + \overrightarrow{C}D = 4\overrightarrow{E}F$.



Answer: B

18. Given that the vectors \overrightarrow{a} and \overrightarrow{b} are non-collinear, the values of x and y for which the vector equality $2\overrightarrow{u} - \overrightarrow{v} = \overrightarrow{w}$ holds true if $\overrightarrow{u} = x\overrightarrow{a} + 2y\overrightarrow{b}, \overrightarrow{v} = -2y\overrightarrow{a} + 3x\overrightarrow{b}, \overrightarrow{w} = 4\overrightarrow{a} - 2\overrightarrow{b}$ are

A.
$$x = \frac{4}{7}, y = \frac{6}{7}$$

B. $x = \frac{10}{7}, y = \frac{4}{7}$
C. $x = \frac{8}{7}, y = \frac{2}{7}$
D. $x = 2, y = 3$

Answer: B

Watch Video Solution

19. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three non-zero vectors such that any two of them are non-collinear. If $\overrightarrow{a} + 2\overrightarrow{b}$ is collinear with \overrightarrow{c} and $\overrightarrow{b} + 3\overrightarrow{c}$ is collinear with \overrightarrow{a} then prove that $\overrightarrow{a} + 2\overrightarrow{b} + 6\overrightarrow{c} = \overrightarrow{0}$

20. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-zero vectors, no two of which are collinear and the vector $\overrightarrow{a} + \overrightarrow{b}$ is collinear with \overrightarrow{c} , $\overrightarrow{b} + \overrightarrow{c}$ is collinear with \overrightarrow{a} , then $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{a}$ b. \overrightarrow{b} c. \overrightarrow{c} d. none of these A. \overrightarrow{c} B. $\overrightarrow{0}$ C. $\overrightarrow{a} + \overrightarrow{c}$

D. \overrightarrow{a}

Answer: B

21. If
$$\left|\overrightarrow{AO}+\overrightarrow{OB}\right|=\left|\overrightarrow{BO}+\overrightarrow{OC}\right|$$
 , then A,B,C form

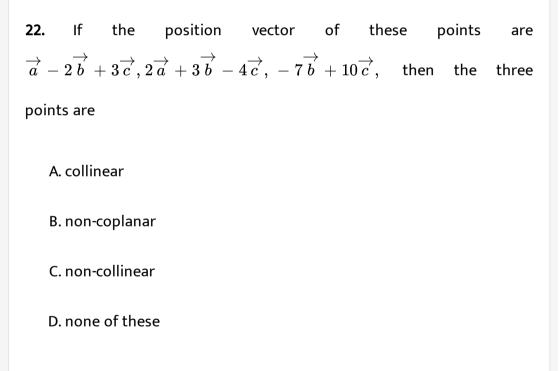
A. equilateral triangle

B. collinear

C. non-collinear

D. none of these

Answer: B



Answer: A

23. Three points with position vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} will be collinear if there exist scalars x, y, z such that

A.
$$x\overrightarrow{a} + y\overrightarrow{b} = z\overrightarrow{c}$$

B. $x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} = 0$
C. $x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} = 0$, where $x + y + z = 0$
D. $x\overrightarrow{a} + y\overrightarrow{b} = \overrightarrow{c}$.

Answer: C

Watch Video Solution

24. The position vectors of the vectices A, B, C of a $\triangle ABC$ are $\hat{i} - \hat{j} - 3\hat{k}$, $2\hat{i} + \hat{j} - 2\hat{k}$ and $-5\hat{i} + 2\hat{j} - 6\hat{k}$ respectively. The length of the bisector AD of the angle $\angle BAC$ where D is on the line segment BC, is

A.
$$\frac{15}{2}$$

B. $\frac{11}{2}$

 $\mathsf{C}.\,\frac{1}{4}$

D. none of these

Answer: D

Watch Video Solution

25. Consider points A, B, C and D with position vectors $7\hat{i} - 4\hat{j} + 7\hat{k}, \, \hat{i} - 6\hat{j} + 10\hat{k}, \, -\hat{i} - 3\hat{j} + 4\hat{k}$ and $5\hat{i} - \hat{j} + 5\hat{k}$

respectively. Then, ABCD is a

A. parallelogram but not a rhombus

B. square

C. rhombus

D. rectangle

Answer: C

26. If vectors $\overrightarrow{A}B = -3\hat{i} + 4\hat{k}and\overrightarrow{A}C = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a $\triangle ABC$, then the length of the median through Ais a. $\sqrt{14}$ b. $\sqrt{18}$ c. $\sqrt{29}$ d. $\sqrt{5}$

A. $\sqrt{288}$

B. $\sqrt{18}$

C. $\sqrt{72}$

D. $\sqrt{33}$

Answer: D

Watch Video Solution

27. The sides of a parallelogram are $2\hat{i} + 4\hat{j} - 5\hat{k}$ and $\hat{i} + 2\hat{j} + 3\hat{k}$, then the unit vector parallel to one of the diagonals is

A.
$$rac{1}{7} \Big(3 \hat{i} + 6 \hat{j} - 2 \hat{k} \Big)$$

$$egin{aligned} & \mathsf{B}.\,rac{1}{7}\Big(3\hat{i}-6\widehat{K}\,-2\hat{k}\Big) \ & \mathsf{C}.\,rac{1}{7}\Big(-3\hat{i}+6\hat{j}-2\hat{k}\Big) \ & \mathsf{D}.\,rac{1}{7}\Big(3\hat{i}+6\hat{j}+2\hat{k}\Big) \end{aligned}$$

Answer: A

Watch Video Solution

28. If the points
$$P\left(\overrightarrow{a}+2\overrightarrow{b}+\overrightarrow{c}\right), Q\left(2\overrightarrow{a}+3\overrightarrow{b}\right), R\left(\overrightarrow{b}+t\overrightarrow{c}\right)$$
 are

collinear, where \vec{a} , \vec{b} , \vec{c} are non-coplanar vectors, the value of t is

- A. -2
- B. 1/2
- $\mathsf{C}.\,1/2$
- D. 2

Answer: D

29. A vector coplanar with vectors $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ and parallel to the vector $2\hat{i} - 2\hat{j} - 4\hat{k}$, is

A. $\hat{i}-\hat{k}$

B. $\hat{i} - \hat{j} - 2\hat{k}$

- C. $\hat{i}+\hat{j}-\hat{k}$
- D. $3\hat{i}+3\hat{j}-6\hat{k}$

Answer: B

Watch Video Solution

30. Let co-ordinates of a point 'p' with respect to the system non-coplanar vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} is (3, 2, 1). Then, co-ordinates of 'p'with respect to the system of vectors $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{a} - \overrightarrow{b} + \overrightarrow{c}$. $\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}$

A. (3/2, 1/2, 1)

B. (3/2, 1, 1/2)

C.(1/2,3/2,1)

D. none of these

Answer: C

Watch Video Solution

31. Suppose that \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} are three non- coplaner in \mathbb{R}^3 , Let the components of a vector \overrightarrow{s} along \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} be 4,3, and 5, respectively, if the components this vector \overrightarrow{s} along $\left(-\overrightarrow{p}+\overrightarrow{q}+\overrightarrow{r}\right)$, $\left(\overrightarrow{p}-\overrightarrow{q}+\overrightarrow{r}\right)$ and $\left(-\overrightarrow{p}-\overrightarrow{q}+\overrightarrow{r}\right)$ are x, y

and z , respectively , then the value of 2x+y+z is

A. 7

B. 8

C. 9

D. 6

Answer: C

32.

$$egin{aligned} &(x,y,z)
eq(0,0,0) \ ext{and} \ \Big(\hat{i}+\hat{j}+3\hat{k}\Big)x+\Big(3\hat{i}-3\hat{j}+\hat{k}\Big)y+\Big(-4\hat{i}+5\hat{j}\Big)\ &=a\Big(x\hat{i}+y\hat{j}+z\hat{k}\Big), ext{ then the values of a are} \end{aligned}$$

If

- A. 0, -2
- B. 2, 0
- C. 0, -1

D. 1, 0

Answer: C

33. The vectors $a = \alpha \hat{i} + 2\hat{j} + \beta \hat{k}$ lies in the plane of the vectors $b = \hat{i} + \hat{j}$ and $c = \hat{j} + \hat{k}$ and bisects the angle between b and c. Then, which one of the following gives possible values of α and β ?

A.
$$lpha=2,eta=2$$

B. lpha=1, eta=2

 $\mathsf{C}.\,\alpha=2,\beta=1$

 $\mathsf{D}.\,\alpha=1,\beta=1$

Answer: D

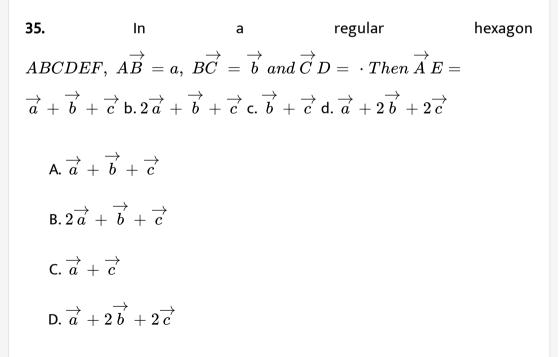
Watch Video Solution

34. If \overrightarrow{a} , \overrightarrow{b} are the vectors forming consecutive sides of a regular of a regular hexagon *ABCDEF*, then the vector representing side *CD* is $\overrightarrow{a} + \overrightarrow{b}$ b. $\overrightarrow{a} - \overrightarrow{b}$ c. $\overrightarrow{b} - \overrightarrow{a}$ d. $-\left(\overrightarrow{a} + \overrightarrow{b}\right)$ A. $\overrightarrow{a} + \overrightarrow{b}$

B.
$$\overrightarrow{a} - \overrightarrow{b}$$

C. $\overrightarrow{b} - \overrightarrow{a}$
D. $-\left(\overrightarrow{a} + \overrightarrow{b}\right)$

Answer: C



Answer: C

36. If ABCDEF is regular hexagon, then AD+EB+FC is

A. $2A\overrightarrow{B}$ B. $\overrightarrow{0}$ C. $3A\overrightarrow{B}$ D. $4A\overrightarrow{B}$

Answer: D

37. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} are the position vectors of points A, B, C, Dsuch that no three of them are collinear and $\overrightarrow{a} + \overrightarrow{c} = \overrightarrow{b} + \overrightarrow{d}$, then ABCD is a a. rhombus b. rectangle c. square d. parallelogram A. rhombus

B. rectangle

C. square

D. parallelogram

Answer: D

Watch Video Solution

38. ABCDEF si a regular hexagon with centre at the origin such that $\overrightarrow{AD} + \overrightarrow{EB} + \overrightarrow{FC} = \lambda \overrightarrow{ED}$. Then, λ equals

A. 2

B. 4

C. 6

D. 3

Answer: B

39. ABCD is a parallelogram with AC and BD as diagonals. Then, $\overrightarrow{A}C - \overrightarrow{B}D = 4\overrightarrow{A}B$ b. $3\overrightarrow{A}B$ c. $2\overrightarrow{A}B$ d. $\overrightarrow{A}B$

- A. $4A\overrightarrow{B}$
- B. 3AB
- C. 2AB
- D. $A\overrightarrow{B}$

Answer: C

Watch Video Solution

40. If OACB is a parallelogrma with $\overrightarrow{OC} = \overrightarrow{a}$ and $\overrightarrow{AB} = \overrightarrow{b}$ then \overrightarrow{OA} is

equal to

A.
$$\overrightarrow{a} + \overrightarrow{b}$$

B.
$$\overrightarrow{a} - \overrightarrow{b}$$

C. $\frac{1}{2} \left(\overrightarrow{b} - \overrightarrow{a} \right)$
D. $\frac{1}{2} \left(\overrightarrow{a} - \overrightarrow{b} \right)$

Answer: B

Watch Video Solution

41. If *G* is the intersection of diagonals of a parallelogram *ABCD* and *O* is any point then $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ a. $\overrightarrow{2OG}$ b. $\overrightarrow{4OG}$ c. $\overrightarrow{5OG}$ d. $\overrightarrow{3OG}$ A. $\overrightarrow{2OG}$ B. $\overrightarrow{4OG}$ c. $\overrightarrow{5OG}$ Answer: B

Watch Video Solution

42. Let *G* be the centroid of triangle ABC. If $\overrightarrow{A}B = \overrightarrow{a}, \overrightarrow{A}C = \overrightarrow{b}$, then the bisector $\overrightarrow{A}G$, in terms of \overrightarrow{a} and \overrightarrow{b} is $\frac{2}{3}(\overrightarrow{a} + \overrightarrow{b})$ b. $\frac{1}{6}(\overrightarrow{a} + \overrightarrow{b})c.\frac{1}{3}(\overrightarrow{a} + \overrightarrow{b})d.\frac{1}{2}(\overrightarrow{a} + \overrightarrow{b})1$ A. $\frac{2}{3}(\overrightarrow{a} + \overrightarrow{b})$ B. $\frac{1}{6}(\overrightarrow{a} + \overrightarrow{b})$ C. $\frac{1}{3}(\overrightarrow{a} + \overrightarrow{b})$ D. $\frac{1}{2}(\overrightarrow{a} + \overrightarrow{b})$

Answer: C

43. The position vectors of the points A, B, C are $2\hat{i} + \hat{j} - \hat{k}, 3\hat{i} - 2\hat{j} + \hat{k}$ and $\hat{i} + 4\hat{j} - 3\hat{k}$ respectively. These points

A. form an isosceles triangle

B. form a right triangle

C. are collinear

D. form a scalene triangle

Answer: C

Watch Video Solution

44. If the points with position vectors $20\hat{i} + p\hat{j}$, $5\hat{i} - \hat{j}$ and $10\hat{i} - 13\hat{j}$ are collinear, then p =

A. 7

B. -37

C. -7

D. 37

Answer: B

Watch Video Solution

45. If the position vector of a point A is $\vec{a} + 2\vec{b}$ and \vec{a} divides AB in the ratio 2: 3, then the position vector of B, is

A. $2\overrightarrow{a} - \overrightarrow{b}$ B. $\overrightarrow{b} - 2\overrightarrow{a}$ C. $\overrightarrow{a} - 3\overrightarrow{b}$ D. \overrightarrow{b}

Answer: C

46. \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three non-zero vectors, no two of which are collinear and the vectors $\overrightarrow{a} + \overrightarrow{b}$ is collinear with \overrightarrow{c} , $\overrightarrow{b} + \overrightarrow{c}$ is collinear with \overrightarrow{a} , then $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} =$

A. \overrightarrow{a} B. \overrightarrow{b} C. \overrightarrow{c}

D. none of these

Answer: D

Watch Video Solution

47. If points
$$A\Big(60\hat{i}+3\hat{j}\Big),\;B\Big(40\hat{i}-8\hat{j}\Big)$$
 and $C\Big(a\hat{i}-52\hat{j}\Big)$ are collinear,

then a is equal to 40 b. -40 c. 20 d. -20

A. 40

B. -40

C. 20

D. -20

Answer: B

Watch Video Solution

48. Let
$$\overrightarrow{OA} = \hat{i} + 3\hat{j} - 2\hat{k}$$
 and $\overrightarrow{OB} = 3\hat{i} + \hat{j} - 2\hat{k}$. Then vector \overrightarrow{OC} biecting the angle AOB and C being a point on the line AB is

A.
$$4ig(\hat{i}+\hat{j}-\hat{k}ig)$$

B. $2ig(\hat{i}+\hat{j}-\hat{k}ig)$
C. $\hat{i}+\hat{j}-\hat{k}$

D. none of these

Answer: B

49. If the vector $-\hat{i} + \hat{j} - \hat{k}$ bisects the angle between the vector \overrightarrow{c} and the vector $3\hat{i} + 4\hat{j}$, then the vector along \overrightarrow{c} is

$$\begin{aligned} &\mathsf{A}.\,\frac{1}{15} \Big(11\hat{i}\,+\,10\hat{j}\,+\,2\hat{k}\Big) \\ &\mathsf{B}.\,-\,\frac{1}{15} \Big(11\hat{i}\,-\,10\hat{j}\,+\,2\hat{k}\Big) \\ &\mathsf{C}.\,-\,\frac{1}{15} \Big(11\hat{i}\,+\,10\hat{j}\,-\,2\hat{k}\Big) \\ &\mathsf{D}.\,-\,\frac{1}{15} \Big(11\hat{i}\,+\,10\hat{j}\,+\,2\hat{k}\Big) \end{aligned}$$

Answer: D

Watch Video Solution

50. If
$$\overrightarrow{r} = 3\hat{i} + 2\hat{j} - 5\hat{k}, \overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}, \overrightarrow{b} = \hat{i} + 3\hat{j} - 2\hat{k}$$

and $\overrightarrow{c} = -2\hat{i} + \hat{j} - 3\hat{k}$ such that $\hat{r} = x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c}$ then

A. x, y, z are in AP

B. x, y, z are in GP

C. x, y, z are in HP

D.
$$y, \frac{x}{2}, z$$
 are in AP

Answer: D

Watch Video Solution

51. Let $\overrightarrow{A}B = 3\hat{i} + \hat{j} - \hat{k}$ and $\overrightarrow{A}C = \hat{i} - \hat{j} + 3\hat{k}$ and a point P on the line segment BC is equidistant from AB and AC, then \overrightarrow{AP} is

A. $2\hat{i}-\hat{k}$

- B. $\hat{i}-2\hat{k}$
- $\mathsf{C.}\,2\hat{i}+\hat{k}$

D. none of these

Answer: C

52. The vector \overrightarrow{c} , directed along the internal bisector of the angle

between the vectors

$$\overrightarrow{a} = 7\hat{i} - 4\hat{j} - 4\hat{k}$$
 and $\overrightarrow{b} = -2\hat{i} - \hat{j} + 2\hat{k}$ with $|\overrightarrow{c}| = 5\sqrt{6}$, is
A. $\frac{5}{3}(\hat{i} - 7\hat{j} + 2\hat{k})$
B. $\frac{5}{3}(5\hat{i} + 5\hat{j} + 2\hat{k})$
C. $\frac{5}{3}(\hat{i} + 7\hat{j} + 2\hat{k})$
D. $\frac{5}{3}(-5\hat{i} + 5\hat{j} + 2\hat{k})$

Answer: A

Watch Video Solution

53. If ABCD is quadrilateral and E and F are the mid-points of AC and BD respectively, prove that $\overrightarrow{A}B + \overrightarrow{A}D + \overrightarrow{C}B + \overrightarrow{C}D = 4\overrightarrow{E}F$.

A. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a

correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a

correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

Watch Video Solution

54. Let ABC be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then $\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} =$

A. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a

correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a

correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

55. If o is the circumcenter, G is the centroid and O' is orthocenter or triangle ABC then prove that:

A. Statement - 1 is True, Statement - 2 is True , Statement - 2 is a

correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a

correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

56. If O be the circumcentre and O' be the orthocentre of the ΔABC , then O'A + O'B + O'C is equal to

A. Statement - 1 is True, Statement - 2 is True , Statement - 2 is a

correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a

correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

Watch Video Solution

57. Statement -1 : If \overrightarrow{a} and \overrightarrow{b} are non- collinear vectors, then points having position vectors $x_1\overrightarrow{a} + y_1\overrightarrow{b}, x_2\overrightarrow{a} + y_2\overrightarrow{b}$ and $x_3\overrightarrow{a} + y_3\overrightarrow{b}$ are collinear if

 $egin{array}{c|cccc} x_1 & x_2 & x_3 \ y_1 & y_2 & y_3 \ 1 & 1 & 1 \end{array}
ight| = 0$

Statement -2: Three points with position vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are collinear iff there exist scalars x, y, z not all zero such that $x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} = \overrightarrow{0}$, where x + y + z = 0.

A. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a

correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a

correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

58. A transversal cuts the sides OL,OM and diagonal ON of a parallelogram at A,B and C respectively.

Prove that
$$\frac{OL}{OA} + \frac{OM}{OB} = \frac{ON}{OC}$$
.

A. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a

correct explanation for Statement - 1.

B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a

correct explanation for Statement - 1.

C. Statement - 1 is True, Statement - 2 is False.

D. Statement - 1 is False, Statement - 2 is True.

Answer: A

Watch Video Solution

Exercise

1. A point O is the centre of a circle circumscribed about a triangle ABC. Then $\overrightarrow{O}A\sin 2A + \overrightarrow{O}B\sin 2B + \overrightarrow{O}C\sin 2C$ is equal to a. $\left(\overrightarrow{O}A + \overrightarrow{O}B + \overrightarrow{O}C\right)$ sin 2*A* b. $3\overrightarrow{O}G$, where *G* is the centroid of \rightarrow

triangle ABC c. $\overrightarrow{0}$ d. none of these

A.
$$\left(\overrightarrow{Oa} + \overrightarrow{OB} + \overrightarrow{OC}\right) \sin 2A$$

B. \overrightarrow{OG} , where G is the centroid of triangle ABC

 $C. \overrightarrow{0}$

D. none of these

Answer: C

Watch Video Solution

2. The vectors $2\hat{i} + 3\hat{j}, 5\hat{i} + 6\hat{j}$ and $8\hat{i} + \lambda\hat{j}$ have their initial points at

(1, 1). Find the value of λ so that the vectors terminate on the straight line.

A. 0

B. 3

C. 6

D. 9

Answer: D

Watch Video Solution

3. If $4\hat{i} + 7\hat{j} + 8\hat{k}$, $2\hat{i} + 3\hat{j} + 4\hat{k}$ and $2\hat{i} + 5\hat{j} + 7\hat{k}$ are the position vectors of the vertices A, B and C respectively of triangle ABC. The position vector of the point where the bisector of angle A meets BC, is

$$\begin{array}{l} \mathsf{A.} \; \frac{2}{3} \Big(-6\hat{i} - 8\hat{j} - 6\hat{k} \Big) \\ \mathsf{B.} \; \frac{2}{3} \Big(6\hat{i} + 8\hat{j} + 6\hat{k} \Big) \\ \mathsf{C.} \; \frac{1}{3} \Big(6\hat{i} + 13\hat{j} + 18\hat{k} \Big) \\ \mathsf{D.} \; \frac{1}{3} \Big(5\hat{j} + 12\hat{k} \Big) \end{array}$$

Answer: C

4. If \overrightarrow{a} is a non-zero vector of modulus a and m is a non-zero scalar, then $m\overrightarrow{a}$ is a unit vector if

A.
$$m = \pm 1$$

B. $m = \left| \overrightarrow{a} \right|$
C. $m = \frac{1}{\left| \overrightarrow{a} \right|}$
D. $m = \pm 2$

Answer: C

Watch Video Solution

5. D, E and F are the mid-points of the sides BC, CA and AB respectively of

 ΔABC and G is the centroid of the triangle, then $\overrightarrow{GD}+\overrightarrow{GE}+\overrightarrow{GF}=$

A.
$$\overrightarrow{0}$$

B. $2\overrightarrow{AB}$

 $\mathsf{C.}\, 2\overrightarrow{GA}$

D. $2\overrightarrow{GC}$

Answer: A

Watch Video Solution

6. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are the position vectors of the vertices of an equilateral triangle whose orthocentre is t the origin, then write the value of $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{\cdot}$ A. $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0}$

B.
$$\left| \overrightarrow{a} \right|^2 = \left| \overrightarrow{b} \right|^2 + \left| \overrightarrow{c} \right|^2$$

C. $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c}$

D. none of these

Answer: A

7. If P, Q, R are three points with respective position vectors $\hat{i} + \hat{j}, \, \hat{i} - \hat{j}$ and $a\hat{i} + b\hat{j} + c\hat{k}$. The points P, Q, R are collinear, if

A.
$$a = b = c = 1$$

B. a = b = c = 0

 $\mathsf{C}.\,a=1,b,c\in R$

D.
$$a=1, c=0, b\in R$$

Answer: D

Watch Video Solution

8. Let ABC be a triangle, the position vectors of whose vertices are $7\hat{j} + 10\hat{k}, -\hat{i} + 6\hat{j} + 6\hat{k}$ and $-4\hat{i} + 9\hat{j} + 6\hat{k}$. Then ΔABC is

A. isosceles and right angled

B. equilateral

C. right angled but not isosceles

D. none of these

Answer: A

Watch Video Solution

9. If
$$\overrightarrow{a} = \hat{i} + 2\hat{j} + 2\hat{k}$$
 and $\overrightarrow{b} = 3\hat{i} + 6\hat{j} + 2\hat{k}$ then the vector in the direction of \overrightarrow{a} and having mgnitude as $\left|\overrightarrow{b}\right|$ is

A.
$$7\Big(\hat{i}+2\hat{j}+2\hat{k}\Big)$$

B. $rac{7}{9}\Big(\hat{i}+2\hat{j}+2\hat{k}\Big)$
C. $rac{7}{3}\Big(\hat{i}+2\hat{j}+2\hat{k}\Big)$

D. none of these

Answer: C

10. $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non-coplanar vectors and $x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} = \overrightarrow{0}$ then

A. at least of one of x, y, z is zero

B. x, y, z are necessarily zero

C. none of them are zero

D. none of these

Answer: B

Watch Video Solution

11. The vector \overrightarrow{c} , directed along the internal bisector of the angle

between the vectors

$$\overrightarrow{a} = 7\hat{i} - 4\hat{j} - 4\hat{k}$$
 and $\overrightarrow{b} = -2\hat{i} - \hat{j} + 2\hat{k}$ with $|\overrightarrow{c}| = 5\sqrt{6}$, is
A. $\pm \frac{5}{3}(2\hat{i} + 7\hat{j} + \hat{k})$
B. $\pm \frac{3}{5}(\hat{i} + 7\hat{j} + 2\hat{k})$
C. $\pm \frac{5}{3}(\hat{i} - 2\hat{j} + 7\hat{k})$

D.
$$\pm rac{5}{3} \Big(\hat{i} - 7 \hat{j} + 2 \hat{k} \Big)$$

Answer: D

12. A, B have vectors \overrightarrow{a} , \overrightarrow{b} relative to the origin O and X, Y divide \overrightarrow{AB} internally and externally respectively in the ratio 2:1. Then, $\overrightarrow{XY} =$

A.
$$\frac{3}{2} \left(\overrightarrow{b} - \overrightarrow{a} \right)$$

B. $\frac{4}{3} \left(\overrightarrow{a} - \overrightarrow{b} \right)$
C. $\frac{5}{6} \left(\overrightarrow{b} - \overrightarrow{a} \right)$
D. $\frac{4}{3} \left(\overrightarrow{b} - \overrightarrow{a} \right)$

Answer: D

13. If a vector of magnitude 50 is collinear with vector $\vec{b} = 6\hat{i} - 8\hat{j} - \frac{15}{2}\hat{k}$ and makes an acute anlewih positive z-axis then:

A. $24\hat{i}-32\hat{j}-30\hat{k}$

- $\mathsf{B.}-24\hat{i}+32\hat{j}+30\hat{k}$
- C. $12\hat{i} 16\hat{j} 15\hat{k}$

D. none of these

Answer: B

Watch Video Solution

14. The vector \overrightarrow{c} , directed along the internal bisector of the angle between the vectors $\overrightarrow{a} = 7\hat{i} - 4\hat{j} - 4\hat{k}$ and $\overrightarrow{b} = -2\hat{i} - \hat{j} + 2\hat{k}$ with $|\overrightarrow{c}| = 5\sqrt{6}$, is A. $\hat{i} - 7\hat{j} + 2\hat{k}$

B. $\hat{i}+7\hat{j}-2\hat{k}$

C.
$$-\hat{i}+7\hat{j}+2\hat{k}$$

D.
$$\hat{i}-7\hat{j}-2\hat{k}$$

Answer: A

15. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non- coplanar vectors such that $\overrightarrow{r}_1 = \overrightarrow{a} + \overrightarrow{c}$, $\overrightarrow{r}_2 = \overrightarrow{b} + \overrightarrow{c} - \overrightarrow{a}$, $\overrightarrow{r}_3 = \overrightarrow{c} + \overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{r} = 2\overrightarrow{a} - 3\overrightarrow{b}$ If $\overrightarrow{r} = \lambda_1 \overrightarrow{r}_1 + \lambda_2 \overrightarrow{r}_2 + \lambda_3 \overrightarrow{r}_3$, then A. $\lambda_1 = 7$ B. $\lambda_1 + \lambda_3 = 3$ C. $\lambda_1 + \lambda_2 + \lambda_3 = 3$ D. $\lambda_3 + \lambda_2 = 2$

Answer: B,A

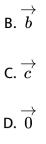
16. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non- coplanar vectors such that $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} = \alpha \overrightarrow{d}$ and $\overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d} = \beta \overrightarrow{a}$, then $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d}$ to equal to $\overrightarrow{A}, \overrightarrow{0}$

- $\mathsf{B}.\,\alpha \overset{\longrightarrow}{a}$
- $\mathsf{C}.\beta \overset{\longrightarrow}{b}$
- D. $(\alpha + \beta) \overrightarrow{c}$

Answer: A

Watch Video Solution

17. \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non zero vectors no two of which are collonear and the vectors $\overrightarrow{a} + \overrightarrow{b}$ be collinear with \overrightarrow{c} , $\overrightarrow{b} + \overrightarrow{c}$ to collinear with \overrightarrow{a} then $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ the equal to ? (A) \overrightarrow{a} (B) \overrightarrow{b} (C) \overrightarrow{c} (D) None of these



Answer: D

Watch Video Solution

18. Let α, β and γ be distinct real numbers. The points with position vectors

A. are collinear

B. form an equilateral triangle

C. form a scalene triangle

D. form a right angled triangle

Answer: B

19. The points with position vectors $60\hat{i} + 3\hat{j}, 40\hat{i} - 8\hat{j}, a\hat{i} - 52\hat{j}$ are collinear if (A) a = -40 (B) a = 40 (C) a = 20 (D) none of these

A.
$$a = -40$$

B. a = 40

 $\mathsf{C.}\,a=20$

D. none of these

Answer: A

20. If the points with position vectors $10\hat{i} + 3\hat{j}, 12\hat{i} - 5\hat{j}$ and $a\hat{i} + 11\hat{j}$ are collinear, find the value of a.

A. -8

B. 4

C. 8

D. 12

Answer: D

Watch Video Solution

21. If C is the middle point of AB and P is any point outside AB, then

A.
$$\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{PC}$$

B. $\overrightarrow{PA} + \overrightarrow{PB} = 2\overrightarrow{PC}$
C. $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \overrightarrow{0}$
D. $\overrightarrow{PA} + \overrightarrow{PB} + 2\overrightarrow{PC} = \overrightarrow{0}$

Answer: B

22. The median AD of the ΔABC is bisected at E.BE meets AC in F. then,

AF:AC is equal to

A. 3/4

B. 1/3

C.1/2

D. 1/4

Answer: B

Watch Video Solution

23. In a trapezium, the vector $BC = \lambda AD$. We will then find that p = AC + BD is collinear with AD. I $p = \mu$ AD, then

A. $\mu=\lambda+1$

 $\mathsf{B}.\,\lambda=\mu+1$

 $\mathsf{C}.\,\lambda+\mu=1$

D. $\mu=2+\lambda$

Answer: A

Watch Video Solution

24. If \overrightarrow{x} and \overrightarrow{y} are two non-collinear vectors and ABC is a triangle with side lengths a, b, andc satisfying $(20a - 15b)\overrightarrow{x} + (15b - 12c)\overrightarrow{y} + (12c - 20a)(\overrightarrow{x} \times \overrightarrow{y}) = 0$, then triangle ABC is a. an acute-angled triangle b. an obtuse-angled triangle c. a right-angled triangle d. an isosceles triangle

A. an acute angle triangle

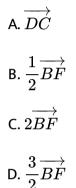
B. an obtuse angle triangle

C. a right angle triangle

D. an isosceles triangle

Answer: C

25. If D, E, F are respectively the mid-points of AB, AC and BC respectively in a $\triangle ABC$, then $\overrightarrow{BE} + \overrightarrow{AF} =$



Answer: A

Watch Video Solution

26. Forces $3O\overrightarrow{A}, 5O\overrightarrow{B}$ act along OA and OB. If their resultant passes through C on AB, then

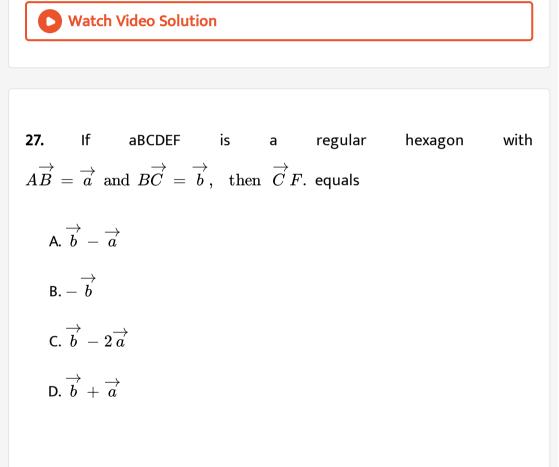
A. C is a mid-point of AB

B. C divides AB in the ratio 2:1

 $\mathsf{C.}\, 3AC = 5CB$

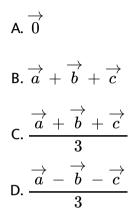
D.2AC = 3CB

Answer: C



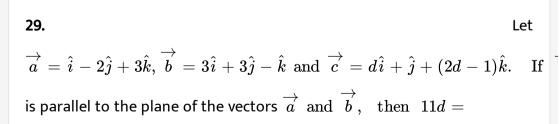
Answer: C

28. If A,B and C are the vertices of a triangle with position vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} respectively and G is the centroid of ΔABC , then $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC}$ is equal to



Watch Video Solution

Answer: A



B. 1

C. -1

D. 0

Answer: C

Watch Video Solution

30. If *G* is the intersection of diagonals of a parallelogram *ABCD* and *O* is any point then $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$ a. $\overrightarrow{2OG}$ b. $\overrightarrow{4OG}$ c. $\overrightarrow{5OG}$ d. $\overrightarrow{3OG}$ A. $\overrightarrow{3OM}$ B. $\overrightarrow{4OM}$

C. $2\overrightarrow{OM}$

Answer: B

Watch Video Solution

Chapter Test

1. If the vectors
$$\overrightarrow{a} = 2\hat{i} + 3\hat{j} + 6\hat{k}$$
 and \overrightarrow{b} are collinear and
 $\left|\overrightarrow{b}\right| = 21$, then $\overrightarrow{b} =$
(A) $\pm 3\left(2\hat{i} + 3\hat{j} + 6\hat{k}\right)$
(B) $\pm \left(2\hat{i} + 3\hat{j} - 6\hat{k}\right)$
(C) $\pm 21\left(2\hat{i} + 3\hat{j} + 6\hat{k}\right)$
(D) $\pm 21\left(\hat{i} + \hat{j} + \hat{k}\right)$
A. $\pm 3\left(2\hat{i} + 3\hat{j} + 6\hat{k}\right)$
B. $\pm \left(2\hat{i} + 3\hat{j} - 6\hat{k}\right)$
C. $\pm 21\left(2\hat{i} + 3\hat{j} + 6\hat{k}\right)$

D.
$$\pm 21 \Big(\hat{i} + \hat{j} + \hat{k} \Big)$$

Answer: A

Watch Video Solution

2. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-zero vectors (no two of which are collinear), such that the pairs of vectors $\left(\overrightarrow{a} + \overrightarrow{b}, \overrightarrow{c}\right)$ and $\left(\overrightarrow{b} + \overrightarrow{c}, \overrightarrow{a}\right)$ are collinear, then $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} =$

A. \overrightarrow{a} B. \overrightarrow{b} C. \overrightarrow{c}

D.
$$\overline{0}$$

Answer: D

3. Vectors $\overrightarrow{a} and \overrightarrow{b}$ are non-collinear. Find for what value of x vectors $\overrightarrow{c} = (x-2)\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{d} = (2x+1)\overrightarrow{a} - \overrightarrow{b}$ are collinear? A. 1/3 B. 1/2 C. 1 D. 0

Answer: A

Watch Video Solution

4. If the diagonals of a parallelogram are $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + 4\hat{k}$, then the lengths of its sides are

A. $\sqrt{8}, \sqrt{10}$

 $\mathsf{B}.\sqrt{6},\sqrt{14}$

 $\mathsf{C}.\sqrt{5},\sqrt{12}$

D. none of these

Answer: B

5. If ABCD is a quadrilateral, then $\overrightarrow{BA} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} =$

 $\mathrm{B.}\, 2 \overrightarrow{AB}$

 $\mathsf{C.}\, 2 \overrightarrow{AC}$

D.2(BC)

Answer: A

6. The points with position vectors $60\hat{i} + 3\hat{j}$, $40\hat{i} - 8\hat{j}$, $a\hat{i} - 52\hat{j}$ are collinear if (A) a = -40 (B) a = 40 (C) a = 20 (D) none of these

A. -40

B.40

C. 20

D. 30

Answer: A

Watch Video Solution

7. If ABCDEF is a regualr hexagon, then $\overrightarrow{AC}+\overrightarrow{AD}+\overrightarrow{EA}+\overrightarrow{FA}=$

A. $2\overrightarrow{AB}$

 $\mathsf{B.}\, 3 \overrightarrow{AB}$

C. \overrightarrow{AB}

D. $\stackrel{\rightarrow}{0}$

Answer: B

8. In a regular hexagon ABCDEF, $\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD} + \overrightarrow{AE} + \overrightarrow{AF} = \overrightarrow{kAD}$,

where k is equal to

A. $\overrightarrow{3AG}$ B. $\overrightarrow{2AG}$ C. $\overrightarrow{6AG}$ D. $\overrightarrow{4AG}$

Answer: C

9. If P, Q , R are the mid-points of the sides AB, BC and CA of ΔABC and O

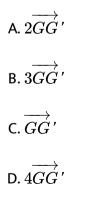
is point whithin the triangle, then $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} =$

A.
$$2\left(\overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}\right)$$

B. $\overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}$
C. $4\left(\overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}\right)$
D. $6\left(\overrightarrow{OP} + \overrightarrow{OQ} + \overrightarrow{OR}\right)$

Answer: B

10. If G is the centroid of the ΔABC and if G' is the centroid of another $\Delta A'B'C'$, then prove that AA'+BB'+CC'=3GG'



Answer: B

11. In a quadrilateral ABCD,
$$\overrightarrow{AB} + \overrightarrow{DC} =$$

A. $\overrightarrow{AB} + \overrightarrow{CB}$ B. $\overrightarrow{AC} + \overrightarrow{BD}$ C. $\overrightarrow{AC} + \overrightarrow{DB}$ D. $\overrightarrow{AD} - \overrightarrow{CB}$

Answer: C

Watch Video Solution

12. If ABCDE is a pentagon, then

$$\overrightarrow{AB}+\overrightarrow{AE}+\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{ED}+\overrightarrow{AC}$$
 is equal to

A.
$$4\overrightarrow{AC}$$

 $\mathsf{B.}\, 2 \overrightarrow{AC}$

 $\mathsf{C.}\, 3 \overrightarrow{AC}$

D. $\overrightarrow{5AC}$

Answer: C

B. $3\overrightarrow{AB}$

 $\mathsf{C.}\, 2 \overrightarrow{AB}$

D. \overrightarrow{AB}

Answer: C

14. In a

$$\Delta ABC$$
, if $\overrightarrow{AB} = \hat{i} - 7\hat{j} + \hat{k}$ and $\overrightarrow{BC} = 3\hat{j} + \hat{j} + 2\hat{k}$, then $\left|\overrightarrow{CA}\right| =$
A. $\sqrt{61}$
B. $\sqrt{52}$
C. $\sqrt{51}$
D. $\sqrt{41}$

Answer: A

Watch Video Solution

15. If vectors $\overrightarrow{AB} = -3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a ΔABC , then the length of the median throught A is

A. $3\sqrt{2}$

B. $6\sqrt{2}$

C. $5\sqrt{2}$

D. $\sqrt{33}$

Answer: D

Watch Video Solution

16. The position vectors of P and Q are respectively \overrightarrow{a} and \overrightarrow{b} . If R is a point on \overrightarrow{PQ} such that $\overrightarrow{PR} = 5\overrightarrow{PQ}$, then the position vector of R, is

A. $5\overrightarrow{b} - 4\overrightarrow{a}$ B. $5\overrightarrow{b} + 4\overrightarrow{a}$ C. $4\overrightarrow{b} - 5\overrightarrow{a}$ D. $4\overrightarrow{b} + 5\overrightarrow{a}$

Answer: A

17.	lf	the	points	whose	position	vectors	are
$2\hat{i}+$	$\hat{j}+\hat{k},$	$6\hat{i}-\hat{j}$ -	$+ 2\hat{k} ext{ and } 1$	$14\hat{i}-5\hat{j}+p$	$p\hat{k}$ are colline	ar, then p =	
A.	. 2						
B	. 4						
C.	. 6						
D.	. 8						

Answer: B

Watch Video Solution

18. The ratio in which $\hat{i}+2\hat{j}+3\hat{k}$ divides the join of $-2\hat{i}+3\hat{j}+5\hat{k}$ and $7\hat{i}-\hat{k},$ is

A. 1:2

B. 2:3

C.3:4

D.1:4

Answer: A

19. If OACB is a parallelogrma with $\overrightarrow{OC} = \overrightarrow{a}$ and $\overrightarrow{AB} = \overrightarrow{b}$ then \overrightarrow{OA} is equal to

A.
$$\overrightarrow{a} + \overrightarrow{b}$$

B. $\overrightarrow{q} - \overrightarrow{b}$
C. $\frac{1}{2} \left(\overrightarrow{b} - \overrightarrow{a} \right)$
D. $\frac{1}{2} \left(\overrightarrow{a} - \overrightarrow{b} \right)$

Answer: D

- 20. The position vectors of the points A, B, C are $2\hat{i} + \hat{j} \hat{k}, 3\hat{i} 2\hat{j} + \hat{k}$ and $\hat{i} + 4\hat{j} 3\hat{k}$ respectively. These points
 - A. form an isosceles triangle
 - B. form a right triangle
 - C. are collinear
 - D. form a scalene triangle

Answer: C

Watch Video Solution

21. If ABCDEF is regular hexagon, then AD+EB+FC is

A. $2\overrightarrow{AB}$

 $\overset{\rightarrow}{\text{B. 0}}$

C. $3\overrightarrow{AB}$

D. $4\overrightarrow{AB}$

Answer: D

22. If the points with position vectors $20\hat{i} + p\hat{j}$, $5\hat{i} - \hat{j}$ and $10\hat{i} - 13\hat{j}$ are collinear, then p =

A. 7

B. -37

C. -7

D. 37

Answer: B

23. If the position vector of a point A is $\overrightarrow{a} + 2\overrightarrow{b}$ and \overrightarrow{a} divides AB in

the ratio 2:3, then the position vector of B, is

A.
$$\overrightarrow{a} - \overrightarrow{b}$$

B. $\overrightarrow{b} - 2\overrightarrow{a}$
C. $\overrightarrow{a} - 3\overrightarrow{b}$
D. \overrightarrow{b}

Answer: C

Watch Video Solution

24. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{d} are the position vectors of points A, B, C, D such that no three of them are collinear and $\overrightarrow{a} + \overrightarrow{c} = \overrightarrow{b} + \overrightarrow{d}$, then ABCD is a a. rhombus b. rectangle c. square

d. parallelogram

A. rhombus

B. rectangle

C. square

D. parallelogram

Answer: D

25. Let G be the centroid of Δ ABC, If $\overrightarrow{AB} = \overrightarrow{a}, \overrightarrow{AC} = \overrightarrow{b}$, then the \overrightarrow{AG} , in terms of \overrightarrow{a} and \overrightarrow{b} , is

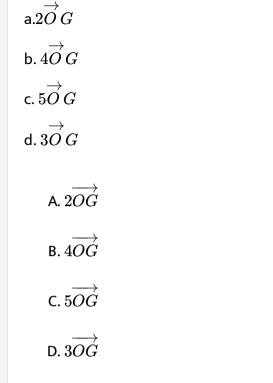
A.
$$\frac{2}{3} \left(\overrightarrow{a} + \overrightarrow{b} \right)$$

B. $\frac{1}{6} \left(\overrightarrow{a} + \overrightarrow{b} \right)$
C. $\frac{1}{3} \left(\overrightarrow{a} + \overrightarrow{b} \right)$
D. $\frac{1}{2} \left(\overrightarrow{a} + \overrightarrow{b} \right)$

Answer: C

26. If G is the intersection of diagonals of a parallelogram ABCD and O

is any point then $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} =$



Answer: B

Watch Video Solution

27. The vector $\coslpha\coseta\hat{i}+\coslpha\sineta\hat{j}+\sinlpha\hat{k}$ is a

A. null vector

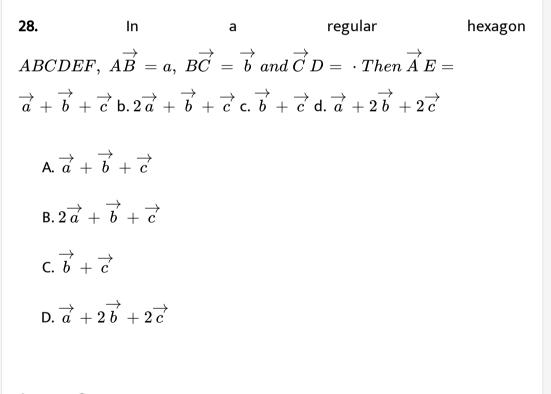
B. unit vector

C. constant vector

D. none of these

Answer: B

Watch Video Solution



Answer: C

29. If three points A, B and C have position vectors $\hat{i} + x\hat{j} + 3\hat{k}$, $3\hat{i} + 4\hat{j} + 7\hat{k}$ and $y\hat{i} - 2\hat{j} - 5\hat{k}$ respectively are collinear, then (x, y) =

A. (2, -3)

B. (-2, 3)

C. (-2, -3)

D. (2, 3)

Answer: A

Watch Video Solution

30. If the position vectors of the vertices of a triangle of a triangle are $2\hat{i} - \hat{j} + \hat{k}, \hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$, then the triangle is

A. equilateral

B. isosceles

C. right angled but not isosceles

D. right angled

Answer: D