©゙’ doubtnut

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

ALGEBRA OF VECTORS

Illustration

1. If $A B C D$ is a rhombus whose diagonals cut at the origin O, then proved that $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=0$
A. $A \vec{B}+A \vec{C}$
B. $\overrightarrow{0}$
C. $2(\overrightarrow{A B}+\overrightarrow{B C})$
D. $A \vec{C}+\overrightarrow{B D}$

Watch Video Solution

2. If C is the mid point of $A B$ and P is any point outside $A B$ then (A) $\overrightarrow{P A}+\overrightarrow{P B}+\overrightarrow{P C}=0$ (В) $\overrightarrow{P A}+\overrightarrow{P B}+2 \overrightarrow{P C}=\overrightarrow{0}$ (С) $\overrightarrow{P A}+\overrightarrow{P B}=\overrightarrow{P C}$ (D) $\overrightarrow{P A}+\overrightarrow{P B}=2 \overrightarrow{P C}$
A. $P \vec{A}+P \vec{B}+P \vec{C}=\overrightarrow{0}$
B. $P \vec{A}+P \vec{B}+2 P \vec{C}=\overrightarrow{0}$
c. $P \vec{A}+P \vec{B}=P \vec{C}$
D. $P \vec{A}+P \vec{B}=2 P \vec{C}$

Answer: D

- Watch Video Solution

3. If the sum of two unit vectors is a unit vector, then the magnitude of their difference is
A. 1
B. 2
C. $\sqrt{3}$
D. $2 \sqrt{3}$

Answer: C

- Watch Video Solution

4. The non-zero vectors a, b and c are related by $a=8 b$ and $c=-7 b$ angle between a and c is
A. 0
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer: D

5. If $A B C D E F$ is a regular hexagon with $\overrightarrow{A B}=\vec{a}$ and $\overrightarrow{B C}=\vec{b}$, then $\overrightarrow{C E}$ equals
A. $\vec{b}-\vec{a}$
B. $-\vec{b}$
C. $\vec{b}-2 \vec{a}$
D. none of these

Answer: C

- Watch Video Solution

6. \vec{a} and \vec{b} are the position vectors of A, B respectively and C is a point on $A B$ produced such that $A C=3 A B$. Then the position vector of C is
A. $3 \vec{a}-2 \vec{b}$
B. $3 \vec{b}-2 \vec{a}$
C. $3 \vec{a}+2 \vec{a}$
D. $2 \vec{a}-3 \vec{b}$

Answer: B

- Watch Video Solution

7. Let $\overrightarrow{A D}$ be the angle bisector of the angle A of $\triangle A B C$, then $\overrightarrow{A D}=\alpha \overrightarrow{A B}+\beta \overrightarrow{A C}$, where
A. $\alpha=\frac{|\overrightarrow{A B}|}{|\overrightarrow{A B}|+|\overrightarrow{A C}|}, \beta=\frac{|\overrightarrow{A C}|}{|\overrightarrow{A B}|+|\overrightarrow{A C}|}$
B. $\alpha=\frac{|\overrightarrow{A B}|+|\overrightarrow{A C}|}{|\overrightarrow{A B}|}, \beta=\frac{|\overrightarrow{A B}|+|\overrightarrow{A C}|}{|\overrightarrow{A C}|}$
C. $\alpha=\frac{|\overrightarrow{A C}|}{|\overrightarrow{A B}|+|\overrightarrow{A C}|}, \beta=\frac{|\overrightarrow{A B}|}{|\overrightarrow{A B}|+|\overrightarrow{A C}|}$
D. $\alpha=\frac{|\overrightarrow{A B}|}{|\overrightarrow{A C}|}, \beta=\frac{|\overrightarrow{A C}|}{|\overrightarrow{A B}|}$

Answer: C

- Watch Video Solution

8. Let D, EandF be the middle points of the sides $B C, C A a n d A B$, respectively of a triangle $A B C$. Then prove that $\vec{A} D+\vec{B} E+\vec{C} F=\overrightarrow{0}$.
A. $\overrightarrow{0}$
B. 0
C. 2
D. none of these

Answer: A

9. G is a point inside the plane of the triangle $A B C, \vec{G} A+\vec{G} B+\vec{G} C=0$, then show that G is the centroid of triangle $A B C$.
A. $\overrightarrow{0}$
B. $3 \overrightarrow{G A}$
C. $3 G \vec{B}$
D. $3 \overrightarrow{G C}$

Answer: A

- Watch Video Solution

10. If the vectors $\vec{A} B=3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a triangle $A B C$, then the length of the median through A is
A. $\sqrt{18}$
B. $\sqrt{72}$
C. $\sqrt{33}$
D. $\sqrt{45}$

Answer: C

- Watch Video Solution

11. Let $A B C$ be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then $\overrightarrow{S A}+\overrightarrow{S B}+\overrightarrow{S C}=$
A. $\overrightarrow{S G}$
B. $2 \overrightarrow{S G}$
C. $3 \overrightarrow{S G}$
D. $\overrightarrow{0}$

Answer: C

12. If O and O^{\prime} are circumcentre and orthocentre of $A B C$, then $\vec{O} A+\vec{O} B+\vec{O} C$ equals $2 \vec{O} O^{\prime}$ b. $\vec{O} O^{\prime}$ c. $\vec{O}^{\prime} O$ d. $2 \vec{O}{ }^{\prime} O$
А. $\overrightarrow{O^{\prime} O}$
B. $\overrightarrow{O O^{\prime}}$
C. $2 \overrightarrow{O O}$,
D. $\overrightarrow{0}$

Answer: B

- Watch Video Solution

13. If o is the circumcenter, G is the centroid and O^{\prime} is orthocenter or triangle ABC then prove that:
A. $\overrightarrow{O^{\prime} O}$
B. $\overrightarrow{O O^{\prime}}$
C. $2 \overrightarrow{O O}$,
D. $2 \overrightarrow{O^{\prime} O}$

Answer: C

- Watch Video Solution

14. Let $A B C$ be a triangle whose circumcentre is at P. If the position vectors of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and P are $\vec{a}, \vec{b}, \vec{c}$ and $\frac{\vec{a}+\vec{b}+\vec{c}}{4}$ respectively, then the position vector of the orthocentre of this triangle is
A. $\overrightarrow{0}$
B. $-\frac{\vec{a}+\vec{b}+\vec{c}}{2}$
C. $\vec{a}+\vec{b}+\vec{c}$
D. $\frac{\vec{a}+\vec{b}+\vec{c}}{2}$

Answer: C

15. Consider $\triangle A B C$ and $\triangle A_{1} B_{1} C_{1}$ in such a way that $\overline{A B}=\overline{A_{1} B_{1}}$ and M, N, M_{1}, N_{1} be the midpoints of $A B, B C, A_{1} B_{1}$ and $B_{1} C_{1}$ respectively, then
A. $\overrightarrow{M M_{1}}=\overrightarrow{N N_{1}}$
B. $\overrightarrow{C C_{1}}=\overrightarrow{M M_{1}}$
C. $\overrightarrow{C C_{1}}=\overrightarrow{N N_{1}}$
D. $\overrightarrow{M M_{1}}=\overrightarrow{B B_{1}}$

Answer: D

- Watch Video Solution

16. Let $A B C D$ be a parallelogram whose diagonals intersect at P and let O be the origin. Then prove that $\vec{O} A+\vec{O} B+\vec{O} C+\vec{O} D=4 \vec{O} P$.

A. $\overrightarrow{O P}$

B. $2 \overrightarrow{O P}$
C. $3 \overrightarrow{O P}$
D. $4 \overrightarrow{O P}$

Answer: D

- Watch Video Solution

17. If $A B C D$ is quadrilateral and E and F are the mid-points of $A C$ and $B D$ respectively, prove that $\vec{A} B+\vec{A} D+\vec{C} B+\vec{C} D=4 \vec{E} F$.
A. $3 \overrightarrow{E F}$
B. $4 \overrightarrow{E F}$
C. $4 \overrightarrow{F E}$
D. $3 \overrightarrow{F E}$

Answer: B

18. Given that the vectors \vec{a} and \vec{b} are non- collinear, the values of x and y for which the vector equality $2 \vec{u}-\vec{v}=\vec{w}$ holds true if $\vec{u}=x \vec{a}+2 y \vec{b}, \vec{v}=-2 y \vec{a}+3 x \vec{b}, \vec{w}=4 \vec{a}-2 \vec{b}$ are
A. $x=\frac{4}{7}, y=\frac{6}{7}$
B. $x=\frac{10}{7}, y=\frac{4}{7}$
C. $x=\frac{8}{7}, y=\frac{2}{7}$
D. $x=2, y=3$

Answer: B

- Watch Video Solution

19. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors such that any two of them are non-collinear. If $\vec{a}+2 \vec{b}$ is collinear with \vec{c} and $\vec{b}+3 \vec{c}$ is collinear with \vec{a} then prove that $\vec{a}+2 \vec{b}+6 \vec{c}=\overrightarrow{0}$
20. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors, no two of which are collinear and the vector $\vec{a}+\vec{b}$ is collinear with $\vec{c}, \vec{b}+\vec{c}$ is collinear with \vec{a}, then $\vec{a}+\vec{b}+\vec{c}=\vec{a}$ b. \vec{b} c. \vec{c} d. none of these
A. \vec{c}
B. $\overrightarrow{0}$
C. $\vec{a}+\vec{c}$
D. \vec{a}

Answer: B

Watch Video Solution

21. If $|\overrightarrow{A O}+\overrightarrow{O B}|=|\overrightarrow{B O}+\overrightarrow{O C}|$, then A, B, C form
A. equilateral triangle
B. collinear
C. non-collinear
D. none of these

Answer: B

- Watch Video Solution

22. If the position vector of these points are $\vec{a}-2 \vec{b}+3 \vec{c}, 2 \vec{a}+3 \vec{b}-4 \vec{c},-7 \vec{b}+10 \vec{c}$, then the three points are
A. collinear
B. non-coplanar
C. non-collinear
D. none of these

Answer: A

- Watch Video Solution

23. Three points with position vectors $\vec{a}, \vec{b}, \vec{c}$ will be collinear if there exist scalars x, y, z such that
A. $x \vec{a}+y \vec{b}=z \vec{c}$
B. $x \vec{a}+y \vec{b}+z \vec{c}=0$
C. $x \vec{a}+y \vec{b}+z \vec{c}=0$, where $x+y+z=0$
D. $x \vec{a}+y \vec{b}=\vec{c}$.

Answer: C

- Watch Video Solution

24. The position vectors of the vectices A, B, C of a $\triangle A B C$ are $\hat{i}-\hat{j}-3 \hat{k}, 2 \hat{i}+\hat{j}-2 \hat{k}$ and $-5 \hat{i}+2 \hat{j}-6 \hat{k}$
respectively. The length of the bisector AD of the angle $\angle B A C$ where D is on the line segment $B C$, is
A. $\frac{15}{2}$
B. $\frac{11}{2}$
C. $\frac{1}{4}$
D. none of these

Answer: D

- Watch Video Solution

25. Consider points A, B, C and D with position vectors $7 \hat{i}-4 \hat{j}+7 \hat{k}, \hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+4 \hat{k}$ and $5 \hat{i}-\hat{j}+5 \hat{k}$ respectively. Then, $A B C D$ is a
A. parallelogram but not a rhombus
B. square
C. rhombus
D. rectangle

Answer: C

26. If vectors $\vec{A} B=-3 \hat{i}+4 \hat{k}$ and $\vec{A} C=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a $\triangle A B C$, then the length of the median through Ais a. $\sqrt{14}$ b. $\sqrt{18} \mathrm{c}$. $\sqrt{29}$ d. $\sqrt{5}$
A. $\sqrt{288}$
B. $\sqrt{18}$
C. $\sqrt{72}$
D. $\sqrt{33}$

Answer: D

- Watch Video Solution

27. The sides of a parallelogram are $2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\hat{i}+2 \hat{j}+3 \hat{k}$, then the unit vector parallel to one of the diagonals is

$$
\text { A. } \frac{1}{7}(3 \hat{i}+6 \hat{j}-2 \hat{k})
$$

B. $\frac{1}{7}(3 \hat{i}-6 \widehat{K}-2 \hat{k})$
C. $\frac{1}{7}(-3 \hat{i}+6 \hat{j}-2 \hat{k})$
D. $\frac{1}{7}(3 \hat{i}+6 \hat{j}+2 \hat{k})$

Answer: A

- Watch Video Solution

28. If the points $P(\vec{a}+2 \vec{b}+\vec{c}), Q(2 \vec{a}+3 \vec{b}), R(\vec{b}+t \vec{c})$ are collinear, where $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors, the value of t is
A. -2
B. $-1 / 2$
C. $1 / 2$
D. 2

Answer: D

29. A vector coplanar with vectors $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ and parallel to the vector $2 \hat{i}-2 \hat{j}-4 \hat{k}$, is
A. $\hat{i}-\hat{k}$
B. $\hat{i}-\hat{j}-2 \hat{k}$
C. $\hat{i}+\hat{j}-\hat{k}$
D. $3 \hat{i}+3 \hat{j}-6 \hat{k}$

Answer: B

- Watch Video Solution

30. Let co-ordinates of a point ' p ' with respectto the system non-coplanar vectors \vec{a}, \vec{b} and \vec{c} is (3,2,1). Then, co-ordinates of 'p'with respect to the system of vectors $\vec{a}+\vec{b}+\vec{c}, \vec{a}-\vec{b}+\vec{c} \cdot \vec{a}+\vec{b}-\vec{c}$
A. $(3 / 2,1 / 2,1)$
B. $(3 / 2,1,1 / 2)$
C. $(1 / 2,3 / 2,1)$
D. none of these

Answer: C

(D) Watch Video Solution

31. Suppose that \vec{p}, \vec{q} and \vec{r} are three non- coplaner in R^{3}, Let the components of a vector \vec{s} along \vec{p}, \vec{q} and \vec{r} be 4,3, and 5, respectively
if the components this vector \vec{s} along
$(-\vec{p}+\vec{q}+\vec{r}),(\vec{p}-\vec{q}+\vec{r})$ and $(-\vec{p}-\vec{q}+\vec{r})$ are x, y and z, respectively, then the value of $2 x+y+z$ is
A. 7
B. 8
C. 9
D. 6

- Watch Video Solution

32.

$(x, y, z) \neq(0,0,0)$ and $(\hat{i}+\hat{j}+3 \hat{k}) x+(3 \hat{i}-3 \hat{j}+\hat{k}) y+(-4 \hat{i}+5 \hat{j})$
$=a(x \hat{i}+y \hat{j}+z \hat{k})$, then the values of a are
A. $0,-2$
B. 2, 0
C. $0,-1$
D. 1, 0

Answer: C

33. The vectors $a=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of the vectors $b=\hat{i}+\hat{j}$ and $c=\hat{j}+\hat{k}$ and bisects the angle between b and c . Then, which one of the following gives possible values of α and β ?
A. $\alpha=2, \beta=2$
B. $\alpha=1, \beta=2$
C. $\alpha=2, \beta=1$
D. $\alpha=1, \beta=1$

Answer: D

- Watch Video Solution

34. If \vec{a}, \vec{b} are the vectors forming consecutive sides of a regular of a regular hexagon $A B C D E F$, then the vecrtor representing side $C D$ is

$$
\vec{a}+\vec{b} \text { b. } \vec{a}-\vec{b} \text { c. } \vec{b}-\vec{a} \text { d. }-(\vec{a}+\vec{b})
$$

A. $\vec{a}+\vec{b}$
B. $\vec{a}-\vec{b}$
c. $\vec{b}-\vec{a}$
D. $-(\vec{a}+\vec{b})$

Answer: C

- Watch Video Solution

35.

In a
regular
hexagon
ABCDEF, $A \vec{B}=a, B \vec{C}=\vec{b}$ and $\vec{C} D=$. Then $\vec{A} E=$
$\vec{a}+\vec{b}+\vec{c}$ b. $2 \vec{a}+\vec{b}+\vec{c}$ c. $\vec{b}+\vec{c}$ d. $\vec{a}+2 \vec{b}+2 \vec{c}$
A. $\vec{a}+\vec{b}+\vec{c}$
B. $2 \vec{a}+\vec{b}+\vec{c}$
C. $\vec{a}+\vec{c}$
D. $\vec{a}+2 \vec{b}+2 \vec{c}$
36. If $A B C D E F$ is regular hexagon, then $A D+E B+F C$ is
A. $2 A \vec{B}$
B. $\overrightarrow{0}$
C. $3 A \vec{B}$
D. $4 A \vec{B}$

Answer: D

- Watch Video Solution

37. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are the position vectors of points A, B, C, D such that no three of them are collinear and $\vec{a}+\vec{c}=\vec{b}+\vec{d}$, then $A B C D$ is a a. rhombus b. rectangle c. square d. parallelogram
A. rhombus
B. rectangle
C. square
D. parallelogram

Answer: D

- Watch Video Solution

38. $A B C D E F$ si a regular hexagon with centre at the origin such that $A \vec{D}+E \vec{B}+F \vec{C}=\lambda E \vec{D}$. Then, λ equals
A. 2
B. 4
C. 6
D. 3

Answer: B

39. $A B C D$ isa parallelogram with $A C$ and $B D$ as diagonals. Then, $\vec{A} C-\vec{B} D=4 \vec{A} B$ b. $3 \vec{A} B$ c. $2 \vec{A} B$ d. $\vec{A} B$
A. $4 A \vec{B}$
B. $3 A \vec{B}$
C. $2 A \vec{B}$
D. $A \vec{B}$

Answer: C

- Watch Video Solution

40. If OACB is a parallelogrma with $\overrightarrow{O C}=\vec{a}$ and $\overrightarrow{A B}=\vec{b}$ then $\overrightarrow{O A}$ is equal to
A. $\vec{a}+\vec{b}$
B. $\vec{a}-\vec{b}$
C. $\frac{1}{2}(\vec{b}-\vec{a})$
D. $\frac{1}{2}(\vec{a}-\vec{b})$

Answer: B

- Watch Video Solution

41. If G is the intersection of diagonals of a parallelogram $A B C D$ and O is any point then $O \vec{A}+O \vec{B}+O \vec{C}+O \vec{D}=$
a. $2 \vec{O} G$
b. $4 \vec{O} G$
c. $5 \vec{O} G$
d. $3 \vec{O} G$
A. $2 \overrightarrow{O G}$
B. $4 \overrightarrow{O G}$
C. $5 \overrightarrow{O G}$
D. $3 \overrightarrow{O G}$

Answer: B

(Watch Video Solution

42. Let G be the centroid of triangle $A B C$. If $\vec{A} B=\vec{a}, \vec{A} C=\vec{b}$, then the bisector $\vec{A} G$, in terms of \vec{a} and \vec{b} is $\frac{2}{3}(\vec{a}+\vec{b})$ b. $\frac{1}{6}(\vec{a}+\vec{b})$ c. $\frac{1}{3}(\vec{a}+\vec{b})$ d. $\frac{1}{2}(\vec{a}+\vec{b}) 1$
A. $\frac{2}{3}(\vec{a}+\vec{b})$
B. $\frac{1}{6}(\vec{a}+\vec{b})$
C. $\frac{1}{3}(\vec{a}+\vec{b})$
D. $\frac{1}{2}(\vec{a}+\vec{b})$

Answer: C

43. The position vectors of the points A, B, C are $2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+4 \hat{j}-3 \hat{k}$ respectively. These points
A. form an isosceles triangle
B. form a right triangle
C. are collinear
D. form a scalene triangle

Answer: C

- Watch Video Solution

44. If the points with position vectors $20 \hat{i}+p \hat{j}, 5 \hat{i}-\hat{j}$ and $10 \hat{i}-13 \hat{j}$ are collinear, then $\mathrm{p}=$
A. 7
B. -37
C. -7
D. 37

Answer: B

- Watch Video Solution

45. If the position vector of a point A is $\vec{a}+2 \vec{b}$ and \vec{a} divides $A B$ in the ratio $2: 3$, then the position vector of B , is
A. $2 \vec{a}-\vec{b}$
B. $\vec{b}-2 \vec{a}$
C. $\vec{a}-3 \vec{b}$
D. \vec{b}

Answer: C

- Watch Video Solution

46. \vec{a}, \vec{b} and \vec{c} are three non-zero vectors, no two of which are collinear and the vectors $\vec{a}+\vec{b}$ is collinear with $\vec{c}, \vec{b}+\vec{c}$ is collinear with \vec{a}, then $\vec{a}+\vec{b}+\vec{c}=$
A. \vec{a}
B. \vec{b}
C. \vec{c}
D. none of these

Answer: D

- Watch Video Solution

47. If points $A(60 \hat{i}+3 \hat{j}), B(40 \hat{i}-8 \hat{j})$ and $C(a \hat{i}-52 \hat{j})$ are collinear, then a is equal to $40 \mathrm{~b} .-40 \mathrm{c} .20$ d. -20
A. 40
B. -40
C. 20
D. -20

Answer: B

- Watch Video Solution

48. Let $\overrightarrow{O A}=\hat{i}+3 \hat{j}-2 \hat{k}$ and $\overrightarrow{O B}=3 \hat{i}+\hat{j}-2 \hat{k}$. Then vector $\overrightarrow{O C}$ biecting the angle $A O B$ and C being a point on the line $A B$ is
A. $4(\hat{i}+\hat{j}-\hat{k})$
B. $2(\hat{i}+\hat{j}-\hat{k})$
C. $\hat{i}+\hat{j}-\hat{k}$
D. none of these

Answer: B

49. If the vector $-\hat{i}+\hat{j}-\hat{k}$ bisects the angle between the vector \vec{c} and the vector $3 \hat{i}+4 \hat{j}$, then the vector along \vec{c} is
A. $\frac{1}{15}(11 \hat{i}+10 \hat{j}+2 \hat{k})$
B. $-\frac{1}{15}(11 \hat{i}-10 \hat{j}+2 \hat{k})$
C. $-\frac{1}{15}(11 \hat{i}+10 \hat{j}-2 \hat{k})$
D. $-\frac{1}{15}(11 \hat{i}+10 \hat{j}+2 \hat{k})$

Answer: D

- Watch Video Solution

50. If $\vec{r}=3 \hat{i}+2 \hat{j}-5 \hat{k}, \vec{a}=2 \hat{i}-\hat{j}+\hat{k}, \vec{b}=\hat{i}+3 \hat{j}-2 \hat{k}$ and $\vec{c}=-2 \hat{i}+\hat{j}-3 \hat{k}$ such that $\hat{r}=x \vec{a}+y \vec{b}+z \vec{c}$ then
A. x, y, z are in AP
B. x, y, z are in GP
C. x, y, z are in HP
D. $y, \frac{x}{2}, z$ are in AP

Answer: D

- Watch Video Solution

51. Let $\vec{A} B=3 \hat{i}+\hat{j}-\hat{k}$ and $\vec{A} C=\hat{i}-\hat{j}+3 \hat{k}$ and a point P on the line segment $B C$ is equidistant from $A B$ and $A C$, then $\overrightarrow{A P}$ is
A. $2 \hat{i}-\hat{k}$
B. $\hat{i}-2 \hat{k}$
C. $2 \hat{i}+\hat{k}$
D. none of these

Answer: C

- Watch Video Solution

52. The vector \vec{c}, directed along the internal bisector of the angle between the
vectors
$\vec{a}=7 \hat{i}-4 \hat{j}-4 \hat{k}$ and $\vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k}$ with $|\vec{c}|=5 \sqrt{6}$, is
A. $\frac{5}{3}(\hat{i}-7 \hat{j}+2 \hat{k})$
B. $\frac{5}{3}(5 \hat{i}+5 \hat{j}+2 \hat{k})$
C. $\frac{5}{3}(\hat{i}+7 \hat{j}+2 \hat{k})$
D. $\frac{5}{3}(-5 \hat{i}+5 \hat{j}+2 \hat{k})$

Answer: A

- Watch Video Solution

53. If $A B C D$ is quadrilateral and E and F are the mid-points of $A C$ and $B D$ respectively, prove that $\vec{A} B+\vec{A} D+\vec{C} B+\vec{C} D=4 \vec{E} F$.
A. Statement - 1 is True, Statement -2 is True, Statement -2 is a correct explanation for Statement - 1 .
B. Statement -1 is True, Statement - 2 is True, Statement -2 is not a correct explanation for Statement-1.
C. Statement -1 is True, Statement -2 is False.
D. Statement - 1 is False, Statement - 2 is True.

Answer: A

- Watch Video Solution

54. Let $A B C$ be a triangle having its centroid its centroid at G. If S is any point in the plane of the triangle, then $\overrightarrow{S A}+\overrightarrow{S B}+\overrightarrow{S C}=$
A. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a correct explanation for Statement-1.
B. Statement -1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement - 1.
C. Statement -1 is True, Statement -2 is False.
D. Statement -1 is False, Statement -2 is True.

Answer: A

- Watch Video Solution

55. If o is the circumcenter, G is the centroid and O^{\prime} is orthocenter or triangle $A B C$ then prove that:
A. Statement - 1 is True, Statement - 2 is True, Statement - 2 is a correct explanation for Statement 1 .
B. Statement -1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement - 1 is True, Statement - 2 is False.
D. Statement - 1 is False, Statement - 2 is True.

Answer: A

56. If O be the circumcentre and O ' be the orthocentre of the $\triangle A B C$, then $O^{\prime} A+O^{\prime} B+O^{\prime} C$ is equal to
A. Statement -1 is True, Statement -2 is True, Statement -2 is a correct explanation for Statement - 1 .
B. Statement -1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement -1.
C. Statement -1 is True, Statement - 2 is False.
D. Statement - 1 is False, Statement - 2 is True.

Answer: A

- Watch Video Solution

57. Statement -1: If \vec{a} and \vec{b} are non- collinear vectors, then points having position vectors $x_{1} \vec{a}+y_{1} \vec{b}, x_{2} \vec{a}+y_{2} \vec{b}$ and $x_{3} \vec{a}+y_{3} \vec{b}$ are collinear if

$$
\left|\begin{array}{ccc}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
1 & 1 & 1
\end{array}\right|=0
$$

Statement -2 : Three points with position vectors $\vec{a}, \vec{b}, \vec{c}$ are collinear iff there exist scalars x, y, z not all zero such that $x \vec{a}+y \vec{b}+z \vec{c}=\overrightarrow{0}$, where $x+y+z=0$.
A. Statement -1 is True, Statement -2 is True, Statement -2 is a correct explanation for Statement - 1 .
B. Statement -1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement -1 is True, Statement - 2 is False.
D. Statement - 1 is False, Statement - 2 is True.

Answer: A

- Watch Video Solution

58. A transversal cuts the sides OL, OM and diagonal ON of a parallelogram at A, B and C respectively.

Prove that $\frac{O L}{O A}+\frac{O M}{O B}=\frac{O N}{O C}$.
A. Statement -1 is True, Statement -2 is True, Statement -2 is a correct explanation for Statement -1.
B. Statement -1 is True, Statement -2 is True, Statement -2 is not a correct explanation for Statement - 1 .
C. Statement -1 is True, Statement - 2 is False.
D. Statement -1 is False, Statement - 2 is True.

Answer: A

- Watch Video Solution

Exercise

1. A point O is the centre of a circle circumscribed about a triangle $A B C$. Then $\quad \vec{O} A \sin 2 A+\vec{O} B \sin 2 B+\vec{O} C \sin 2 C \quad$ is equal to a.
$(\vec{O} A+\overrightarrow{O B} B+\overrightarrow{O C}) \sin 2 A$ b. $3 \vec{O} G$, where G is the centroid of triangle $A B C$ c. $\overrightarrow{0}$ d. none of these
A. $(O \vec{a}+O \vec{B}+O \vec{C}) \sin 2 A$
B. $3 \overrightarrow{O G}$, where G is the centroid of triangle ABC
C. $\overrightarrow{0}$
D. none of these

Answer: C

- Watch Video Solution

2. The vectors $2 \hat{i}+3 \hat{j}, 5 \hat{i}+6 \hat{j}$ and $8 \hat{i}+\lambda \hat{j}$ have their initial points at (1, 1). Find the value of λ so that the vectors terminate on the straight line.
A. 0
B. 3
C. 6
D. 9

Answer: D

- Watch Video Solution

3. If $4 \hat{i}+7 \hat{j}+8 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $2 \hat{i}+5 \hat{j}+7 \hat{k}$ are the position vectors of the vertices A, B and C respectively of triangle $A B C$. The position vector of the point where the bisector of angle A meets $B C$, is
A. $\frac{2}{3}(-6 \hat{i}-8 \hat{j}-6 \hat{k})$
B. $\frac{2}{3}(6 \hat{i}+8 \hat{j}+6 \hat{k})$
C. $\frac{1}{3}(6 \hat{i}+13 \hat{j}+18 \hat{k})$
D. $\frac{1}{3}(5 \hat{j}+12 \hat{k})$

Answer: C

4. If \vec{a} is a non-zero vector of modulus a and m is a non-zero scalar, then $m \vec{a}$ is a unit vector if
A. $m= \pm 1$
B. $m=|\vec{a}|$
C. $m=\frac{1}{|\vec{a}|}$
D. $m= \pm 2$

Answer: C

- Watch Video Solution

5. D, E and F are the mid-points of the sides $B C, C A$ and $A B$ respectively of
$\triangle A B C$ and G is the centroid of the triangle, then $\overrightarrow{G D}+\overrightarrow{G E}+\overrightarrow{G F}=$
A. $\overrightarrow{0}$
B. $2 \overrightarrow{A B}$
C. $2 \overrightarrow{G A}$
D. $2 \overrightarrow{G C}$

Answer: A

- Watch Video Solution

6. If $\vec{a}, \vec{b}, \vec{c}$ are the position vectors of the vertices of an equilateral triangle whose orthocentre is t the origin, then write the value of $\vec{a}+\vec{b}+\overrightarrow{ }$
A. $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
B. $|\vec{a}|^{2}=|\vec{b}|^{2}+|\vec{c}|^{2}$
C. $\vec{a}+\vec{b}=\vec{c}$
D. none of these

Answer: A

7. If $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are three points with respective position vectors $\hat{i}+\hat{j}, \hat{i}-\hat{j}$ and $a \hat{i}+b \hat{j}+c \hat{k}$. The points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are collinear, if
A. $a=b=c=1$
B. $a=b=c=0$
C. $a=1, b, c \in R$
D. $a=1, c=0, b \in R$

Answer: D

- Watch Video Solution

8. Let $A B C$ be a triangle, the position vectors of whose vertices are $7 \hat{j}+10 \hat{k},-\hat{i}+6 \hat{j}+6 \hat{k}$ and $-4 \hat{i}+9 \hat{j}+6 \hat{k}$. Then $\triangle A B C$ is
A. isosceles and right angled
B. equilateral
C. right angled but not isosceles
D. none of these

Answer: A

- Watch Video Solution

9. If $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{b}=3 \hat{i}+6 \hat{j}+2 \hat{k}$ then the vector in the direction of \vec{a} and having mgnitude as $|\vec{b}|$ is
A. $7(\hat{i}+2 \hat{j}+2 \hat{k})$
B. $\frac{7}{9}(\hat{i}+2 \hat{j}+2 \hat{k})$
C. $\frac{7}{3}(\hat{i}+2 \hat{j}+2 \hat{k})$
D. none of these

Answer: C

- Watch Video Solution

10. $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar vectors and $x \vec{a}+y \vec{b}+z \vec{c}=\overrightarrow{0}$ then
A. at least of one of x, y, z is zero
B. x, y, z are necessarily zero
C. none of them are zero
D. none of these

Answer: B

- Watch Video Solution

11. The vector \vec{c}, directed along the internal bisector of the angle between the vectors $\vec{a}=7 \hat{i}-4 \hat{j}-4 \hat{k}$ and $\vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k}$ with $|\vec{c}|=5 \sqrt{6}$, is
A. $\pm \frac{5}{3}(2 \hat{i}+7 \hat{j}+\hat{k})$
B. $\pm \frac{3}{5}(\hat{i}+7 \hat{j}+2 \hat{k})$
C. $\pm \frac{5}{3}(\hat{i}-2 \hat{j}+7 \hat{k})$
D. $\pm \frac{5}{3}(\hat{i}-7 \hat{j}+2 \hat{k})$

Answer: D

- Watch Video Solution

12. A, B have vectors \vec{a}, \vec{b} relative to the origin O and X, Y divide $\overrightarrow{A B}$ internally and externally respectively in the ratio $2: 1$. Then, $\overrightarrow{X Y}=$
A. $\frac{3}{2}(\vec{b}-\vec{a})$
B. $\frac{4}{3}(\vec{a}-\vec{b})$
C. $\frac{5}{6}(\vec{b}-\vec{a})$
D. $\frac{4}{3}(\vec{b}-\vec{a})$

Answer: D

- Watch Video Solution

13. If a vector ofmagnitude 50 is collinear with vector $\vec{b}=6 \hat{i}-8 \hat{j}-\frac{15}{2} \hat{k}$ and makes an acute anlewih positive z -axis then:
A. $24 \hat{i}-32 \hat{j}-30 \hat{k}$
B. $-24 \hat{i}+32 \hat{j}+30 \hat{k}$
C. $12 \hat{i}-16 \hat{j}-15 \hat{k}$
D. none of these

Answer: B

- Watch Video Solution

14. The vector \vec{c}, directed along the internal bisector of the angle between the
vectors
$\vec{a}=7 \hat{i}-4 \hat{j}-4 \hat{k}$ and $\vec{b}=-2 \hat{i}-\hat{j}+2 \hat{k}$ with $|\vec{c}|=5 \sqrt{6}$, is
A. $\hat{i}-7 \hat{j}+2 \hat{k}$
B. $\hat{i}+7 \hat{j}-2 \hat{k}$
C. $-\hat{i}+7 \hat{j}+2 \hat{k}$
D. $\hat{i}-7 \hat{j}-2 \hat{k}$

Answer: A

- Watch Video Solution

15. Let $\vec{a}, \vec{b}, \vec{c}$ are three non- coplanar vectors such that
$\vec{r}_{1}=\vec{a}+\vec{c}, \vec{r}_{2}=\vec{b}+\vec{c}-\vec{a}, \vec{r}_{3}=\vec{c}+\vec{a}+\vec{b}, \vec{r}=2 \vec{a}-3 \vec{b}$ If $\vec{r}=\lambda_{1} \vec{r}_{1}+\lambda_{2} \vec{r}_{2}+\lambda_{3} \vec{r}_{3}$, then
A. $\lambda_{1}=7$
B. $\lambda_{1}+\lambda_{3}=3$
C. $\lambda_{1}+\lambda_{2}+\lambda_{3}=3$
D. $\lambda_{3}+\lambda_{2}=2$

Answer: B,A
16. If $\vec{a}, \vec{b}, \vec{c}$ are three non- coplanar vectors such that $\vec{a}+\vec{b}+\vec{c}=\alpha \vec{d}$ and $\vec{b}+\vec{c}+\vec{d}=\beta \vec{a}$, then $\vec{a}+\vec{b}+\vec{c}+\vec{d}$ to equal to
A. $\overrightarrow{0}$
B. $\alpha \vec{a}$
C. $\beta \vec{b}$
D. $(\alpha+\beta) \vec{c}$

Answer: A

- Watch Video Solution

17. $\vec{a}, \vec{b}, \vec{c}$ are three non zero vectors no two of which are collonear and the vectors $\vec{a}+\vec{b}$ be collinear with $\vec{c}, \vec{b}+\vec{c}$ to collinear with \vec{a} then $\vec{a}+\vec{b}+\vec{c}$ the equal to ? (A) \vec{a} (B) \vec{b} (C) \vec{c} (D) None of these
A. \vec{a}
B. \vec{b}
C. \vec{c}
D. $\overrightarrow{0}$

Answer: D

- Watch Video Solution

18. Let α, β and γ be distinct real numbers. The points with position vectors
A. are collinear
B. form an equilateral triangle
C. form a scalene triangle
D. form a right angled triangle

Answer: B

19. The points with position vectors $60 \hat{i}+3 \hat{j}, 40 \hat{i}-8 \hat{j}, a \hat{i}-52 \hat{j}$ are collinear if (A) $a=-40$ (B) $a=40$ (C) $a=20$ (D) none of these
A. $a=-40$
B. $a=40$
C. $a=20$
D. none of these

Answer: A

- Watch Video Solution

20. If the points with position vectors $10 \hat{i}+3 \hat{j}, 12 \hat{i}-5 \hat{j}$ and $a \hat{i}+11 \hat{j}$ are collinear, find the value of a.
A. -8
B. 4
C. 8
D. 12

Answer: D

- Watch Video Solution

21. If C is the middle point of $A B$ and P is any point outside $A B$, then
A. $P \vec{A}+P \vec{B}=P \vec{C}$
B. $P \vec{A}+P \vec{B}=2 P \vec{C}$
C. $P \vec{A}+P \vec{B}+P \vec{C}=\overrightarrow{0}$
D. $P \vec{A}+P \vec{B}+2 P \vec{C}=\overrightarrow{0}$

Answer: B

- Watch Video Solution

22. The median AD of the $\triangle A B C$ is bisected at E.BE meets AC in F . then, $A F: A C$ is equal to
A. $3 / 4$
B. $1 / 3$
C. $1 / 2$
D. $1 / 4$

Answer: B

- Watch Video Solution

23. In a trapezium, the vector $B C=\lambda A D$. We will then find that $p=A C+B D$ is collinear with $A D . I p=\mu \mathrm{AD}$, then
A. $\mu=\lambda+1$
B. $\lambda=\mu+1$
C. $\lambda+\mu=1$
D. $\mu=2+\lambda$

Answer: A

- Watch Video Solution

24. If \vec{x} and \vec{y} are two non-collinear vectors and $A B C$ isa triangle with side lengths a, b, andc satisfying $(20 a-15 b) \vec{x}+(15 b-12 c) \vec{y}+(12 c-20 a)(\vec{x} \times \vec{y})=0, \quad$ then triangle $A B C$ is a . an acute-angled triangle b . an obtuse-angled triangle c. a right-angled triangle d. an isosceles triangle
A. an acute angle triangle
B. an obtuse angle triangle
C. a right angle triangle
D. an isosceles triangle

Answer: C

25. If D, E, F are respectively the mid-points of $A B, A C$ and $B C$ respectively in a $\triangle A B C$, then $\overrightarrow{B E}+\overrightarrow{A F}=$
A. $\overrightarrow{D C}$
B. $\frac{1}{2} \overrightarrow{B F}$
C. $2 \overrightarrow{B F}$
D. $\frac{3}{2} \overrightarrow{B F}$

Answer: A

- Watch Video Solution

26. Forces $3 O \vec{A}, 5 O \vec{B}$ act along OA and OB . If their resultant passes through C on AB , then
A. C is a mid-point of $A B$
B. C divides $A B$ in the ratio $2: 1$
C. $3 A C=5 C B$
D. $2 A C=3 C B$

Answer: C

- Watch Video Solution

27. If $a B C D E F$ is a regular hexagon with
$A \vec{B}=\vec{a}$ and $B \vec{C}=\vec{b}$, then $\vec{C} F$. equals
A. $\vec{b}-\vec{a}$
B. $-\vec{b}$
C. $\vec{b}-2 \vec{a}$
D. $\vec{b}+\vec{a}$

Answer: C

28. If A, B and C are the vertices of a triangle with position vectors \vec{a}, \vec{b} and \vec{c} respectively and G is the centroid of $\triangle A B C$, then $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}$ is equal to
A. $\overrightarrow{0}$
B. $\vec{a}+\vec{b}+\vec{c}$
C. $\frac{\vec{a}+\vec{b}+\vec{c}}{3}$
D. $\frac{\vec{a}-\vec{b}-\vec{c}}{3}$

Answer: A

- Watch Video Solution

29.

$\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=3 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{c}=d \hat{i}+\hat{j}+(2 d-1) \hat{k} . \quad$ If is parallel to the plane of the vectors \vec{a} and \vec{b}, then $11 d=$
A. 2
B. 1
C. -1
D. 0

Answer: C

- Watch Video Solution

30. If G is the intersection of diagonals of a parallelogram $A B C D$ and O is any point then $O \vec{A}+O \vec{B}+O \vec{C}+O \vec{D}=$
$\mathrm{a} .2 \vec{O} G$
b. $4 \vec{O} G$
c. $5 \vec{O} G$
d. $3 \vec{O} G$
A. $3 \overrightarrow{O M}$
B. $4 \overrightarrow{O M}$
C. $2 \overrightarrow{O M}$
D. $\overrightarrow{O M}$

Answer: B

(Watch Video Solution

Chapter Test

1. If the vectors $\vec{a}=2 \hat{i}+3 \hat{j}+6 \hat{k}$ and \vec{b} are collinear and $|\vec{b}|=21$, then $\vec{b}=$
(A) $\pm 3(2 \hat{i}+3 \hat{j}+6 \hat{k})$
(B) $\pm(2 \hat{i}+3 \hat{j}-6 \hat{k})$
(C) $\pm 21(2 \hat{i}+3 \hat{j}+6 \hat{k})$
(D) $\pm 21(\hat{i}+\hat{j}+\hat{k})$
A. $\pm 3(2 \hat{i}+3 \hat{j}+6 \hat{k})$
B. $\pm(2 \hat{i}+3 \hat{j}-6 \hat{k})$
C. $\pm 21(2 \hat{i}+3 \hat{j}+6 \hat{k})$
D. $\pm 21(\hat{i}+\hat{j}+\hat{k})$

Answer: A

- Watch Video Solution

2. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors (no two of which are collinear), such that the pairs of vectors $(\vec{a}+\vec{b}, \vec{c})$ and $(\vec{b}+\vec{c}, \vec{a})$ are collinear, then $\vec{a}+\vec{b}+\vec{c}=$
A. \vec{a}
B. \vec{b}
C. \vec{c}
D. $\overrightarrow{0}$

Answer: D

3. Vectors \vec{a} and \vec{b} are non-collinear. Find for what value of x vectors $\vec{c}=(x-2) \vec{a}+\vec{b}$ and $\vec{d}=(2 x+1) \vec{a}-\vec{b}$ are collinear?
A. $1 / 3$
B. $1 / 2$
C. 1
D. 0

Answer: A

- Watch Video Solution

4. If the diagonals of a parallelogram are $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+4 \hat{k}$, then the lengths of its sides are
A. $\sqrt{8}, \sqrt{10}$
B. $\sqrt{6}, \sqrt{14}$
C. $\sqrt{5}, \sqrt{12}$
D. none of these

Answer: B

- Watch Video Solution

5. If $A B C D$ is a quadrilateral, then $\overrightarrow{B A}+\overrightarrow{B C}+\overrightarrow{C D}+\overrightarrow{D A}=$
A. $2 \overrightarrow{B A}$
B. $2 \overrightarrow{A B}$
C. $2 \overrightarrow{A C}$
D. $2(B C)$

Answer: A

- Watch Video Solution

6. The points with position vectors $60 \hat{i}+3 \hat{j}, 40 \hat{i}-8 \hat{j}, a \hat{i}-52 \hat{j}$ are collinear if (A) $a=-40$ (B) $a=40$ (C) $a=20$ (D) none of these
A. -40
B. 40
C. 20
D. 30

Answer: A

- Watch Video Solution

7. If $A B C D E F$ is a regualr hexagon, then $\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{E A}+\overrightarrow{F A}=$
A. $2 \overrightarrow{A B}$
B. $3 \overrightarrow{A B}$
c. $\overrightarrow{A B}$
D. $\overrightarrow{0}$

- Watch Video Solution

8. In a regular hexagon ABCDEF, $\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F}=k \overrightarrow{A D}$, where k is equal to
A. $3 \overrightarrow{A G}$
B. $2 \overrightarrow{A G}$
C. $6 \overrightarrow{A G}$
D. $4 \overrightarrow{A G}$

Answer: C

- Watch Video Solution

9. If $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ are the mid-points of the sides AB, BC and CA of $\triangle A B C$ and O is point whithin the triangle, then $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=$
A. $2(\overrightarrow{O P}+\overrightarrow{O Q}+\overrightarrow{O R})$
в. $\overrightarrow{O P}+\overrightarrow{O Q}+\overrightarrow{O R}$
C. $4(\overrightarrow{O P}+\overrightarrow{O Q}+\overrightarrow{O R})$
D. $6(\overrightarrow{O P}+\overrightarrow{O Q}+\overrightarrow{O R})$

Answer: B

- Watch Video Solution

10. If G is the centroid of the $\triangle A B C$ and if G^{\prime} is the centroid of another
$\Delta A^{\prime} B^{\prime} C^{\prime}$, then prove that $A A^{\prime}+B B^{\prime}+C C^{\prime}=3 G G^{\prime}$
A. $2 \overrightarrow{G G}$,
B. $3 \overrightarrow{G G}$,
c. $\overrightarrow{G G}$,
D. $4 \overrightarrow{G G}$,
11. In a quadrilateral $A B C D, \overrightarrow{A B}+\overrightarrow{D C}=$
A. $\overrightarrow{A B}+\overrightarrow{C B}$
B. $\overrightarrow{A C}+\overrightarrow{B D}$
c. $\overrightarrow{A C}+\overrightarrow{D B}$
D. $\overrightarrow{A D}-\overrightarrow{C B}$

Answer: C

- Watch Video Solution

12. If $A B C D E$ is a pentagon, then
$\overrightarrow{A B}+\overrightarrow{A E}+\overrightarrow{B C}+\overrightarrow{D C}+\overrightarrow{E D}+\overrightarrow{A C}$ is equal to
A. $4 \overrightarrow{A C}$
B. $2 \overrightarrow{A C}$
c. $3 \overrightarrow{A C}$
D. $5 \overrightarrow{A C}$

Answer: C

- Watch Video Solution

13. If $A B C D$ is a parallelogram, then $\overrightarrow{A C}-\overrightarrow{B D}=$
A. $4 \overrightarrow{A B}$
B. $3 \overrightarrow{A B}$
C. $2 \overrightarrow{A B}$
D. $\overrightarrow{A B}$

Answer: C
14.
$\Delta A B C$, if $\overrightarrow{A B}=\hat{i}-7 \hat{j}+\hat{k}$ and $\overrightarrow{B C}=3 \hat{j}+\hat{j}+2 \hat{k}$, then $|\overrightarrow{C A}|=$
A. $\sqrt{61}$
B. $\sqrt{52}$
C. $\sqrt{51}$
D. $\sqrt{41}$

Answer: A

- Watch Video Solution

15. If vectors $\overrightarrow{A B}=-3 \hat{i}+4 \hat{k}$ and $\overrightarrow{A C}=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a $\triangle A B C$, then the length of the median throught A is
A. $3 \sqrt{2}$
B. $6 \sqrt{2}$
C. $5 \sqrt{2}$
D. $\sqrt{33}$

Answer: D

- Watch Video Solution

16. The position vectors of P and Q are respectively \vec{a} and \vec{b}. If R is a point on $\overrightarrow{P Q}$ such that $\overrightarrow{P R}=5 \overrightarrow{P Q}$, then the position vector of R , is
A. $5 \vec{b}-4 \vec{a}$
B. $5 \vec{b}+4 \vec{a}$
C. $4 \vec{b}-5 \vec{a}$
D. $4 \vec{b}+5 \vec{a}$

Answer: A

- Watch Video Solution

17. If the points whose position vectors are $2 \hat{i}+\hat{j}+\hat{k}, 6 \hat{i}-\hat{j}+2 \hat{k}$ and $14 \hat{i}-5 \hat{j}+p \hat{k}$ are collinear, then $\mathrm{p}=$
A. 2
B. 4
C. 6
D. 8

Answer: B

18. The ratio in which $\hat{i}+2 \hat{j}+3 \hat{k}$ divides the join of $-2 \hat{i}+3 \hat{j}+5 \hat{k}$ and $7 \hat{i}-\hat{k}$, is
A. 1: 2
B. 2: 3
C. $3: 4$
D. 1:4

Answer: A

- Watch Video Solution

19. If OACB is a parallelogrma with $\overrightarrow{O C}=\vec{a}$ and $\overrightarrow{A B}=\vec{b}$ then $\overrightarrow{O A}$ is equal to
A. $\vec{a}+\vec{b}$
B. $\vec{q}-\vec{b}$
C. $\frac{1}{2}(\vec{b}-\vec{a})$
D. $\frac{1}{2}(\vec{a}-\vec{b})$

Answer: D

- Watch Video Solution

20. The position vectors of the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $2 \hat{i}+\hat{j}-\hat{k}, 3 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}+4 \hat{j}-3 \hat{k}$ respectively. These points
A. form an isosceles triangle
B. form a right triangle
C. are collinear
D. form a scalene triangle

Answer: C

- Watch Video Solution

21. If $A B C D E F$ is regular hexagon, then $A D+E B+F C$ is
A. $2 \overrightarrow{A B}$
B. $\overrightarrow{0}$
C. $3 \overrightarrow{A B}$
D. $4 \overrightarrow{A B}$

Answer: D

D Watch Video Solution

22. If the points with position vectors $20 \hat{i}+p \hat{j}, 5 \hat{i}-\hat{j}$ and $10 \hat{i}-13 \hat{j}$ are collinear, then $\mathrm{p}=$
A. 7
B. -37
C. -7
D. 37

Answer: B

- Watch Video Solution

23. If the position vector of a point A is $\vec{a}+2 \vec{b}$ and \vec{a} divides AB in the ratio $2: 3$, then the position vector of B , is
A. $\vec{a}-\vec{b}$
B. $\vec{b}-2 \vec{a}$
C. $\vec{a}-3 \vec{b}$
D. \vec{b}

Answer: C

- Watch Video Solution

24. If $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are the position vectors of points A, B, C, D such that no three of them are collinear and $\vec{a}+\vec{c}=\vec{b}+\vec{d}$, then $A B C D$ is a a. rhombus b. rectangle c. square d. parallelogram
A. rhombus
B. rectangle
C. square
D. parallelogram

- Watch Video Solution

25. Let G be the centroid of $\Delta \mathrm{ABC}$, If $\overrightarrow{A B}=\vec{a}, \overrightarrow{A C}=\vec{b}$, then the $\overrightarrow{A G}$, in terms of \vec{a} and \vec{b}, is
A. $\frac{2}{3}(\vec{a}+\vec{b})$
B. $\frac{1}{6}(\vec{a}+\vec{b})$
C. $\frac{1}{3}(\vec{a}+\vec{b})$
D. $\frac{1}{2}(\vec{a}+\vec{b})$

Answer: C

- Watch Video Solution

26. If G is the intersection of diagonals of a parallelogram $A B C D$ and O is any point then $O \vec{A}+O \vec{B}+O \vec{C}+O \vec{D}=$
a. $2 \vec{O} G$
b. $4 \vec{O} G$
c. $5 \vec{O} G$
d. $3 \vec{O} G$
A. $2 \overrightarrow{O G}$
B. $4 \overrightarrow{O G}$
C. $5 \overrightarrow{O G}$
D. $3 \overrightarrow{O G}$

Answer: B

- Watch Video Solution

27. The vector $\cos \alpha \cos \beta \hat{i}+\cos \alpha \sin \beta \hat{j}+\sin \alpha \hat{k}$ is a
A. null vector
B. unit vector
C. constant vector
D. none of these

Answer: B

- Watch Video Solution

28. In a regular hexagon
$A B C D E F, A \vec{B}=a, B \vec{C}=\vec{b}$ and $\vec{C} D=$. Then $\vec{A} E=$ $\vec{a}+\vec{b}+\vec{c}$ b. $2 \vec{a}+\vec{b}+\vec{c}$ c. $\vec{b}+\vec{c}$ d. $\vec{a}+2 \vec{b}+2 \vec{c}$
A. $\vec{a}+\vec{b}+\vec{c}$
B. $2 \vec{a}+\vec{b}+\vec{c}$
C. $\vec{b}+\vec{c}$
D. $\vec{a}+2 \vec{b}+2 \vec{c}$

Answer: C

- Watch Video Solution

29. If three points A, B and C have position vectors $\hat{i}+x \hat{j}+3 \hat{k}, 3 \hat{i}+4 \hat{j}+7 \hat{k}$ and $y \hat{i}-2 \hat{j}-5 \hat{k}$ respectively are collinear, then $(\mathrm{x}, \mathrm{y})=$
A. $(2,-3)$
B. $(-2,3)$
C. $(-2,-3)$
D. $(2,3)$

Answer: A

- Watch Video Solution

30. If the position vectors of the vertices of a triangle of a triangle are $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $3 \hat{i}-4 \hat{j}-4 \hat{k}$, then the triangle is
A. equilateral
B. isosceles
C. right angled but not isosceles
D. right angled

Answer: D

Watch Video Solution

