

MATHS

BOOKS - BHARATI BHAWAN MATHS (HINGLISH)

Some New Pattern Problems

Example

1. In the parabola $y^2 = 4x$, the ends of the double ordinate through the focus are P and Q. Let O be the vertex. Then the length of the double ordinate PQ is

2. Find the equation of tangent to the curve $x = a(heta + \sin heta)$,

 $y=a(1-\cos heta)$ at the point heta

A. $s=4a au\psi$

B. $s = a \cos \psi$

C. $s=a\psi$

D. $s = 4a \sin \psi$

Answer:

3. Let ABCD be a square of side length 2 units. C2 is the circle through vertices A, B, C, D and C1 is the circle touching all the sides of the square ABCD. L is a line through A. 27. If P is a point on C1 and Q in another point on C2, then 2222 2222 PA PB PC PD QA QB QC QD +++ +++ is equal to (A) 0.75 (B) 1.25 (C) 1 (D) 0.5

A.
$$\frac{3}{4}$$

B. $\frac{5}{4}$

C. 1

Answer:

4. A circle touches the line L and the circle C_1 externally such that both the circles are on the same side of the line, then the locus of centre of the circle is :

A. part of a straight line

B. parabola

C. ellipse

D. hyperbola

Answer:

5. Let ABCD be a square of side length 2 units. C_2 is the circle through vertices A, B, C, D and C_1 is the circle touching all the sides of the square ABCD. L is a line through A

A line M through A is drawn parallel to BD. Point S moves such that its distances from the line BD and the vertex A are equal. If locus of S cuts. M at T_2 and T_3 and AC at T_1 , then area of $\Delta T_1 T_2 T_3$ is

A.
$$\frac{1}{2}$$

B. $\frac{2}{3}$
C. 1
D. 2

Answer:

Watch Video Solution

6. Suppose four distinct positive numbers a_1,a_2,a_3,a_4 are in G.P. Let $b_1=a_1,b_2=b_1+a_2,b_3=b_2+a_3$ and $b_4=b_3+a_4.$

Statement -1 : The numbers b_1 , b_2 , b_4 are neither in A.P. nor in G.P. and Statement -2 : The numbers b_1 , b_2 , b_3 , b_4 are in H.P.

- A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
- B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

Answer:

Watch Video Solution

7. Statement-1: The curve $y=rac{-x^2}{2}+x+1$ s symmetric with respect to

the line x = 1.

Statement -2: A parabola is symmetric about its axis.

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

Answer:

Watch Video Solution

Exercise

1. The envelope of the family of straight lines whose sum of intercepts on

the axes is 4 is

2. The envelope of the family of tangents to the curve $y^2 = x$ is

A. $x + y^2 = 0$ B. $x^2 = y$ C. $x^2 + y = 0$ D. $y^2 - x = 0$

Answer: D

Watch Video Solution

3. The evolute of the curve $x^2=4y$ is

4. The area bounded by the curve y=f(x) and the lines x=0,y=0

and x = t, lies in the interval

D. ((d^2y/dx^2)/sqrt(1+(dy/dx)^2)`

Answer:

5. The radius of curvature of the curve $y^2 = 4x$ at the point (1,2) is

A. $4\sqrt{2}$

B. $2\sqrt{2}$

$$\mathsf{C}.\,\frac{1}{\sqrt{2}}$$

D. $\sqrt{2}$

Answer: A

Watch Video Solution

6. If e_1 is the eccentricity of the conic $9x^2 + 4y^2 = 36$ and e_2 is the eccentricity of the conic $9x^2 - 4y^2 = 36$ then e12 - e22 = 2 b. e22 - e12 = 2 c. 2 < 322 - 312 < 3 d. e22 - e12 > 3

- A. (0, 2)
- **B**. (2, 0)
- C. (0, 3)
- D. $\left(\sqrt{3}, \left(\frac{3}{2}\right)\right)$

Answer:

7.
$$\int_{-\pi/2}^{\pi/2} \sin \lvert x
vert dx$$
 is equal to

A.
$$\left(\frac{\pi}{8}\right) \left(1 + \sqrt{2}\right)$$

B. $\left(\frac{\pi}{4}\right) \left(1 + \sqrt{2}\right)$
C. $\frac{\pi}{8\sqrt{2}}$
D. $\frac{\pi}{4\sqrt{2}}$

Answer:

8.
$$\int \frac{\sin\left(\frac{1}{x}\right)\cos^3\left(\frac{1}{x}\right)}{x^2} dx$$
 is equal to

Watch Video Solution

9. If $f''(x) < 0 \, \forall x \in (a, b)$ and (c, f(c)) is a point lying on the curve y = f(x), where a < c < b and for that value of c, f(c) has a maximum then f'(c) equals

A.
$$\frac{f(b) - f(a)}{b} - a$$
)
B. $\frac{2}{b - a} \{f(b) - f(a)\}$
C. $2f(b) - \frac{f(a)}{2}b - a$
D. O

Answer: D

10. The family of parabolas with a common vertex at the origin whose foci are on the x-axis and the directrices are parallel to the y-axis can have the equation (a being a parameter)

A.
$$y^2=3ax$$

B. $x^2=4ay$
C. $y^2=4a(x+$
D. $(y)^2=4ax$

2)

Answer: D

11. The orthogonal trajectory of the family of parabolas $y^2=4ax$ is

A.
$$x^2 + y^2 = c^2$$

B. $x^2 + 2y^2 = c^2$
C. $2x^2 + y^2 = c$
D. $y^2 - x^2 = -c^2$

Answer: C

12. The curve passing through the point (1,2) that cuts each member of the family of parabolas $y^2=4ax$ orthogonally is

A.
$$2x^2 + y^2 = 6$$

B. $x^2 + y^2 = 5$
C. $x^2 + 2y^2 = 9$
D. $y^2 - x^2 = 3$

Answer: A

-

13. The general solution of the equation

$$\left(\frac{d^3y}{dx^3}\right) - 7\left(\frac{d^2y}{dx^2}\right) + 16\frac{dy}{dx} - 12y = 0$$

A. $c_1e^{2x} + c_2e^{-2x} + c_3e^{-3x}$
B. $(c_1 + c_2x)e^{2x} + c_3e^{3x}$
C. $(c_1x + c_2)e^{-3x} + c_3e^{2x}$
D. $(A\cos x + B\sin x)e^{2x} + c_3e^{3x}$

Answer: B

14. Find the differential equation for which the following value of y is the

general solution: $y = (c_1 \cos x + c_2 \sin x) e^{-x} + c_3 e^x$

Watch Video Solution

15. The general solution of the equation
$$\displaystyle rac{d^3y}{dx^3} + y = 0$$
 is

Watch Video Solution

16. The value of
$$|U|$$
 where $U=egin{bmatrix} 2 & 3 & 4 \ 3 & 4 & 5 \ 4 & 5 & 6 \end{bmatrix}$

A. 3

В. -3

C. 0

Answer: C

18. The sum of the elements of the product
$$[3, 2, 0]$$
 and $\begin{bmatrix} 3\\2\\0 \end{bmatrix}$ is

19. The rank of matrix
$$\begin{bmatrix} x & -1 & 0 \\ 0 & x & -1 \\ -1 & 0 & x \end{bmatrix}$$
 is 2 then value of x is:

A. 3

B. 2

C. 1

D. none of these

Answer: C

Watch Video Solution

A. 1

B. 2

C. -3

D. 3

Answer: C

21. The denary number 43125 in the scale of 6 will be represented by

A. 353135

B. 531353

C. 515313

D. 55453

Answer: B

Watch Video Solution

22. The sum of the numbers 2053 and 412 in the scale of seven is

23. The product of the numbers 5623 and 6 in the scale of eight is

A. 41672

B. 33738

C. 42562

D. 45262

Answer: C

Watch Video Solution

24. Which of thefollowing is true?

A. $4 = 7 \pmod{5}$

- $B.118 = 18 \pmod{5}$
- $C.110 = 93 \pmod{12}$
- $D.63 = 9 \pmod{11}$

Answer: B

25. Let $a = b \pmod{n}$, $a' = b' \pmod{n}$ and `d, m in N. Then which of the following need not be true?

$$\mathsf{A.}\,a+a\,{'}=b+b\,{'}(\mod n)$$

 $\mathsf{B}.\,aa\,{}'=\mathsf{bb'}\,(\mathsf{mod}\;\mathsf{n})`$

$$\mathsf{C}.\,a^m=b^m(\!\!\!\mod n)$$

$$\mathsf{D}.\left(\frac{a}{d}\right) \equiv \left(\frac{b}{d}\right) (\bmod n)$$

Answer: B

Watch Video Solution

26. If
$$5x = 3 \pmod{7}$$
 then find x

27. The value of λ for which the equation $\lambda^2 - 4\lambda + 3 + (\lambda^2 + \lambda - 2)x + 6x^2 - 5x^3 = 0$ will have two roots equal to zero is

Watch Video Solution

28. The value of (λ, μ) for which $(\lambda - \mu)x^3 - (\lambda - 2)x^2 - 3x + 7 = 0$ will have two infinite roots is

A. (0, 0)

B.(2,2)

C.(1,1)

D.(2,0)

Answer: B

29. The combined equation of asymptotes to the hyperbola $x^2+4xy+3y^2+4x-3y+1=0$ are

Watch Video Solution

30. 17 ²² –	1	is	а	multiple o	f
-------------------------------	---	----	---	------------	---

A. 16

B.44

C. 46

D. 27

Answer: A

31. The highest power of 7 which divides 1000 ! is

 $A.\,164$

 $\mathsf{B}.\,162$

 $C.\,167$

 $\mathsf{D}.\,142$

Answer: A

Watch Video Solution

32. The equation of conjugate hyperbola of $rac{x^2}{8} - 3rac{y^2}{8} = 1$

A.
$$x^2 - 3y^2 - 2x + 8 = 0$$

B.
$$3x^2 - y^{-2} - 2y - 8 = 0$$

C.
$$x^2 - 3y^2 - 2x + 10 = 0$$

D.
$$x^2 - 3y^2 = -8$$

Answer: D

33. The parabola circumscribing $\ riangle ABC$ and passing through the point

 $\left(4,4
ight)$ has the focus

- A. (0, 1)
- **B**. (4, 0)
- C.(1,0)
- D. (0, 4)

Answer: C

Watch Video Solution

34. The parabola circumscribing $\triangle ABC\{(0, 0), (4, 4), (4, -4)\}$ and passing through the point (4, 4) has the latus rectum

A. 4

B. 1

C. 16

D. 8

Answer: A

Watch Video Solution

35. If
$$A = \left(2, \left(3\frac{\sqrt{3}}{2}\right)\right)$$
 then coordin

n coordinates of C taken mirror image

along x=0 is

A.
$$\left(-2, \frac{3\sqrt{3}}{2}\right)$$

B. $\left(-2 - \sqrt{6}, \frac{3\sqrt{3} + 1}{2\sqrt{2}}\right)$
C. $\left(-2\sqrt{3}, \frac{3}{2}\right)$
D. $(0, 3)$

Answer: A

36. If the equation of the diameter AB is x = y then the equation of the

conjugate diameter CD will be

A. 9x + 16y = 0

B. x + y = 0

C. 16x + 9y = 0

D.9x + 16y = 7

Answer: B

Watch Video Solution

37. The equations of the line QR are where Q(3, 6, 3), R(18, 43, 13)

A.
$$\frac{x-12}{15} = \frac{y-22}{37} = \frac{z-4}{10}$$

B. $\frac{x-3}{3} = \frac{y-15}{7} = \frac{z-6}{2}$
C. $\frac{x-3}{15} = \frac{y-6}{37} = \frac{z-3}{10}$
D. $\frac{x+3}{3} = \frac{y+6}{7} = \frac{z+3}{3}$

Answer: C

38. The distance of the centre of the sphere $x^2 + y^2 + z^2 - 2x - 4y = 0$

from the origin is

A. 5 B. $\sqrt{5}$ C. $2\sqrt{5}$ D. $\frac{5}{2}$

Answer: B

39. The radius of the circle of intersection of the sphere $x^2 + y^2 + z^2 = 9$ by the plane 3x + 4y + 5z = 5 is

A.
$$\sqrt{\frac{17}{2}}$$

B. 3

C. $\sqrt{34}$

D.
$$\frac{1}{\sqrt{2}}$$

Answer: A

Watch Video Solution

40. The area of the sphere
$$x^2 + y^2 + z^2 = 25$$
 is

A. 75π

 $\mathsf{B.}\,50\pi$

 $\mathsf{C}.\,100\pi$

D. 25π

Answer: C

41. If $P(u_i)){\infty}i$, where $i=1,2,3,\ldots,n$ then $\lim_{n
ightarrow w}P(w)$ is equal to

A.
$$\frac{2}{3}$$

B. $\frac{3}{4}$
C. $\frac{1}{4}$
D. 1

Answer: A

> Watch Video Solution

42. There are n urns each containing (n + 1) balls such that the i^{th} urn contains i white balls and (n + 1 - i) red balls. Let u_i be the event of selecting i^{th} urn, i = 1, 2, 3, ..., n and w denotes the event of getting a white balls. If $P(u_i) = c$ where c is a constant, then $P\left(\frac{u_n}{w}\right)$ is equal

A.
$$rac{1}{n+1}$$

B.
$$\frac{2}{n+1}$$

C. $\frac{n}{n+1}$
D. $\frac{1}{2}$

Answer: B

43. The set of values of $p \in R$ for which $x^2 + px + rac{1}{4}(p+2) \geq 0$ for all

 $x \in R$ is

44. The set of values of $p \in R$ for which the equation $x^2 + px + rac{1}{4}(p+2) = 0$ will have real roots is

A. $[2, +\infty)$

B. $(-\infty,2]$

 $\mathsf{C}.\,(\,-\infty,\,-1]$

D. R - (-1, 2)

Answer: D

Watch Video Solution

45. If p is chosen at random from the interval [0, 6] then the probability that the roots of the equation $x^2 + px + \frac{1}{4}(p+2) = 0$ will be real is

A.
$$\frac{3}{5}$$

B. $\frac{1}{2}$
C. $\frac{5}{7}$
D. $\frac{2}{3}$

Answer: C

46. A bag contain 2 white balls and 1 red balls. The experiment is done 10

times. The probability that a white ball is drawn exactly 5 times is

A.
$$\frac{10!}{5!5!} \left(\frac{2}{3}\right)^5 \left(\frac{1}{3}\right)^5$$

B. $\frac{10!}{5!5!} \left(\frac{1}{3}\right)^5$
C. $\frac{10!}{(5!)^2} \left(\frac{2}{9}\right)^5$
D. $\frac{10!}{5!} \left(\frac{2}{9}\right)^5$

Answer: A

47. A bag contain 2 white balls and 1 red balls. The experiment is done 10 times. The probability that a white ball is drawn exactly 5 times is

- A. 7
- B. 9

C. 8

Answer:

48. If n^2+2n-8 is a prime number where $n\in N$ then n is

A. 0

B. 1

C. 2

D. ∞

Answer:

49. If z is a complex number, then |3z-1|=3|z-2| represents

A. 25 and 29

B. 30 and 34

C. 35 and 39

D. 40 and 44

Answer:

Watch Video Solution

50. In Q.no. 88, if z be any point in $A\frown B\frown C$ and ω be any point satisfying $|\omega-2-i|<3.$ Then, $|z|-|\omega|+3$ lies between

A. -6 and 3

B. -3 and 6

C. -6 and 6

D. -3 and 9

Answer:

51. Which of the following is true?

$$\begin{array}{l} \mathsf{A}. \left(\frac{2}{=}a \right)^2 \cdot f(1) + (2-a)^2 \cdot f^{\prime \, \prime}(-1) = 0 \\ \mathsf{B}. \left(\frac{2}{=}a \right)^2 \cdot f(1) + (2+a)^2 f^{\prime \, \prime}(-1) = 0 \end{array}$$

Answer:

Watch Video Solution

52. Which of the following is true?

A. f(x) is decreasing in $(\,-1,1)$ and has a local maximum at x=1

B. f(x) is increasing in (-1,1) and has a local maximum at x=1

C. f(x) is increasing in (-1,1) but has neither a local maximum nor

a local minimum at x=1

D. f(x) is decreasing in (-1,1) but has neither a local maximum nor

a local minimum at x=1

Answer:

Watch Video Solution

53. Consider the function $f:(\,-\infty,\infty)\to(\,-\infty,\infty)$ defined by f(x) =

$$rac{x^2-ax+1}{x^2+ax+1}, \, 0 < a < 2 \ ext{Let} \ g(x) = \int\limits_{0}^{e^x} rac{f'(t)}{1+t^2} \mathsf{dt}$$

Which of the following is true ?

A. $g^{\,\prime}(x)$ is positive on $(\,-\infty,\,0)$ and negative on $(0,\,\infty)$

B. $g^{\,\prime}(x)$ is negative on $(\,-\infty,\,0)$ and positive on $(0,\,\infty)$

C. $g^{\,\prime}(x)$ is changes sign on both $(\,-\infty,0)$ and $(0,\infty)$

D. g'(x) does not change sign on $(\,-\infty,0)$

Answer:

Watch Video Solution

54. Consider the line

$$L1 = rac{x+1}{3} = rac{y+2}{1} = rac{z+1}{2} \ L2 = rac{x-2}{1} = rac{y+2}{2} = rac{z-3}{3}$$

The shortest distance between L_1 and L_2 is

A.
$$\frac{1}{\sqrt{99}} \left(\overrightarrow{-} I + 7\overrightarrow{j} + 7\overrightarrow{k} \right)$$

B.
$$\frac{1}{5\sqrt{3}} \left(\overrightarrow{-} I - 7\overrightarrow{j} + 5\overrightarrow{k} \right)$$

C.
$$\frac{1}{5} (\sqrt{3}) \left(\overrightarrow{-} I + 7\overrightarrow{j} + 5\overrightarrow{k} \right)$$

D.
$$\frac{1}{\sqrt{99}} \left(7\overrightarrow{i} - 7\overrightarrow{j} - \overrightarrow{k} \right)$$

Answer:
55. Consider the line

$$L1 = rac{x+1}{3} = rac{y+2}{1} = rac{z+1}{2} \ L2 = rac{x-2}{1} = rac{y+2}{2} = rac{z-3}{3}$$

The shortest distance between L_1 and L_2 is

A. 0

B.
$$\frac{17}{\sqrt{3}}$$

C. $\frac{41}{5}\sqrt{3}$
D. $\frac{17}{5\sqrt{3}}$

Answer: D

Watch Video Solution

56. cosider the lines,

$$L1 = rac{x+1}{3} = rac{y+2}{1} = rac{z+2}{2}$$
 $L2 = rac{x-2}{1} = rac{y+2}{2} = rac{z-3}{3}$

The distance of the point (1, 1, 1) from the plane passing through the

point (-1, -2, -1) and whose normal is perpendicular to both the lines L_1 and L_2 is

A.
$$\frac{2}{\sqrt{75}}$$

B.
$$\frac{7}{\sqrt{75}}$$

C.
$$\frac{13}{\sqrt{75}}$$

D.
$$\frac{23}{\sqrt{75}}$$

Answer: C

Watch Video Solution

57. Consider the function defined implicitly by the equation $y^3 - 3y + x = 0$ on various intervals in the real line. If $x \in (-\infty, -2) \cup (2, \infty)$, the equation implicitly defines a unique real-valued defferentiable function y = f(x). If $x \in (-2, 2)$, the equation implicitly defines a unique real-valued differentiable function y - g(x) satisfying $g_0 = 0$.

If
$$fig(-10\sqrt{2}ig)=2\sqrt{2}$$
, then $fig(-10\sqrt{2}ig)$ is equal to

A.
$$4\frac{\sqrt{2}}{7^3} \cdot 3^2$$

B. $4\frac{\sqrt{2}}{7^3} \cdot 3^3$
C. $4\frac{\sqrt{2}}{7^3} \cdot 3$
D. $-4\frac{\sqrt{2}}{7^3} \cdot 3$

Answer:

58. The area of the region bounded by the curve y = f(x), x-axis, and the lines x = a and x = b where $-\infty < a < b < -2$ is

A.

$$\int_{a}^{b} \frac{x}{3\{(f(x))^{2} - 1\}} \, dx + b \, f(b) - a \, f(a)$$

Β.

$$\int_{a}^{b} \frac{x}{3\{(f(x))^{2} - 1\}} \, dx + b \, f(b) - a \, f(a)$$

C.

$$\int_{a}^{b} \frac{x}{3\{(f(x))^{2} - 1\}} \, dx - b \, f(b) + a \, f(a)$$

D.

$$\int_{a}^{b} \frac{x}{3\{(f(x))^{2} - 1\}} \, dx - b \, f(b) + a \, f(a)$$

Answer: A

Watch Video Solution

59.
$$\int_{-1}^{1} g'(x) dx =$$

A.
$$2g(-1)$$

B.
$$g(1) - g(-1)$$

 $\mathsf{C.}-2g(1)$

 $\mathsf{D.}\, 2g(1)$

Answer: B

60. The equation of the circle C with center at $\left(\sqrt{3},1
ight)$ is

A.
$$(x - 2\sqrt{3})^2 + (y - 1)^2 = 1$$

B. $(x - 2\sqrt{3})^2 + (y + \frac{1}{2})^2 = 1$
C. $(x - \sqrt{3})^2 + (y + 1)^2 = 1$
D. $(x - \sqrt{3})^2 + (y - 1)^2 = 1$

Answer: D

Watch Video Solution

61. The number of 2 x 2 matrices A such that all entries are either 1 or 0 is

A. 12

B. 6

C. 9

Answer: D

62. Let A be the set of all 3 imes 3 symmetric matrices all of whose either 0

or 1. Five of these entries are 1 and four of them are 0.

The number of matrices A in A for which the system of linear equations

$$A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

has a unique solution is

A. less than 4

B. atleast 4 but less than 7

C. atleast 7 but less than 10

D. at least 10

63. Let A be the set of all 3 imes 3 symmetric matrices all of whose either 0

or 1. Five of these entries are 1 and four of them are 0.

The number of matrices A in A for which the system of linear equations

$$A\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}1\\0\\0\end{bmatrix}$$

is inconsistent is

A. 0

B. more than 2

C. 2

D. 1

Answer:

Watch Video Solution

64. A fair die is tossed repeatedly until a 6 is obtained. Let X denote the

number of tosses required.

The probability that X = 3 equals

Answer:

Watch Video Solution

65. A fair die is tossed repeated until a six is obtained. Let X denote the number of tosses required.

The probability that $X \geq 3$ is

A.
$$\frac{125}{216}$$

B.
$$\frac{25}{216}$$

C. $\frac{5}{36}$
D. $\frac{25}{36}$

Answer:

Watch Video Solution

66. A fair die is tossed repeatedly until a six obtained. Let X denote the number of tosses required.

The conditional probability that $X \geq 6$ given X > 3 equals

A.
$$\frac{125}{216}$$

B. $\frac{25}{216}$
C. $\frac{5}{36}$
D. $\frac{25}{36}$

67. Equation of the common tangent to the circle $x^2 + y^2 = 50$ and the parabola $y^2 = 40x$ can be

A.
$$2x - \sqrt{5}y - 20 =$$

B. $2x - \sqrt{5}y + 4 =$
C. $x^2 + y^2 + 24x - 12 = 0$
D. $x^2 + y^2 - 24x - 12 = 0$

Answer:

Watch Video Solution

68. If the events A and B are mutually exclusive events such that $P(A) = \frac{3x+1}{3}$ and $P(B) = \frac{1-x}{4}$, then the set of possible real values of x lies in the interval

A.
$$\left(-\frac{1}{4}, \frac{1}{4}\right)$$

B. $\left(11, -\frac{3}{4}\right)$
C. $\left(-\frac{3}{4}, -\frac{1}{2}\right)$
D. $\left(0, \frac{1}{4}\right)$

Answer:

69. Let s be the sum of all distinct real roots of f(x) and let $t = \mod(s)$ The area bounded by the curve y = f(x) and the lines x = 0, y = 0 and x = t, lies in the interval

A. $\left(\frac{3}{4}, 3\right)$ B. $\left(\frac{21}{64}, 11, 16\right)$ C. (9, 10)D. $\left(0, \frac{21}{64}\right)$

Answer: A

70. Tangents are drawn from the point P(3,4) to be the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ touching the ellipse at A and B. Then the coordinates of A and B are.

A.
$$(3, 0)$$
 and $(0, 2)$
B. $\left(-\frac{8}{5}, 2\frac{\sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
C. $\left(-\frac{8}{5}, 2\frac{\sqrt{161}}{15}\right)$ and $(0, 2)$
D. $(3, 0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$

Answer: D

Watch Video Solution

71. The tangents are drawn from the point P(3, 4) to the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ touching the ellipse at points A and B. The orthocenter

of the triangle PAB is

A.
$$\left(5, \frac{8}{7}\right)$$

B. $\left(\frac{7}{5}, \frac{25}{8}\right)$
C. $\left(\frac{11}{5}, \frac{8}{5}\right)$
D. $\left(\frac{8}{25}, \frac{7}{5}\right)$

Answer: C

Watch Video Solution

72. Tangents are drawn from the point P(3,4) to the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ touching the ellipse at the point A and B then the equation of the locus of the point whose distances from the point P and the line AB are equal,

A.
$$9x^2 + y^2 - 6xy - 54x - 62y + 241 = 0$$

B. $x^2 + 9y^2 + 6xy - 54x + 62y - 241 = 0$
C. $9x^2 + 9y^2 - 6xy - 54x - 62y - 241 = 0$
D. $x^2 + y^2 - 2xy + 27x + 31y - 120 = 0$

Answer: A

73. Match the following (more than one may match with the same).

(A)
$$\int_{0}^{\pi/2} (\sin x)^{\cos x} \cdot \{\cos x \cot x - \log(\sin x)^{\sin x}\} dx \text{ (p) } 1$$

(B) Area bounded by
$$-4y^{2} = x \text{ and} \qquad (q) 0$$

$$x - 1 = -5y^{2}$$

(C) Cosine of the angle of intersection (r) 6log 2
of curves $y = 3^{x-1}\log x$ and $y = x^{x} - 1$ is
(D)
$$\lim_{x \to \infty} \frac{\left(\int_{0}^{x} e^{x^{2}} dx\right)^{2}}{\int_{0}^{x} e^{2x^{2}} dx}$$
 is equal to (s) $\frac{4}{3}$

D Watch Video Solution

74. Match the following (more than one may match with the same).

75. Let aandb be the roots of the equation $x^2 - 10cx - 11d = 0$ and those of $x^2 - 10ax - 11b = 0arec$, \cdots then find the value of $a + b + c + \ddot{w}hena \neq b \neq c \neq \cdots$

A.

Β.

C.

D.

Answer:

76. Complete the following statements.

If
$$a_n = \frac{3}{4} - \left(\frac{3}{4}\right)^2 + \left(\frac{3}{4}\right)^3 - \dots + (-1)^{n-1} \cdot \left(\frac{3}{4}\right)^n$$
 and

 $b_n = 1 - a_n$ then the smallest natural number n_0 , such that $b_n > a_n V ntn > n_0$ is

Watch Video Solution

77. If f(x) is a twice differentiable function such that f(a)=0, f(b)=2, f(c)=-1,f(d)=2, f(e)=0 where a < b < c < d e, then the minimum number of zeroes of $g(x) = f'(x)^2 + f''(x)f(x)$ in the interval [a, e] is

Watch Video Solution

78. Consider the planes 3x - 6y - 2z = 15and2x + y - 2z = 5. Statement 1:The parametric equations of the line intersection of the given planes are x = 3 + 14t, y = 2t, z = 15t. Statement 2: The vector $14\hat{i} + 2\hat{j} + 15\hat{k}$ is parallel to the line of intersection of the given planes.

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

79. Let the vectors \overrightarrow{PQ} , \overrightarrow{QR} , \overrightarrow{RS} , \overrightarrow{ST} , \overrightarrow{TU} and \overrightarrow{UP} represent the sides of a regular hexagon.

Statement I: $\overrightarrow{PQ} \times (\overrightarrow{RS} + \overrightarrow{ST}) \neq \overrightarrow{0}$ Statement II: $\overrightarrow{PQ} \times \overrightarrow{RS} = \overrightarrow{0}$ and $\overrightarrow{PQ} \times \overrightarrow{RS} = \overrightarrow{0}$ and $\overrightarrow{PQ} \times \overrightarrow{ST} \neq \overrightarrow{0}$ For the following question, choose the correct answer from the codes (A), (B), (C) and (D) defined as follows:

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a

correct explanation for Statement-1

- C. Statement-1 is True, Statement-2 is False
- D. Statement-1 is False, Statement-2 is True

Answer:

Watch Video Solution

80. Tangents are drawn from the point (17, 7) to the circle $x^2 + y^2 = 169$, Statement I The tangents are mutually perpendicular Statement, IIs The locus of the points from which mutually perpendicular tangents can be drawn to the given circle is $x^2 + y^2 = 338$ (a) Statement I is correct, Statement II is correct; Statement II is a correct explanation for StatementI (b) Statement I is correct, Statement I is correct Statement II is not a correct explanation for StatementI (c)Statement I is correct, Statement II is incorrect (d) Statement I is incorrect, Statement II is correct

- A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
- B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

- C. Statement-1 is True, Statement-2 is False
- D. Statement-1 is False, Statement-2 is True

81. The lines $L_1: y - x = 0$ and $L_2: 2x + y = 0$ intersect the line $L_3: y + 2 = 0$ at P and Q respectively. The bisectors of the acute angle between L_1 and L_2 intersect L_3 at R.

Statement 1 : The ratio PR : RQ equals $2\sqrt{2}$: $\sqrt{5}$

Statement - 2 : In any triangle , bisector of an angle divides the triangle into two similar triangles .

- A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
- B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

82. Let C be the locus of a point the sum of whose distances from the points $S(\sqrt{3}, 0)$ and $S'(-\sqrt{3}, 0)$ is 4. Statement-1: The curve C cuts off intercept $2\sqrt{3}$ from the line 2y-1=0 Statement-2: The equation of the centre C is $x^2 + 8y^2 = 5$

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

- C. Statement-1 is True, Statement-2 is False
- D. Statement-1 is False, Statement-2 is True

83. Let F(x) be an indefinite integral of $\sin^2 x$

Statement I The function F(x) satisfies $F(x+\pi)=F(x)$ for all real x. Because

Statement II $\sin^2(x+\pi)=\sin^2x,\,$ for all real x.

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

84. let $f(x) = 2 + \cos x$ for all real x Statement 1: For each real t, there exists a pointc in $[t, t + \pi]$ such that f'(c) = 0 Because statement 2: $f(t) = f(t + 2\pi)$ for each real t

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

Answer:

Watch Video Solution

85. Assertion- Reason Type Question:

STATEMENT -1: $1\cdot 3\cdot 5\cdot \ldots \cdot (2n-1) > n^n, n\in N$ because

STATEMENT -2: the sum of the first n natural numbers is equal to n^2 .

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is False

Answer: D

Watch Video Solution

86. Let
$$(1+x)^{36} = a_0 + a_1x + a_2x^2 + ... + a_{36}x^{36}$$
. Then
Statement-1: $a_0 + a_3 + a_6 + ... + a_{36} = rac{2}{3} ig(2^{36} + 1 ig)$
Statement-2: $a_0 + a_2 + a_4 + ... + a_{36} = 2^{35}$

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

Answer:

Watch Video Solution

87. The vlaue of
$$\frac{(5050)\int\limits_{0}^{1} \left(1-x^{50}\right)^{100} dx}{\int\limits_{0}^{1} \left(1-x^{50}\right)^{100} dx}$$
, is

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

Answer:

Watch Video Solution

88. In !ABC it is given that a:b:c = cos A:cos B:cos C

Statement-1: !ABC is equilateral.

Statement-2:
$$=rac{b^2+c^2-a^2}{2bc}, \cos B=rac{c^2+a^2-b^2}{2ac}, \cos C=rac{a^2+b^2-c^2}{2ab}$$

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

cosA

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

Answer:

Watch Video Solution

89. Let $H_1, H_2, ..., H_n$ be mutually exclusive events with $P(H_i) > 0, i = 1, 2, ..., n$. Let E be any other event with 0 < P(E)Statement I $P(H_i \mid E) > P(E \mid H_i. P(H_i) \text{ for } i = 1, 2, ..., n$ statement II $\sum_{i=1}^n P(H_i) = 1$

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

Answer:

90. Let AandB b e two independent events. Statement 1: If (A) = 0. $3andP(A \cup B) = 0.$ 8, thenP(B) is 2/7. Statement 2: P(E) = 1 - P(E), where E is any event.

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

- C. Statement-1 is True, Statement-2 is False
- D. Statement-1 is False, Statement-2 is True

91. The equations of two straight lines are

$$rac{x-1}{2} = rac{y+3}{1} = rac{z-2}{-3}$$
 and $rac{x-2}{1} = rac{y-1}{-3} = rac{z+3}{2}$

Statement 1: The given lines are coplanar.

Statement 2: The equations

2r-s=1

r+3s=4

3r+2s=5

are consistent.

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

92. Assertion- Reason Type Question:

Let
$$I_n = \int_0^{\pi/4} \tan^n x \, dx$$
, where $n \in N$.
STATEMENT-1: $\int_0^{\pi/4} \tan^4 x \, dx = \frac{3\pi - 8}{12}$.
because
STATEMENT-2: $I_n + I_{n-2} = \frac{1}{n-1}$.

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

- C. Statement-1 is True, Statement-2 is False
- D. Statement-1 is False, Statement-2 is True

Answer: A

93. Statement-1: The cubic equation $4x^3 - 15x^2 + 14x - 5 = 0$ has a root in the internal (2, 3).

Statement-2: If f(x) is a polynomial equation which has two real roots $\alpha, \beta(\alpha < \beta)$, then f(x) = 0 will have a root $\gamma sucht^{}$ alpha It gamma It beta'.

- A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
- B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a

correct explanation for Statement-1

- C. Statement-1 is True, Statement-2 is False
- D. Statement-1 is False, Statement-2 is True

94. Consider, $L_1: 2x + 3y + p - 3 = 0$, $L_2: 2x + 3y + p + 3 = 0$, where p is a real number, and $C: x^2 + y^2 + 6x - 10y + 30 = 0$ Statement-I : If line L_1 is a chord of circle C, then line L_2 is not always a diameter of circle C.

and

Statement-II : If line L_1 is a diameter of circle C, then line L_2 is not a chord of circle C.

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1

B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

95. Let a,b,c,p,q be the real numbers. Suppose α , β are the roots of the equation $x^2 + px + q = 0$ and α , $\frac{\beta}{2}$ are the roots of the equation $ax^2 + bx + c = 0$ where $\beta^2 \notin \{-1, 0, 1\}$.

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

Answer:

Watch Video Solution

96. For the following question, choose the correct answer from the codes

(a),(b),(c) and (d) follows

Let a solution y=y(x) of the differential equation $x\sqrt{x^2-1}dy - y\sqrt{y^2-1}dx = 0$ satisfy y(2)= $\frac{2}{\sqrt{3}}$ Statement I y(x) = sec $\left(\sec^{-1}x - \frac{\pi}{6}\right)$ and Statement II y(x) is given by $\frac{1}{2} = \frac{2\sqrt{3}}{x} - \sqrt{1-\frac{1}{x^2}}$

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1

B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a

correct explanation for Statement-1

- C. Statement-1 is True, Statement-2 is False
- D. Statement-1 is False, Statement-2 is True

Watch Video Solution

- L_1, L_2, L_3 be the lines of intersection of the planes P_2 and P_3 and $P 1, P_1$ and P_2 , respectively.
 - A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
 - B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

Answer:

Watch Video Solution

98. Consider the system of equations

x-2y+3z=-1

-x+y-2z=k

x-3y+4z=1

Statement -1 The system of equation has no solutions for $k \neq 3$.

statement -2 The determinant $egin{array}{cccc} 1 & 3 & -1 \ -1 & -2 & k \ 1 & 4 & 1 \ \end{array}
onumber
onumber
eq 0, for <math>k
eq 3.$

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

Answer:

Watch Video Solution

99. Consider the system of equations ax + by = 0; cx + dy = 0, where $a, b, c, d \in \{0, 1\}$)STATEMENT-1: The probability that the system of equations has a unique solution is 3/8 STATEMENT-2: The probability that the system of equations has a solution is 1
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

Answer:

Watch Video Solution

100. Let f and g be real valued functions defined on interval (-1, 1)such that g(x) is continuous, $g(0) \neq 0$, g'(0) = 0, $g(0) \neq 0$, and $f(x) = g(x) \sin x$. Statement-1 : $(\operatorname{Lim})_{x \to 0}[g(x) \cot x - g(0) \cos e \cos x] = f(0)$ and Statement-2 : f'(0) = g(0) A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct

explanation for Statement-1

B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a

correct explanation for Statement-1

C. Statement-1 is True, Statement-2 is False

D. Statement-1 is False, Statement-2 is True

Answer:

Watch Video Solution

101. Match the integrals in Column I with the values in Column II and indicate your answer by darkening the apporpriate bubbles in the 4 imes4

matrix.

102. In the following [x] denotes the greatest integer less than for equal to x. Match the functions in Column I with the properties in Column II and indicate your answer by darkening the appropriate bubles in the 4×4

matrix.

Watch Video Solution

103. Match the statement in Column I with the properties in Column II and indicate your answer by darkening the appropriate bubbles in the

4 imes 4 matrix.

(Λ)	Column I Two intersecting circles	(p)	Column II have a common tangent
(B)	Two mutually external circles	(q)	have a common normal
(C)	Two circles, one strictly inside the other	(r)	do not have a common tangent
(D)	Two branches of a hyperbola	(s)	do not have a common normal

104. Consider the following linear equations

 $ax + by + cz = 0, bx + cy + az = 0, cx + ay + bz = 0. \ Match the statement x riatebu \leq s \in the$

4 xx 4` matrix given in the ORS.

	Column I		Column II
(A)	$a + b + c \neq 0$ and $a^2 + b^2 + c^2 = ab + bc + ca$	(p)	the equations represent planes meeting only at a single point.
(B)	a + b + c = 0 and $a^2 + b^2 + c^2 \neq ab + bc + ca$	(q)	the equations represent the line $x = y = z$.
(C)	$a + b + c \neq 0$ and $a^2 + b^2 + c^2 \neq ab + bc + ca$	(r)	the equations represent identical planes.
(D)	a+b+c=0 and $a^2+b^2+c^2=ab+bc+ca$	(s)	the equations represent the whole of the three dimensional space.

Watch Video Solution

105. Let (x, y) be such that $\sin_{-1}(ax) + \cos^{-1}(y) + \cos^{-1}(bxy) = \frac{\pi}{2}$ Match the statement in Column I with the properties in Column II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix.

Column I	Column II
(A) If $a = 1$ and $b = 0$ then (x, y)	(p) lies on the circle
	$x^2 + y^2 = 1$
(B) If <i>a</i> = 1 and <i>b</i> = 1 then (<i>x</i> , <i>y</i>)	(q) lies on
	$(x^2 - 1)(y^2 - 1) = 0$
(C) If a = 1 and b = 2 then (x, y)	(r) lies on $y = x$
(D) If <i>a</i> = 2 and <i>b</i> = 2 then (<i>x</i> , <i>y</i>)	(s) lies on
	$(4x^2 - 1)(y^2 - 1) = 0$

Watch Video Solution

106. Let $f(x) = \frac{x^2 - 6x + 5}{x^2 - 5x + 6}$ Match the statement in Column I with the properties in Column II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix.

Column I	Column II
(A) If $-1 < x < 1$ then $f(x)$ satisfies	(p) $0 < f(x) < 1$
(B) If $1 < x < 2$ then $f(x)$ satisfies	(q) $f(x) < 0$
(C) If $3 < x < 5$ then $f(x)$ satisfies	(r) $f(x) > 0$
(D) If $x > 5$ then $f(x)$ satisfies	(s) $f(x) < 1$

107.	Consider	the	lines	give	by
L_1 : x	$+ \ 3y - 5 = 0, L_2 \colon 3x -$	ky - 1 = 0	$, L_3 : 5x$	+2y-12=0	
	ColumnI	5	Colu	ımn II	
(A)	L_1, L_2, L_3 are concurre	ent, if	(p)	k = -9	
(B)	One of L_1 , L_2 , L_3 is paralleast one of the other	rallel to at two, if	(q)	k = -6/3	
(C)	L_1, L_2, L_3 form a trian	gle, if	(r)	$k = \frac{5}{6}$	
(D)	L_1, L_2, L_3 do not form	a triangle, i	f (s)	<i>k</i> = 5	

Watch Video Solution

۰

108. Consider all possible permulations of letter of the word ENDEANOEL.

	Column I	Column II
(A)	The number of permutations containing the word ENDEA is	(p) 5!
(B)	The number of permutations in which the letter E occurs in the first and the last positions is	(q) 2 (5!)
(C)	The number of permutations in which none of the letters D, L, N occurs in the last five position	(r) 7 (5!)
(D)	The number of permutations in which the letters A, E, O occur only in odd positions is	(s) 21 (5!)

109.`

Column I

(p) 0

- (A) The minimum positive value of $\frac{x^2 + 2x + 4}{x + 2}$, $x \in R$ is
- (B) Let A and B be 3 × 3 matrices of (q) 1 real numbers, where A is symmetric, B is skew-symmetric and (A + B)(A - B) = (A - B)(A + B), If $(AB)^T = (-1)^K AB$, where $(AB)^T$ is the transpose of AB then the possible values of k are
- (C) Let $a = \log_3 \log_3 2$. An integer k (r) 2 satisfying $1 < 2^{-k+3^{-a}} < 2$, must he less than

(D) If
$$\sin \theta = \cos \phi$$
, then the possible (s) 3
values of $\frac{1}{\pi} \left(\theta \pm \phi - \frac{\pi}{2} \right)$ are

4 J

Watch Video Solution

110. Match the statements/expressions given in Column I with the values

given in Column II.`

Column I

Column II

) 11/2

- (A) Koot (s) of the equation (p) 7% $2\sin^2\theta + \sin^22\theta = 2$
- (B) Points of discontinuity of (q) 1/4

$$f(x) = \left[\frac{6x}{\pi}\right] \cos\left[\frac{3x}{\pi}\right], \text{ where}$$

$$[y] = \text{greatest integer less than}$$
or equal to y
(C) The volume of the parallelopiped (r) $\frac{\pi}{3}$
with edges represented by the
vectors $\vec{i} + \vec{j}, \vec{i} + 2\vec{j}$ and $\vec{i} + \vec{j} + \pi \vec{k}$ (s) $\frac{\pi}{2}$

The angle between vectors \vec{a} and (t) π (D) \vec{b} ; where \vec{a} , \vec{b} and \vec{c} are unit vectors satisfying $\vec{a} + \vec{b} + \sqrt{3} \vec{c} = \vec{0}$

Watch Video Solution

111. Match the statements/expressions given in Column I with the values given in Column II.`

Watch Video Solution

112. Match the statements/expressions given in Column I with the values given in Column II. `

Column I

Column II

 $\tan^{-1}(\sin x + \cos x)$ is increasing

Watch Video Solution

113. Match the statements/expressions given in Column I with the values given in Column II. `

Column I	Column II
(A) Circle	(p) The locus of the point (h, k) for which the line hx + ky = 1
	touches the circle $x^2 + y^2 = 4$
(B) Parabola	(q) Points z in the complex plane satisfying $ z+2 - z-2 = \pm 3$
	(r) Points of the conic have parametric representation $x = \sqrt{3} \left(\frac{1-t^2}{1+t^2} \right), y = \frac{2t}{1+t^2}$
(C) Ellipse	(s) The eccentricity of the conic lies in the interval 1 ≤ x < ∞
(D) Hyperbola	(t) Points z in the complex plane satisfying Re $(z + 1)^2 = z ^2 + 1$

Watch Video Solution

114. Match the statements/expressions given in Column I with the values given in Column II.'

Column I	Column II
(A) A line from the origin	(p) -4
meets the lines	
$\frac{x-2}{1} = \frac{y-1}{-2} = \frac{z+1}{1}$	
and $\frac{x-\frac{8}{3}}{2} = \frac{y+3}{-1} = \frac{z-1}{1}$	(q) 0
at P and Q respectively.	
If the length $PQ = d$ then	
d^2 is	
(B) The values of x satisfying	(r) 4
$\tan^{-1}(x+3) - \tan^{-1}(x-3)$	
$=\sin^{-2}\left(\frac{3}{5}\right)$ are	
(C) Nonzero vectors	(s) 5
\vec{a}, \vec{b} and \vec{c} satisfy	
$\vec{a} \cdot \vec{b} = 0, (\vec{b} - \vec{a}) \cdot (\vec{b} + \vec{c}) = 0$	
and $2 \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{b} - \overrightarrow{a}$.	
If $\vec{a} = \mu \vec{b} + 4\vec{c}$ then the	
possible values of μ are	
(D) Let f be the function	(t) 6
on $[-\pi, \pi]$ given by $f(0) = 9$	
and $f(x) = \frac{\sin\frac{9}{2}x}{\sin\frac{1}{2}x}$ for $x \neq 0$.	
~	

The value of
$$\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) dx$$
 is

115. Let (x, y, z) be points with integer coordinates satisfying the system of homogeneous equations3x-y-z 0-3x + z = 0-3x+2y + z = 0. Then find the number of such points for which $x + y + z \le 100$.

Watch Video Solution

116. Let ABCandABC' be two non-congruent triangles with sides $AB = 4, AC = AC' = 2\sqrt{2}$ and angle $B = 30^0$. The absolute value of the difference between the areas of these triangles is

Watch Video Solution

117. The centres of two circles C_1 and C_2 , each of unit radius are at a distance of 6 units from each other. Let P be the mid point of the line segment joining the centres of C_1 and C_2 , and C be a circle touching circles C_1 and C_2 externally. If a common tangent to C_1 and C passing through P is also a common tangent to C_2 and C. then the radius of the circle C is.

118. Let p(x) be a polynomial of degree 4 having extremum at x=1,2

and
$$\lim_{x o 0} \, \left(1 + rac{p(x)}{x^2}
ight) = 2.$$
 Then find the value of $p(2).$

Watch Video Solution

119. The maximum value of the function $f(x)=2x^3-15x^2+36x-48$

on the set $a = \left\{x \mid x^2 + 20 \leq 9x
ight\}$ is

Watch Video Solution

120. If the function $f(x) = x^3 + e^{x/2}$ and $g(x) = f^{-1}(x)$, then the value of g'(1) is

121. Let $f\colon R o R$ be a continous function which satisfies $f(x)=\int_0^x f(t)dt.$ Then , the value of $f(\ln 5)$ is _____.

Watch Video Solution

122. The smallest value of k for which both the roots of the equation $x^2-8kx+16ig(k^2-k+1ig)=0$ are real, distinct and have values at least 4, is.....

Watch Video Solution

123. Let w be the complex number $\frac{\cos(2\pi)}{3} + \frac{\sin(2\pi)}{3}$. Then the number of distinct complex numbers z satisfying $\begin{vmatrix} z+1 & w & w^2 \\ 2 & z+w^2 & 1 \\ w^2 & 1 & z+w \end{vmatrix} = 0$ is

equal

124. Let $s_k, k = 1, 2, 3, ..., 100$ denote the sum of the infinite geometric series whose first term is $\frac{k-1}{\lfloor_k}$ and the common ratio is $\frac{1}{k}$. Then, the

value of

$$\frac{100^2}{100} + \sum_{k=2}^{100} |(k^2 - 3k + 1)S_k|$$
 is

Watch Video Solution

125. The number of all possible values of heta, where $0 < heta < \pi$, for which

the system of equations $(y+z)\cos 3\theta = (xyz)\sin 3\theta, x \sin 3\theta = \frac{2\cos 3\theta}{y} + \frac{2\sin 3\theta}{z}$ and $(xyz)\sin 3\theta$ have a solution (x_0, y_0, z_0) with $y_0 z_0 \neq 0$ is

Watch Video Solution

126. The number of values of θ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{n\pi}{5}$ for $n = 0, \pm 1, \pm 2$ and $\tan \theta = \cot 5\theta$ as well as $\sin 2\theta = \cos 4\theta$

128. The line 2x + y = 1 is tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola is

Watch Video Solution

129. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are vectors in space given by $\overrightarrow{a} = \frac{\hat{i} - 2\overrightarrow{j}}{\sqrt{5}}$ and $\overrightarrow{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$ then the value of $\left(2\overrightarrow{a} + \overrightarrow{b}\right)$ is

131. Let f be a real-valued differentiable function on R (the set of all real numbers) such that f(1) = 1. If the $y - \in tercept$ of the tangent at any point P(x, y) on the curve y = f(x) is equal to the cube of the abscissa of P, then the value of f(-3) is equal to _____

Watch Video Solution

132. For any real number x, let [x] = largest integer less than or equalto x.

Let f be a real valued function defined on the interval [-10, 10] by

$$f(x) = \begin{cases} x - [x] & \text{if}[x] \text{ is odd} \\ 1 + [x] - x & \text{if}[x] \text{ is even} \end{cases}$$

Then, the

value of
$$\left(rac{\pi}{10}
ight)^2 \left(\int_{-10}^{10} f(x) \cos \pi x dx$$
 is

133. Le a_1, a_2, a_3, a_{11} be real numbers satisfying $a_2 = 15, 27 - 2a_2 > 0$ and $a_k = 2a_{k-1} - a_{k-2}$ for k = 3, 4, 11. If $\frac{a12 + a22 + ... + a112}{11} = 90$, then the value of $\frac{a1 + a2 + a11}{11}$ is equals to _____.

Watch Video Solution

134. Two parallel chords of a circle of radius 2 are at a distance $\sqrt{3} + 1$ apart. If the chords subtend at the centre, Angles of $\frac{\pi}{k}$ and $2\frac{\pi}{k}$, where k > 0 then the value of [k] is :

135. Consider a triangle ABC and let a, b, and c denote the lengths of the sides opposite to vertices A, B and C respectively. suppose a = 6, b = 10

and the area of the triangle is $15\sqrt{3}$. If $\angle ACB$ is obtuse and if r denotes the radius of the in circle of the triangle , then r^2 is equal to

Watch Video Solution

136. Let K be a positive real number and $A = [2k - 12\sqrt{k}2\sqrt{k}1 - 2k - 2\sqrt{k}2k - 1]andB = [02k - 1\sqrt{k}1 - 2k]$. If det $(adjA) + det(adjB) = 10^6$, then[k] is equal to. [Note: adjM denotes the adjoint of a square matix M and [k] denotes the largest integer less than or equal to K].

Watch Video Solution

137. Let f be a function defined on R (the set of all real numbers) such that $f'(x) = 2010(x - 2009)(x - 2010)^2(x - 2011)^3(x - 2012)^4$, for all $x \in R$. If g is a function defined on R with values in the interval $(0, \infty)$ such that $f(x) = \ln(g(x))$, for all $x \in R$, then the number of point is R at which g has a local maximum is ____

