©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - BHARATI BHAWAN MATHS (HINGLISH)

Some New Pattern Problems

Example

1. In the parabola $y^{2}=4 x$, the ends of the double ordinate through the focus are P and Q. Let O be the vertex. Then the length of the double ordinate PQ is

- Watch Video Solution

2. Find the equation of tangent to the curve $x=a(\theta+\sin \theta)$, $y=a(1-\cos \theta)$ at the point θ
A. $s=4 a \tan \psi$
B. $s=a \cos \psi$
C. $s=a \psi$
D. $s=4 a \sin \psi$

Answer:

- Watch Video Solution

3. Let $A B C D$ be a square of side length 2 units. $C 2$ is the circle through vertices A, B, C, D and $C 1$ is the circle touching all the sides of the square $A B C D$. L is a line through A. 27. If P is a point on $C 1$ and Q in another point on C2, then 22222222 PA PB PC PD QA QB QC QD +++ +++ is equal to (A) 0.75 (B) 1.25 (C) 1 (D) 0.5
A. $\frac{3}{4}$
B. $\frac{5}{4}$
C. 1
D. $\frac{1}{2}$

Answer:

- Watch Video Solution

4. A circle touches the line L and the circle C_{1} externally such that both the circles are on the same side of the line, then the locus of centre of the circle is :
A. part of a straight line
B. parabola
C. ellipse
D. hyperbola

Answer:

- Watch Video Solution

5. Let ABCD be a square of side length 2 units. C_{2} is the circle through vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and C_{1} is the circle touching all the sides of the square $A B C D . L$ is a line through A

A line M through A is drawn parallel to $B D$. Point S moves such that its distances from the line $B D$ and the vertex A are equal. If locus of S cuts. M at T_{2} and T_{3} and AC at T_{1}, then area of $\Delta T_{1} T_{2} T_{3}$ is
A. $\frac{1}{2}$
B. $\frac{2}{3}$
C. 1
D. 2

Answer:

- Watch Video Solution

6. Suppose four distinct positive numbers $a_{1}, a_{2}, a_{3}, a_{4}$ are in G.P. Let $b_{1}=a_{1}, b_{2}=b_{1}+a_{2}, b_{3}=b_{2}+a_{3}$ and $b_{4}=b_{3}+a_{4}$.

Statement -1: The numbers b_{1}, b_{2}, b_{4} are neither in A.P. nor in G.P. and Statement -2: The numbers $b_{1}, b_{2}, b_{3}, b_{4}$ are in H.P.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement- 1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

- Watch Video Solution

7. Statement-1: The curve $y=\frac{-x^{2}}{2}+x+1 \mathrm{~s}$ symmetric with respect to the line $x=1$.

Statement -2: A parabola is symmetric about its axis.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

D Watch Video Solution

Exercise

1. The envelope of the family of straight lines whose sum of intercepts on the axes is 4 is

- Watch Video Solution

2. The envelope of the family of tangents to the curve $y^{2}=x$ is
A. $x+y^{2}=0$
B. $x^{2}=y$
C. $x^{2}+y=0$
D. $y^{2}-x=0$

Answer: D

- Watch Video Solution

3. The evolute of the curve $x^{2}=4 y$ is

- Watch Video Solution

4. The area bounded by the curve $y=f(x)$ and the lines $x=0, y=0$ and $x=t$, lies in the interval
A. $\left.\frac{\frac{d^{2}}{d x^{2}}}{\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{\frac{3}{2}}}\right)$
B. $\left(\frac{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}}{d^{2} \frac{y}{d x^{2}}}\right)$
C. $\left.\frac{\left(\left\{1+\left(\frac{d y}{d x}\right)^{2}\right)\right\}^{\frac{3}{2}}}{d^{2} \frac{y}{d x^{2}}}\right)$
D. $\left(\left(d^{\wedge} 2 y / d x^{\wedge} 2\right) / s q r t\left(1+(d y / d x)^{\wedge} 2\right)^{\wedge}\right.$

Answer:

- Watch Video Solution

5. The radius of curvature of the curve $y^{2}=4 x$ at the point $(1,2)$ is
A. $4 \sqrt{2}$
B. $2 \sqrt{2}$
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{2}$

Answer: A

- Watch Video Solution

6. If e_{1} is the eccentricity of the conic $9 x^{2}+4 y^{2}=36$ and e_{2} is the eccentricity of the conic $9 x^{2}-4 y^{2}=36$ then $e 12-e 22=2 \mathrm{~b}$. $e 22-e 12=2$ c. $2<322-312<3$ d. $e 22-e 12>3$
A. $(0,2)$
B. $(2,0)$
C. $(0,3)$
D. $\left(\sqrt{3},\left(\frac{3}{2}\right)\right.$

Answer:

- Watch Video Solution

7. $\int_{-\pi / 2}^{\pi / 2} \sin |x| d x$ is equal to
A. $\left(\frac{\pi}{8}\right)(1+\sqrt{2})$
B. $\left(\frac{\pi}{4}\right)(1+\sqrt{2})$
C. $\frac{\pi}{8 \sqrt{2}}$
D. $\frac{\pi}{4 \sqrt{2}}$

Answer:

- Watch Video Solution

8. $\int \frac{\sin \left(\frac{1}{x}\right) \cos ^{3}\left(\frac{1}{x}\right)}{x^{2}} d x$ is equal to

- Watch Video Solution

9. If $f^{\prime \prime}(x)<0 \forall x \in(a, b)$ and $(c, f(c))$ is a point lying on the curve $y=f(x)$, where $a<c<b$ and for that value of $c, f(c)$ has a maximum then $f^{\prime}(c)$ equals
A. $\left.\frac{f(b)-f(a)}{b}-a\right)$
B. $\frac{2}{b-a}\{f(b)-f(a)\}$
C. $2 f(b)-\frac{f(a)}{2} b-a$
D. 0

Answer: D

- Watch Video Solution

10. The family of parabolas with a common vertex at the origin whose foci are on the x-axis and the directrices are parallel to the y-axis can have the equation (a being a parameter)
A. $y^{2}=3 a x$
B. $x^{2}=4 a y$
C. $y^{2}=4 a(x+2)$
D. $(y)^{2}=4 a x$

Answer: D

- Watch Video Solution

11. The orthogonal trajectory of the family of parabolas $y^{2}=4 a x$ is
A. $x^{2}+y^{2}=c^{2}$
B. $x^{2}+2 y^{2}=c^{2}$
C. $2 x^{2}+y^{2}=c$
D. $y^{2}-x^{2}==c^{2}$

Answer: C

Watch Video Solution

12. The curve passing through the point $(1,2)$ that cuts each member of the family of parabolas $y^{2}=4 a x$ orthogonally is
A. $2 x^{2}+y^{2}=6$
B. $x^{2}+y^{2}=5$
C. $x^{2}+2 y^{2}=9$
D. $y^{2}-x^{2}=3$

Answer: A

- Watch Video Solution

13. The general solution of the equation $\left(\frac{d^{3} y}{d x^{3}}\right)-7\left(\frac{d^{2} y}{d x^{2}}\right)+16 \frac{d y}{d x}-12 y=0$
A. $c_{1} e^{2 x}+c_{2} e^{-2 x}+c_{3} e^{-3 x}$
B. $\left(c_{1}+c_{2} x\right) e^{2 x}+c_{3} e^{3 x}$
C. $\left(c_{1} x+c_{2}\right) e^{-3 x}+c_{3} e^{2 x}$
D. $(A \cos x+B \sin x) e^{2 x}+c_{3} e^{3 x}$
14. Find the differential equation for which the following value of y is the general solution: $y=\left(c_{1} \cos x+c_{2} \sin x\right) e^{-x}+c_{3} e^{x}$

Watch Video Solution

15. The general solution of the equation $\frac{d^{3} y}{d x^{3}}+y=0$ is

- Watch Video Solution

16. The value of $|U|$ where $U=\left[\begin{array}{lll}2 & 3 & 4 \\ 3 & 4 & 5 \\ 4 & 5 & 6\end{array}\right]$
A. 3
B. -3
C. 0
D. 2

Answer: C

- Watch Video Solution

17. show that matrix $A=\left[\begin{array}{ll}3 & 4 \\ 1 & 2\end{array}\right]$ satisfies the equation $A^{2}-5 A+2 I=0$

- Watch Video Solution

18. The sum of the elements of the product $[3,2,0]$ and $\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right]$ is

- Watch Video Solution

19. The rank of matrix $\left[\begin{array}{ccc}x & -1 & 0 \\ 0 & x & -1 \\ -1 & 0 & x\end{array}\right]$ is 2 then value of x is:
A. 3
B. 2
C. 1
D. none of these

Answer: C

- Watch Video Solution

20. One of the eigenvalues of A is where $A=\left[\begin{array}{ll}2 & 5 \\ 7 & 4\end{array}\right]$
A. 1
B. 2
C. -3
D. 3

Answer: C
21. The denary number 43125 in the scale of 6 will be represented by
A. 353135
B. 531353
C. 515313
D. 55453

Answer: B

D Watch Video Solution

22. The sum of the numbers 2053 and 412 in the scale of seven is

- Watch Video Solution

23. The product of the numbers 5623 and 6 in the scale of eight is
A. 41672
B. 33738
C. 42562
D. 45262

Answer: C

- Watch Video Solution

24. Which of thefollowing is true?
A. $4=7(\bmod 5)$
B. $118=18(\bmod 5)$
C. $110=93(\bmod 12)$
D. $63=9(\bmod 11)$

Answer: B

25. Let $a=b(\bmod n), a^{\prime}=b^{\prime}(\bmod n)$ and ${ }^{\mathrm{d}}, \mathrm{m}$ in N . Then which of the following need not be true?
A. $a+a^{\prime}=b+b^{\prime}(\bmod n)$
B. $a a^{\prime}=\mathrm{bb} \mathrm{b}^{\prime}(\bmod \mathrm{n})^{\prime}$
C. $a^{m}=b^{m}(\bmod n)$
D. $\left(\frac{a}{d}\right) \equiv\left(\frac{b}{d}\right)(\bmod n)$

Answer: B

- Watch Video Solution

26. If $5 x=3(\bmod 7)$ then find x

- Watch Video Solution

27. The value of λ for which the equation $\lambda^{2}-4 \lambda+3+\left(\lambda^{2}+\lambda-2\right) x+6 x^{2}-5 x^{3}=0$ will have two roots equal to zero is

- Watch Video Solution

28. The value of (λ, μ) for which $(\lambda-\mu) x^{3}-(\lambda-2) x^{2}-3 x+7=0$ will have two infinite roots is
A. $(0,0)$
B. $(2,2)$
C. $(1,1)$
D. $(2,0)$

Answer: B

- Watch Video Solution

29. The combined equation of asymptotes to the hyperbola $x^{2}+4 x y+3 y^{2}+4 x-3 y+1=0$ are
30. $17^{22}-1$ is a multiple of
A. 16
B. 44
C. 46
D. 27

Answer: A

- Watch Video Solution

31. The highest power of 7 which divides 1000 ! is
A. 164
B. 162
C. 167
D. 142

Answer: A

- Watch Video Solution

32. The equation of conjugate hyperbola of $\frac{x^{2}}{8}-3 \frac{y^{2}}{8}=1$
A. $x^{2}-3 y^{2}-2 x+8=0$
B. $3 x^{2}-y^{-2}-2 y-8=0$
C. $x^{2}-3 y^{2}-2 x+10=0$
D. $x^{2}-3 y^{2}=-8$

Answer: D

33. The parabola circumscribing $\triangle A B C$ and passing through the point $(4,4)$ has the focus
A. $(0,1)$
B. $(4,0)$
C. $(1,0)$
D. $(0,4)$

Answer: C

- Watch Video Solution

34. The parabola circumscribing $\triangle A B C\{(0,0),(4,4),(4,-4)\}$ and passing through the point $(4,4)$ has the latus rectum
A. 4
B. 1
C. 16
D. 8

Answer: A

- Watch Video Solution

35. If $A=\left(2,\left(3 \frac{\sqrt{3}}{2}\right)\right)$ then coordinates of C taken mirror image along $x=0$ is
A. $\left(-2, \frac{3 \sqrt{3}}{2}\right)$
B. $\left(-2-\sqrt{6}, \frac{3 \sqrt{3}+1}{2 \sqrt{2}}\right)$
C. $\left(-2 \sqrt{3}, \frac{3}{2}\right)$
D. $(0,3)$

Answer: A

36. If the equation of the diameter AB is $x=y$ then the equation of the conjugate diameter CD will be
A. $9 x+16 y=0$
B. $x+y=0$
C. $16 x+9 y=0$
D. $9 x+16 y=7$

Answer: B

- Watch Video Solution

37. The equations of the line $Q R$ are where $Q(3,6,3), R(18,43,13)$
A. $\frac{x-12}{15}=\frac{y-22}{37}=\frac{z-4}{10}$
В. $\frac{x-3}{3}=\frac{y-15}{7}=\frac{z-6}{2}$
C. $\frac{x-3}{15}=\frac{y-6}{37}=\frac{z-3}{10}$
D. $\frac{x+3}{3}=\frac{y+6}{7}=\frac{z+3}{3}$

- Watch Video Solution

38. The distance of the centre of the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y=0$ from the origin is
A. 5
B. $\sqrt{5}$
C. $2 \sqrt{5}$
D. $\frac{5}{2}$

Answer: B

- Watch Video Solution

39. The radius of the circle of intersection of the sphere $x^{2}+y^{2}+z^{2}=9$ by the plane $3 x+4 y+5 z=5$ is
A. $\sqrt{\frac{17}{2}}$
B. 3
C. $\sqrt{34}$
D. $\frac{1}{\sqrt{2}}$

Answer: A

- Watch Video Solution

40. The area of the sphere $x^{2}+y^{2}+z^{2}=25$ is
A. 75π
B. 50π
C. 100π
D. 25π

Answer: C

41. If $\left.P\left(u_{i}\right)\right) \infty i$, where $i=1,2,3, \ldots, n$ then $\lim _{n \rightarrow w} P(w)$ is equal to
A. $\frac{2}{3}$
B. $\frac{3}{4}$
C. $\frac{1}{4}$
D. 1

Answer: A

- Watch Video Solution

42. There are n urns each containing $(n+1)$ balls such that the $i^{t h}$ urn contains i white balls and $(n+1-i)$ red balls. Let u_{i} be the event of selecting $i^{\text {th }}$ urn, $i=1,2,3, \ldots, n$ and w denotes the event of getting a white balls. If $P\left(u_{i}\right)=c$ where c is a constant, then $P\left(\frac{u_{n}}{w}\right)$ is equal
A. $\frac{1}{n+1}$
B. $\frac{2}{n+1}$
C. $\frac{n}{n+1}$
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

43. The set of values of $p \in R$ for which $x^{2}+p x+\frac{1}{4}(p+2) \geq 0$ for all $x \in R$ is

- Watch Video Solution

44. The set of values of $p \in R$ for which the equation
$x^{2}+p x+\frac{1}{4}(p+2)=0$ will have real roots is
A. $[2,+\infty)$
B. $(-\infty, 2]$
C. $(-\infty,-1]$
D. $R-(-1,2)$

Answer: D

- Watch Video Solution

45. If p is chosen at random from the interval $[0,6]$ then the probability that the roots of the equation $x^{2}+p x+\frac{1}{4}(p+2)=0$ will be real is
A. $\frac{3}{5}$
B. $\frac{1}{2}$
C. $\frac{5}{7}$
D. $\frac{2}{3}$

Answer: C

- Watch Video Solution

46. A bag contain 2 white balls and 1 red balls. The experiment is done 10 times. The probability that a white ball is drawn exactly 5 times is
A. $\frac{10!}{5!5!}\left(\frac{2}{3}\right)^{5}\left(\frac{1}{3}\right)^{5}$
B. $\frac{10!}{5!5!}\left(\frac{1}{3}\right)^{5}$
C. $\frac{10!}{(5!)^{2}}\left(\frac{2}{9}\right)^{5}$
D. $\frac{10!}{5!}\left(\frac{2}{9}\right)^{5}$

Answer: A

- Watch Video Solution

47. A bag contain 2 white balls and 1 red balls. The experiment is done 10 times. The probability that a white ball is drawn exactly 5 times is
A. 7
B. 9
C. 8
D. 5

Answer:

- Watch Video Solution

48. If $n^{2}+2 n-8$ is a prime number where $n \in N$ then n is
A. 0
B. 1
C. 2
D. ∞

Answer:

- Watch Video Solution

49. If z is a complex number, then $|3 z-1|=3|z-2|$ represents
A. 25 and 29
B. 30 and 34
C. 35 and 39
D. 40 and 44

Answer:

- Watch Video Solution

50. In Q.no. 88, if z be any point in $A \frown B \frown C$ and ω be any point satisfying $|\omega-2-i|<3$. Then, $|z|-|\omega|+3$ lies between
A. -6 and 3
B. -3 and 6
C. -6 and 6
D. -3 and 9

Answer:

51. Which of the following is true?
A. $\left(\frac{2}{=} a\right)^{2} \cdot f(1)+(2-a)^{2} \cdot f^{\prime \prime}(-1)=0$
B. $\left(\frac{2}{=} a\right)^{2} \cdot f(1)+(2+a)^{2} f^{\prime \prime}(-1)=0$
C. $f^{\wedge}(1) f^{\wedge}(-1)=(2-a)^{\wedge} 2^{\prime}$
D. $f^{\wedge}(1) f^{\wedge}(-1)=-(2+a)^{\wedge} 2^{\prime}$

Answer:

- Watch Video Solution

52. Which of the following is true?
A. $f(x)$ is decreasing in $(-1,1)$ and has a local maximum at $x=1$
B. $f(x)$ is increasing in $(-1,1)$ and has a local maximum at $\mathrm{x}=1$
C. $f(x)$ is increasing in $(-1,1)$ but has neither a local maximum nor a local minimum at $x=1$
D. $f(x)$ is decreasing in $(-1,1)$ but has neither a local maximum nor a local minimum at $x=1$

Answer:

- Watch Video Solution

53. Consider the function $\mathrm{f}:(-\infty, \infty) \rightarrow(-\infty, \infty)$ defined by $f(x)=$ $\frac{x^{2}-a x+1}{x^{2}+a x+1}, 0<a<2$
Let $g(x)=\int_{0}^{e^{x}} \frac{f^{\prime}(t)}{1+t^{2}} \mathrm{dt}$
Which of the following is true?
A. $g^{\prime}(x)$ is positive on $(-\infty, 0)$ and negative on $(0, \infty)$
B. $g^{\prime}(x)$ is negative on $(-\infty, 0)$ and positive on $(0, \infty)$
C. $g^{\prime}(x)$ is changes sign on both $(-\infty, 0)$ and $(0, \infty)$
D. $g^{\prime}(x)$ does not change sign on $(-\infty, 0)$

Answer:

- Watch Video Solution

54. Consider the line
$L 1=\frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$
$L 2=\frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$
The shortest distance between L_{1} and L_{2} is
A. $\frac{1}{\sqrt{99}}(\overrightarrow{-} I+7 \vec{j}+7 \vec{k})$
B. $\frac{1}{5 \sqrt{3}}(\overrightarrow{-} I-7 \vec{j}+5 \vec{k})$
C. $\frac{1}{5}(\sqrt{3})(\overrightarrow{-} I+7 \vec{j}+5 \vec{k})$
D. $\frac{1}{\sqrt{99}}(7 \vec{i}-7 \vec{j}-\vec{k})$

Answer:

55. Consider the line
$L 1=\frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$
$L 2=\frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$
The shortest distance between L_{1} and L_{2} is
A. 0
B. $\frac{17}{\sqrt{3}}$
C. $\frac{41}{5} \sqrt{3}$
D. $\frac{17}{5 \sqrt{3}}$

Answer: D

- Watch Video Solution

56. cosider the lines,
$L 1=\frac{x+1}{3}=\frac{y+2}{1}=\frac{z+2}{2}$
$L 2=\frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$
The distance of the point $(1,1,1)$ from the plane passing through the
point $(-1,-2,-1)$ and whose normal is perpendicular to both the lines L_{1} and L_{2} is
A. $\frac{2}{\sqrt{75}}$
B. $\frac{7}{\sqrt{75}}$
C. $\frac{13}{\sqrt{75}}$
D. $\frac{23}{\sqrt{75}}$

Answer: C

- Watch Video Solution

57. Consider the function defined implicitly by the equation $y^{3}-3 y+x=0$ on various intervals in the real line. If $x \in(-\infty,-2) \cup(2, \infty)$, the equation implicitly defines a unique realvalued defferentiable function $y=f(x)$. If $x \in(-2,2)$, the equation implicitly defines a unique real-valud diferentiable function $y-g(x)$ satisfying $g_{0}=0$.

If $f(-10 \sqrt{2})=2 \sqrt{2}$, then $f(-10 \sqrt{2})$ is equal to
A. $4 \frac{\sqrt{2}}{7^{3}} \cdot 3^{2}$
B. $4 \frac{\sqrt{2}}{7^{3}} \cdot 3^{3}$
C. $4 \frac{\sqrt{2}}{7^{3}} \cdot 3$
D. $-4 \frac{\sqrt{2}}{7^{3}} \cdot 3$

Answer:

- Watch Video Solution

58. The area of the region bounded by the curve $y=f(x), \mathrm{x}$-axis, and the lines $x=a$ and $x=b$ where $-\infty<a<b<-2$ is
A.

$$
\int_{a}^{b} \frac{x}{3\left\{(f(x))^{2}-1\right\}} d x+b f(b)-a f(a)
$$

B.

$$
\int_{a}^{b} \frac{x}{3\left\{(f(x))^{2}-1\right\}} d x+b f(b)-a f(a)
$$

C.

$$
\int_{a}^{b} \frac{x}{3\left\{(f(x))^{2}-1\right\}} d x-b f(b)+a f(a)
$$

D.

$$
\int_{a}^{b} \frac{x}{3\left\{(f(x))^{2}-1\right\}} d x-b f(b)+a f(a)
$$

Answer: A

- Watch Video Solution

59. $\int_{-1}^{1} g^{\prime}(x) d x=$
A. $2 g(-1)$
B. $g(1)-g(-1)$
C. $-2 g(1)$
D. $2 g(1)$

Answer: B

60. The equation of the circle C with center at $(\sqrt{3}, 1)$ is
A. $(x-2 \sqrt{3})^{2}+(y-1)^{2}=1$
B. $(x-2 \sqrt{3})^{2}+\left(y+\frac{1}{2}\right)^{2}=1$
C. $(x-\sqrt{3})^{2}+(y+1)^{2}=1$
D. $(x-\sqrt{3})^{2}+(y-1)^{2}=1$

Answer: D

- Watch Video Solution

61. The number of $2 x 2$ matrices A such that all entries are either 1 or 0 is
A. 12
B. 6
C. 9
D. 16

Answer: D

- Watch Video Solution

62. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or 1 . Five of these entries are 1 and four of them are 0.

The number of matrices A in A for which the system of linear equations
$A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
has a unique solution is
A. less than 4
B. atleast 4 but less than 7
C. atleast 7 but less than 10
D. at least 10
63. Let A be the set of all 3×3 symmetric matrices all of whose either 0 or 1 . Five of these entries are 1 and four of them are 0 .

The number of matrices A in A for which the system of linear equations
$A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
is inconsistent is
A. 0
B. more than 2
C. 2
D. 1

Answer:

- Watch Video Solution

64. A fair die is tossed repeatedly until a 6 is obtained. Let X denote the number of tosses required.

The probability that $X=3$ equals
A. $\frac{25}{216}$
B. $\frac{25}{36}$
C. $\frac{5}{36}$
D. $\frac{125}{216}$

Answer:

- Watch Video Solution

65. A fair die is tossed repeated until a six is obtained. Let X denote the number of tosses required.

The probability that $X \geq 3$ is
A. $\frac{125}{216}$
B. $\frac{25}{216}$
C. $\frac{5}{36}$
D. $\frac{25}{36}$

Answer:

- Watch Video Solution

66. A fair die is tossed repeatedly until a six obtained. Let X denote the number of tosses required.

The conditional probability that $X \geq 6$ given $X>3$ equals
A. $\frac{125}{216}$
B. $\frac{25}{216}$
C. $\frac{5}{36}$
D. $\frac{25}{36}$

Answer:

67. Equation of the common tangent to the circle $x^{2}+y^{2}=50$ and the parabola $y^{2}=40 x$ can be
A. $2 x-\sqrt{5} y-20=$
B. $2 x-\sqrt{5} y+4=$
C. $x^{2}+y^{2}+24 x-12=0$
D. $x^{2}+y^{2}-24 x-12=0$

Answer:

- Watch Video Solution

68. If the events A and B are mutually exclusive events such that $P(A)=$ $\frac{3 x+1}{3}$ and $\mathrm{P}(\mathrm{B})=\frac{1-x}{4}$, then the set of possible real values of x lies in the interval
A. $\left(-\frac{1}{4}, \frac{1}{4}\right)$
B. $\left(11,-\frac{3}{4}\right)$
C. $\left(-\frac{3}{4},-\frac{1}{2}\right)$
D. $\left(0, \frac{1}{4}\right)$

Answer:

- Watch Video Solution

69. Let s be the sum of all distinct real roots of $\mathrm{f}(\mathrm{x})$ and let $t=\bmod (s)$ The area bounded by the curve $y=f(x)$ and the lines $x=0, y=0$ and $x=t$, lies in the interval
A. $\left(\frac{3}{4}, 3\right)$
B. $\left(\frac{21}{64}, 11,16\right)$
C. $(9,10)$
D. $\left(0, \frac{21}{64}\right)$

- Watch Video Solution

70. Tangents are drawn from the point $P(3,4)$ to be the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ touching the ellipse at A and B. Then the coordinates of A and B are.
A. $(3,0)$ and $(0,2)$
B. $\left(-\frac{8}{5}, 2 \frac{\sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
C. $\left(-\frac{8}{5}, 2 \frac{\sqrt{161}}{15}\right)$ and $(0,2)$
D. $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$

Answer: D

- Watch Video Solution

71. The tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ touching the ellipse at points A and B. The orthocenter of the triangle PAB is
A. $\left(5, \frac{8}{7}\right)$
B. $\left(\frac{7}{5}, \frac{25}{8}\right)$
C. $\left(\frac{11}{5}, \frac{8}{5}\right)$
D. $\left(\frac{8}{25}, \frac{7}{5}\right)$

Answer: C

- Watch Video Solution

72. Tangents are drawn from the point $\mathrm{P}(3,4)$ to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ touching the ellipse at the point A and B then the equation of the locus of the point whose distances from the point P and the line $A B$ are equal, is
A. $9 x^{2}+y^{2}-6 x y-54 x-62 y+241=0$
B. $x^{2}+9 y^{2}+6 x y-54 x+62 y-241=0$
C. $9 x^{2}+9 y^{2}-6 x y-54 x-62 y-241=0$
D. $x^{2}+y^{2}-2 x y+27 x+31 y-120=0$

Answer: A

- Watch Video Solution

73. Match the following (more than one may match with the same).
(A) $\int_{0}^{\pi / 2}(\sin x)^{\cos x} \cdot\left\{\cos x \cot x-\log (\sin x)^{\sin x}\right\} d x$ (p) 1
(B) Area bounded by $-4 y^{2}=x$ and
$x-1=-5 y^{2}$
(C) Cosine of the angle of intersection (r) $6 \log 2$
of curves $y=3^{x-1} \log x$ and $y=x^{x}-1$ is
(D) $\lim _{x \rightarrow \infty} \frac{\left(\int_{0}^{x} e^{x^{2}} d x\right)^{2}}{\int^{x} e^{2}}$ is equal to

$$
\int_{0}^{x} e^{2 x^{2}} d x
$$

(s) $\frac{4}{3}$
74. Match the following (more than one may match with the same).

Normals are drawn at points P, Q and R lying on the parabola $y^{2}=4 x$ and they intersect at $(3,0)$. Then,
(A) Area of $\triangle P Q R$
(p) 2
(B) Circumradius of $\triangle P Q R$
(q) $\frac{5}{2}$
(C) Centroid of $\triangle P Q R$
(r) $\left(\frac{5}{2}, 0\right)$
(D) Circumcentre of $\triangle P Q R$
(s) $\left(\frac{2}{3}, 0\right)$

- Watch Video Solution

75. Let $a a n d b$ be the roots of the equation $x^{2}-10 c x-11 d=0$ and those of $x^{2}-10 a x-11 b=0 a r e c, \cdot$ then find the value of $a+b+c+\ddot{w} h e n a \neq b \neq c \neq$.
A.
B.
C.
D.

Answer:

D Watch Video Solution

76. Complete the following statements.

If $a_{m}=\frac{3}{4}-\left(\frac{3}{4}\right)^{2}+\left(\frac{3}{4}\right)^{3}-\ldots+(-1)^{n-1} \cdot\left(\frac{3}{4}\right)^{n}$
and
$b_{n}=1-a_{n}$ then the smallest natural number n_{0}, such that
$b_{n}>a_{n} V n t n>n_{0}$ is

(Watch Video Solution

77. If $f(x)$ is a twice differentiable function such that $f(a)=0, f(b)=2$, $f(c)=-1, f(d)=2, f(e)=0$ where $a<b<c<d e$, then the minimum number of zeroes of $g(x)=f^{\prime}(x)^{2}+f^{\prime \prime}(x) f(x)$ in the interval [a, e] is

- Watch Video Solution

78. Consider the planes $3 x-6 y-2 z=15 a n d 2 x+y-2 z=5$.

Statement 1:The parametric equations of the line intersection of the given planes are $x=3+14 t, y=2 t, z=15 t$. Statement 2: The vector $14 \hat{i}+2 \hat{j}+15 \hat{k}$ is parallel to the line of intersection of the given planes.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

- Watch Video Solution

79. Let the vectors $\overrightarrow{P Q}, \overrightarrow{Q R}, \overrightarrow{R S}, \overrightarrow{S T}, \overrightarrow{T U}$ and $\overrightarrow{U P}$ represent the sides of a regular hexagon.

Statement $\mathrm{t} \overrightarrow{P Q} \times(\overrightarrow{R S}+\overrightarrow{S T}) \neq \overrightarrow{0}$
Statement II: $\overrightarrow{P Q} \times \overrightarrow{R S}=\overrightarrow{0}$ and $\overrightarrow{P Q} \times \overrightarrow{R S}=\overrightarrow{0}$ and $\overrightarrow{P Q} \times \overrightarrow{S T} \neq \overrightarrow{0}$
For the following question, choose the correct answer from the codes (A),
(B) , (C) and (D) defined as follows:
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

80. Tangents are drawn from the point $(17,7)$ to the circle $x^{2}+y^{2}=169$, Statement I The tangents are mutually perpendicular Statement, Ils The locus of the points frorn which mutually perpendicular tangents can be drawn to the given circle is $x^{2}+y^{2}=338$ (a) Statement I is correct, Statement II is correct; Statement II is a correct explanation for Statement (b(Statement I is correct, Statement I| is correct Statement II is not a correct explanation for Statementl (c)Statement I is correct, Statement II is incorrect (d) Statement I is incorrect, Statement II is correct
A. Statement- 1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

81. The lines $L_{1}: y-x=0$ and $L_{2}: 2 x+y=0$ intersect the line $L_{3}: y+2=0$ at P and Q respectively. The bisectors of the acute angle between L_{1} and L_{2} intersect L_{3} at R .

Statement 1 : The ratio PR : RQ equals $2 \sqrt{2}: \sqrt{5}$
Statement - 2 : In any triangle, bisector of an angle divides the triangle into two similar triangles .
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

82. Let C be the locus of a point the sum of whose distances from the points $S(\sqrt{3}, 0)$ and $S^{\prime}(-\sqrt{3}, 0)$ is 4 .

Statement-1: The curve C cuts off intercept $2 \sqrt{3}$ from the line $2 \mathrm{y}-1=0$ Statement-2: The equation of the centre C is $x^{2}+8 y^{2}=5$
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

- Watch Video Solution

83. Let $\mathrm{F}(\mathrm{x})$ be an indefinite integral of $\sin ^{2} x$

Statement I The function $\mathrm{F}(\mathrm{x})$ satisfies $F(x+\pi)=F(x)$ for all real x .

Because

Statement II $\sin ^{2}(x+\pi)=\sin ^{2} x$, for all real x .
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

- Watch Video Solution

84. let $f(x)=2+\cos x$ for all real x Statement 1 : For each real t , there exists a pointc in $[t, t+\pi]$ such that $f^{\prime}(c)=0$ Because statement 2: $f(t)=f(t+2 \pi)$ for each real t
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

- Watch Video Solution

85. Assertion- Reason Type Question:

STATEMENT -1: $1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 n-1)>n^{n}, n \in N$ because

STATEMENT -2: the sum of the first n natural numbers is equal to n^{2}.
A. Statement- 1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is False

Answer: D

- Watch Video Solution

86. Let $(1+x)^{36}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{36} x^{36}$. Then

Statememt-1: $a_{0}+a_{3}+a_{6}+\ldots+a_{36}=\frac{2}{3}\left(2^{36}+1\right)$
Statement-2: $a_{0}+a_{2}+a_{4}+\ldots+a_{36}=2^{35}$
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement- 1 is True, Statement-2 is False
D. Statement- 1 is False, Statement- 2 is True

Answer:

- Watch Video Solution

$$
(5050) \int_{0}^{1}\left(1-x^{50}\right)^{100} d x
$$

87. The vlaue of

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement- 1 is False, Statement- 2 is True

Answer:

- Watch Video Solution

88. In ! $A B C$ it is given that $\mathrm{a}: \mathrm{b}: \mathrm{c}=\cos \mathrm{A}: \cos \mathrm{B}: \cos \mathrm{C}$

Statement-1: ! $A B C$ is equilateral.

Statement-2:

$$
=\frac{b^{2}+c^{2}-a^{2}}{2 b c}, \cos B=\frac{c^{2}+a^{2}-b^{2}}{2 a c}, \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
$$

A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct
explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement- 1 is True, Statement-2 is False
D. Statement- 1 is False, Statement- 2 is True

Answer:

- Watch Video Solution

89. Let $H_{1}, H_{2}, \ldots, H_{n}$ be mutually exclusive events with $P\left(H_{i}\right)>0, i=1,2, \ldots \ldots \ldots . n$. Let E be any other event with $0<P(E)$ Statement \quad I $P\left(H_{i} \mid E\right)>P\left(E \mid H_{i} . P\left(H_{i}\right) \quad\right.$ for $\quad i=1,2, \ldots \ldots, n$ statement II $\sum_{i=1}^{n} P\left(H_{i}\right)=1$
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

- Watch Video Solution

90. Let $\operatorname{AandB} \mathrm{b}$ e two independent events. Statement 1 : If $(A)=0.3 \operatorname{and} P(A \cup B)=0.8, \operatorname{then} P(B) \quad$ is 2/7. Statement $\quad 2:$ $P(E)=1-P(E)$, where E is any event.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

91. The equations of two straight lines are
$\frac{x-1}{2}=\frac{y+3}{1}=\frac{z-2}{-3}$ and $\frac{x-2}{1}=\frac{y-1}{-3}=\frac{z+3}{2}$
Statement 1: The given lines are coplanar.
Statement 2: The equations
$2 r-s=1$
$r+3 s=4$
$3 r+2 s=5$
are consistent.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:
92. Assertion- Reason Type Question:

Let $I_{n}=\int_{0}^{N v} \tan ^{n} x d x$, where $n \in N$.
STATEMENT-1: $\int_{0}^{\pi / 4} \tan ^{4} x d x=\frac{3 \pi-8}{12}$.

because

STATEMENT-2: $I_{n}+I_{n-2}=\frac{1}{n-1}$.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer: A

93. Statement-1: The cubic equation $4 x^{3}-15 x^{2}+14 x-5=0$ has a root in the internal $(2,3)$.

Statement-2: If $f(x)$ is a polynomial equation which has two real roots $\alpha, \beta(\alpha<\beta)$, then $\mathrm{f}(\mathrm{x})=0$ will have a root γ sucht^alpha It gamma It beta:
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

- Watch Video Solution

94. Consider, $L_{1}: 2 x+3 y+p-3=0, L_{2}: 2 x+3 y+p+3=0$, where p is a real number, and $C: x^{2}+y^{2}+6 x-10 y+30=0$

Statement-I : If line L_{1} is a chord of circle C, then line L_{2} is not always a diameter of circle C.
and
Statement-II: If line L_{1} is a diameter of circle C , then line L_{2} is not a chord of circle C.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

95. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{p}, \mathrm{q}$ be the real numbers. Suppose α, β are the roots of the equation $x^{2}+p x+q=0$ and $\alpha, \frac{\beta}{2}$ are the roots of the equation $a x^{2}+b x+c=0$ where $\beta^{2} \notin\{-1,0,1\}$.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

- Watch Video Solution

96. For the following question, choose the correct answer from the codes
(a),(b),(c) and (d) follows

Let a solution $y=y(x)$ of the differential equation $x \sqrt{x^{2}-1} d y-y \sqrt{y^{2}-1} d x=0$ satisfy $\mathrm{y}(2)=\frac{2}{\sqrt{3}}$
Statement I $\mathrm{y}(\mathrm{x})=\sec \left(\sec ^{-1} x-\frac{\pi}{6}\right)$ and
Statement II $\mathrm{y}(\mathrm{x})$ is given by $\frac{1}{2}=\frac{2 \sqrt{3}}{x}-\sqrt{1-\frac{1}{x^{2}}}$
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

- Watch Video Solution

97. Consider	three	planes
$P_{1}: x-y+z=1, P_{2}: x+y-z=-1, P_{3}, x-3 y+3 z=2$	Let	

L_{1}, L_{2}, L_{3} be the lines of intersection of the planes P_{2} and P_{3} and $P-1, P_{1}$ and P_{2}, respectively.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

Watch Video Solution

98. Consider the system of equations
$x-2 y+3 z=-1$
$-x+y-2 z=k$
$x-3 y+4 z=1$

Statement -1 The system of equation has no solutions for $k \neq 3$.
statement -2 The determinant $\left|\begin{array}{lll}1 & 3 & -1 \\ -1 & -2 & k \\ 1 & 4 & 1\end{array}\right| \neq 0$, for $k \neq 3$.
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

- Watch Video Solution

99. Consider the system of equations $a x+b y=0 ; c x+d y=0$, where $a, b, c, d \in\{0,1\}$)STATEMENT-1: The probability that the system of equations has a unique solution is $3 / 8$ STATEMENT-2: The probability that the system of equations has a solution is 1
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement- 1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

D Watch Video Solution

100. Let f and g be real valued functions defined on interval $(-1,1)$ such that $g(x)$ is continuous, $g(0) \neq 0, g^{\prime}(0)=0, g(0) \neq 0$, and $f(x)=g(x) \sin x$ Statement-1
$(\operatorname{Lim})_{x \rightarrow 0}[g(x) \cot x-g(0) \operatorname{cosec} x]=f(0) \quad$ and \quad Statement-2 : $f^{\prime}(0)=g(0)$
A. Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statemcnt-2 is True, Statement-2 is Not a correct explanation for Statement-1
C. Statement- 1 is True, Statement-2 is False
D. Statement- 1 is False, Statement- 2 is True

Answer:

- Watch Video Solution

101. Match the integrals in Column I with the values in Column II and indicate your answer by darkening the apporpriate bubbles in the 4×4
matrix.

Column I
(A) $\int_{-1}^{1} \frac{d x}{1+x^{2}}$
(B) $\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}$
(C) $\int_{2}^{3} \frac{d x}{1-x^{2}}$
(D) $\int_{1}^{2} \frac{d x}{x \sqrt{x^{2}-1}}$

Column II

(p) $\frac{1}{2} \log \left(\frac{2}{3}\right)$
(q) $2 \log \left(\frac{2}{3}\right)$
(r) $\frac{\pi}{3}$
(s) $\frac{\pi}{2}$

- Watch Video Solution

102. In the following $[x]$ denotes the greatest integer less than for equal to x. Match the functions in Column I with the properties in Column II and indicate your answer by darkening the appropriate bubles in the 4×4
matrix.

Column I
(A) $x|x|$
(B) $\sqrt{|x|}$
(C) $x+|x|$
(D) $|x-1|+|x+1|$

Column II

(p) continuous in ($-1,1$)
(q) differentiable in $(-1,1)$
(r) strictly increasing in
$(-1,1)$
(s) not differentiable at least
at one point in $(-1,1)$

- Watch Video Solution

103. Match the statement in Column I with the properties in Column II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix.

Column I
Column II
(Λ) Two intersecting circles (p) have a common tangent
(B) Two mutually external
(q) have a common normal circles
(C) Two circles, one strictly (r) do not have a inside the other
(D) Two branches of a hyperbola common tangent
(s) do not have a common normal
104. Consider the following linear equations $a x+b y+c z=0, b x+c y+a z=0, c x+a y+b z=0$. Matchthestateme \propto riatebu $\leq s \in$ the

4 xx 4 ' matrix given in the ORS.

Column

(A) $a+b+c \neq 0$ and
$a^{2}+b^{2}+c^{2}=a b+b c+c a$
(B) $a+b+c=0$ and
$a^{2}+b^{2}+c^{2} \neq a b+b c+c a$
(C) $a+b+c \neq 0$ and
$a^{2}+b^{2}+c^{2} \neq a b+b c+c a$
(D) $a+b+c=0$ and $a^{2}+b^{2}+c^{2}=a b+b c+c a$

Column II
(p) the equations represent planes meeting only at a single point.
(q) the equations represent the line $x=y=z$.
(r) the equations represent identical planes.
(s) the equations represent the whole of the three dimensional space.

- Watch Video Solution

105. Let (x, y) be such that $\sin _{-1}(a x)+\cos ^{-1}(y)+\cos ^{-1}(b x y)=\frac{\pi}{2}$

Match the statement in Column I with the properties in Column II and indicate your answer by darkening the appropriate bubbles in the 4×4

matrix.

Column I
(A) If $a=1$ and $b=0$ then (x, y)
(B) If $a=1$ and $b=1$ then (x, y)
(C) If $a=1$ and $b=2$ then (x, y)
(D) If $a=2$ and $b=2$ then (x, y)

Column II

(p) lies on the circle

$$
x^{2}+y^{2}=1
$$

(q) lies on

$$
\left(x^{2}-1\right)\left(y^{2}-1\right)=0
$$

(r) lies on $y=x$
(s) lies on

$$
\left(4 x^{2}-1\right)\left(y^{2}-1\right)=0
$$

(D) Watch Video Solution

106. Let $f(x)=\frac{x^{2}-6 x+5}{x^{2}-5 x+6}$ Match the statement in Column I with the properties in Column II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix.

Column I

(A) If $-1<x<1$ then $f(x)$ satisfies
(B) If $1<x<2$ then $f(x)$ satisfies
(C) If $3<x<5$ then $f(x)$ satisfies
(D) If $x>5$ then $f(x)$ satisfies

Column II

(p) $0<f(x)<1$
(q) $f(x)<0$
(r) $f(x)>0$
(s) $f(x)<1$

- Watch Video Solution

$L_{1}: x+3 y-5=0, L_{2}: 3 x-k y-1=0, L_{3}: 5 x+2 y-12=0$

Column I
(A) L_{1}, L_{2}, L_{3} are concurrent, if
(B) One of L_{1}, L_{2}, L_{3} is parallel to at least one of the other two, if
(C) L_{1}, L_{2}, L_{3} form a triangle, if
(D) L_{1}, L_{2}, L_{3} do not form a triangle, if
(r) $k=5 / 6$

Column II
(p) $\dot{k}=-9$
(q) $k=-6 / 5$
(s) $k=5$

- Watch Video Solution

108. Consider all possible permulations of letter of the word ENDEANOEL.

Column I

Column II

(A) The number of permutations
(p) 5 ! containing the word ENDEA is
(B) The number of permutations in which the letter E occurs in the first and the last positions is
(C) The number of permutations in which none of the letters D, $L_{,}$N occurs in the last five position
(D) The number of permutations in which the letters A, E, O occur only in odd positions is

- Watch Video Solution

109.

Column I

(A) The minimum positive value

$$
\text { of } \frac{x^{2}+2 x+4}{x+2}, x \in R \text { is }
$$

(B) Let A and B be 3×3 matrices of
(q) 1 real numbers, where A is
symmetric, B is skew-symmetric
and $(A+B)(A-B)=(A-B)(A+B)$.
If $(A B)^{T}=(-1)^{K} A B$, where $(A B)^{T}$ is
the transpose of $A B$ then the possible
values of k are
(C) Let $a=\log _{3} \log _{3} 2$. An integer k
satisfying $1<2^{-k+3^{-a}}<2$, must be less than
(D) If $\sin \theta=\cos -\varphi$, then the possible (s) 3 values of $\frac{1}{\pi}\left(\theta \pm \varphi-\frac{\pi}{2}\right)$ are

- Watch Video Solution

110. Match the statements/expressions given in Column I with the values

Column I
(A) $\operatorname{Koot}(\mathrm{s})$ of the equation

$$
2 \sin ^{2} \theta+\sin ^{2} 2 \theta=2
$$

(B) Points of discontinuity of

$$
f(x)=\left[\frac{6 x}{\pi}\right] \cos \left[\frac{3 x}{\pi}\right] \text {, where }
$$

$[y]=$ greatest integer less than or equal to y
(C) The volume of the parallelopiped (r) $\pi / 3$ with edges represented by the vectors $\vec{i}+\vec{j}, \vec{i}+2 \vec{j}$ and $\vec{i}+\vec{j}+\pi \vec{k} \quad$ (s) $\pi / 2$
(D) The angle between vectors \vec{a} and (t$) \pi$ \vec{b}; where \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying $\vec{a}+\vec{b}+\sqrt{3} \vec{c}=\overrightarrow{0}$

Watch Video Solution
111. Match the statements/expressions given in Column I with the values given in Column II. ${ }^{`}$

Column I

(A) The number of solutions of the
equation $x e^{\sin x}-\cos x=0$ in the
interval $\left(0, \frac{\pi}{2}\right)$
(B) The value(s) of k for which the planes
(q) 2
$k x+4 y+z=0,4 x+k y+2 z=0$ and
$2 x+2 y+z=0$ intersect in a straight line (r) 3
(C) The value(s) of k for which
(s) 4
$|x+1|+|x-2|+|x+1|+|x+2|=4 k$
has integral solution(s)
(D) If $y^{\prime}=y+1$ and $y(0)=1$ then value(s) (t) 5 of $y\left(\log _{\varepsilon} 2\right)$

- Watch Video Solution

112. Match the statements/expressions given in Column I with the values given in Column II. ${ }^{`}$
(A) The interval contained in the (p) $\left(-\frac{\pi}{2}, \frac{\pi}{\square m a}\right.$ domain of definition of nonzero solutions of the differential equation $(x-3)^{2} \cdot y^{\prime}+y=0$ (q) $\left(0, \frac{\pi}{2}\right)$
(B) The interval containing the value
(r) $\left(\frac{\pi}{8}, \frac{5 \pi}{4}\right)$ of the interval

$$
\int_{1}^{5}(x-1)(x-2)(x-3)(x-4)(x-5) d x
$$

(C) The interval in which at least (s) $\left(0, \frac{\pi}{8}\right)$ one of the points of local
maximum of $\cos ^{2} x+\sin x$ lics
(D) The interval in which
(t) $(-\pi, \pi)$ $\tan ^{-1}(\sin x+\cos x)$ is increasing

- Watch Video Solution

113. Match the statements/expressions given in Column I with the values given in Column II. ${ }^{`}$

Column I
(A) Circle
(p) The locus of the point (h, k) for which the line $h x+k y=1$ touches the circle $x^{2}+y^{2}=4$
(B) Parabola
(q) Points z in the complex plane satisfying

$$
|z+2|-|z-2|= \pm 3
$$

(r) Points of the conic have parametric representation $x=\sqrt{3}\left(\frac{1-t^{2}}{1+t^{2}}\right), y=\frac{2 t}{1+t^{2}}$
(C) Ellipse
(D) Hyperbola
(s) The eccentricity of the conic lies in the interval $1 \leq x<\infty$
(t) Points z in the complex plane satisfying
$\operatorname{Re}(z+1)^{2}=|z|^{2}+1$

- Watch Video Solution

114. Match the statements/expressions given in Column I with the values given in Column II. '

Column I

(A) A line from the origin meets the lines
$\frac{x-2}{1}=\frac{y-1}{-2}=\frac{z+1}{1}$
and $\frac{x-\frac{8}{3}}{2}=\frac{y+3}{-1}=\frac{z-1}{1}$
at P and Q respectively.
If the length $P Q=d$ then
d^{2} is
(B) The values of x satisfying

$$
\tan ^{-1}(x+3)-\tan ^{-1}(x-3)
$$

(C) Nonzero vectors

$$
=\sin ^{-2}\left(\frac{3}{5}\right) \text { are }
$$

\vec{a}, \vec{b} and \vec{c} satisfy

$$
\vec{a} \cdot \vec{b}=0,(\vec{b}-\vec{a}) \cdot(\vec{b}+\vec{c})=0
$$

$$
\text { and } 2|\vec{b}+\vec{c}|=\vec{b}-\vec{a} .
$$

If $\vec{a}=\mu \vec{b}+4 \vec{c}$ then the possible values of μ are
(D) Let f be the function
(t) 6
on $[-\pi, \pi]$ given by $f(0)=9$
and $f(x)=\frac{\sin \frac{9}{2} x}{\sin \frac{1}{2} x}$ for $x \neq 0$.
The value of $\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) d x$ is
115. Let (x, y, z) be points with integer coordinates satisfying the system of homogeneous equations $3 x-y-z 0-3 x+z=0-3 x+2 y+z=0$.Then find the number of such points for which $x+y+z \leq 100$.

- Watch Video Solution

116. Let $A B C a n d A B C$ ' be two non-congruent triangles with sides $A B=4, A C=A C^{\prime}=2 \sqrt{2}$ and angle $B=30^{\circ}$. The absolute value of the difference between the areas of these triangles is

- Watch Video Solution

117. The centres of two circles C_{1} and C_{2}, each of unit radius are at a distance of 6 units from each other. Let P be the mid point of the line segment joining the centres of C_{1} and C_{2}, and C be a circle touching circles C_{1} and C_{2} externally. If a common tangent to C_{1} and C passing through P is also a common tangent to C_{2} and C . then the radius of the circle C is.

- Watch Video Solution

118. Let $p(x)$ be a polynomial of degree 4 having extremum at $x=1,2$ and $\lim _{x \rightarrow 0}\left(1+\frac{p(x)}{x^{2}}\right)=2$. Then find the value of $p(2)$.

- Watch Video Solution

119. The maximum value of the function $f(x)=2 x^{3}-15 x^{2}+36 x-48$ on the set $a=\left\{x \mid x^{2}+20 \leq 9 x\right\}$ is

(Watch Video Solution

120. If the function $f(x)=x^{3}+e^{x / 2}$ and $g(x)=f^{-1}(x)$, then the value of $g^{\prime}(1)$ is

- Watch Video Solution

121. Let $f: R \rightarrow R$ be a continous function which satisfies $f(x)=\int_{0}^{x} f(t) d t$. Then, the value of $f(\ln 5)$ is \qquad .

- Watch Video Solution

122. The smallest value of k for which both the roots of the equation $x^{2}-8 k x+16\left(k^{2}-k+1\right)=0$ are real, distinct and have values at least 4, is \qquad

- Watch Video Solution

123. Let w be the complex number $\frac{\cos (2 \pi)}{3}+\frac{\sin (2 \pi)}{3}$. Then the number of distinct complex numbers z satisfying $\left|\begin{array}{ccc}z+1 & w & w^{2} \\ 2 & z+w^{2} & 1 \\ w^{2} & 1 & z+w\end{array}\right|=0$ is equal

- Watch Video Solution

124. Let $s_{k}, k=1,2,3, \ldots, 100$ denote the sum of the infinite geometric series whose first term is $\frac{k-1}{\varrho_{k}}$ and the common ratio is $\frac{1}{k}$. Then, the value of

$$
\frac{100^{2}}{1100}+\sum_{k=2}^{100}\left|\left(k^{2}-3 k+1\right) S_{k}\right| \text { is }
$$ is

- Watch Video Solution

125. The number of all possible values of θ, where $0<\theta<\pi$, for which
the system of equations
$(y+z) \cos 3 \theta=(x y z) \sin 3 \theta, x \sin 3 \theta=\frac{2 \cos 3 \theta}{y}+\frac{2 \sin 3 \theta}{z}$ and $(x y z) \sin$ ؛
have a solution $\left(x_{0}, y_{0}, z_{0}\right)$ wiith $y_{0} z_{0} \neq 0$ is

- Watch Video Solution

126. The number of values of θ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq \frac{n \pi}{5}$ for $\mathrm{n}=0, \pm 1, \pm 2$ and $\tan \theta=\cot 5 \theta$ as well as $\sin 2 \theta=\cos 4 \theta$

- Watch Video Solution

127. The maximum value of the expression
$\frac{1}{\sin ^{2} \theta+3 \sin \theta \cos \theta+5 \cos ^{2} \theta}$

- Watch Video Solution

128. The line $2 x+y=1$ is tangent to the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$. If this line passes through the point of intersection of the nearest directrix and the x-axis, then the eccentricity of the hyperbola is

- Watch Video Solution

129. If \vec{a} and \vec{b} are vectors in space given by $\vec{a}=\frac{\hat{i}-2 \vec{j}}{\sqrt{5}}$ and $\vec{b}=\frac{2 \hat{i}+\hat{j}+3 \hat{k}}{\sqrt{14}}$ then the value of $(2 \vec{a}+\vec{b})$ is

- Watch Video Solution

130. Lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ lie on the plane

- Watch Video Solution

131. Let f be a real-valued differentiable function on R (the set of all real numbers) such that $f(1)=1$. If the $y-\in$ tercept of the tangent at any point $P(x, y)$ on the curve $y=f(x)$ is equal to the cube of the abscissa of P, then the value of $f(-3)$ is equal to \qquad

- Watch Video Solution

132. For any real number x , let $[x]=$ largest integer less than or equalto x .

Let f be a real valued function defined on the interval $[-10,10]$ by
$f(x)= \begin{cases}x-[x] & \text { if }[x] \text { is odd } \\ 1+[x]-x & \text { if }[x] \text { is even }\end{cases}$
Then, the
value of $\left(\frac{\pi}{10}\right)^{2}\left(\int_{-10}^{10} f(x) \cos \pi x d x\right.$ is

- Watch Video Solution

133. Le $a_{1}, a_{2}, a_{3}, a_{11}$ be real numbers satisfying
$a_{2}=15,27-2 a_{2}>0$ and $a_{k}=2 a_{k-1}-a_{k-2} \quad$ for $\quad k=3,4,, 11$. If
$\frac{a 12+a 22+\ldots+a 112}{11}=90$, then the value of $\frac{a 1+a 2++a 11}{11}$ is equals to \qquad .

Watch Video Solution

134. Two parallel chords of a circle of radius 2 are at a distance $\sqrt{3}+1$ apart. If the chords subtend at the centre, Angles of $\frac{\pi}{k}$ and $2 \frac{\pi}{k}$, where k >0 then the value of $[\mathrm{k}]$ is:

- Watch Video Solution

135. Consider a triangle $A B C$ and let a, b, and c denote the lengths of the sides opposite to vertices A, B and C respectively. suppose $a=6, b=10$
and the area of the triangle is $15 \sqrt{3}$. If $\angle A C B$ is obtuse and if r denotes the radius of the in circle of the triangle , then r^{2} is equal to

- Watch Video Solution

136. Let K be a positive real number and $A=[2 k-12 \sqrt{k} 2 \sqrt{k} 2 \sqrt{k} 1-2 k-2 \sqrt{k} 2 k-1]$ andB $=[02 k-1 \sqrt{k} 1-2 k$
. If $\operatorname{det}(a d j A)+\operatorname{det}(a d j B)=10^{6}$, then $[k]$ is equal to. [Note: $a d j M$ denotes the adjoint of a square matix M and $[k]$ denotes the largest integer less than or equal to $K]$.

- Watch Video Solution

137. Let f be a function defined on R (the set of all real numbers) such that $f^{\prime}(x)=2010(x-2009)(x-2010)^{2}(x-2011)^{3}(x-2012)^{4}$, for all $x \in R$. If g is a function defined on R with values in the interval $(0, \infty)$ such that $f(x)=\ln (g(x))$, for all $x \in R$, then the number of point is R at which g has a local maximum is \qquad
