

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

AREAS OF BOUNDED REGIONS

Section I Solved Mcqs

- **1.** The area bounded by the curves y = |x| 1 and
- y = |x| + 1 is equal to

A. 1

B. 2

 $\mathsf{C}.\,\sqrt{2}$

D. 4

Answer: B

2. The area bounded by the curve
$$y = \left[\frac{x^2}{64} + 2\right], y = x - 1, y = x - 1$$
 and $x = 0$

above the x-axis will be-(Where [] represents greatest

integer function) (a) 2 (b) 3 (c) 4 (d) none of these

A. 2

C. 4

D. none of these

Answer: c

3. Find the area bounded by $y = xe^{|x|}$ and lines |x| = 1, y = 0.

A. 4

B. 6

C. 1

D. 2

Answer: d
Watch Video Solution
4. The area bounded by the curves y=lnx, y=ln x , y= lnx
and y= ln x is
A. 5
R 2
5.2
C. 4
D. none of these

Answer: B

5. Let f(x) be a continuous function such that the area bounded by the curve y = f(x), the x-axis, and the lines x = 0 and $x = ais1 + \frac{a^2}{2}sin$ a. Then,

A.
$$\left(rac{\pi}{2}
ight) = 1 + rac{\pi^2}{8}$$

B. $f(a) = 1 + rac{a^2}{2} \sin a$
C. $f(a) = a \sin a + rac{1}{2} \cos a$

D. none of these

Answer: c

6. Area bounded by $|x-1| \leq 2 \; ext{and} \; x^2-y^2=1, \; ext{is}$

A.
$$6\sqrt{2} + rac{1}{2} {
m ln} ig| 3 + 2\sqrt{2} ig|$$

B. $6\sqrt{2} + rac{1}{2} {
m ln} ig| 3 - 2\sqrt{2} ig|$
C. $6\sqrt{2} - {
m ln} ig| 3 + 2\sqrt{2} ig|$

Answer: c

7. Find the area bounded by the curve $f(x) = x + \sin x$ and its inverse function between the ordinates x = 0 to $x = 2\pi$.

A. 4π

 $\mathsf{B.}\,8\pi$

C. 4

D. 8

Answer: d

D Watch Video Solution

8. Area bounded by
$$f(x) = \frac{(x-1)(x+1)}{x-2}$$
 x-axis and ordinates $x = 0$ and $x = \frac{3}{2}$ is (A) $\frac{4}{5}$ (B) $\frac{7}{8}$ (C) 1 (D)

none

A.
$$\frac{4}{5}$$

 $\mathsf{B}.\,\frac{7}{8}$

C. 1

D. none of these

Answer: b

Watch Video Solution

9. If the line x=lpha divides the area of region $R=ig\{(x,y)\in R^2\!:\!x^3\leq y\leq x, 0\leq x\leq 1ig\}$ into two equal parts, then

A.
$$\frac{3\pi}{8}$$

B. $\frac{5\pi}{8}$

C.
$$\frac{\pi}{2}$$

D. $\frac{\pi}{8}$

Answer: C

10. Let
$$f(x) = \max\left\{\sin x, \cos x, \frac{1}{2}\right\}$$
, then determine
the area of region bounded by the curves $y = f(x)$, X-
axis, Y-axis and $x = 2\pi$.

A.
$$\sqrt{2} - \sqrt{3} + \frac{5\pi}{12}$$

B. $\sqrt{2} + \frac{\sqrt{3}}{2} + \frac{5\pi}{12}$
C. $\sqrt{2} + \sqrt{3} + \frac{5\pi}{12}$

D. none of these

Answer: b

Watch Video Solution

11. The area bounded by the x-axis, the curve y = f(x),

and the lines x=1, x=b is equal to $\sqrt{b^2+1}-\sqrt{2}$ for all b>1, then f(x) is

A.
$$\sqrt{x-1}$$

B. $\sqrt{x+1}$
C. $\sqrt{x^2-1}$
D. $x/\sqrt{x^2+1}$

Answer: d

12. If $f(x) \geq 0, \ \forall x \in (0,2)$ and y = f(x) makes positive intercepts of 2 and 1 units on X and Y -axes respectively and encloses an area of $rac{3}{4}$ unit with axes, then $\int_{0}^{2} x f'(x) dx$ is A. $\frac{3}{2}$ B.1 $\mathsf{C}.\,\frac{5}{4}$ D. $\frac{-3}{\Lambda}$

Answer: d

13. If a curve $y = a\sqrt{x} + bx$ passes through point (1, 2) and the area bounded by curve, line x = 4 and x-axis is 8, then : (a) a = 3 (b) b = 3 (c) a = -1 (d) b = -1

A. a = 3, b = -1

B. a = 3, b = 1

C. a = -3, b = 1

D. a = -3, b = -1

Answer: A

14. If the area enclosed between the curves $y = ax^2 andx = ay^2 (a > 0)$ is 1 square unit, then find the value of a_1

A.
$$\frac{1}{\sqrt{3}}$$

B. $\frac{1}{2}$
C. 1
D. $\frac{1}{3}$

Answer: A

15. The area of the region bounded by the curuse $y=|x-2|,\,x=1,\,x=3$ and the x-axis is A. 4

- B. 2
- C. 3
- D. 1

Answer: D

Watch Video Solution

16. Sketch the region bounded by the curves $y = \sqrt{5-x^2}$ and y = |x-1| and find its area.

A.
$$\frac{5\pi}{4} - 2$$

B. $\frac{5\pi - 2}{4}$
C. $\frac{5\pi - 2}{2}$
D. $\frac{\pi}{2} - 5$

Answer: c

y = x and $y = 2x - x^2$ (in square units), is

A.
$$\frac{1}{2}$$

B. $\frac{1}{6}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: B

 $y = \log_e(x+e)$ and the coordinate axes is

A. 4

B. 3

C. 2

D. 1

Answer: D

19. The parabolas $y^2 = 4xandx^2 = 4y$ divide the square region bounded by the lines x = 4, y = 4 and the coordinate axes. If S_1, S_2, S_3 are the areas of these parts numbered from top to bottom, respectively, then $S_1: S_2 \equiv 1:1$ (b) $S_2: S_3 \equiv 1:2$ $S_1: S_3 \equiv 1:1$ (d) $S_1: (S_1 + S_2) = 1:2$

A. 1:1:1

B. 2:1:2

C. 1:2:3

D. 1:3:2

Answer: a

D. 1

Answer: A

21. The area of the region bounded by the parabola $(y-2)^2 = x - 1$, the tangent to the parabola at the point (2,3) and the X-axis is

A. 3

B. 6

C. 9

Answer: c Watch Video Solution

22. The area bounded by the curves y=cos x and y= sin x between the ordinates x=0 and $x=3\pi/2$ is

- A. $4\sqrt{2}-1$ B. $4\sqrt{2}+1$ C. $4\sqrt{2}-2$
- D. $4\sqrt{2}+2$

Answer: C

23. Let $f:[1,2] \to [0,\infty)$ be a continuous function such that f(x) = f(1-x) for all $x \in [-1,2]$. Let $R_1 = \int_{-1}^2 x f(x) dx$, and R_2 be the area of the region bounded by y = f(x), x = -1, x = 2 and the x-axis . Then,

A. $R_1=2R_2$

B. $R_1 = 3R_2$

 $\mathsf{C.}\,2R_1=3R_2$

D. $3R_1=R_2$

Answer: c

24. If $R_1 = \{(x, y) \mid y = 2x + 7, \text{ where } x \in R \text{ and}$ $-5 \leq x \leq 5\}$ is a relation. Then find the domain and Range of R_1 .

A.
$$\frac{3}{4}$$

B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: b

25. The area of the region enclosed by the curve $y = x, x = e, y = \frac{1}{x}$ and the positive X-axis is A. $\frac{1}{2}$ B. 1

C. $\frac{3}{2}$ D. $\frac{5}{2}$

Answer: C

26. The area of the region bounded by the curve $y=x^3$, and the lines , y=8 and x=0, is

A. 16

B. 8

C. 10

D. 12

Answer: D

27. Let S be the area of the region enclosed by $y-e^{-x^2}, y=0, x=0$ and x=1. Then

A.
$$S \geq rac{1}{e}$$

B. $S \geq -rac{1}{e}$

$$\mathsf{C}.\,S \leq rac{1}{4} igg(1+rac{1}{\sqrt{e}}igg)$$
 $\mathsf{D}.\,S \leq rac{1}{\sqrt{2}} + rac{1}{\sqrt{e}} igg(1-rac{1}{\sqrt{2}}igg)$

Answer: c

28. The area (in square units) bounded by the curves $y = \sqrt{x}, 2y - x + 3 = 0$, x-axis, and lying in the first quadrant is

A. 9

B. 36

C. 18

D. 27/4

Answer: A

Answer: b

30. Find the ratio in which the area bounded by the curves $y^2 = 12xandx^2 = 12y$ is divided by the line x = 3.

A.
$$\frac{245}{4}$$

B. $\frac{147}{4}$
C. $\frac{45}{4}$
D. $\frac{137}{4}$

Answer: b

31. The area of the region described by $A = \{(x, y): x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\}$ is A. $\frac{\pi}{2} - \frac{2}{3}$ B. $\frac{\pi}{2} + \frac{2}{3}$ C. $\frac{\pi}{2} + \frac{4}{3}$ D. $\frac{\pi}{2} - \frac{4}{3}$

Answer: C

Watch Video Solution

32. The area (in square units) of the region bounded by

$$y^2=2x \; {
m and} \; y=4x-1$$
 , is

A.
$$\frac{15}{64}$$

B. $\frac{9}{32}$
C. $\frac{7}{32}$
D. $\frac{5}{64}$

Answer: B

33. Suppose that $F(\alpha)$ denotes the area of the region

bounded by
$$x=0, x=2, y^2=4x$$
 and

y=|lpha x-1|+|lpha x-2|+lpha x, where $lpha\in\{0,1\}.$ Then the value of $F(lpha)+rac{8\sqrt{2}}{3}$ when lpha=0 is (A) 4 (B) 5 (C) 6 (D) 9

A. 4

B. 5

C. 6

D. 9

Answer: c

34. Suppose that $F(\alpha)$ denotes the area of the region

bounded by $x=0, x=2, y^2=4x$ and y=|lpha x-1|+|lpha x-2|+lpha x, where $lpha\in\{0,1\}.$ Then the value of $F(lpha)+rac{8\sqrt{2}}{3}$ when lpha=0 is (A) 4 (B) 5 (C) 6 (D) 9

A. 5

B. 6

C. 7

D. 9

Answer: a

35. Let $F(x) = \int_x^{x^2 + \frac{\pi}{6}} (2\cos^2 t) dt$ for all $x \in R$ and $f: \left[0, \frac{1}{2}\right] \to [0, \infty)$ be a continuous function.For $a \in \left[0, \frac{1}{2}\right]$, if F'(a)+2 is the area of the region

bounded by x=0,y=0,y=f(x) and x=a, then f(0) is

A. 1

B. 2

C. 3

D. 6

Answer: c

Watch Video Solution

36. The area of the region bounded by the curve C

$$x : y = rac{x+1}{x^2+1}$$
 nad the line y=1 , is

A. ml
$$-rac{1}{2} ext{In}2+rac{\pi}{4}$$

$$\mathsf{B}.\,\mathrm{In}2-\frac{\pi}{4}+1$$

C.
$$\frac{1}{2}$$
In2 + $\frac{\pi}{4}$ - 1

D. In
$$2 - \frac{\pi}{2} + 1$$

Answer: c

Watch Video Solution

37. The graph of $f(x) = x^2$ and $g(x) = cx^3$ intersect at two points, If the area of the region over the interval

$$\left[0, rac{1}{c}
ight]$$
 is equal to $rac{2}{3}$, then the value of $\left(rac{1}{c}+rac{1}{c^2}
ight)$ is

A. 20

B. 2

C. 6

D. 12

Answer: c

Watch Video Solution

38. Find the area of the region bounded by the curves

 $y=x^2, y=ig|2-x^2ig|, and yl=2, ext{ which lies to the}$ right of the line x=1.

A.
$$\left(\frac{12 - 20\sqrt{3}}{2}\right)$$
 sq. units
B. $\left(\frac{20 - \sqrt{2}}{3}\right)$ sq. units
C. $\left(\frac{20 - 12\sqrt{2}}{3}\right)$ sq. units
D. $\left(\frac{12 - 20\sqrt{2}}{3}\right)$ sq. units

Answer: c

39. The area (in sq. units) of the region $ig\{(x,y): y^2 \geq 2x ext{ and } x^2 + y^2 \leq 4x, x \geq 0, y \geq 0ig\}$ is

A.
$$\pi-rac{4}{3}$$

$$\begin{array}{l} \mathsf{B.}\,\pi-\frac{8}{3}\\ \mathsf{C.}\,\pi-\frac{4\sqrt{2}}{3}\\ \mathsf{D.}\,\frac{\pi}{2}-\frac{2\sqrt{2}}{3} \end{array}$$

Answer: b

40. If the line x=a bisects the area under the curve

$$y=rac{1}{x^2}, 1\leq x\leq 9$$
 , then a is equal to
A. $rac{4}{9}$
B. $rac{9}{5}$
C. $rac{5}{9}$
Answer: b

Watch Video Solution

41. The area (in sq. units) of the region described by

$$A = \left\{ (x, y) : y \ge x^2 - 5x + 4, x + y > 1, y \le 0
ight\}$$
 is
A. $rac{7}{2}$
B. $rac{13}{6}$
C. $rac{17}{6}$
D. $rac{19}{6}$

Answer: d

42. Area of the region

$$\left\{(x,y)\in R^2\!:\!y\geq \sqrt{|x+3|},5y\leq x+9\leq 15
ight\}$$
 is

equal to

A.
$$\frac{1}{6}$$

B. $\frac{4}{3}$
C. $\frac{3}{2}$
D. $\frac{5}{3}$

Answer: c

43. The area (in sq. units) of the region $ig\{(x,y): x\geq 0, x+y\leq 3, x^2\leq 4yig\}$ and $ig\{y\leq 1+\sqrt{x}ig\}$ is

A.
$$\frac{59}{12}$$

B. $\frac{3}{2}$
C. $\frac{7}{3}$
D. $\frac{5}{2}$

Answer: d

44. If the line x=lpha divides the area of region $R=ig\{(x,y)\in R^2\colon x^3\leq y\leq x, 0\leq x\leq 1ig\}$ into two equal parts, then

0

A.
$$0
B. $rac{1}{2}
C. $2lpha^4-4lpha^2+1=0$
D. $lpha^2+4lpha^2-1=0$$$$

Answer: b,c

Watch Video Solution

1. Using integration, find the area bounded by the curves y = |x - 1| and y = 3 - |x|. A. 2

B. 3

C. 4

D. 1

2. The area of the figure bounded by the curves $y^2=2x+1$ and x-y-1=0 , is A. 2/3B. 4/3C.8/3D. 16/3

Answer: D

3. Find the area bounded by the curves $y = 2x - x^2$ and the straight line y = -x.

A. 9/2B. 43/6C. 34/6D. $\frac{11}{2}$

Answer: A

4. The area of the region bounded by the curve y=ert x-1ert and y=1 is: A. 1 B. 2 C.1/2D. 3/2

Answer: A

5. The area bounded by the curve y = x|x|, x-axis and

the ordinates x = -1 & x = 1 is:

A. 0

B. 1/3

C. 2/3

D. 1

6. Area of the region bounded by the curve

$$y = 2^x, y = 2x - x^2, x = 0$$
 and $x = 2$ is given by
A. $\frac{3}{\log 2} - \frac{4}{3}$
B. $\frac{3}{\log 2} + \frac{4}{3}$
C. $2\log 2 - \frac{4}{3}$
D. $2\log^2 - \frac{4}{3}$

Answer: D

7. Area lying in the first quadrant and bounded by the circle $x^2+y^2=4$ the line $x=\sqrt{3}y$ and x-axis , is

A. π

B. $\pi/2$

C. $\pi/3$

D. $\pi/4$

8. AOB is the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in which OA = a, OB = b. Then find the area between the arc AB and the chord AB of the ellipse.

A.
$$rac{1}{2}ab(\pi+2)$$

B. $rac{1}{4}ab(\pi-4)$
C. $rac{1}{4}ab(\pi-2)$

D. none of these

Answer: C

Watch Video Solution

9. Using integration, find the area of the region bounded by the line x-y+2=0 , the curve $x=\sqrt{y}$ and $y-{
m axis}$

A. 9

B. 9/2

C. 10/3

D. 5/2

10. The area cut off from a parabola by any double ordinate is k time the corresponding rectangle contained by the double ordinate and its distance from the vertex. Find the value of k ?

A. 1/2

B. 1/3

C. 2/3

D. 1

11. Area between the curve $y = 4 + 3x - x^2$ and x-axis

in square units, is

A. 125/3

B. 125/4

C. 125/6

D. 25

Answer: C

12. If A is the area between the curve $y=\sin x$ and xaxis in the interval $[0,\pi/4]$, then in the same interval , area between the curve $y = \cos x \; ext{ and } \; ext{x-axis, is}$

A. A

- B. $\pi/2 A$
- C.1 A
- $\mathsf{D}.\,A-1$

Answer: C

13. If A is the area lying between the curve $y = \sin x$ and x-axis between x=0 and $x = \pi/2$.

Area of the region between the curve $y = \sin 2x$ and x-axis in the same interval is given by

A. A/2

B.A

 $\mathsf{C.}\,2A$

D. 3/2A

Answer: B

Watch Video Solution

14. The area of the loop between the curve $y = a \sin x$ and x-axis is (A) a (B) 2a (C) 3a (D) none of these A. a

B. 2a

C. 3a

D. 4a

Answer: B

15. Area (in square units) of the region bounded by the curve $y^2=4x,$ y-axis and the line y=3 , is

A. 2

B.9/4

C. $6\sqrt{3}$

D. none of these

Answer: B

Watch Video Solution

16. If A_1 is the area of the parabola $y^2 = 4ax$ lying between vertex and the latusrectum and A_2 is the area between the latusrectum and the double ordinate x = 2a, then $\frac{A_1}{A_2}$ is equal to A. $2\sqrt{2} - 1$

$$\mathsf{B.}\left(2\sqrt{2}+1\right)/7$$

$$\mathsf{C.}\left(2\sqrt{2}-1\right)/7$$

D. none of these

Answer: B

17. The area of the figure bounded by $y = \sin x, y = \cos x$ is the first quardrant is

A.
$$\sqrt{2}ig(\sqrt{2}-1ig)$$

- $\mathsf{B}.\sqrt{3}+1$
- $\mathsf{C.}\,2\big(\sqrt{3}-1\big)$
- D. none of these

Answer: A

A.
$$\frac{2}{e}$$

B. $1 - \frac{2}{e}$
C. $\frac{1}{e}$
D. $1 - \frac{1}{e}$

e

Answer: A

19. The areas of the figure into which the curve $y^2=6x$ divides the circle $x^2+y^2=16$ are in the ratio

A.
$$\frac{2}{3}$$

B. $\frac{4\pi - \sqrt{3}}{8\pi + \sqrt{3}}$
C. $\frac{4\pi + \sqrt{3}}{8\pi - \sqrt{3}}$

D. none of these

20. Find the area (in sq. unit) bounded by the curves :

 $y = e^x, y = e^{-x}$ and the straight line x =1.

D. none of these

21. The area of the region bounded by the Y - axis $y = \cos x$ and $y = \sin x$ Where $0 \le x \le \frac{\pi}{2}$, is

A.
$$2ig(\sqrt{2}-1ig)$$

$$\mathsf{B.}\,\sqrt{2}-1$$

$$C.\sqrt{2} + 1$$

D.
$$\sqrt{2}$$

Answer: B

22. The positive value of the parmeter 'a' for which the

area of the figure founded by $y=\sin as,\,y=0,\,x=\pi/a\,\, ext{and}\,\,x=\pi/3a\,\, ext{is}\,\,$ 3, is equal to

B. 1/2

C.
$$rac{2+\sqrt{3}}{3}$$

D. 3/2

Answer: B

23. The vlaue of m for which the area included between th curves $y^2=4ax\,\,{
m and}\,\,y=mx$ equals, $a^2/3,\,\,{
m is}$

A. 2

 $\mathsf{B.}-2$

C.1/2

D. 1

Answer: A

24. Area bounded by the curve $y = x^3$, the *x*-axis and

the ordinates x = -2 and x = 1 is:

A. 17/2

B. 15/2

C. 15/4

D. 17/4

Answer: D

25. The area bounded by
$$y = x^2, y = [x + 1], 0 \le x \le 2$$
 and the y-axis is where [,] is greatest integer function.

A. 1/3

B. 2/3

C. 1

D. 7/3

Answer: B

Vatch Video Solution

26. Find the area bounded by the x-axis, part of the curve $y = \left(1 - \frac{8}{x^2}\right)$, and the ordinates at x = 2andx = 4. If the ordinate at x = a divides the area into two equal parts, then find a.

A.
$$2\sqrt{2}$$

 ${\rm B.}\pm 2\sqrt{2}$

 $C.\pm\sqrt{2}$

D. ± 2

Answer: B

Watch Video Solution

27. The area bounded by the curve y = f(x) (where $f(x) \ge 0$), the co-ordinate axes & the line $x = x_1$ is given by $x_1.~e^{x_1}.$ Therefore f(x) equals

A. e^x

 $C. xe^x - e^x$

D. $xe^x + e^x$

Answer: D

Watch Video Solution

28. about to only mathematics

A. 1

B. 1.5

C. 2

D. 3

Answer: C

29. The area of the triangle formed by the positive $x - a\xi s$ and the normal and tangent to the circle $x^2 + y^2 = 4$ at $(1, \sqrt{3})$ is $2\sqrt{3}square{inits}$ (b) $3\sqrt{2}square{inits}$ $\sqrt{6}square{inits}$ (d) none of these

A. $\sqrt{3}$

 $\mathrm{B.}\,1/\sqrt{3}$

C. $2\sqrt{3}$

D. $3\sqrt{3}$

Answer: C

30. The area of the region for which `0>0` is

A.
$$\int\limits_{1}^{3} \left(3-2x-x^2
ight) dx$$

B. $\int\limits_{0}^{3} \left(3-2x-x^2
ight) dx$
C. $\int\limits_{0}^{1} \left(3-2x-x^2
ight) dx$
D. $\int\limits_{-1}^{3} \left(3-2x-x^2
ight) dx$

31. The area between the curve $y = 2x^4 - x^2$, the axis, and the ordinates of the two minima of the curve is 11/60 sq. units (b) 7/120 sq. units 1/30 sq. units (d) 7/90 sq. units

A. 7/120

B.9/120

C. 11/120

D. 13/120

Answer: A

32. Find the area bounded by the curve $x^2 = 4y$ and the straight line x = 4y - 2.

A. 3/8

B. 5/8

C.7/8

D. 9/8

Answer: D

33. The area of the region bounded by the curve $(a^4)(y^2) = (2a - x)(x^5)$ is to that of the circle whose radius is a, is given by the ratio (a) 4:5 (b) 5 8 (c) 2 3 (d) 3:2.

A. 4:5

B. 5:8

C. 2:3

D. 3:2

Answer: B

34. The area between $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the straight line $\frac{x}{a} + \frac{y}{b} = 1$ is (A) $\frac{1}{2}\pi ab$ (B) $\frac{1}{2}ab$ (C) $\frac{\pi ab}{4} - \frac{ab}{2}$ (D) $\frac{1}{4}ab$

A.
$$\frac{1}{2}ab$$

B. $\frac{1}{2}\pi ab$
C. $\frac{1}{4}ab$
D. $\frac{1}{4}\pi ab - \frac{1}{2}ab$

Answer: D

35. The area induced between the curves $y = rac{x^2}{4a}$ and

$$y=rac{8a^3}{x^2+4a^2}$$
 is given by
A. $a^2\left(2\pi-rac{4}{3}
ight)$
B. $a^2\left(\pi-rac{4}{3}
ight)$
C. $a^2\left(2\pi+rac{1}{3}
ight)$
D. $a^2\left(\pi+rac{4}{3}
ight)$

36. The area cut off from a parabola by any double ordinate is k time the corresponding rectangle contained by the double ordinate and its distance from the vertex. Find the value of k ?

A. 2/3

B. 3/2

C.1/3

D. 3

37. Find the area of the region bounded by the curve y

= sin x between x = 0 and $x = 2\pi$.

A. 2π

 $\mathsf{B.}\,2\pi$

C. 4π

D. π

Answer: C

38. about to only mathematics

A. 5/6

B. 6/5

C.1/6

D. 6

Answer: A

Watch Video Solution

39. The area of the ellipse
$$\displaystyle rac{x^2}{a^2} + \displaystyle rac{y^2}{b^2} = 1$$
 is

A. πab

B.
$$rac{\pi}{4}ig(a^2+b^2ig)$$

 $\mathsf{C}.\,\pi(a+b)$

D. $\pi a^2 b^2$

Answer: A

Watch Video Solution	

40. Smaller area enclosed by the circle $x^2 + y^2 = 4$

and the line x + y = 2 is:

A. $2(\pi-2)$

 $\mathrm{B.}\,\pi-2$

 $\mathsf{C.}\,2\pi-1$

D. $\pi-1$

Answer: B

41. Find the area enclosed by the parabola $4y = 3x^2$ and the line 2y = 3x + 12.

A. 16

B. 41

C. 27

D. 36

42. Find the area of the region bounded by the parabola $x^2=4y\backslash$ and the line x=4y-2

A. 9/8

B. 9/4

C.9/2

D. 9/7

43. Find the area lying in the first quadrant and bounded by the curve $y=x^3$ and the line y=4x.

A. 2

B. 3

C. 4

D. 5

44. The area of the region (in square units) bounded by the curve $x^2 = 4y$ and the line x = 2 and x-axis is:

A. 1

- B. 2/3
- $\mathsf{C.}\,4/3$
- D. 8/3

45. The area bounded by the x-axis and the curve $y = 4x - y^2 - 3$ id A. 4/3B. 3/4C. 7 D. 3/2

46. Find the area of the region enclosed by the parabola $y^2 = 4ax$ and the line y = mx.

A.
$$\frac{5a^2}{3}$$

B. $\frac{8a^2}{3m^3}$
C. $\frac{7a^2}{4m^2}$
D. $\frac{3a^2}{5m}$

47. The area bounded by $y = \tan x, y = \cot x$, X-axis in $0 \leq x \leq rac{\pi}{2}$ is A. log 2 $\mathsf{B}.\,\frac{1}{2}\!\log 2$ C.2 log $\left(\frac{1}{\sqrt{2}}\right)$ D. $\frac{3}{2}\log 2$

48. Area lying between the curves $y^2 = 4x$ and y = 2x

is:

A. 2/3

- B. 1/3
- C.1/4
- D. 1/2

49. Area common to the circle $x^2 + y^2 = 64$ and the parabola $y^2 = 4x$ is

A.
$$rac{16}{3} \left(4\pi + \sqrt{3}
ight)$$

B. $rac{16}{3} \left(8\pi - \sqrt{3}
ight)$
C. $rac{16}{3} \left(4\pi - \sqrt{3}
ight)$

D. none of these

50. The area of the figure bounded by $|y| = 1 - x^2$ is in square units,

A. 2/3 B. 4/3 C. 8/3 D. −5/3

51. Find the area of the figure bounded by the parabolas $x=-2y^2, x=1-3y^2$. A. 8/3B. 6/3

C.4/3

D. 2/3

52. The area bounded by $y=x|{\sin x}|$ and x - axis

between $x=0, x=2\pi$ is

A. 2π

B. 3π

 $\mathsf{C.}\,4\pi$

D. 5π

53. Find the area bounded by the curve $y = 2x - x^2$, and the line y = x

- A. 1/2
- B. 1/3
- C.1/4
- D. 1/6

Answer: D

54. Find the area bounded by the curve y = (x - 1)(x - 2)(x - 3) lying between the ordinates x = 0 and x = 3.

A. 9/4

B.
$$\frac{11}{4}$$

C. 11/2

$$\mathsf{D.}\,7/4$$

55. Area common to the curves $y = \sqrt{x}$ and $x = \sqrt{y}$ is (A) 1 (B) $\frac{2}{3}$ (C) $\frac{1}{3}$ (D) none of these A. 1 B. 2/3

- C.1/3
- D. 4/3

56. Find the equation of common tangent of $y^2 = 4ax$ and $x^2 = 4by$. A. (8/3) ab B. (16/3) ab C. (4/3) ab D. (5/3) ab

57. Area of the region bounded by $[x]^2 = [y]^2$, if $x \in [1, 5]$, where [] denotes the greatest integer function is:

A. 4

B. 8

C. 5

D. 10

58. If A denotes the area bounded by $f(x) = \left| \frac{\sin x + \cos x}{x} \right|$, X-axis, $x = \pi$ and $x = 3\pi$, then A. 1 < A < 2

 $\mathsf{B.0} < A < 2$

 $\mathsf{C.}\, 2 < A < 3$

D. none of these

Answer: D

59. Find the area of the region bounded by the curve $y = x^2$ and $y = \sec^{-1} \left[-\sin^2 x \right]$, where [.] denotes the greatest integer function.

A.
$$rac{1}{3}(4-\pi)^{3/2}$$

B. $\Big(8(4-\pi)^{3/2}$
C. $rac{8}{3}(4-\pi)^{3/2}$
D. $rac{8}{3}(4-\pi)^{1/2}$

Answer: C

Watch Video Solution

60. The area the region included between the region satisfying min $(\,/x\,/,\,/y\,/\,) \geq 1$ and $x^2+y^2 \leq 5$ is

$$\begin{aligned} &\mathsf{A}.\,\frac{5}{2} \left(\frac{\sin^{-1}(2)}{\sqrt{5}} - \frac{\sin^{-1}(1)}{\sqrt{5}} \right) - 4 \\ &\mathsf{B}.\,10 \left(\frac{\sin^{-1}(2)}{\sqrt{5}} - \frac{\sin^{-1}(1)}{\sqrt{5}} \right) - 4 \\ &\mathsf{C}.\,\frac{2}{5} \left(\frac{\sin^{-1}(2)}{\sqrt{5}} - \frac{\sin^{-1}(1)}{\sqrt{5}} \right) - 4 \\ &\mathsf{D}.\,15 \left(\frac{\sin^{-1}(2)}{\sqrt{5}} - \frac{\sin^{-1}(1)}{\sqrt{5}} \right) - 4 \end{aligned}$$

Answer: B

Watch Video Solution

61. If $f(x) \geq 0, \, orall x \in (0,2)$ and y = f(x) makes positive intercepts of 2 and 1 units on X and Y -axes respectively and encloses an area of $rac{3}{4}$ unit with axes, then $\int_0^2 x f'(x) dx$ is A. $\frac{3}{4}$ B. 1 $\mathsf{C}.\,\frac{5}{4}$ $\mathsf{D.}-\frac{3}{4}$ Answer: D

Watch Video Solution

Chapter Test

1. Area bounded by the curves y=|x-1|, y=0 and |x|=2

A. 4

B. 5

C. 3

D. 6

2. The area inside the parabola $5x^2-y=0$ but outside the parabola $2x^2-y+9=0$ is

A. $12\sqrt{3}$ B. $6\sqrt{3}$ C. $8\sqrt{3}$

D. $4\sqrt{3}$

3. The area enclosed between the curve $y^2(2a-x)=x^3$ and the line x=2a above the x-axis is

A.
$$3\pi a^2$$

B.
$$\frac{3\pi a^2}{2}$$

C. $\frac{3\pi a^2}{4}$
D. $\frac{\pi a^2}{4}$

4. Area bounded by the curve $xy^2 = a^2(a - x)$ and the y-axis is $\frac{\pi a^2}{2} square inits$ (b) $\pi a^2 square inits$ $3\pi a^2 square inits$ (d) None of these

A. $\pi a^2/2$

 $\mathsf{B.}\,\pi a^2$

C. $3\pi a^2$

D. $2\pi a^2$

Answer: b

5. The area of the loop of the curve $ay^2 = x^2(a-x)$ is

A.
$$\frac{4a^2}{15}$$

B. $\frac{8}{15}a^2$
C. $\frac{16}{15}a^2$
D. $\frac{32}{5}a^2$

Answer: B

6. find the area common to the circle $x^2y^2 = 16a^2$ and the parabola $y^2 = 6ax$. Or Find the area of the region

$$ig\{(x,y)\!:\!y^2\leq 6a\ ig\} andig\{(x,y)\!:\!x^2+y^2\geq 16a^2ig\}$$
 .

A.
$$rac{4a^2}{3}ig(4\pi-\sqrt{3}ig)$$

B. $rac{4a^2}{3}(8\pi-3)$
C. $rac{4a^2}{3}ig(4\pi+\sqrt{3}ig)$

D. none of these

7. The line
$$y=mx$$
 bisects the area enclosed by the

curve
$$y = 1 + 4x - x^2$$
 and the lines $x = 0, x = rac{3}{2}$ and $y = 0$. Then the value of m is

A. 13/8

B. 13/32

C. 13/16

D. 13/14

Answer: C

Watch Video Solution

8. The area between the curve $y = x \sin x$ and x-axis where $o \leq x \leq 2\pi$, is

A. 2π

B. 3π

C. 4π

D. π

Answer: C

9. The area bounded by the curves $y = e^x, y = e^{-x}$ and y = 2, is

A. log (16/e)

B. log(4/e)

C. 2log(4/e)

D. log(8/e)

Answer: C

10. The area enclosed by the curves
$$x = a \sin^3 t$$
 and $y = a \cos^2 t$ is equal to

A.
$$\frac{3\pi a^2}{8}$$

B. $\frac{3\pi a^2}{16}$
C. $\frac{3\pi a^2}{32}$

D.
$$3\pi a^2$$

11. If A_1 is the area enclosed by the curve xy = 1, xaxis and the ordinates x = 1, x = 2, and A_2 is the area enclosed by the curve xy = 1, x-axis and the ordinates x = 2, x = 4, then

A.
$$A_1=2A_2$$

B. $A_2=2A_1$
C. $A_2=3A_1$

$$\mathsf{D}.\,A_1=A_2$$

Answer: D

12. If area bounded by the curve $y^2=4ax$ and y=mx

is $a^2/3$, then the value of m, is

A. 1

B. 2

C. 3

D. $\sqrt{3}$

Answer: B

13. The value of a for which the area between the curves $y^2=4ax$ and $x^2=4ay$ is 1 unit is A. $\sqrt{3}$

B. 4

C. $4\sqrt{3}$

D.
$$\sqrt{3}/4$$

Answer: D

14. If the area bounded by the curve y=f(x), x-axis and the ordinates x=1 and x=b is (b-1) sin(3b+4), then find f(x).

A.
$$(x-1) \cos(3x+4)$$

B. sin(3x + 4)

$$\mathsf{C.}\sin(3x+4)+3(x-1)$$

D. none of these

Answer: C

15. The area bounded by the curve $y=\sin 2x,\;$ axis and

y=1, is

A. 1

B.1/4

C. $\pi / 4$

D. $\pi/4-1/2$

Answer: D

16.	The	area	between	the	curve
x = -	$-2y^2$ and	x = 1 - 1	$3y^2,$ is		
A. 4	4/3				
В.	3/4				
С. 3	3/2				
D. 2	2/3				

Answer: A

17. The area between the curves $y = \cos x$, x-axis and

the line y = x + 1, is

A. 1/2

B. 1

C. 3

D. 2

Answer: A

18. If the area bounded by the curve $y = x^2 + 1$ and the tangents to it drawn from the origin is A, then the value of 3A is_-

A. 8/2 sq. units

B. 1/3 sq. units

C. 2/3 sq. units

D. none of these

Answer: C

19. The positive value of the parmeter 'a' for which the area of the figure bounded by $y = \sin as, y = 0, x = \pi/a$ and $x = \pi/3a$ is 3, is equal to

B. 1/2

C.
$$rac{2+\sqrt{3}}{3}$$

D.
$$\sqrt{3}$$

Answer: B

20. The area in square units bounded by the curves $y=x^3, y=x^2$ and the ordinates x=1, x=2 is

A. 17/12

B. 12/13

C. 2/7

D. 7/2

Answer: A

21. The area bounded by the curve $y^2 = x$ and the ordinate x = 36 is divided in the ratio 1:7 by the

ordinate x=a. Then a=

A. 8

B. 9

C. 7

D. 0

Answer: B

22. The area contained between the x-axis and one area

of the curve $y=\cos 3x,\;$ is

A. 1/3

B. 2/3

C. 2/7

D. 2/5

Answer: B

23. The area of the figure bounded by $|y| = 1 - x^2$ is in square units,

A. 4/3

B. 8/3

C. 16/3

D. 5/3

Answer: B

D. none of these

Answer: B

25. The area of the region on place bounded by max $(|x|,|y|) \leq rac{1}{2}$ is

- A. $1/2 + \ln 2$
- ${\tt B.3}+\ln 2$
- C. 31/4
- $\mathsf{D.}\,1+2\ln 2$

Answer: B

26. The area of the closed figure bounded by $y = rac{x^2}{2} - 2x + 2$ and the tangents to it at (1, 1/2) and (4,2) is

A. 9/8

B. 3/8

C. 3/2

D. 9/4

Answer: A

27. The area of the closed figure bounded by $y = 1/\cos^2 x, x = 0, y = 0$ and $x = \pi/4$, is

A. $\pi/4$

B. $1 + \pi/4$

C. 1

D. 2

Answer: C

28. The area (in square units) of the closed figure bounded by

$$x=\ -1, x=2 ext{ and } y=igg\{rac{-x^2+2, x\leq 1}{2x-1, x>1} ext{ and the}$$

abscissa axis, is

A. 16/3

B. 13/3

C. 13/3

D. 7/3

Answer: A

A.
$$rac{4+3\ln 3}{2}$$

B. 2+3ln(3sqrt(3)/4)

C.
$$\frac{3}{2} \ln 3$$

D. $\frac{1}{2} + \ln 3$

Answer: B

30. The area of the region bounded by $x^2 + y^2 - 2x - 3 = 0$ and y = |x| + 1 is

A. π

 $\mathsf{B.}\,2\pi$

 $\mathsf{C.}\,4\pi$

D. $\pi/2$

Answer: A

31. The area of the region bounded by y = |x - 1| and y = 3 - |x|, is

A. 2

B. 3

C. 4

D. 1

Answer: C

32. Find the area of the closed figure bounded by the curves $y = \sqrt{x, y} = \sqrt{4x - 3x}$, and y = 0. A. 4/9B. 8/9C. 19/9D. 5/9

Answer: B

33. The area of the closed figure bounded by the curves $y = \cos x, y = 1 + \frac{2}{\pi}x$ and $x = \pi/2$, is A. $\frac{\pi + 4}{4}$ B. $\frac{3\pi - 4}{4}$

C.
$$\frac{3\pi}{4}$$

D.
$$\frac{\pi}{4}$$

Answer: B

Watch Video Solution

34. For which of the following values of m is the area of

the regions bounded by the curve $y=x-x^2$ and the line y=mx equal $\displaystyle rac{9}{2}\, ?\, -4$ (b) -2 (c) 2 (d) 4

A. - 4.4

- B. -2, 2
- C. 2, 4
- D. -2, 3

Answer: B

Watch Video Solution

35. The area bound by the curve $y = \sec x$, then x-axis

and the lines $x = 0 \, \operatorname{and} \, x = \pi \, / \, 4$, is

A.
$$\log(\sqrt{2}+1)$$

B. $\log(\sqrt{2}-1)$
C. $\frac{1}{2}\log 2$
D. $\sqrt{2}$

Answer: A

36. The area bounded by the parabola $y^2 = 8x$, the x-axis and the latusrectum is $\frac{16}{3}$ b. $\frac{23}{3}$ c. $\frac{32}{3}$ d. $\frac{16\sqrt{2}}{3}$

A.
$$\frac{16}{3}$$

B. $\frac{23}{3}$
C. $\frac{32}{3}$
D. $\frac{16\sqrt{2}}{3}$

Answer: C

37. The area (in square units) bounded by the curve

$$y^2 = 8x$$
 and $x^2 = 8y$, is

A. `64(3*sqrt(2)-1/3)

B.
$$\frac{3}{16}$$

C. $\frac{14}{3}$
D. $\frac{3}{14}$

Answer: A

38. If the area bounded by the curve y=f(x), x-axis and the ordinates x=1 and x=b is (b-1) sin(3b+4), then find f(x).

A.
$$(x-1)\cos(3x+4)$$

B. sin(3x + 4)

C. $\sin(3x+4) + 3(x-1)\cos(3x+4)$

D. none of these

Answer: C

39. The area in square units of the region bounded by the curve $x^2 = 4y$, the line x=2 and the x-axis, is

A. 1

B. 2/3

C.4/3

D. 8/3

Answer: B

40. The area enclosed between the curve
$$y^2(2a - x) = x^3$$
 and the line $x = 2$ above the $x - a\xi s$ is $\pi a^2 squares$ (b) $\frac{3\pi a^2}{2}squares$ $2\pi a^2 squares$ (d) $3\pi a^2 squares$

A. πa^2

B. $3/2\pi a^2$

 $\mathsf{C.}\,2\pi a^2$

D. $3\pi a^2$

Answer: B

Watch Video Solution

41. The area bounded by the curve $y = 4x - x^2$ and x-axis is (A) $\frac{30}{7}$ sq. units (B) $\frac{31}{7}$ sq. units (C) $\frac{32}{3}$ sq. units (D) $\frac{34}{3}$ sq. units

A.
$$\frac{30}{7}$$

B. $\frac{31}{7}$
C. $\frac{32}{3}$
D. $\frac{34}{3}$

Answer: C

42. Area bounded by the parabola $y^2 = x$ and the line 2y = x is: A. 4/3B.1 C. 2/3D. 1/3**Answer: A** Watch Video Solution

43. Area between the x-axis and the curve $y = \cos x$, when $0 \le x \le 2\pi$ is:

A. 0

B. 2

C. 3

D. 4

Answer: D

- **44.** The ratio of the areas between the curves $y = \cos x$ and $y = \cos 2x$ and x-axis from x = 0 to $x = \frac{\pi}{3}$ is (A) 1:3 (B) 2:1 (C) $\sqrt{3}$:1 (D) none of these A. 1:2
 - B.2:1
 - C. $\sqrt{3}:1$
 - D. none of these

Answer: B

45. Find the area bounded by the parabola $y=x^2+1$

and the straight line x + y = 3.

A.
$$\frac{45}{7}$$

B. $\frac{3}{2}$
C. $\frac{32}{3}$
D. $\frac{3}{32}$

Answer: D

46. Prove that the area common to the two parabolas

$$y=2x^2 \ and \ y=x^2+4 \ is rac{32}{3}$$
 sq. units.

A.
$$\frac{2}{3}$$

B. $\frac{3}{2}$
C. $\frac{32}{3}$
D. $\frac{3}{32}$

Answer: C

47. Find the area of the region $\{(x, y): x^2 + y^2 \le 1 \le x + y\}$ A. $\frac{\pi}{5}$ B. $\frac{\pi}{4}$ C. $\frac{\pi^2}{4}$ D. $\frac{\pi}{4} - \frac{1}{2}$

Answer: D

48. Find the area bounded by the parabola $y^2 = 4ax$ and its latus rectum.

A. 0

B.
$$\frac{4}{3}a^{2}$$

C. $\frac{8}{3}a^{2}$
D. $\frac{a^{2}}{3}$

Answer: C

49. The area bounded by the curve $y = x^4 - 2x^3 + x^2 + 3$ with x-axis and ordinates corresponding to the minima of y, is

A. 1

B.
$$\frac{91}{30}$$

C. $\frac{30}{9}$

D. 4

Answer: B

50. Find the area common to two parabolas $x^2 = 4ay$ and $y^2 = 4ax$, using integration.

A.
$$\frac{8a^3}{3}$$

B. $\frac{16a^2}{3}$
C. $\frac{32a^2}{3}$
D. $\frac{64a^2}{3}$

51. The area (in square units) bounded by curves y=sinx

between the ordinates x=0, $x=\pi$ and the x-axis , is

A. 2

B. 4

C. 3

D. 1

Answer: A

52. The area of the region bounded by the parabola $(y-2)^2 = x - 1$, the tangent to the parabola at the point (2,3) and the X-axis is

A. 3

B. 6

C. 7

D. none of these

Answer: C

53. The area enclosed between the curves
$$y = \log_e(x+e), x = \log_e\left(rac{1}{y}
ight)$$
, and the x-axis is

A. 2

B. 1

C. 4

D. none of these

Answer: A

54. Find the area of the region formed by $x^2 + y^2 - 6x - 4y + 12 \le 0, y \le x$ and $2x \le 5$.

D. none of these

Answer: C

55. If A_n be the area bounded by the curve $y=(\tan x)^n$ and the lines $x=0,\;y=0,\;x=\pi/4$, then for n>2.

A.
$$A_n + A_{n-2} = rac{1}{n-1}$$

B. $A_n + A_{n-2} < rac{1}{n-1}$
C. $A_n - A_{n-2} = rac{1}{n-1}$

D. none of these

Answer: A

56. The area bounded by the parabola $y^2 = x$, straight

line y = 4 and y-axis is

A.
$$\frac{3}{32}$$

B. $\frac{64}{3}$
C. $\frac{33}{2}$
D. $\frac{16}{3}$

57. The area (in square units), bounded by $y=2-x^2$

and
$$x+y=0$$
 , is

A.
$$\frac{7}{2}$$
 sq. units
B. $\frac{9}{2}$ sq. units

D. none of these

58. The area bounded by the curve $y = \log_e x$, the x-axis and the line x = e is (A) e sq. units (B) 1 sq. unit (C) $\left(1 - \frac{1}{e}\right)$ sq. units (D) $\left(1 + \frac{1}{e}\right)$ sq. units

A. e

B. 1

C.
$$1 - \frac{1}{e}$$

D. $1 + \frac{1}{e}$

Answer: B

Watch Video Solution

59. Find the area included between the curves $x^2 = 4y$ and $y^2 = 4x$. A. 4/3B. 1/3C. 16/3 $\mathsf{D.}\,8\,/\,3$ Answer: C

60. If the area above the x-axis, bounded by the curves $y = 2^{kx}$ and x = 0, and x = 2 is $\frac{3}{\log_e(2)}$, then the value

of k is

A. 1/2

B. 1

 $\mathsf{C}.-1$

D. 2

