# ©゙" doubtnut 

India's Number 1 Education App

## MATHS

## BOOKS - OBJECTIVE RD SHARMA ENGLISH

## AREAS OF BOUNDED REGIONS

Section I Solved Mcqs

1. The area bounded by the curves $y=|x|-1$ and
$y=-|x|+1$ is equal to
A. 1
B. 2
C. $\sqrt{2}$
D. 4

## Answer: B

## - Watch Video Solution

2. The area bounded by the curve
$y=\left[\frac{x^{2}}{64}+2\right], y=x-1, y=x-1$ and $x=0$
above the $x$-axis will be-(Where [] represents greatest integer function) (a) 2 (b) 3 (c) 4 (d) none of these
A. 2
B. 3
C. 4
D. none of these

## Answer: c

## - Watch Video Solution

3. Find the area bounded by $y=x e^{|x|}$ and lines $|x|=1, y=0$.
A. 4
B. 6
C. 1
D. 2

## Answer: d

## - Watch Video Solution

4. The area bounded by the curves $\mathrm{y}=\ln \mathrm{x}, \mathrm{y}=\ln |\mathrm{x}|, \mathrm{y}=|\ln \mathrm{x}|$ and $\mathrm{y}=|\ln ||\mathrm{x}|$ is
A. 5
B. 2
C. 4
D. none of these

Answer: B
5. Let $f(x)$ be a continuous function such that the area bounded by the curve $y=f(x)$, the x -axis, and the lines $x=0$ and $x=a i s 1+\frac{a^{2}}{2} \sin$ a. Then,
A. $\left(\frac{\pi}{2}\right)=1+\frac{\pi^{2}}{8}$
B. $f(a)=1+\frac{a^{2}}{2} \sin a$
C. $f(a)=a \sin a+\frac{1}{2} \cos a$
D. none of these

## Answer: c

6. Area bounded by $|x-1| \leq 2$ and $x^{2}-y^{2}=1$, is

$$
\begin{aligned}
& \text { A. } 6 \sqrt{2}+\frac{1}{2} \ln |3+2 \sqrt{2}| \\
& \text { B. } 6 \sqrt{2}+\frac{1}{2} \ln |3-2 \sqrt{2}| \\
& \text { C. } 6 \sqrt{2}-\ln |3+2 \sqrt{2}|
\end{aligned}
$$

D. none of these

## Answer: c

## - Watch Video Solution

7. Find the area bounded by the curve $f(x)=x+\sin x$ and its inverse function between the ordinates $x=0$ to $x=2 \pi$.
A. $4 \pi$
B. $8 \pi$
C. 4
D. 8

## Answer: d

## - Watch Video Solution

8. Area bounded by $f(x)=\frac{(x-1)(x+1)}{x-2} x$-axis and
ordinates $x=0$ and $x=\frac{3}{2}$ is (A) $\frac{4}{5}$ (B) $\frac{7}{8}$ (C) 1 (D)
none
A. $\frac{4}{5}$
B. $\frac{7}{8}$
C. 1
D. none of these

Answer: b

## D Watch Video Solution

9. If the line $x=\alpha$ divides the area of region $R=\left\{(x, y) \in R^{2}: x^{3} \leq y \leq x, 0 \leq x \leq 1\right\}$ into two equal parts, then
A. $\frac{3 \pi}{8}$
B. $\frac{5 \pi}{8}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{8}$

## Answer: C

## - Watch Video Solution

10. Let $f(x)=\max \left\{\sin x, \cos x, \frac{1}{2}\right\}$, then determine the area of region bounded by the curves $y=f(x)$, X axis, Y -axis and $x=2 \pi$.
A. $\sqrt{2}-\sqrt{3}+\frac{5 \pi}{12}$
B. $\sqrt{2}+\frac{\sqrt{3}}{2}+\frac{5 \pi}{12}$
C. $\sqrt{2}+\sqrt{3}+\frac{5 \pi}{12}$

## D. none of these

Answer: b

## D Watch Video Solution

11. The area bounded by the $x$-axis, the curve $y=f(x)$,
and the lines $x=1, x=b$ is equal to $\sqrt{b^{2}+1}-\sqrt{2}$
for all $b>1$, then $f(x)$ is
A. $\sqrt{x-1}$
B. $\sqrt{x+1}$
C. $\sqrt{x^{2}-1}$
D. $x / \sqrt{x^{2}+1}$

## Answer: d

## - Watch Video Solution

12. If $f(x) \geq 0, \forall x \in(0,2)$ and $y=f(x)$ makes
positive intercepts of 2 and 1 units on $X$ and $Y$-axes respectively and encloses an area of $\frac{3}{4}$ unit with axes,
then $\int_{0}^{2} x f^{\prime}(x) d x$ is
A. $\frac{3}{2}$
B. 1
C. $\frac{5}{4}$
D. $\frac{-3}{4}$

## Answer: d

## - Watch Video Solution

13. If a curve $y=a \sqrt{x}+b x$ passes through point
$(1,2)$ and the area bounded by curve, line $x=4$ and x axis is 8 , then : (a) $a=3$ (b) $b=3$ (c) $a=-1$ (d)
$b=-1$
A. $a=3, b=-1$
B. $a=3, b=1$
C. $a=-3, b=1$
D. $a=-3, b=-1$

## - Watch Video Solution

14. If the area enclosed between the curves
$y=a x^{2} a n d x=a y^{2}(a>0)$ is 1 square unit, then find the value of $a$.
A. $\frac{1}{\sqrt{3}}$
B. $\frac{1}{2}$
C. 1
D. $\frac{1}{3}$

## D Watch Video Solution

15. The area of the region bounded by the curuse
$y=|x-2|, x=1, x=3$ and the $x$-axis is
A. 4
B. 2
C. 3
D. 1

Answer: D

- Watch Video Solution

16. Sketch the region bounded by the curves
$y=\sqrt{5-x^{2}}$ and $y=|x-1|$ and find its area.
A. $\frac{5 \pi}{4}-2$
B. $\frac{5 \pi-2}{4}$
C. $\frac{5 \pi-2}{2}$
D. $\frac{\pi}{2}-5$

Answer: c

## - Watch Video Solution

17. The area enclosed between the curves $y=x$ and $y=2 x-x^{2}$ (in square units), is
A. $\frac{1}{2}$
B. $\frac{1}{6}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

## Answer: B

## - Watch Video Solution

18. The area enclosed between the curve
$y=\log _{e}(x+e)$ and the coordinate axes is
A. 4
B. 3
C. 2
D. 1

## Answer: D

## - Watch Video Solution

19. The parabolas $y^{2}=4 x a n d x^{2}=4 y$ divide the square region bounded by the lines $x=4, y=4$ and the coordinate axes. If $S_{1}, S_{2}, S_{3}$ are the areas of these parts numbered from top to bottom, respectively, then

$$
\begin{align*}
& S_{1}: S_{2} \equiv 1: 1 \quad \text { (b) } \quad S_{2}: S_{3} \equiv 1: 2 \quad S_{1}: S_{3} \equiv 1: 1  \tag{d}\\
& S_{1}:\left(S_{1}+S_{2}\right)=1: 2
\end{align*}
$$

A. 1:1:1
B. 2:1:2
C. 1:2:3
D. 1:3:2

Answer: a

## D Watch Video Solution

20. The area enclosed between the curves
$y^{2}=x$ and $y=|x|$ is
A. $\frac{1}{6}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$

## - Watch Video Solution

21. The area of the region bounded by the parabola
$(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the $X$-axis is
A. 3
B. 6
C. 9
D. 12

## Answer: c

## - Watch Video Solution

22. The area bounded by the curves $y=\cos x$ and $y=\sin x$ between the ordinates $\mathrm{x}=0$ and $x=3 \pi / 2$ is
A. $4 \sqrt{2}-1$
B. $4 \sqrt{2}+1$
C. $4 \sqrt{2}-2$
D. $4 \sqrt{2}+2$

Answer: C
23. Let $f:[1,2] \rightarrow[0, \infty)$ be a continuous function such that $f(x)=f(1-x)$ for all $x \in[-1,2]$. Let $R_{1}=\int_{-1}^{2} x f(x) d x$, and $R_{2}$ be the area of the region bounded by $y=f(x), x=-1, x=2$ and the $x$-axis.

Then,
A. $R_{1}=2 R_{2}$
B. $R_{1}=3 R_{2}$
C. $2 R_{1}=3 R_{2}$
D. $3 R_{1}=R_{2}$

Answer: c
24. If $R_{1}=\{(x, y) \mid y=2 x+7$, where $x \in R$ and
$-5 \leq x \leq 5\}$ is a relation. Then find the domain and
Range of $R_{1}$.
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{1}{4}$

Answer: b
25. The area of the region enclosed by the curve $y=x, x=e, y=\frac{1}{x}$ and the positive X -axis is
A. $\frac{1}{2}$
B. 1
C. $\frac{3}{2}$
D. $\frac{5}{2}$

## Answer: C

## D Watch Video Solution

26. The area of the region bounded by the curve $y=x^{3}$, and the lines, $\mathrm{y}=8$ and $\mathrm{x}=0$, is
A. 16
B. 8
C. 10
D. 12

## Answer: D

## - Watch Video Solution

27. Let $S$ be the area of the region enclosed by

$$
y-e^{-x^{2}}, y=0, x=0 \text { and } x=1 . \text { Then }
$$

A. $S \geq \frac{1}{e}$
B. $S \geq-\frac{1}{e}$
C. $S \leq \frac{1}{4}\left(1+\frac{1}{\sqrt{e}}\right)$
D. $S \leq \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{e}}\left(1-\frac{1}{\sqrt{2}}\right)$

## Answer: c

## - Watch Video Solution

28. The area (in square units) bounded by the curves
$y=\sqrt{x}, 2 y-x+3=0, x$-axis, and lying in the first quadrant is
A. 9
B. 36
C. 18
D. $27 / 4$

Answer: A

## - Watch Video Solution

29. The area enclosed by the curves
$y=\sin x+\cos x$ and $y=|\cos x-\sin x|$ over the interval $\left[0, \frac{\pi}{2}\right]$
A. $4(\sqrt{2}-1)$
B. $2 \sqrt{2}(\sqrt{2}-1)$
C. $2(\sqrt{2}+1)$
D. $2 \sqrt{2}(\sqrt{2}+1)$

## - Watch Video Solution

30. Find the ratio in which the area bounded by the curves $y^{2}=12 x$ andx $x^{2}=12 y$ is divided by the line $x=3$.
A. $\frac{245}{4}$
B. $\frac{147}{4}$
C. $\frac{45}{4}$
D. $\frac{137}{4}$

## D Watch Video Solution

31. The area of the region described by

$$
A=\left\{(x, y): x^{2}+y^{2} \leq 1 \text { and } y^{2} \leq 1-x\right\} \text { is }
$$

A. $\frac{\pi}{2}-\frac{2}{3}$
B. $\frac{\pi}{2}+\frac{2}{3}$
C. $\frac{\pi}{2}+\frac{4}{3}$
D. $\frac{\pi}{2}-\frac{4}{3}$

Answer: C

- Watch Video Solution

32. The area (in square units) of the region bounded by $y^{2}=2 x$ and $y=4 x-1$, is
A. $\frac{15}{64}$
B. $\frac{9}{32}$
C. $\frac{7}{32}$
D. $\frac{5}{64}$

Answer: B

## - Watch Video Solution

33. Suppose that $F(\alpha)$ denotes the area of the region

$$
x=0, x=2, y^{2}=4 x
$$

and
$y=|\alpha x-1|+|\alpha x-2|+\alpha x, \quad$ where $\quad \alpha \in\{0,1\}$.
Then the value of $F(\alpha)+\frac{8 \sqrt{2}}{3}$ when $\alpha=0$ is (A) 4 (B) 5 (C) 6 (D) 9
A. 4
B. 5
C. 6
D. 9

Answer: c
34. Suppose that $F(\alpha)$ denotes the area of the region bounded $\quad$ by $\quad x=0, x=2, y^{2}=4 x \quad$ and
$y=|\alpha x-1|+|\alpha x-2|+\alpha x, \quad$ where $\quad \alpha \in\{0,1\}$. Then the value of $F(\alpha)+\frac{8 \sqrt{2}}{3}$ when $\alpha=0$ is (A) 4 (B) 5 (C) 6 (D) 9
A. 5
B. 6
C. 7
D. 9

Answer: a
35. Let $F(x)=\int_{x}^{x^{2}+\frac{\pi}{6}}\left(2 \cos ^{2} t\right) d t$ for all $x \in R$ and
$f:\left[0, \frac{1}{2}\right] \rightarrow[0, \infty)$ be a continuous function.For
$a \in\left[0, \frac{1}{2}\right]$, if $\mathrm{F}^{\prime}(\mathrm{a})+2$ is the area of the region bounded by $x=0, y=0, y=f(x)$ and $x=a$, then $f(0)$ is
A. 1
B. 2
C. 3
D. 6

## Answer: c

36. The area of the region bounded by the curve C
$: y=\frac{x+1}{x^{2}+1}$ nad the line $\mathrm{y}=1$, is
A. $\mathrm{ml}-\frac{1}{2} \operatorname{In} 2+\frac{\pi}{4}$
B. $\operatorname{In} 2-\frac{\pi}{4}+1$
C. $\frac{1}{2} \operatorname{In} 2+\frac{\pi}{4}-1$
D. $\ln 2-\frac{\pi}{2}+1$

## Answer: c

## (D) Watch Video Solution

37. The graph of $f(x)=x^{2}$ and $g(x)=c x^{3}$ intersect
at two points, If the area of the region over the interval

# $\left[0, \frac{1}{c}\right]$ is equal to $\frac{2}{3}$, then the value of $\left(\frac{1}{c}+\frac{1}{c^{2}}\right)$ is 

A. 20
B. 2
C. 6
D. 12

## Answer: C

## - Watch Video Solution

38. Find the area of the region bounded by the curves
$y=x^{2}, y=\left|2-x^{2}\right|$, andyl $=2$, which lies to the right of the line $x=1$.
A. $\left(\frac{12-20 \sqrt{3}}{2}\right)$ sq. units
B. $\left(\frac{20-\sqrt{2}}{3}\right)$ sq. units
C. $\left(\frac{20-12 \sqrt{2}}{3}\right)$ sq. units
D. $\left(\frac{12-20 \sqrt{2}}{3}\right)$ sq. units

## Answer: c

## - Watch Video Solution

39. The area (in sq. units) of the region

$$
\left\{(x, y): y^{2} \geq 2 x \text { and } x^{2}+y^{2} \leq 4 x, x \geq 0, y \geq 0\right\} \text { is }
$$

A. $\pi-\frac{4}{3}$
B. $\pi-\frac{8}{3}$
С. $\pi-\frac{4 \sqrt{2}}{3}$
D. $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$

Answer: b

## D Watch Video Solution

40. If the line $x=a$ bisects the area under the curve
$y=\frac{1}{x^{2}}, 1 \leq x \leq 9$, then $a$ is equal to
A. $\frac{4}{9}$
B. $\frac{9}{5}$
C. $\frac{5}{9}$
D. $\frac{9}{4}$

Answer: b

## - Watch Video Solution

41. The area (in sq. units) of the region described by

$$
A=\left\{(x, y): y \geq x^{2}-5 x+4, x+y>1, y \leq 0\right\} \text { is }
$$

A. $\frac{7}{2}$
B. $\frac{13}{6}$
C. $\frac{17}{6}$
D. $\frac{19}{6}$

## Answer: d

## - View Text Solution

42. Area of the region
$\left\{(x, y) \in R^{2}: y \geq \sqrt{|x+3|}, 5 y \leq x+9 \leq 15\right\} \quad$ is equal to
A. $\frac{1}{6}$
B. $\frac{4}{3}$
C. $\frac{3}{2}$
D. $\frac{5}{3}$

## D Watch Video Solution

43. The area (in sq. units) of the region $\left\{(x, y): x \geq 0, x+y \leq 3, x^{2} \leq 4 y\right\}$ and $\{y \leq 1+\sqrt{x}\}$ is
A. $\frac{59}{12}$
B. $\frac{3}{2}$
C. $\frac{7}{3}$
D. $\frac{5}{2}$

## Answer: d

44. If the line $x=\alpha$ divides the area of region
$R=\left\{(x, y) \in R^{2}: x^{3} \leq y \leq x, 0 \leq x \leq 1\right\}$ into two equal parts, then
A. $0<\alpha \frac{1}{2}$
B. $\frac{1}{2}<\alpha<1$
C. $2 \alpha^{4}-4 \alpha^{2}+1=0$
D. $\alpha^{2}+4 \alpha^{2}-1=0$

Answer: b,c

D Watch Video Solution

1. Using integration, find the area bounded by the curves $y=|x-1|$ and $y=3-|x|$.
A. 2
B. 3
C. 4
D. 1

## Answer: C

- Watch Video Solution

2. The area of the figure bounded by the curves
$y^{2}=2 x+1$ and $x-y-1=0$, is
A. $2 / 3$
B. $4 / 3$
C. $8 / 3$
D. $16 / 3$

Answer: D

- Watch Video Solution

3. Find the area bounded by the curves $y=2 x-x^{2}$ and the straight line $y=-x$.
A. $9 / 2$
B. $43 / 6$
C. $34 / 6$
D. $\frac{11}{2}$

Answer: A

- Watch Video Solution

4. The area of the region bounded by the curve
$y=|x-1|$ and $y=1$ is:
A. 1
B. 2
C. $1 / 2$
D. $3 / 2$

Answer: A

- Watch Video Solution

5. The area bounded by the curve $y=x|x|, x$-axis and the ordinates $x=-1 \& x=1$ is:
A. 0
B. $1 / 3$
C. $2 / 3$
D. 1

## Answer: C

- Watch Video Solution

6. Area of the region bounded by the curve $y=2^{x}, y=2 x-x^{2}, x=0$ and $x=2$ is given by
A. $\frac{3}{\log 2}-\frac{4}{3}$
B. $\frac{3}{\log 2}+\frac{4}{3}$
C. $2 \log 2-\frac{4}{3}$
D. $2 \log ^{2}-\frac{4}{3}$

Answer: D

- Watch Video Solution

7. Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ the line $x=\sqrt{3} y$ and x -axis , is
A. $\pi$
B. $\pi / 2$
C. $\pi / 3$
D. $\pi / 4$

## Answer: C

- Watch Video Solution

8. $A O B$ is the positive quadrant of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ in which $O A=a, O B=b$. Then find the area between the arc $A B$ and the chord $A B$ of the ellipse.

$$
\begin{aligned}
& \text { A. } \frac{1}{2} a b(\pi+2) \\
& \text { B. } \frac{1}{4} a b(\pi-4) \\
& \text { C. } \frac{1}{4} a b(\pi-2)
\end{aligned}
$$

D. none of these

## Answer: C

9. Using integration, find the area of the region bounded by the line $x-y+2=0$, the curve $x=\sqrt{y}$ and $y$ - axis
A. 9
B. $9 / 2$
C. $10 / 3$
D. $5 / 2$

Answer: C
10. The area cut off from a parabola by any double ordinate is $k$ time the corresponding rectangle contained by the double ordinate and its distance from the vertex. Find the value of k ?
A. $1 / 2$
B. $1 / 3$
C. $2 / 3$
D. 1

Answer: C

- Watch Video Solution

11. Area between the curve $y=4+3 x-x^{2}$ and x -axis in square units , is
A. $125 / 3$
B. $125 / 4$
C. $125 / 6$
D. 25

## Answer: C

(D) Watch Video Solution
12. If A is the area between the curve $y=\sin x$ and x axis in the interval $[0, \pi / 4]$, then in the same interval ,
area between the curve $y=\cos x$ and x -axis, is
A. A
B. $\pi / 2-A$
C. $1-A$
D. $A-1$

Answer: C

## - Watch Video Solution

13. If $A$ is the area lying between the curve $y=\sin x$ and $\quad \mathrm{x}$-axis between $\mathrm{x}=0 \quad$ and $x=\pi / 2$.

Area of the region between the curve
$y=\sin 2 x$ and $x$-axis in the same interval is given by
A. $A / 2$
B. A
C. $2 A$
D. $3 / 2 A$

## Answer: B

## - Watch Video Solution

14. The area of the loop between the curve $y=a \sin x$ and x -axis is (A) $a$ (B) $2 a$ (C) $3 a$ (D) none of these
A. a
B. 2a
C. 3a
D. 4 a

## Answer: B

## - Watch Video Solution

15. Area (in square units) of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$, is
A. 2
B. $9 / 4$
C. $6 \sqrt{3}$
D. none of these

## Answer: B

## - Watch Video Solution

16. If $A_{1}$ is the area of the parabola $y^{2}=4 a x$ lying between vertex and the latusrectum and $A_{2}$ is the area between the latusrectum and the double ordinate
$x=2 a$, then $\frac{A_{1}}{A_{2}}$ is equal to
A. $2 \sqrt{2}-1$
B. $(2 \sqrt{2}+1) / 7$
C. $(2 \sqrt{2}-1) / 7$
D. none of these

## Answer: B

## - Watch Video Solution

17. The area of the figure bounded by
$y=\sin x, y=\cos x$ is the first quardrant is
A. $\sqrt{2}(\sqrt{2}-1)$
B. $\sqrt{3}+1$
C. $2(\sqrt{3}-1)$
D. none of these

## - Watch Video Solution

18. The area bounded by the curves
$y=x e^{x}, y=x e^{-x}$ and the line $\mathrm{x}=1$ is
A. $\frac{2}{e}$
B. $1-\frac{2}{e}$
C. $\frac{1}{e}$
D. $1-\frac{1}{e}$

Answer: A
19. The areas of the figure into which the curve $y^{2}=6 x$ divides the circle $x^{2}+y^{2}=16$ are in the ratio
A. $\frac{2}{3}$
B. $\frac{4 \pi-\sqrt{3}}{8 \pi+\sqrt{3}}$
C. $\frac{4 \pi+\sqrt{3}}{8 \pi-\sqrt{3}}$
D. none of these

## Answer: C

20. Find the area (in sq. unit) bounded by the curves:
$y=e^{x}, y=e^{-x}$ and the straight line $\mathrm{x}=1$.

> A. $e+\frac{1}{e}$
> B. $e-\frac{1}{e}$
> C. $e+\frac{1}{e}-2$
D. none of these

## Answer: C

- Watch Video Solution

21. The area of the region bounded by the $Y$ - axis
$y=\cos x$ and $y=\sin x$ Where $0 \leq x \leq \frac{\pi}{2}$, is
A. $2(\sqrt{2}-1)$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer: B

- Watch Video Solution

22. The positive value of the parmeter 'a' for which the
area of the figure founded by
$y=\sin a s, y=0, x=\pi / a$ and $x=\pi / 3 a$ is 3, is equal to
A. 2
B. $1 / 2$
C. $\frac{2+\sqrt{3}}{3}$
D. $3 / 2$

Answer: B

- Watch Video Solution

23. The vlaue of $m$ for which the area included between th curves $y^{2}=4 a x$ and $y=m x$ equals, $a^{2} / 3$, is
A. 2
B. -2
C. $1 / 2$
D. 1

## Answer: A

## D Watch Video Solution

24. Area bounded by the curve $y=x^{3}$, the $x$-axis and the ordinates $x=-2$ and $x=1$ is:
A. $17 / 2$
B. $15 / 2$
C. $15 / 4$
D. $17 / 4$

## Answer: D

## - Watch Video Solution

25. 

The
area
bounded
by
$y=x^{2}, y=[x+1], 0 \leq x \leq 2$ and the $y$-axis is
where [. ] is greatest integer function.
A. $1 / 3$
B. $2 / 3$
C. 1
D. $7 / 3$

## Answer: B

## D Watch Video Solution

26. Find the area bounded by the $x$-axis, part of the
curve $y=\left(1-\frac{8}{x^{2}}\right)$, and the ordinates at
$x=2 a n d x=4$. If the ordinate at $x=a$ divides the area into two equal parts, then find $a$.
A. $2 \sqrt{2}$
B. $\pm 2 \sqrt{2}$
C. $\pm \sqrt{2}$
D. $\pm 2$

## Answer: B

## D Watch Video Solution

27. The area bounded by the curve $y=f(x)$ (where $f(x) \geq 0$ ), the co-ordinate axes $\&$ the line $x=x_{1}$ is given by $x_{1} \cdot e^{x_{1}}$. Therefore $f(x)$ equals
A. $e^{x}$
B. $x e^{x}$
C. $x e^{x}-e^{x}$
D. $x e^{x}+e^{x}$

## Answer: D

## - Watch Video Solution

28. about to only mathematics
A. 1
B. 1.5
C. 2
D. 3

## Answer: C

## - Watch Video Solution

29. The area of the triangle formed by the positive $x-a \xi s$ and the normal and tangent to the circle $x^{2}+y^{2}=4$ at $(1, \sqrt{3})$ is $2 \sqrt{3}$ squinits (b) $3 \sqrt{2}$ squinits
$\sqrt{6}$ squinits ( d ) none of these
A. $\sqrt{3}$
B. $1 / \sqrt{3}$
C. $2 \sqrt{3}$
D. $3 \sqrt{3}$

## - Watch Video Solution

30. The area of the region for which ${ }^{`} 0>0$ ' is
A. $\int_{1}^{3}\left(3-2 x-x^{2}\right) d x$
B. $\int_{0}^{3}\left(3-2 x-x^{2}\right) d x$
C. $\int_{0}^{1}\left(3-2 x-x^{2}\right) d x$
D. $\int^{3}\left(3-2 x-x^{2}\right) d x$ -1

Answer: C
31. The area between the curve $y=2 x^{4}-x^{2}$, the axis, and the ordinates of the two minima of the curve is
$11 / 60$ sq. units (b) $7 / 120$ sq. units $1 / 30$ sq. units (d) $7 / 90$
sq. units
A. $7 / 120$
B. $9 / 120$
C. $11 / 120$
D. $13 / 120$

Answer: A
32. Find the area bounded by the curve $x^{2}=4 y$ and the straight line $x=4 y-2$.
A. $3 / 8$
B. $5 / 8$
C. $7 / 8$
D. $9 / 8$

Answer: D

- Watch Video Solution

33. The area of the region bounded by the curve $\left(a^{4}\right)\left(y^{2}\right)=(2 a-x)\left(x^{5}\right)$ is to that of the circle whose radius is a, is given by the ratio (a) 4:5 (b) 58 (c) 23 (d) 3:2.
A. $4: 5$
B. 5:8
C. 2:3
D. 3: 2

Answer: B

- Watch Video Solution

34. The area between $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the straight
line $\frac{x}{a}+\frac{y}{b}=1$ is (A) $\frac{1}{2} \pi a b$ (B) $\frac{1}{2} a b$ (C) $\frac{\pi a b}{4}-\frac{a b}{2}$
(D) $\frac{1}{4} a b$
A. $\frac{1}{2} a b$
B. $\frac{1}{2} \pi a b$
C. $\frac{1}{4} a b$
D. $\frac{1}{4} \pi a b-\frac{1}{2} a b$

Answer: D
(D) Watch Video Solution
35. The area induced between the curves $y=\frac{x^{2}}{4 a}$ and $y=\frac{8 a^{3}}{x^{2}+4 a^{2}}$ is given by
A. $a^{2}\left(2 \pi-\frac{4}{3}\right)$
B. $a^{2}\left(\pi-\frac{4}{3}\right)$
C. $a^{2}\left(2 \pi+\frac{1}{3}\right)$
D. $a^{2}\left(\pi+\frac{4}{3}\right)$

Answer: A

- Watch Video Solution

36. The area cut off from a parabola by any double ordinate is $k$ time the corresponding rectangle contained by the double ordinate and its distance from the vertex. Find the value of k ?
A. $2 / 3$
B. $3 / 2$
C. $1 / 3$
D. 3

Answer: A
37. Find the area of the region bounded by the curve $y$
$=\sin \mathrm{x}$ between $\mathrm{x}=0$ and $x=2 \pi$.
A. $2 \pi$
B. $2 \pi$
C. $4 \pi$
D. $\pi$

## Answer: C

## (D) Watch Video Solution

38. about to only mathematics
A. $5 / 6$
B. $6 / 5$
C. $1 / 6$
D. 6

Answer: A

## D Watch Video Solution

39. The area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
A. $\pi a b$
B. $\frac{\pi}{4}\left(a^{2}+b^{2}\right)$
C. $\pi(a+b)$
D. $\pi a^{2} b^{2}$

Answer: A

## D Watch Video Solution

40. Smaller area enclosed by the circle $x^{2}+y^{2}=4$
and the line $x+y=2$ is:
A. $2(\pi-2)$
B. $\pi-2$
C. $2 \pi-1$
D. $\pi-1$

## - Watch Video Solution

41. Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$.
A. 16
B. 41
C. 27
D. 36

Answer: B
42. Find the area of the region bounded by the parabola $\mathrm{x}^{2}=4 \mathrm{y} \backslash$ and the line $\mathrm{x}=4 \mathrm{y}-2$
A. $9 / 8$
B. $9 / 4$
C. $9 / 2$
D. $9 / 7$

Answer: A
43. Find the area lying in the first quadrant and bounded by the curve $y=x^{3}$ and the line $y=4 x$.
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

44. The area of the region (in square units) bounded by
the curve $x^{2}=4 y$ and the line $x=2$ and $x$-axis is:
A. 1
B. $2 / 3$
C. $4 / 3$
D. $8 / 3$

Answer: B

- Watch Video Solution

45. The area bounded by the $x$-axis and the curve
$y=4 x-y^{2}-3$ id
A. $4 / 3$
B. $3 / 4$
C. 7
D. $3 / 2$

Answer: A

- Watch Video Solution

46. Find the area of the region enclosed by the parabola $y^{2}=4 a x$ and the line $y=m x$.
A. $\frac{5 a^{2}}{3}$
B. $\frac{8 a^{2}}{3 m^{3}}$
C. $\frac{7 a^{2}}{4 m^{2}}$
D. $\frac{3 a^{2}}{5 m}$

Answer: B

- Watch Video Solution

47. The area bounded by $y=\tan x, y=\cot x, \mathrm{X}$-axis in $0 \leq x \leq \frac{\pi}{2}$ is
A. $\log 2$
B. $\frac{1}{2} \log 2$
C. $2 \log \left(\frac{1}{\sqrt{2}}\right)$
D. $\frac{3}{2} \log 2$

Answer: A
48. Area lying between the curves $y^{2}=4 x$ and $y=2 x$ is:
A. $2 / 3$
B. $1 / 3$
C. $1 / 4$
D. $1 / 2$

Answer: B

- Watch Video Solution

49. Area common to the circle $x^{2}+y^{2}=64$ and the parabola $y^{2}=4 x$ is
A. $\frac{16}{3}(4 \pi+\sqrt{3})$
B. $\frac{16}{3}(8 \pi-\sqrt{3})$
C. $\frac{16}{3}(4 \pi-\sqrt{3})$
D. none of these

Answer: B

- Watch Video Solution

50. The area of the figure bounded by $|y|=1-x^{2}$ is in square units,
A. $2 / 3$
B. $4 / 3$
C. $8 / 3$
D. $-5 / 3$

Answer: C

- Watch Video Solution

51. Find the area of the figure bounded by the parabolas $x=-2 y^{2}, x=1-3 y^{2}$.
A. $8 / 3$
B. $6 / 3$
C. $4 / 3$
D. $2 / 3$

## Answer: C

- Watch Video Solution

52. The area bounded by $y=x|\sin x|$ and x - axis between $x=0, x=2 \pi$ is
A. $2 \pi$
B. $3 \pi$
C. $4 \pi$
D. $5 \pi$

Answer: C

- Watch Video Solution

53. Find the area bounded by the curve $y=2 x-x^{2}$, and the line $y=x$
A. $1 / 2$
B. $1 / 3$
C. $1 / 4$
D. $1 / 6$

Answer: D

- Watch Video Solution

54. Find the area bounded by the curve
$y=(x-1)(x-2)(x-3) \quad$ lying between the ordinates $x=0$ and $x=3$.
A. $9 / 4$
B. $\frac{11}{4}$
C. $11 / 2$
D. $7 / 4$

Answer: B
55. Area common to the curves $y=\sqrt{x}$ and $x=\sqrt{y}$ is
(A) 1 (B) $\frac{2}{3}$ (C) $\frac{1}{3}$ (D) none of these
A. 1
B. $2 / 3$
C. $1 / 3$
D. $4 / 3$

## Answer: C

- Watch Video Solution

56. Find the equation of common tangent of $y^{2}=4 a x$ and $x^{2}=4 b y$.
A. $(8 / 3) \mathrm{ab}$
B. $(16 / 3) a b$
C. $(4 / 3) a b$
D. $(5 / 3) \mathrm{ab}$

Answer: B

- Watch Video Solution

57. Area of the region bounded by $[x]^{2}=[y]^{2}, \quad$ if $x \in[1,5]$, where $[$ ] denotes the greatest integer function is:
A. 4
B. 8
C. 5
D. 10

Answer: B
(D) Watch Video Solution
58. If $A$ denotes the area bounded by $f(x)=\left|\frac{\sin x+\cos x}{x}\right|, \mathrm{X}$-axis, $x=\pi$ and $x=3 \pi$,then
A. $1<A<2$
B. $0<A<2$
C. $2<A<3$
D. none of these

Answer: D

- Watch Video Solution

59. Find the area of the region bounded by the curve $y=x^{2}$ and $y=\sec ^{-1}\left[-\sin ^{2} x\right]$, where [.] denotes the greatest integer function.
A. $\frac{1}{3}(4-\pi)^{3 / 2}$
B. $\left(8(4-\pi)^{3 / 2}\right.$
C. $\frac{8}{3}(4-\pi)^{3 / 2}$
D. $\frac{8}{3}(4-\pi)^{1 / 2}$

## Answer: C

- Watch Video Solution

60. The area the region included between the region satisfying $\min (/ x /, / y /) \geq 1$ and $x^{2}+y^{2} \leq 5$ is

$$
\begin{aligned}
& \text { A. } \frac{5}{2}\left(\frac{\sin ^{-1}(2)}{\sqrt{5}}-\frac{\sin ^{-1}(1)}{\sqrt{5}}\right)-4 \\
& \text { B. } 10\left(\frac{\sin ^{-1}(2)}{\sqrt{5}}-\frac{\sin ^{-1}(1)}{\sqrt{5}}\right)-4 \\
& \text { C. } \frac{2}{5}\left(\frac{\sin ^{-1}(2)}{\sqrt{5}}-\frac{\sin ^{-1}(1)}{\sqrt{5}}\right)-4 \\
& \text { D. } 15\left(\frac{\sin ^{-1}(2)}{\sqrt{5}}-\frac{\sin ^{-1}(1)}{\sqrt{5}}\right)-4
\end{aligned}
$$

Answer: B

## D Watch Video Solution

61. If $f(x) \geq 0, \forall x \in(0,2)$ and $y=f(x)$ makes
positive intercepts of 2 and 1 units on $X$ and $Y$-axes respectively and encloses an area of $\frac{3}{4}$ unit with axes,
then $\int_{0}^{2} x f^{\prime}(x) d x$ is
A. $\frac{3}{4}$
B. 1
C. $\frac{5}{4}$
D. $-\frac{3}{4}$

Answer: D

Chapter Test

1. Area bounded by the curves $y=|x-1|, y=0$ and $|x|=2$
A. 4
B. 5
C. 3
D. 6

Answer: B

D Watch Video Solution
2. The area inside the parabola $5 x^{2}-y=0$ but outside the parabola $2 x^{2}-y+9=0$ is
A. $12 \sqrt{3}$
B. $6 \sqrt{3}$
C. $8 \sqrt{3}$
D. $4 \sqrt{3}$

Answer: A

- Watch Video Solution

3. The area enclosed between the curve $y^{2}(2 a-x)=x^{3}$ and the line $\mathrm{x}=2 \mathrm{a}$ above the x -axis is
A. $3 \pi a^{2}$
B. $\frac{3 \pi a^{2}}{2}$
C. $\frac{3 \pi a^{2}}{4}$
D. $\frac{\pi a^{2}}{4}$

Answer: A

- Watch Video Solution

4. Area bounded by the curve $x y^{2}=a^{2}(a-x)$ and the $y$-axis is $\frac{\pi a^{2}}{2}$ squinits (b) $\pi a^{2}$ squinits $3 \pi a^{2}$ squinits
(d) None of these
A. $\pi a^{2} / 2$
B. $\pi a^{2}$
C. $3 \pi a^{2}$
D. $2 \pi a^{2}$

Answer: b
5. The area of the loop of the curve $a y^{2}=x^{2}(a-x)$ is
A. $\frac{4 a^{2}}{15}$
B. $\frac{8}{15} a^{2}$
C. $\frac{16}{15} a^{2}$
D. $\frac{32}{5} a^{2}$

## Answer: B

## D Watch Video Solution

6. find the area common to the circle $x^{2} y^{2}=16 a^{2}$ and
the parabola $y^{2}=6 a x$. Or Find the area of the region
$\left\{(x, y): y^{2} \leq 6 a\right\} \operatorname{and}\left\{(x, y): x^{2}+y^{2} \geq 16 a^{2}\right\}$.
A. $\frac{4 a^{2}}{3}(4 \pi-\sqrt{3})$
B. $\frac{4 a^{2}}{3}(8 \pi-3)$
C. $\frac{4 a^{2}}{3}(4 \pi+\sqrt{3})$
D. none of these

Answer: C

## - Watch Video Solution

7. The line $y=m x$ bisects the area enclosed by the curve $y=1+4 x-x^{2} \quad$ and the
$x=0, x=\frac{3}{2}$ and $y=0$. Then the value of $m$ is
A. $13 / 8$
B. $13 / 32$
C. $13 / 16$
D. $13 / 14$

## Answer: C

## - Watch Video Solution

8. The area between the curve $y=x \sin x$ and $x$-axis where $o \leq x \leq 2 \pi$, is
A. $2 \pi$
B. $3 \pi$
C. $4 \pi$
D. $\pi$

## Answer: C

## - Watch Video Solution

9. The area bounded by the curves $y=e^{x}, y=e^{-x}$ and $y=2$, is
A. $\log (16 / e)$
B. $\log (4 / \mathrm{e})$
C. $2 \log (4 / e)$
D. $\log (8 / e)$

## Answer: C

## - Watch Video Solution

10. The area enclosed by the curves
$x=a \sin ^{3} t$ and $y=a \cos ^{2} t$ is equal to
A. $\frac{3 \pi a^{2}}{8}$
B. $\frac{3 \pi a^{2}}{16}$
C. $\frac{3 \pi a^{2}}{32}$
D. $3 \pi a^{2}$

Answer: A
11. If $A_{1}$ is the area enclosed by the curve $x y=1, x$ axis and the ordinates $x=1, x=2$, and $A_{2}$ is the area enclosed by the curve $x y=1, x$-axis and the ordinates $x=2, x=4$, then
A. $A_{1}=2 A_{2}$
B. $A_{2}=2 A_{1}$
C. $A_{2}=3 A_{1}$
D. $A_{1}=A_{2}$

## Answer: D

12. If area bounded by the curve $y^{2}=4 a x$ and $y=m x$
is $a^{2} / 3$, then the value of $m$, is
A. 1
B. 2
C. 3
D. $\sqrt{3}$

Answer: B

- Watch Video Solution

13. The value of a for which the area between the curves $y^{2}=4 a x$ and $x^{2}=4 a y$ is 1 unit is
A. $\sqrt{3}$
B. 4
C. $4 \sqrt{3}$
D. $\sqrt{3} / 4$

Answer: D

- Watch Video Solution

14. If the area bounded by the curve $y=f(x), x$-axis and the ordinates $x=1$ and $x=b$ is $(b-1) \sin (3 b+4)$, then find $f(x)$.
A. $(x-1) \cos (3 x+4)$
B. $\sin (3 x+4)$
C. $\sin (3 x+4)+3(x-1)$
D. none of these

## Answer: C

15. The area bounded by the curve $y=\sin 2 x$, axis and
$y=1$, is
A. 1
B. $1 / 4$
C. $\pi / 4$
D. $\pi / 4-1 / 2$

Answer: D

- Watch Video Solution


# 16. <br> The area <br> $x=-2 y^{2}$ and $x=1-3 y^{2}$, is 

A. $4 / 3$
B. $3 / 4$
C. $3 / 2$
D. $2 / 3$

Answer: A
17. The area between the curves $y=\cos x$, $x$-axis and the line $y=x+1$, is
A. $1 / 2$
B. 1
C. 3
D. 2

Answer: A

- Watch Video Solution

18. If the area bounded by the curve $y=x^{2}+1$ and the tangents to it drawn from the origin is $A$, then the value of $3 A$ is_-
A. $8 / 2$ sq. units
B. $1 / 3$ sq. units
C. $2 / 3$ sq. units
D. none of these

Answer: C
(D) Watch Video Solution
19. The positive value of the parmeter 'a' for which the
area of the
figure bounded by
$y=\sin a s, y=0, x=\pi / a$ and $x=\pi / 3 a$ is 3, is equal to
A. 2
B. $1 / 2$
C. $\frac{2+\sqrt{3}}{3}$
D. $\sqrt{3}$

Answer: B

- Watch Video Solution

20. The area in square units bounded by the curves $y=x^{3}, y=x^{2}$ and the ordinates $x=1, x=2$ is
A. $17 / 12$
B. $12 / 13$
C. $2 / 7$
D. $7 / 2$

## Answer: A

## D Watch Video Solution

21. The area bounded by the curve $y^{2}=x$ and the ordinate $x=36$ is divided in the ratio $1: 7$ by the
ordinate $x=a$. Then $a=$
A. 8
B. 9
C. 7
D. 0

Answer: B

## D Watch Video Solution

22. The area contained between the $x$-axis and one area
of the curve $y=\cos 3 x$, is
A. $1 / 3$
B. $2 / 3$
C. $2 / 7$
D. $2 / 5$

Answer: B

## D Watch Video Solution

23. The area of the figure bounded by $|y|=1-x^{2}$ is in square units,
A. $4 / 3$
B. $8 / 3$
C. $16 / 3$
D. $5 / 3$

Answer: B

## D Watch Video Solution

24. The area of the figure bounded by
$y=e^{x-1}, y=0, x=0$ and $x=2$ is
A. $<2$
B. $>2$
C. $=2$
D. none of these

## - Watch Video Solution

25. The area of the region on place bounded by max $(|x|,|y|) \leq \frac{1}{2}$ is
A. $1 / 2+\ln 2$
B. $3+\ln 2$
C. $31 / 4$
D. $1+2 \ln 2$

Answer: B
26. The area of the closed figure bounded by
$y=\frac{x^{2}}{2}-2 x+2$ and the tangents to it at $(1,1 / 2)$ and $(4,2)$ is
A. $9 / 8$
B. $3 / 8$
C. $3 / 2$
D. $9 / 4$

Answer: A
27. The area of the closed figure bounded by $y=1 / \cos ^{2} x, x=0, y=0$ and $x=\pi / 4$, is
A. $\pi / 4$
B. $1+\pi / 4$
C. 1
D. 2

## Answer: C

## (D) Watch Video Solution

28. The area (in square units) of the closed figure
$x=-1, x=2$ and $y=\left\{\begin{array}{l}-x^{2}+2, x \leq 1 \\ 2 x-1, x>1\end{array}\right.$ and the abscissa axis, is
A. $16 / 3$
B. $13 / 3$
C. $13 / 3$
D. $7 / 3$

## Answer: A

## - Watch Video Solution

29. The area
$y=2-|2-x|$ and $y=\frac{3}{|x|}$ is:
bounded
A. $\frac{4+3 \ln 3}{2}$
B. $2+3 \ln (3 \mathrm{sqrt}(3) / 4)$
C. $\frac{3}{2} \ln 3$
D. $\frac{1}{2}+\ln 3$

## Answer: B

## - Watch Video Solution

30. The area of the region bounded by $x^{2}+y^{2}-2 x-3=0$ and $y=|x|+1$ is
A. $\pi$
B. $2 \pi$
C. $4 \pi$
D. $\pi / 2$

Answer: A

## - Watch Video Solution

31. The area of the region bounded by
$y=|x-1|$ and $y=3-|x|$, is
A. 2
B. 3
C. 4
D. 1

## - Watch Video Solution

32. Find the area of the closed figure bounded by the curves $y=\sqrt{x, y}=\sqrt{4 x-3 x}$, and $y=0$.
A. $4 / 9$
B. $8 / 9$
C. $19 / 9$
D. $5 / 9$

Answer: B
33. The area of the closed figure bounded by the curves
$y=\cos x, y=1+\frac{2}{\pi} x$ and $x=\pi / 2$, is
A. $\frac{\pi+4}{4}$
B. $\frac{3 \pi-4}{4}$
C. $\frac{3 \pi}{4}$
D. $\frac{\pi}{4}$

Answer: B

- Watch Video Solution

34. For which of the following values of $m$ is the area of the regions bounded by the curve $y=x-x^{2}$ and the line $y=m x$ equal $\frac{9}{2} ?-4$ (b) -2 (c) 2 (d) 4
A. -4.4
B. $-2,2$
C. 2, 4
D. $-2,3$

Answer: B
35. The area bound by the curve $y=\sec x$, then $x$-axis and the lines $x=0$ and $x=\pi / 4$, is
A. $\log (\sqrt{2}+1)$
B. $\log (\sqrt{2}-1)$
C. $\frac{1}{2} \log 2$
D. $\sqrt{2}$

Answer: A

- Watch Video Solution

36. The area bounded by the parabola $y^{2}=8 x$, the $x$ axis and the latusrectum is $\frac{16}{3}$ b. $\frac{23}{3}$ c. $\frac{32}{3}$ d. $\frac{16 \sqrt{2}}{3}$
A. $\frac{16}{3}$
B. $\frac{23}{3}$
C. $\frac{32}{3}$
D. $\frac{16 \sqrt{2}}{3}$

Answer: C
37. The area (in square units) bounded by the curve $y^{2}=8 x$ and $x^{2}=8 y$, is
A. ${ }^{6} 64(3 * s q r t(2)-1 / 3)$
B. $\frac{3}{16}$
C. $\frac{14}{3}$
D. $\frac{3}{14}$

Answer: A

- Watch Video Solution

38. If the area bounded by the curve $y=f(x), x$-axis and the ordinates $x=1$ and $x=b$ is $(b-1) \sin (3 b+4)$, then find $f(x)$.
A. $(x-1) \cos (3 x+4)$
B. $\sin (3 x+4)$
C. $\sin (3 x+4)+3(x-1) \cos (3 x+4)$
D. none of these

## Answer: C

- Watch Video Solution

39. The area in square units of the region bounded by
the curve $x^{2}=4 y$, the line $\mathrm{x}=2$ and the x -axis, is
A. 1
B. $2 / 3$
C. $4 / 3$
D. $8 / 3$

Answer: B

- Watch Video Solution

40. The area enclosed between the curve $y^{2}(2 a-x)=x^{3}$ and the line $x=2$ above the $x-a \xi s$ is $\pi a^{2}$ squinits (b) $\frac{3 \pi a^{2}}{2}$ squinits $2 \pi a^{2}$ squinits
(d) $3 \pi a^{2}$ sqünits
A. $\pi a^{2}$
B. $3 / 2 \pi a^{2}$
C. $2 \pi a^{2}$
D. $3 \pi a^{2}$

## Answer: B

41. The area bounded by the curve $y=4 x-x^{2}$ and $x$ -
axis is (A) $\frac{30}{7}$ sq. units (B) $\frac{31}{7}$ sq. units (C) $\frac{32}{3}$ sq. units
(D) $\frac{34}{3}$ sq. units
A. $\frac{30}{7}$
B. $\frac{31}{7}$
C. $\frac{32}{3}$
D. $\frac{34}{3}$

## Answer: C

42. Area bounded by the parabola $y^{2}=x$ and the line
$2 y=x$ is:
A. $4 / 3$
B. 1
C. $2 / 3$
D. $1 / 3$

Answer: A

- Watch Video Solution

43. Area between the $x$-axis and the curve $y=\cos x$, when $0 \leq x \leq 2 \pi$ is:
A. 0
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

44. The ratio of the areas between the curves $y=\cos x$ and $y=\cos 2 x$ and $x$-axis from $x=0$ to
$x=\frac{\pi}{3}$ is (A) $1: 3$ (B) $2: 1$ (C) $\sqrt{3}: 1$ (D) none of these
A. $1: 2$
B. 2: 1
C. $\sqrt{3}: 1$
D. none of these

Answer: B
(D) Watch Video Solution
45. Find the area bounded by the parabola $y=x^{2}+1$ and the straight line $x+y=3$.
A. $\frac{45}{7}$
B. $\frac{3}{2}$
C. $\frac{32}{3}$
D. $\frac{3}{32}$

Answer: D

- Watch Video Solution

46. Prove that the area common to the two parabolas
$y=2 x^{2}$ and $y=x^{2}+4 i s \frac{32}{3}$ sq. units.
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{32}{3}$
D. $\frac{3}{32}$

Answer: C

- Watch Video Solution

47. Find the area of the region $\left\{(x, y): x^{2}+y^{2} \leq 1 \leq x+y\right\}$
A. $\frac{\pi}{5}$
B. $\frac{\pi}{4}$
C. $\frac{\pi^{2}}{4}$
D. $\frac{\pi}{4}-\frac{1}{2}$

Answer: D

- Watch Video Solution

48. Find the area bounded by the parabola $y^{2}=4 a x$ and its latus rectum.
A. 0
B. $\frac{4}{3} a^{2}$
C. $\frac{8}{3} a^{2}$
D. $\frac{a^{2}}{3}$

Answer: C

- Watch Video Solution

49. The area bounded by the curve $y=x^{4}-2 x^{3}+x^{2}+3$ with $x$-axis and ordinates corresponding to the minima of $y$, is
A. 1
B. $\frac{91}{30}$
C. $\frac{30}{9}$
D. 4

Answer: B

- Watch Video Solution

50. Find the area common to two parabolas $x^{2}=4 a y$ and $y^{2}=4 a x$, using integration.
A. $\frac{8 a^{3}}{3}$
B. $\frac{16 a^{2}}{3}$
C. $\frac{32 a^{2}}{3}$
D. $\frac{64 a^{2}}{3}$

Answer: B

- Watch Video Solution

51. The area (in square units) bounded by curves $y=\sin x$ between the ordinates $\mathrm{x}=0, x=\pi$ and the x -axis , is
A. 2
B. 4
C. 3
D. 1

Answer: A

- Watch Video Solution

52. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the $X$-axis is
A. 3
B. 6
C. 7
D. none of these

## Answer: C

- Watch Video Solution

53. The area enclosed between the curves
$y=\log _{e}(x+e), x=\log _{e}\left(\frac{1}{y}\right)$, and the $x$-axis is
A. 2
B. 1
C. 4
D. none of these

Answer: A

- Watch Video Solution

54. Find the area of the region formed by $x^{2}+y^{2}-6 x-4 y+12 \leq 0, y \leq x$ and $2 x \leq 5$.
A. $\frac{\pi}{6}-\frac{\sqrt{3}+1}{8}$
B. $\frac{\pi}{6}+\frac{\sqrt{3}+1}{8}$
C. $\frac{\pi}{6}-\frac{\sqrt{3}-1}{8}$
D. none of these

Answer: C

- Watch Video Solution

55. If $A_{n}$ be the area bounded by the curve $y=(\tan x)^{n}$ and the lines $x=0, y=0, x=\pi / 4$, then for $n>2$.

$$
\begin{aligned}
& \text { A. } A_{n}+A_{n-2}=\frac{1}{n-1} \\
& \text { B. } A_{n}+A_{n-2}<\frac{1}{n-1} \\
& \text { C. } A_{n}-A_{n-2}=\frac{1}{n-1}
\end{aligned}
$$

D. none of these

Answer: A
56. The area bounded by the parabola $y^{2}=x$, straight
line $y=4$ and $y$-axis is
A. $\frac{3}{32}$
B. $\frac{64}{3}$
C. $\frac{33}{2}$
D. $\frac{16}{3}$

Answer: B

- Watch Video Solution

57. The area (in square units), bounded by $y=2-x^{2}$ and $x+y=0$, is
A. $\frac{7}{2}$ sq. units
B. $\frac{9}{2}$ sq. units
C. 9 sq. units
D. none of these

Answer: B

- Watch Video Solution

58. The area bounded by the curve $y=\log _{e} x$, the x axis and the line $x=e$ is (A) $e$ sq. units (B) 1 sq. unit
(C) $\left(1-\frac{1}{e}\right)$ sq. units (D) $\left(1+\frac{1}{e}\right)$ sq. units
A. e
B. 1
C. $1-\frac{1}{e}$
D. $1+\frac{1}{e}$

## Answer: B

59. Find the area included between the curves $x^{2}=4 y$
and $y^{2}=4 x$.
A. $4 / 3$
B. $1 / 3$
C. $16 / 3$
D. $8 / 3$

## Answer: C

- Watch Video Solution

60. If the area above the $x$-axis, bounded by the curves
$y=2^{k x}$ and $\mathrm{x}=0$, and $\mathrm{x}=2$ is $\frac{3}{\log _{e}(2)}$, then the value of $k$ is
A. $1 / 2$
B. 1
C. -1
D. 2

Answer: B

- Watch Video Solution

