© 'doubtnut

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

COMPLEX NUMBERS

Illustration

1. If $n \in N$, then find the value of $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}$
A. 1
B. i
C. i^{n}
D. 0

Answer: D
2. If $i=\sqrt{-1}$, then $\left(i^{n}+i^{-n}, n \in Z\right)$ is equal to
A. $\{0,2\}$
B. $\{0,-2\}$
C. $\{0,-2,2\}$
D. $\{0,-2 i\}$

Answer: C

Watch Video Solution

3. The value of sum $\Sigma 13 n=1(i n+i n+1)$ where $i=-1---\sqrt{ }$ equals
A. i
B. i-1
C. -i
D. 0

Answer: B

- Watch Video Solution

4. If n is an odd integer, then $(1+i)^{6 n}+(1-i)^{6 n}$ is equal to
A. 0
B. 2
C. -2
D. none of these

Answer: A

- Watch Video Solution

5. If $\mathrm{m}, \mathrm{n}, \mathrm{p}, \mathrm{q}$ are consecutive integers then the value of $i^{m}+i^{n}+i^{p}+i^{q}$ is
A. 1
B. 4
C. 0
D. none of these

Answer: C

- Watch Video Solution

6. The value of $i^{2}+i^{4}+i^{6}+i^{8} \ldots$. upto $(2 n+1)$ terms, where $i^{2}=-1$, is equal to:
A. -1
B. 1
C. $-i$
D. i
7. If $a, b \in R$ such that $a b>0$, then $\sqrt{a} \sqrt{b}$ is equal to
A. $\sqrt{|a||b|}$
B. $-\sqrt{|a||b|}$
C. $\sqrt{a b}$
D. none of these

Answer: D

- Watch Video Solution

8. If $a<0, b>0$, then \sqrt{a}. \sqrt{b} is equal to :
A. $i \sqrt{|a| b}$
B. $i \sqrt{|a||b|}$
C. $i \sqrt{|a||b|}$
D. $-\sqrt{|a||b|}$

Answer: C

- Watch Video Solution

9. $\sin ^{-1}\left\{\frac{1}{i}(z-1)\right\}$, where z is non real and $i=\sqrt{-1}$, can be the angle of a triangle If:
A. $\operatorname{Re}(z)=1, \operatorname{Im}(z)=2$
B. $\operatorname{Re}(z)=1,-1 \leq \operatorname{Im}(z) \leq 1$
C. $\operatorname{Re}(z)+\operatorname{Im}(z)=0$
D. None of these

Answer: B

10. If $\sqrt{3}+i=(a+i b)(c+i d)$, then find the value of $\tan ^{-1}(b / a)+\tan ^{-1}(d / c)$
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $-\frac{\pi}{6}$
D. $\frac{5 \pi}{6}$

Answer: B

- Watch Video Solution

11. The conjugate of a complex number is $\frac{1}{i-1}$. Then the complex number is
A. $-\frac{1}{i+1}$
B. $\frac{1}{i-1}$
C. $-\frac{1}{i-1}$
D. $\frac{1}{i+1}$

Answer: A

- Watch Video Solution

12. If $\operatorname{Im} z\left(\frac{z-1}{2 z+1}\right)=-4$, then locus of z is
A. an ellipse
B. a parabola
C. a straight line
D. a circle

Answer: D

- Watch Video Solution

13. Let z be a complex number such that the imaginary part of z is nonzero and $a=z^{\wedge} 2+z+1$ is real. Then a cannot take the value
A. -1
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$

Answer: D

- Watch Video Solution

14. The number of solutions of $z^{2}+\bar{z}=0$ is
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

15. If z_{1}, z_{2} and z_{3} be unimodular complex numbers, then the maximum value of $\left|z_{1}-z_{2}\right|^{2}+\left|z_{2}-z_{3}\right|^{2}+\left|z_{3}-z_{1}\right|^{2}$, is
A. 6
B. 9
C. 12
D. 3

Answer: B

- Watch Video Solution

16. if $\left|z_{1}\right|=2,\left|z_{2}\right|=3,\left|z_{3}\right|=4$ and $\mid 2 z_{1}+3 z_{2}+4 z_{3}=4$, then the expression $\left|8 z_{2} z_{3}+27 z_{3} z_{1}+64 z_{1} z_{2}\right|$ equals
A. 24
B. 48
C. 72
D. 96

Answer: D

- Watch Video Solution

17.

$\left|z_{1}\right|=i, i=1,2,3,4$ and $\left|16 z_{1} z_{2} z_{3}+9 z_{1} z_{2} z_{4}+4 z_{1} z_{3} z_{4}+z_{2} z_{3} z_{4}\right|=48$,then
the value of $\left|\frac{1}{\bar{z}_{1}}+\frac{4}{\bar{z}_{2}}+\frac{9}{\vec{z}_{3}}+\frac{16}{\bar{z}_{4}}\right|$
A. 1
B. 2
C. 4
D. 8

D Watch Video Solution

18. about to only mathematics
A. equal to 1
B. less than 1
C. greater than 1
D. equal to 3

Answer: A

Watch Video Solution
19. The number of solutions of the equation $z^{3}+\bar{z}=0$, is
A. 2
B. 3
C. 4
D. 5

Answer: D

- Watch Video Solution

20. If $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$ and $z_{1}+z_{2}+z_{3}=\sqrt{2}+i$, then the complex number $z_{2} \bar{z}_{3}+z_{3} \bar{z}_{1}+z_{1} \bar{z}_{2}$, is
A. purely real
B. purely imaginary
C. a positive real number
D. none of these

Answer: B

21. If z is a complex number satisfying the equation $|z-(1+i)|^{2}=2$ and $\omega=\frac{2}{z}$, then the locus traced by ' ω ' in the complex plane is
A. $(x-y+1)=0$
B. $x-y-1=0$
C. $x+y-1=0$
D. $x+y+1=0$

Answer: B

- Watch Video Solution

22. If $\left|\frac{z+i}{z-i}\right|=\sqrt{3}$, then z lies on a circle whose radius, is
A. $\frac{2}{\sqrt{21}}$
B. $\frac{1}{\sqrt{21}}$
C. $\sqrt{3}$
D. $\sqrt{21}$

Answer: C

- Watch Video Solution

23. Find the least positive integral value of
n , for which $\left(\frac{1-i}{1+i}\right)^{n}$, where $i=\sqrt{-1}$, is purly imaginary with positive imaginary part.
A. 1
B. 3
C. 5
D. none of these

Answer: B

24. The last positive integer n for which $\left(\frac{1+i}{1-i}\right)^{n}$ is real, is
A. 2
B. 4
C. 8
D. none of these

Answer: A

- Watch Video Solution

25. Find the smallest positive integer value of n for which $\frac{(1+i)^{n}}{(1-i)^{n-2}}$ is a real number.
A. 2
B. 1
C. 3
D. 4

Answer: B

- Watch Video Solution

26. If $\left(\frac{1+i}{1-i}\right)^{x}=1$, then
A. $x=2 n+1$, where n is any positive integer.
B. $\mathrm{x}=4 \mathrm{n}$, where n is any positive integer
C. $\mathrm{x}=2 \mathrm{n}$, where n is any positive integer
D. $x=4 n+1$, where n is any positive integer.

Answer: B

27. If $z=x-i y$ and $z^{\frac{1}{3}}=p+i q$, then $\frac{1}{p^{2}+q^{2}}\left(\frac{x}{p}+\frac{y}{q}\right)$ is equal to A. -2
B. -1
C. 2
D. 1
28. If $z=x+i y, z^{\frac{1}{3}}=a-i b$ and $\frac{x}{a}-\frac{y}{b}=\lambda\left(a^{2}-b^{2}\right)$, then λ is equal to
A. 2
B. 4
C. 6
D. 1
29. Let $z=x+i y$ be a complex number where x and y are integers. Then ther area of the rectangle whose vertices are the roots of the equaiton $\bar{z} z^{3}+z \bar{z}^{3}=350$.
A. 48
B.
C. 32
D. 40

- Watch Video Solution

30. Taking the value of the square root with positive real part only, the value of $\sqrt{7+24 i}+\sqrt{-7-24 i}$, is

$$
\text { A. } 1+7 i
$$

B. $-1-7 i$
C. $7-i$
D. $-7+i$

Answer: C

- Watch Video Solution

31. If $(x+i y)^{2}-7+24 i$, then the value of $(7+\sqrt{-576})^{1 / 2}-(7-\sqrt{-576})^{1 / 2}$, is
A. $-6 i$
B. $-3 i$
C. $2 i$
D. 6

Answer: A

32. Simplify: $\frac{\sqrt{5+12 i}+\sqrt{5-12 i}}{\sqrt{5+12 i}-\sqrt{5-12 i}}$
A. $\frac{3}{2} i$
B. $-\frac{3}{2} i$
C. $-3+\frac{2}{5} i$
D. None of these

Answer: B

- Watch Video Solution

33. Principal argument of complex number $z=\frac{\sqrt{3}+i}{\sqrt{3}-i}$ equal
A. $-\frac{\pi}{3}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{6}$
D. None of these

Answer: B

- Watch Video Solution

34. Let z be a purely imaginary number such that $\operatorname{lm}(z)>0$. Then, $\arg (z)$ is equal to
A. π
B. $\pi / 2$
C. 0
D. $-\pi / 2$

Answer: B

35. Let z be a purely imaginary number such that $\operatorname{lm}(z) \leq 0$. Then, $\arg (z)$ is equal to
A. π
B. $\pi / 2$
C. 0
D. $-\pi / 2$

Answer: D

- Watch Video Solution

36. If z is a purely real complex number such that $\operatorname{Re}(z)<0$, then, $\arg (z)$ is equal to
A. π
B. $\pi / 2$
C. 0
D. $-\pi / 2$

Answer: A

- Watch Video Solution

37. Let z be any non-zero complex number. Then $\arg (z)+\arg (\bar{z})$ is equal to
A. π
B. $-\pi$
C. 0
D. $\pi / 2$

Answer: C

38. If $z=x+i y$ such that $|z+1|=|z-1|$ and $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$, then find z.
A. $x^{2}-y^{2}-2 x-1=0$
B. $x^{2}+y^{2}-2 x-1=0$
C. $x^{2}+y^{2}-2 y-1=0$
D. $x^{2}+y^{2}+2 x-1=0$

Answer: C

- Watch Video Solution

39. If z is complex number of unit modulus and argument θ then arg
$\left(\frac{1+z}{1+\bar{z}}\right)$ equals
A. $-\theta$
B. $\frac{\pi}{2}-\theta$
C. θ
D. $\pi-\theta$

Answer: C

- Watch Video Solution

40. The amplitude of $\sin \frac{\pi}{5}+i\left(1-\cos \frac{\pi}{5}\right)$ is
A. $\frac{2 \pi}{5}$
B. $\frac{\pi}{15}$
C. $\frac{\pi}{10}$
D. $\frac{\pi}{5}$

Answer: C

- Watch Video Solution

41. Find the value of $\sum_{k=1}^{10}\left[\sin \left(\frac{2 \pi k}{11}\right)-i \cos \left(\frac{2 \pi k}{11}\right)\right]$, wherei $=\sqrt{-1}$.
A. -1
B. 0
C. $-i$
D. i

Answer: D

- Watch Video Solution

42. The value of $1+\sum_{k=0}^{14}\left\{\cos \frac{(2 k+1) \pi}{15}+i \sin \frac{(2 k+1) \pi}{15}\right\}$ is
A. 0
B. -1
C. 1
D. i

D Watch Video Solution

43. For any integer k, let $\alpha_{k}=\frac{\cos (k \pi)}{7}+i \frac{\sin (k \pi)}{7}$, where $i=\sqrt{-1}$ Value of the expression $\frac{\sum k=112\left|\alpha_{k+1}-\alpha_{k}\right|}{\sum k=1}$ is

$$
\sum k=13\left|\alpha_{4 k-1}-\alpha_{4 k-2}\right|
$$

A. 8
B. 6
C. 4
D. 2

Answer: C

44. If z is a complex number of unit modulus and argument θ, then the real part of $\frac{z(1-\bar{z})}{\bar{z}(1+z)}$, is
A. $2 \cos ^{2}\left(\frac{\theta}{2}\right)$
B. $1-\cos \left(\frac{\theta}{2}\right)$
C. $1+\sin \left(\frac{\pi}{2}\right)$
D. $-2 \sin ^{2}\left(\frac{\theta}{2}\right)$

Answer: D

- Watch Video Solution

45. For any two complex numbers z_{1}, z_{2} the values of $\left|z_{1}+z_{2}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}$, is
A. $\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$
B. $2\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
c. $\left(\left|z_{1}\right|+\left|z_{2}\right|\right)^{2}$
D. none of these

Answer: B

- Watch Video Solution

46. Prove that $\left|z_{1}\right|+\left|z_{2}\right|=\left|\frac{1}{2}\left(z_{1}+z_{2}\right)+\sqrt{z_{1} z_{2}}\right|+\left|\frac{1}{2}\left(z_{1}+z_{2}\right)-\sqrt{z_{1} z_{1}}\right|$.
A. $\left|z_{1}+z_{2}\right|$
B. $\left|z_{1}-z_{2}\right|$
C. $\left|z_{1}\right|+\left|z_{2}\right|$
D. $\left|z_{1}\right|-\left|z_{2}\right|$

Answer: C

- Watch Video Solution

47. Let z_{1}, z_{2} be two complex numbers such that $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$. Then,
A. $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$
B. $\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=\frac{\pi}{2}$
c. $\left|z_{1}\right|=\left|z_{2}\right|$
D. $z_{1} z_{2}=1$

Answer: A

- Watch Video Solution

48. For any two complex numbers z_{1} and z_{2}, we have $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$, then
A. $\operatorname{Re}\left(\frac{z_{1}}{z_{2}}\right)=0$
B. $\operatorname{Im}\left(\frac{z_{1}}{z_{2}}\right)=0$
C. $\operatorname{Re}\left(z_{1} z_{2}\right)=0$
D. $\operatorname{Im}\left(z_{1} z_{2}\right)=0$

Answer: A

- Watch Video Solution

49. If $z_{1} a n d z_{2}$ are two nonzero complex numbers such that $=$ $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then $\arg z_{1}-\arg z_{2}$ is equal to $-\pi$ b. $\frac{\pi}{2}$ c. 0 d. $\frac{\pi}{2}$ e. π
A. $-\pi$
B. $\pi / 2$
C. 0
D. $\pi / 2$

Answer: C

50. If z_{1} and z_{2} are to complex numbers such that two $\left|z_{1}\right|=\left|z_{2}\right|+\left|z_{1}-z_{2}\right|$, then $\arg \left(z_{1}\right)-\arg \left(z_{2}\right)$
A. 0
B. $\pi / 2$
C. $-\pi / 2$
D. none of these

Answer: A

- Watch Video Solution

51. If $|z+4| \leq 3$ then the maximum value of $|z+1|$ is
A. 6
B. 0
C. 4
D. 10

- Watch Video Solution

52. If $|z|<\sqrt{2}-1$, then $\left|z^{2}+2 z \cos \alpha\right|$ is a. less than 1 b. $\sqrt{2}+1$ c. $\sqrt{2}-1 \mathrm{~d}$. none of these
A. 1
B. $\sqrt{2}+1$
C. $\sqrt{2}-1$
D. $\sqrt{2}$

Answer: A

Watch Video Solution

53. Let t_{1}, t_{2}, t_{3} be the three distinct points on circle $|\mathrm{t}|=1$. if θ_{1}, θ_{2} and θ_{3} be the arguments of t_{1}, t_{2}, t_{3} respectively then
$\cos \left(\theta_{1}-\theta_{2}\right)+\cos \left(\theta_{2}-\theta_{3}\right)+\cos \left(\theta_{3}-\theta_{1}\right)$
A. $\geq-\frac{3}{2}$
B. $\leq-\frac{3}{2}$
C. $\geq \frac{3}{2}$
D. none of these

Answer: A

- Watch Video Solution

54. If z and ω are two non-zero complex numbers such that $|z \omega|=1$ and $\arg (z)-\arg (\omega)=\frac{\pi}{2}$, then $\bar{z} \omega$ is equal to
A. $-i$
B. 1
C. -1
D. i

- Watch Video Solution

55. If z_{1} and z_{2} are two fixed points in the Argand plane, then find the locus of a point z in each of the following
$\left|z-z_{1}\right|-\left|z-z_{2}\right|=$ constant $\left(\neq\left|z_{1}-z_{2}\right|\right)$
A. line passing through A and B
B. line segment joining A and B
C. an ellipse
D. a circle

Answer: B

- Watch Video Solution

56. If z_{1} and z_{2} are two fixed points in the Argand plane, then find the locus of a point z in each of the following
$\left|z-z_{1}\right|=\left|z-z_{2}\right|$
A. the line passing through A and B
B. the perpendicular bisector of the line segment joining A and B
C. a line passing through the mid-point of $A B$
D. a circle

Answer: B

- Watch Video Solution

57. The inequality $|z-2|<|z-4|$ represent the half plane
A. $\operatorname{Re}(z) \geq 3$
B. $\operatorname{Re}(z)=3$
C. $\operatorname{Re}(z) \leq 3$
D. None of these

Answer: D

- Watch Video Solution

58. If $\log _{\frac{1}{3}}|z+1|>\log _{\frac{1}{3}}|z-1|$ then prove that $\operatorname{Re}(z)<0$.
A. $\operatorname{Re}(z) \geq 0$
B. $\operatorname{Re}(z)<0$
C. $\operatorname{Im}(z)>0$
D. None of these

Answer: B

- Watch Video Solution

59. about to only mathematics
A. the axis of x
B. the straight line $x=5$
C. the circle passing through the origin.
D. none of these

Answer: A

- Watch Video Solution

60. If $\omega=\frac{z}{z-\frac{1}{3} i}$ and $|\omega|=1$, where $i=\sqrt{-1}$, then lies on
A. a parabola
B. a straight line
C. a circle
D. an ellipse

Answer: B

61. The region of the complex plane for which $\left|\frac{z-a}{z+a}\right|=1$ is (a is equal)
A. x-axis
B. y-axis
C. the straight line $x=a$
D. none of these

Answer: B

- Watch Video Solution

62. If z_{1} and z_{2} are two fixed points in the Argand plane, then find the locus of a point z in each of the following
$\left|z-z_{1}\right|-\left|z-z_{2}\right|=$ constant $\left(\neq\left|z_{1}-z_{2}\right|\right)$
A. a circle
B. a parabola
C. an ellipse
D. a hyperbola

Answer: C

D Watch Video Solution

63. about to only mathematics
A. interior of an ellipse
B. exterior of a circle
C. interior and boundary of an ellipse
D. none of these

Answer: C

64. If z_{1} and z_{2} are two fixed points in the Argand plane, then find the locus of a point z in each of the following

$$
\left|z-z_{1}\right|-\left|z-z_{2}\right|=\text { constant }\left(\neq\left|z_{1}-z_{2}\right|\right)
$$

A. a circle
B. a parabola
C. an ellipse
D. a hyperbola

Answer: D

- Watch Video Solution

65. The point z in the complex plane satisfying $|z+2|-|z-2|=3$ lies on
A. a circle
B. a parabola
C. an ellipse
D. a hyperbola

- Watch Video Solution

66. If z_{1} and z_{2} are two fixed points in the Argand plane, then find the locus of a point z in each of the following
$\left|z-z_{1}\right|-\left|z-z_{2}\right|=\left|z_{1}-z_{2}\right|$
A. a circle
B. an ellipse
C. a hyperbola
D. none of these

Answer: D

67. If z_{1} and z_{2} are two fixed points in the Argand plane, then find the locus of a point z in each of the following

$$
\left|z-z_{1}\right|=k\left|z-z_{2}\right|, k \in R^{+}, k \neq 1
$$

A. a circle
B. a parabola
C. an ellipse
D. a hyperbola

Answer: D

- Watch Video Solution

68. If $\mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y}$, where $i=\sqrt{-1}$, then the equation $\left|\left(\frac{2 z-i}{z+1}\right)\right|=m$ represents a circle, then m can be
A. $1 / 2$
B. 1
C. 3
D. 2

Answer: C

- Watch Video Solution

69. Points z in the complex plane satisfying $\operatorname{Re}(z+1)^{2}=|z|^{2}+1$ lie on
A. a circle
B. a parabola
C. an ellipse
D. a hyperbola

Answer: B

- Watch Video Solution

70. If z_{1}, z_{2}, z_{3} be the affixes of the vertices $A, B M$ and C of a triangle having centroid at G such ;that $z=0$ is the mid point of AG then $4 z_{1}+Z_{2}+Z_{3}=$
A. $4 z_{1}+z_{2}+z_{3}=0$
B. $z_{1}+4 z_{1}+z_{3}=0$
C. $z_{1}+z_{2}+4 z_{3}=0$
D. $z_{1}+z_{2}+z_{3}=0$

Answer: A

- Watch Video Solution

71. Find the relation if $z_{1}, z_{2}, z_{3}, z_{4}$ are the affixes of the vertices of a parallelogram taken in order.
A. $z_{1}+z_{3}=z_{2}+z_{4}$
B. $z_{1}+z_{2}=z_{3}+z_{4}$
C. $z_{1}-z_{3}=z_{2}-z_{4}$
D. none of these

Answer: A

D Watch Video Solution

72. If z_{1}, z_{2} and z_{3} are the affixes of the vertices of a triangle having its circumcentre at the origin. If zis the affix of its orthocentre, prove that $Z_{1}+Z_{2}+Z_{3}-Z=0$.
A. $z_{1}+z_{2}+z_{3}+z=0$
B. $z_{1}+z_{2}+z_{3}-z=0$
C. $z_{1}-z_{2}+z_{3}+z=0$
D. $z_{1}+z_{2}-z_{3}+z=0$
73. The equation $z \bar{z}+a \bar{z}+\bar{a} z+b=0, b \in R$ represents circle, if
A. $|a|^{2}=b$
B. $|a|^{2}>b$
C. $|a|^{2}<b$
D. none of these

Answer: B

- Watch Video Solution

74. Find the radius and centre of the circle $z \bar{z}+(1-i) z+(1+i) \bar{z}-7=0$
A. $1+i$
B. $-1+i$
C. $-1-i$
D. 1

Answer: C

- Watch Video Solution

75. The radius of the circle $\left|\frac{z-i}{z+i}\right|=3$, is
A. $\frac{5}{4}$

3
B. $\frac{-}{4}$
C. $\frac{1}{4}$
D. none of these

Answer: B

- Watch Video Solution

76. Find the set of values of K for which the equation $z \bar{z}+(-3+4 i) \bar{z}-(3-4 i) z+K=0$ represents a circle.
A. $(-\infty, 25]$
B. $[25, \infty)$
C. $[5, \infty)$
D. $(-\infty, 5)$

Answer: A

- Watch Video Solution

77. Find condition for which z_{1}, z_{2}, z_{3} represent vertices of an equilateral triangle .
A. $z_{1}+z_{2}=z_{3}$
B. $z_{2}+z_{3}=z_{1}$
C. $z_{1}+z_{3}=z_{2}$

D. $z_{1}+z_{2}+z_{3}=0$

Answer: D

- Watch Video Solution

78. if $|z|=3$ then the points representing thecomplex numbers $-1+4 z$ lie on a
A. line
B. circle
C. parabola
D. none of these

Answer: B

- Watch Video Solution

79. If z is a complex number having least absolute value and
$\mid z-2+2 i=1$, then $z=$
$(2-1 / \sqrt{2})(1-i)$
b. $(2-1 / \sqrt{2})(1+i)$
C.
$(2+1 / \sqrt{2})(1-i)$ d. $(2+1 / \sqrt{2})(1+i)$
A. $\left(2-\frac{1}{\sqrt{2}}\right)(1-i)$
B. $\left(2-\frac{1}{\sqrt{2}}\right)(1+i)$
C. $\left(2+\frac{1}{\sqrt{2}}\right)(1-i)$
D. $\left(2+\frac{1}{\sqrt{2}}\right)(1+i)$

Answer: A

- Watch Video Solution

80. The least value of p for which the two curves arg $z=\frac{\pi}{6}$ and $|z-2 \sqrt{3} i|=p$ intersect is
A. $\sqrt{3}$
B. 3
C. $1 / \sqrt{3}$
D. $1 / 3$

Answer: B

- Watch Video Solution

81. Let a be a complex number such that $|a|<1$ and $z_{1}, z_{2} \ldots$. be vertices of a polygon such that $z_{k}=1+a+a^{2}+a^{3}+a^{k-1}$.

Then, the vertices of the polygon lie within a circle.
A. $|z-a|=a$
B. $\left|z-\frac{1}{1-a}\right|=|1-a|$
C. $\left|z-\frac{1}{1-a}\right|=\frac{1}{|1-a|}$
D. $|z-(1-a)|=|1-a|$

Answer: C

82. The complex number having least positive argument and satisying $|z-5 i| \leq 3$, is
A. $12+16 i$
B. $\frac{12}{5}+\frac{16 i}{5}$
C. $\frac{16}{5}+\frac{12 i}{5}$
D. $-\frac{12}{5}+\frac{16 i}{5}$

Answer: B

- Watch Video Solution

83. If $|z-3+2 i| \leq 4$, (where $i=\sqrt{-1}$) then the difference of greatest and least values of $|z|$ is
A. $2 \sqrt{11}$
B. $3 \sqrt{11}$
C. $2 \sqrt{13}$
D. $3 \sqrt{13}$

Answer: C

- Watch Video Solution

84. The least distance between the circles $|z|=12$ and $|z-3-4 i|=5$, is
A. 0
B. 2
C. 7
D. 17

Answer: B

85. z_{1}, z_{2}, z_{3} are the vertices of an equilateral triangle taken in counter clockwise direction. If its circumference is at the origin and $z_{1}=1+i$, then
A. $z_{2}=z_{1} e^{i 2 \pi / 3}, z_{3} e^{\pi / 3}$
B. $z_{2}=z_{1} e^{i 2 \pi / 3}, z_{3}=z_{1} e^{i 4 \pi / 3}$
C. $z_{2}=z_{1} e^{i 4 \pi / 3}, z_{3}=z_{1} e^{i 2 \pi / 3}$
D. $z_{2}=z_{1} e^{i \pi / 3}, z_{3}=z_{1} e^{i 2 \pi / 3}$

Answer: B

- Watch Video Solution

86. z_{1}, z_{2}, z_{3} are the vertices of an equilateral triangle taken in counter clockwise direction. If its circumcenter is at (1-2i) and $\left(z_{1}=2+i\right)$, then $z_{2}=$

$$
\text { A. } \frac{1-3 \sqrt{3}}{2}+\frac{\sqrt{3}-7}{2} i
$$

$1+3 \sqrt{3} \quad 7+\sqrt{3}$
B. $\frac{2}{2} j$
c. $\frac{1+3 \sqrt{3}}{2}, \frac{\sqrt{3}-7}{2} i_{i}$
D. $\frac{1+3 \sqrt{3}}{2}+\frac{7+\sqrt{3}}{2} i$

Answer: A

Watch Video Solution

87. The complex numbers z_{1}, z_{2} and z_{3} satisfying $\frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{1-i \sqrt{3}}{2}$ are the vertices of triangle which is (1) of area zero (2) right angled isosceles(3) equilateral (4) obtuse angled isosceles
A. of area zero
B. right angled isosceles
C. equilateral
D. obtuse-angled isosceles

Answer: C

D Watch Video Solution

88. Show that the area of the triangle on the Argand diagram formed by
the complex numbers z, zi and $z+z i$ is $=\frac{1}{2}|z|^{2}$
A. $|z|^{2}$
B. $\frac{1}{2}|z|^{2}$
C. $\frac{1}{4}|z|^{2}$
D. $\frac{\sqrt{3}}{4}|z|^{2}$

Answer: B

D Watch Video Solution

89. If z is any complex number, then the area of the triangle formed by the complex number $z, w z$ and $z+w z$ as its sides, is
A. $\frac{1}{2}|z|^{2}$
B. $\frac{3}{2}|z|^{2}$
C. $\frac{\sqrt{3}}{4}|z|^{2}$
D. $\frac{1}{2}|z|^{2}$

Answer: C

- Watch Video Solution

90. The area of the triangle whose vertices are represented by $0, z, z e^{i \alpha}$
A. $\frac{1}{2}|z|^{2} \cos \alpha$
B. $\frac{1}{|z|^{2}} \sin \alpha$
C. $\frac{1}{2}|z|^{2} \sin \alpha \cos \alpha$
D. $\frac{1}{2}|z|^{2}$

Answer: B

91. If z_{1}, z_{2} are vertices of an equilateral triangle with z_{0} its centroid, then $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=$
A. $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$
B. $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=2\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right)$
C. $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}=0$
D. None of these

Answer: A

- Watch Video Solution

92. The vertices of a square are z_{1}, z_{2}, z_{3} and z_{4} taken in the anticlockwise order, then $z_{3}=$

$$
\text { A. }-i z_{1}+(1+i) z_{2}
$$

B. $i z_{1}+(1-i) z_{2}$
C. $z_{1}+(1+i) z_{2}$
D. $(1+i) z_{1}+z_{2}$

Answer: A

- Watch Video Solution

93. $A B C D$ is a rhombus in the Argand plane. If the affixes of the vertices are z_{1}, z_{2}, z_{3} and z_{4} respectively, and $\angle C B A=\pi / 3$, then
A. $z_{1}+\omega z_{2}=\omega^{2} z_{3}=0$
B. $z_{1}-\omega z_{2}-\omega^{2} z_{3}=0$
C. $\omega z_{1}+z_{2}+\omega^{2} z_{3}=0$
D. $\omega^{2} z_{1}+\omega z_{2}+z_{3}=0$

Answer: A

- Watch Video Solution

94. If two triangles whose vertices are respectively the complex numbers
z_{1}, z_{2}, z_{3} and a_{1}, a_{2}, a_{3} are similar, then the determinant.
$\left|\begin{array}{lll}z_{1} & a_{1} & 1 \\ z_{2} & a_{2} & 1 \\ z_{3} & a_{3} & 1\end{array}\right|$ is equal to
A. $z_{1} z_{2} z_{3}$
B. $a_{1} a_{2} a_{3}$
C. 1
D. 0

Answer: D

- Watch Video Solution

95. The point representing the complex number z for which arg
$\left(\frac{z-2}{z+2}\right)=\frac{\pi}{3}$ lies on
A. a circle
B. a straight line
C. a paralbola
D. an ellipse

Answer: A

- Watch Video Solution

96. If z be any complex number $(z \neq 0)$ then $\arg \left(\frac{z-i}{z+i}\right)=\frac{\pi}{2}$ represents the curve
A. $|z|=1$
B. $|z|=1, \operatorname{Re}(z)>0$
C. $|z|=1, \operatorname{Re}(z)<0$
D. none of these

Answer: C

97. If $\arg \frac{z-a}{z+a}= \pm \frac{\pi}{2}$, where a is a fixed real number, then the locus of z is
A. a staight line
B. a circle with center at the origin and radius a
C. a circle with center on y-axis
D. none of these

Answer: B

- Watch Video Solution

98. The length of perpendicular form $P(2-3 i)$ on the line
$(3+4 i) z+(3-4 i) \bar{z}+9=0$ is equal to
(1) $9(2) 9 / 4$
(3) $9 / 2(4) 10$
A. 9
B. $9 / 4$
C. $9 / 2$
D. none of these

Answer: C

- Watch Video Solution

99. $\left\{\frac{1+\cos \pi / 8+i \sin i \pi / 8}{1+\cos \pi / 8-i \sin \pi / 8}\right\}^{8}=$
A. $1+i$
B. 1 - i
C. 1
D. -1

Answer: D
100. The value of $\frac{\left(\sin \frac{\pi}{8}+i \cos \frac{\pi}{8}\right)^{8}}{\text { is : }}$

$$
\left(\sin \frac{\pi}{8}-i \cos \frac{\pi}{8}\right)^{8}
$$

A. -1
B. 0
C. 1
D. 2 i

Answer: C

- Watch Video Solution

101. The principal amplitude of
$\left(\sin 40^{\circ}+i \cos 40^{\circ}\right)^{5}$, is
A. 70°
B. -110°
C. 110°
D. -70°

Answer: B

- Watch Video Solution

102. If $\cos \alpha+\cos \beta+\cos \gamma=0$ andalsosin $\alpha+\sin \beta+\sin \gamma=0$, then prove that

$$
\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma \quad=\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma=0
$$

$\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)$
$\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3 \cos (\alpha+\beta+\gamma)$
A. 0
B. $\cos (\alpha+\beta+\gamma)$
C. $3 \cos (\alpha+\beta+\gamma)$
D. $3 \sin (\alpha+\beta+\gamma)$

- Watch Video Solution

103. If $x_{n}=\cos \left(\frac{\pi}{2^{n}}\right)+i \sin \left(\frac{\pi}{2^{n}}\right), n \in N$ then $x_{1}, x_{2}, x_{3} \ldots \ldots \ldots \ldots \ldots \ldots . x_{\infty}$. Is equal to
A. 1
B. -1
C. 0
D. none of these

Answer: B

104. If $(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \ldots .(\cos n \theta+i \sin n \theta)=1$, then the value of θ, is
A. $4 m \pi$
B. $\frac{2 m \pi}{n(n+1)}$
C. $\frac{4 m \pi}{n(n+1)}$
D. $\frac{m \pi}{n(n+1)}$

Answer: C

- Watch Video Solution

105. If $x+\frac{1}{x}=2 \cos \theta$, then $x^{n}+\frac{1}{x^{n}}$ is equal to
A. $2 \cos n \theta$
B. $2 \sin n \theta$
C. $\cos n \theta$
D. $\sin n \theta$

Answer: A

- Watch Video Solution

106. Let $z=\cos \theta+i \sin \theta$, where $i=\sqrt{-1}$. Then the value of $\sum_{m=1} \operatorname{Im}\left(z^{2 m-1}\right)$ at $\theta=2^{\circ}$ is
A. $\frac{1}{\sin 2^{\circ}}$
B. $\frac{1}{3 \sin 2^{\circ}}$
C. $\frac{1}{2 \sin 2^{\circ}}$
D. $\frac{1}{4 \sin 2^{\circ}}$

Answer: D

107. The number of roots of the equation $z^{6}=-64$ whose real parts are non-negative,
A. 2
B. 3
C. 4
D. 5

Answer: C

- Watch Video Solution

108. If z_{1} and z_{2} are two $n^{\text {th }}$ roots of unity, then $\arg \left(\frac{z_{1}}{z_{2}}\right)$ is a multiple of
A. $n \pi$
B. $\frac{3 \pi}{n}$
C. $\frac{2 \pi}{n}$
D. none of these

Answer: C

- Watch Video Solution

109. If $1, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n-1}$ are n, nth roots of unity, then $\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)\left(1-\alpha_{3}\right) \ldots\left(1-\alpha_{n-1}\right)$ equals to
A. $\sqrt{3}$
B. $1 / 2$
C. n
D. 0

Answer: C

- Watch Video Solution

110. If $1, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{n-1}$ are n , nth roots of unity, then $\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)\left(1-\alpha_{3}\right) \ldots\left(1-\alpha_{n-1}\right)$ equals to
A. 1
B. 0
C. -1
D. none of these

Answer: B

- Watch Video Solution

111. If α is an $n^{\text {th }}$ roots of unity, then $1+2 \alpha+3 \alpha^{2}+\ldots \ldots . .+n \alpha^{n-1}$ equals
A. $\frac{n}{1-\alpha}$
B. $-\frac{n}{1-\alpha}$
C. $-\frac{n}{(1-\alpha)^{2}}$
D. none of these

Answer: B

- Watch Video Solution

112. if $1, \omega, \omega^{2}$ root of the unity then The roots of the equation $(x-1)^{3}+8=0$ are
A. $-1,1+2 \omega, 1+2 \omega^{2}$
B. $-1,1-2 \omega, 1-2 \omega^{2}$
C. $2,2 \omega, 2 \omega^{2}$
D. $2,1+2 \omega, 1+2 \omega^{2}$

Answer: B

113. The argument of $\frac{1-i \sqrt{3}}{1+i \sqrt{3}}$, is
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. $\frac{7 \pi}{6}$
D. $-\frac{2 \pi}{3}$

Answer: D

- Watch Video Solution

114. If ω is an imaginary cube root of unity, then $\left(1+\omega-\omega^{2}\right)^{7}$ is equal to 128ω (b) $-128 \omega 128 \omega^{2}$ (d) $-128 \omega^{2}$
A. 128ω
B. -128ω
C. $128 \omega^{2}$

$$
\text { D. }-128 \omega^{2}
$$

Answer: D

- Watch Video Solution

115. If $\omega(\neq 1)$ be a cube root of unity and $\left(1+\omega^{2}\right)^{n}=\left(1+\omega^{4}\right)^{n}$, then the least positive value of n, is
A. 2
B. 3
C. 5
D. 6

Answer: B

- Watch Video Solution

116. about to only mathematics
A. $(1-i \sqrt{3})$
B. $-1+i \sqrt{3})$
C. $i \sqrt{3}$
D. $-i \sqrt{3}$

Answer: C

- Watch Video Solution

117. If $\left(\frac{3}{2}+\frac{i \sqrt{3}}{2}\right)^{50}=3^{25}(x-i y)$,
where $x, y \in R$ and $i=\sqrt{-1}$, find the ordered pair of (x, y).
A. $(0,3)$
B. $(1 / 2, \sqrt{3} / 2)$
C. $(-3,0)$
D. $(0,-3)$

Answer: B

- Watch Video Solution

118. $x+i y=(1-i \sqrt{3})^{100}$, then $(x, y)=$
A. $\left(2^{99}, 2^{99} \sqrt{3}\right)$
B. $\left(2^{99},-2^{99} \sqrt{3}\right)$
C. $\left(-2^{99}, 2^{99} \sqrt{3}\right)$
D. none of these

Answer: C

- Watch Video Solution

119. If $z(2-2 \sqrt{3 i})^{2}=i(\sqrt{3}+i)^{4}$, then $\arg (z)=$
A. $\frac{5 \pi}{6}$
B. $-\frac{\pi}{6}$
C. $\frac{\pi}{6}$
D. $\frac{7 \pi}{6}$

Answer: B

- Watch Video Solution

120. If ω is a complex cube root of unity, then $\arg (i \omega)+\arg \left(i \omega^{2}\right)=$
A. 0
B. $\pi / 2$
C. π
D. $\pi / 4$

Answer: C

$1 \times(2-\omega) \times\left(2-\omega^{2}\right)+2 \times(-3-\omega) \times\left(3-\omega^{2}\right)+\ldots+(n-1) \times(n-\omega) \times(n-c$
, where ω is an imaginary cube root of unity.
A. $\left\{\frac{n(n+1)}{2}\right\}^{2}$
B. $\left\{\frac{n(n+1)}{2}\right\}^{2}-n$
c. $\left\{\frac{n(n+1)}{2}\right\}^{2}+n$
D. none of these

Answer: B

- Watch Video Solution

122. If $z^{2}+z+1=0$, where z is a complex number, the value of

$$
\left(z+\frac{1}{z}\right)^{2}+\left(z^{2}+\frac{1}{z^{2}}\right)^{2}+\left(z^{3}+\frac{1}{z^{3}}\right)^{2}+\ldots+\left(z^{6}+\frac{1}{z^{6}}\right)^{2} \text { is }
$$

A. 54
B. 6
C. 12
D. 18

Answer: C

- Watch Video Solution

123. If $\omega(\neq 1)$ is a cube root of unity, and $(1+\omega)^{7}=A+B \omega$. Then (A, $\left.B\right)$ equals
A. $(0,1)$
B. $(1,1)$
C. 77
D. 64
124. If α and β are the roots of the equation $x^{2}-x+1=0$, then $\alpha^{2009}+\beta^{2009}=(1) 4(2) 3(3) 2(4) 1$
A. 1
B. 2
C. -2
D. -1

Answer: A

- Watch Video Solution

125. Let $\omega \neq 1$ be a complex cube root of unity. If $\left(3-3 \omega+2 \omega^{2}\right)^{4 n+3}+\left(2+3 \omega-3 \omega^{2}\right)^{4 n+3}+\left(-3+2 \omega+3 \omega^{2}\right)^{4 n+3}=0$, then the set of possible value(s) of n is are
A. N
B. $\{3 k: k \in N\}$
C. $N-(3 k: k \in N)$
D. $\{6 k: k \in N\}$

Answer: C

- Watch Video Solution

126. If z_{1}, z_{2} and z_{3} are the vertices of an equilasteral triangle with z_{0} as its circumcentre, then changing origin to z^{0}, show that $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0$, wherez ${ }_{1}, z_{2}, z_{3}$, are new complex numbers of the vertices.
A. z_{0}^{2}
B. $3 z_{0}^{2}$
C. $2 z_{0}^{2}$
D. 0

- Watch Video Solution

127. The origin and the roots of the equation $z^{2}+p z+q=0$ form an equilateral triangle If -
A. $p^{2}=q$
B. $p^{2}=3 q$
C. $p^{2}=3 p$
D. $q^{2}=p$

Answer: B

D Watch Video Solution

128. If $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ are two points in the Argand plane such that $z_{1}^{2}+z_{2}^{2}+z_{1} z_{2}=0$, then $\triangle O A B$, is
A. equilateral
B. isosceles with $\angle A O B=\frac{\pi}{2}$
C. isosceles with $\angle A O B=\frac{2 \pi}{3}$
D. isosceles with $\angle A O B=\frac{\pi}{4}$

Answer: C

- Watch Video Solution

129. If $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ are three points in the Argand plane such that $z_{1}+\omega z_{2}+\omega^{2} z_{3}=0$, then
$A . A, B, C$ are collinear triangle
B. $\triangle A B C$ is a right triangle
C. $\triangle A B C$ is an equilateral triangle
D. $\triangle A B C$ is right angled isosceles triangle.

Answer: C

130. The value of i^{i}, is
A. $-\frac{\pi}{2}$
B. $e^{-\frac{\pi}{2}}$
C. $e^{\frac{\pi}{2}}$
D. none of these

Answer: B

- Watch Video Solution

Section I - Solved Mcqs

1. The smallest positive integral value of n for which $(1+\sqrt{3} i)^{\frac{n}{2}}$ is real is
A. 3
B. 6
C. 12
D. 0

Answer: B

- Watch Video Solution

2. The least positive integeral value of n for which $(\sqrt{3}+i)^{n}=(\sqrt{3}-i)^{n}$, is
A. 3
B. 4
C. 6
D. none of these

Answer: C

3. If $(\sqrt{3}-i)^{n}=2^{n}, n \in I$, the set of integers, then n is a multiple of
A. 6
B. 10
C. 9
D. 12

Answer: D

4. If $(1+i)=(1-i) \bar{z}$ then z is :
A. $t(1-i), t \in R$
B. $t(1+i), t \in R$
C. $\frac{t}{1+i}, t \in R^{+}$
D. none of these

- Watch Video Solution

5. Let $z=\frac{\cos \theta+i \sin \theta}{\cos \theta-i \sin \theta}, \frac{\pi}{4}<\theta<\frac{\pi}{2}$. Then $\arg (z)=$
A. 2θ
B. $2 \theta-\pi$
C. $\pi+2 \theta$
D. none of these

Answer: A

- Watch Video Solution

6. If $\arg (z)<0$, then find $\arg (-z)-\arg (z)$.
A. π
B. $-\pi$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{2}$

Answer: A

- Watch Video Solution

7. The value of $\left\{\sin \left(\log i^{i}\right)\right\}^{3}+\left\{\cos \left(\log i^{i}\right)\right\}^{3}$, is
A. 1
B. -1
C. 2
D. $2 i$

Answer: B

8. If $z=a+i b$ satisfies $\arg (z-1)=\arg (z+3 i)$, then $(a-1): b=$
A. 2:1
B. 1:3
C. $-1: 3$
D. none of these

Answer: B

Watch Video Solution

9. If the area of the triangle on the complex plane formed by the points z , $i z$ and $z+i z$ is 50 square units, then $|z|$ is
A. 5
B. 10
C. 15
D. none of these

- Watch Video Solution

10. If the area of the triangle on the complex plane formed by complex numbers $z, \omega z$ is $4 \sqrt{3}$ square units, then $|z|$ is
A. 4
B. 2
C. 6
D. 3

Answer: A

D Watch Video Solution

11. about to only mathematics
A. 27
B. 72
C. 45
D. 54

Answer: D

- Watch Video Solution

12. If $x^{2}-x=1=0 C \sum_{n=1}^{5}\left(x^{n}+\frac{1}{x^{n}}\right)^{2}$ is :
A. 8
B. 10
C. 12
D. none of these
13. The value of $\alpha^{-n}+\alpha^{-2 n}, n \in N$ and α is a non-real cube root of unity, is
A. 3 , if n is a multiple of 3
B. -1 , if n is a mulitiple of 3
C. 2 , if n is a multiple of 3
D. none of these

Answer: C

- Watch Video Solution

14. If a is a non-real fourth root of unity, then the value of $\alpha^{4 n-1}+\alpha^{4 n-2}+\alpha^{4 n-3}, n \in N$ is
A. 0
B. -1
C. 3
D. none of these

Answer: B

- Watch Video Solution

15. If $1, \alpha, \alpha^{2}, \ldots \ldots \ldots, \alpha^{n-1}$ are $n^{\text {th }}$ root of unity, the value of $(3-\alpha)\left(3-\alpha^{2}\right)\left(3-\alpha^{3}\right) \ldots \ldots\left(3-\alpha^{n-1}\right)$, is
A. n
B. 0
C. $\frac{3 n-1}{2}$
D. $\frac{3 n+1}{2}$

Answer: C

16. If ω is an imaginary cube root of unity, then show that $(1-\omega)\left(1-\omega^{2}\right)\left(1-\omega^{4}\right)\left(1-\omega^{5}\right)=9$
A. $2^{3 n}$
B. $2^{2 n}$
C. 2^{n}
D. none of these

Answer: C

- Watch Video Solution

17. If α is a non-real fifth root of unity, then the value of $3\left|1+\alpha+\alpha^{2}, \alpha^{-2}-\alpha^{-1}\right|$, is
A. 9
B. 1
C. $11 / 3$
D. none of these

Answer: A

- Watch Video Solution

18. If $Z_{r}=\cos \left(\frac{2 r \pi}{5}\right)+i \sin \left(\frac{2 r \pi}{5}\right), r=0,1,2,3,4, \ldots$ then $z_{1} z_{2} z_{3} z_{4} z_{5}$ is equal to
A. -1
B. 0
C. 1
D. none of these

Answer: C

19. z is a complex number satisfying $z^{4}+z^{3}+2 z^{2}+z+1=0$, then $|z|$ is equal to
A. $\frac{1}{2}$
B. $\frac{3}{4}$
C. 1
D. none of these

Answer: C

- Watch Video Solution

20. if $\frac{5 z_{2}}{7 z_{1}}$ is purely imaginary number then $\left|\frac{2 z_{1}+3 z_{2}}{2 z_{1}-3 z_{2}}\right|$ is equal to
A. $5 / 7$
B. 7/9
C. $\frac{25}{49}$
D. none of these

Answer: D

- Watch Video Solution

21. The locus of point z satsifying $\operatorname{Re}\left(\frac{1}{2}\right)=k$, where k is a nonzero real number, is
A. a straight line
B. a circle
C. an ellipse
D. a hyperbola

Answer: B

22. If z lies on the circle $|z|=1$, then $2 / z$ lies on
A. a circle
B. an ellipse
C. a straight line
D. a parabola

Answer: A

- Watch Video Solution

23. The maximum value of $|z|$ where z satisfies the condition $\left|z+\left(\frac{2}{z}\right)\right|=2$ is
A. $\sqrt{3}-1$
B. $\sqrt{3}$
C. $\sqrt{3}+1$
D. $\sqrt{2}+\sqrt{3}$

Answer: C

- Watch Video Solution

24. If $\left|z-\frac{4}{z}\right|=2$, then the maximum value of $|Z|$ is equal to (1) $\sqrt{3}+1$ (2) $\sqrt{5}+1(3) 2(4) 2+\sqrt{2}$
A. $\sqrt{5}$
B. $\sqrt{5}+1$
C. $\sqrt{5}-1$
D. none of these

Answer: B

25. If $\left|z^{2}-1\right|=|z|^{2}+1$, then z lies on (a) The Real axis (b)The imaginary axis (c)A circle (d)An ellipse
A. a circle
B. a parabola
C. an ellipse
D. none of these

Answer: D

D Watch Video Solution

26. about to only mathematics
A. $|z|=1$
B. $|z|>1$
C. $|z|<1$
D. $|z|>2$

Answer: A

Watch Video Solution
27. If $|z|=k$ and $\omega=\frac{z-k}{z+k}$, then $\operatorname{Re}(\omega)=$
A. 0
B. k
C. $\frac{1}{k}$
D. $-\frac{1}{k}$

Answer: A

28. If $k>0,|z|=|w|=k$, and $\alpha=\frac{z-\bar{w}}{k^{2}+z \bar{w}}$, then $\operatorname{Re}(\alpha)(A) 0$ (B) $\frac{k}{2}$ (C) k (D)

None of these
A. 0
B. $k / 2$
C. k
D. none of these

Answer: A

Watch Video Solution
29. The region in the Argand diagram defined by $|z-2 i|+|z+2 i|<5$ is the ellipse with major axis along
A. the real axis
B. the imaginary axis
C. $y=x$
D. $y=-x$

Answer: B

- Watch Video Solution

30. Prove that $\left|Z-Z_{1}\right|^{2}+\left|Z-Z_{2}\right|^{2}=a$ will represent a real circle [with center $\left.\left(\left|Z_{1}+Z_{2}\right|^{\prime} 2+\right)\right]$ on the Argand plane if $2 a \geq\left|Z_{1}-Z_{1}\right|^{2}$
A. $k<\left|z_{1}-z_{2}\right|^{2}$
B. $k=\left|z_{1}-z_{2}\right|^{2}$
C. $k \geq \frac{1}{2}\left|z_{1}-z_{2}\right|^{2}$
D. $k<\frac{1}{2}\left|z_{1}-z_{2}\right|^{2}$

Answer: C

31. The equation $|z-1|^{2}+|z+1|^{2}=2$, represent
A. a circle of radius one unit
B. a straight line
C. the ordered pair $(0,0)$
D. none of these

Answer: C

- Watch Video Solution

32. The points representing the complex numbers z for which
$|z+4|^{2}-|z-4|^{2}=8$ lie on
A. a straight line parallel to x-axis
B. a straight line parallel to y-axis
C. a circle with center as origin
D. a circle with center other than the origin.

- Watch Video Solution

33. If $|z+\bar{z}|=|z-\bar{z}|$, then value of locus of z is
A. a pair of straight line
B. a rectangular hyperbola
C. a line
D. a set of four lines

Answer: A

34. If $|z+\bar{z}|+|z-\bar{z}|=2$, then z lies on
A. a straight line
B. a square
C. a circle
D. none of these

Answer: A

- Watch Video Solution

35. The closest distance of the origin from a curve given as $A \bar{z}+\bar{A} z+A \bar{A}=0$ is: (A is a complex number).
A. 1 unit
B. $\frac{\operatorname{Re}(A)}{|A|}$
C. $\frac{I_{m}(A)}{|A|}$
D. $\frac{1}{2}|A|$

Answer: D

36. If $z_{1}=1+2 i, z_{2}=2+3 i, z_{3}=3+4 i$, then z_{1}, z_{2} and z_{3} represent the vertices of $a / a n$.
A. equilateral triangle
B. right angled triangle
C. isosceles triangle
D. none of these

Answer: D

D Watch Video Solution

37. If z_{1} and z_{2} are two of the $8^{\text {th }}$ roots of unity such that $\arg \left(\frac{z_{1}}{z_{2}}\right)$ is last positive, then $\frac{z_{1}}{z_{2}}$ is
A. $1+i$
B. 1-i
C. $\frac{1+i}{\sqrt{2}}$
D. $\frac{1-i}{\sqrt{2}}$

Answer: C

Watch Video Solution

38. Find the number of roots of the equation $z^{15}=1$ satisfying $|\arg z|<\pi / 2$.
A. 6
B. 7
C. 8
D. none of these

Answer: B

39. If $z_{1}, z_{2}, \ldots \ldots \ldots \ldots, z_{n}$ lie on the circle $|z|=R$, then
$\left|z_{1}+z_{2}+\ldots \ldots \ldots \ldots \ldots+z_{n}\right|-R^{2}\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots \ldots+\frac{1}{z}-(n)\right|$ is equal to
A. $n R$
B. $-n R$
C. 0
D. n

Answer: C

(Watch Video Solution

40. about to only mathematics
A. $4 k+1$
B. $4 k+2$
C. $4 k+3$
D. 4 k

Answer: D

- Watch Video Solution

41. The complex numbers z_{1}, z_{2} and z_{3} satisfying $\frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{1-i \sqrt{3}}{2}$ are the vertices of triangle which is (1) of area zero (2) right angled isosceles(3) equilateral (4) obtuse angled isosceles
A. of area zero
B. right-angled isosceles
C. equilateral
D. obtuse-angled isosceles

Answer: C

42. Let $\omega=-\frac{1}{2}+i \frac{\sqrt{3}}{2}$. Then the value of the determinant $\left|1111-1-\omega^{2} \omega^{2} 1 \omega^{2} \omega^{4}\right|$ is 3ω b. $3 \omega(\omega-1)$ c. $3 \omega^{2}$ d. $3 \omega(1-\omega)$
A. 3ω
B. $3 \omega(\omega-1)$
C. $3 \omega^{2}$
D. $3 \omega(1-\omega)$

Answer: B

- Watch Video Solution

43. about to only mathematics
A. 0
B. 2
C. 7
D. 17

Answer: B

- Watch Video Solution

44. Let z_{1} and z_{2} be two complex numbers represented by points on circles $|z|=1$ and $|z|=2$ respectively, then
A. $\max \left|2 z_{1}+z_{2}\right|=4$
B. $\min \left|z_{1}-z_{2}\right|=1$
C. $\left|z_{2}+\frac{1}{z_{1}}\right| \leq 3$
D. all of the above.

Answer: D

45. If z lies on unit circle with center at the origin, then $\frac{1+z}{1+\bar{z}}$ is equal to
A. z
B. \bar{z}
C. $z+\bar{Z}$
D. none of these

Answer: A

D Watch Video Solution

46. If $\left|z_{1}-1\right|<1,\left|z_{2}-2\right|<2,\left|z_{3}-3\right|<3$ then $\left|z_{1}+z_{2}+z_{3}\right|$
A. is less than 6
B. is more than 3
C. is less than 12
D. lies between 6 and 12

- Watch Video Solution

47. Complex numbers z_{1} and z_{2} lie on the rays $\arg (z 1)=\theta$ and $\arg (z 1)$ $=-\theta$ such that $\left|z_{1}\right|=\left|z_{2}\right|$. Further, image of z_{1} in y-axis is z_{3}. Then, the value of $\arg \left(z_{1} z_{3}\right)$ is equal to
A. $\frac{\pi}{2}$
B. $-\frac{\pi}{2}$
C. π
D. none of these

Answer: C

- Watch Video Solution

48. If z is a complex number satisfying $|z|^{2}-|z|-2<0$, then the value of $\left|z^{2}+z \sin \theta\right|$, for all values of θ, is
A. equal to 4
B. equal to 6
C. more than 6
D. less than 6

Answer: D

- Watch Video Solution

49. if $|z-i| \leq 2$ and $z_{1}=5+3 i$, then the maximum value of $\left|i z+z_{1}\right|$ is :
A. $2+\sqrt{31}$
B. 7
C. $\sqrt{31}-2$
D. none of these

Answer: B

- Watch Video Solution

50. If $|z|=\max \{|z-2|,|z+2|\}$, then
A. $|z+\bar{z}|=2$
B. $z+\bar{z}=4$
C. $|z+\bar{z}|=1$
D. none of these

Answer: A

- Watch Video Solution

51. if $\left|\frac{z-6}{z+8}\right|=1$, then the value of $x \in R$, where
$z=x+i\left|\begin{array}{lll}-3 & 2 i & 2+i \\ -2 i & 2 & 4-3 i \\ 2-i & 4+3 i & 7\end{array}\right|$, is
A. 5
B. 7
C. 9
D. 0

Answer: B

- Watch Video Solution

52. If $|z-1|+|z+3| \leq 8$, then the range of values of $|z-4|$ is
A. $(0,8)$
B. $[0,9]$
C. $[1,9]$
D. $[5,9]$

Answer: C

- Watch Video Solution

53. The equation $|z-i|+|z+i|=k, k>0$ can represent an ellipse, if $k=$
A. 1
B. 2
C. 4
D. none of these

Answer: C

54. Find the range of K for which the equation $|z+i|-|z-i|=K$ represents a hyperbola.
A. $k \in(-2,2)$
B. $k \in[2,2]$
C. $k \in(0,2)$
D. $k \in(-2,0)$

Answer: A

- Watch Video Solution

55. If $|z+3 i|+|z-i|=8$, then the locus of z, in the Argand plane, is
A. an ellipse of eccentricity $\frac{1}{2}$ and major axis along x-axis.
B. an ellipse of eccentricity $\frac{1}{2}$ and major axis of along y-axis.
C. an ellipse of eccentricity $\frac{1}{\sqrt{2}}$ and major axis along y-axis
D. none of these

Answer: A

- Watch Video Solution

56. , a point ' z ' is equidistant from three distinct points z_{1}, z_{2} and z_{3} in the

Argand plane. If z, z_{1} and z_{2} are collinear, then $\arg \left(z \frac{z_{3}-z_{1}}{z_{3}-z_{2}}\right)$. Willbe
(z_(1),z_(2),z_(3))' are in anticlockwise sense).
A. $\frac{\pi}{2}$
B. $-\frac{\pi}{2}$
C. $\frac{\pi}{6}$
D. $\frac{2 \pi}{3}$

Answer: B

57. Let $P\left(e^{i \theta_{1}}\right), Q\left(e^{i \theta_{2}}\right)$ and $R\left(e^{i \theta_{3}}\right)$ be the vertices of a triangle $P Q R$ in the Argand Plane. Theorthocenter of the triangle $P Q R$ is
A. $e^{i\left(\theta_{1}+\theta_{2}+\theta_{3}\right)}$
B. $\frac{2}{3} e^{i\left(\theta_{1}+\theta_{2}+\theta_{3}\right)}$
C. $e^{i\left(\theta_{1}\right)+e^{i \theta_{2}}+e^{i \theta_{3}}}$
D. none of these

Answer: C

- Watch Video Solution

58. If $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ are the vertices of an equilateral triangle $A B C$, then $\arg \frac{2 z_{1}-z_{2}-z_{3}}{z_{3}-z_{2}}=$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{6}$

Answer: B

- Watch Video Solution

59. If $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ are three points in the argand plane where $\left|z_{1}+z_{2}\right|=\left|\left|z_{1}-z_{2}\right|\right.$ and $|(1-i) z_{1}+i z_{3}\left|=\left|z_{1}\right|+\left|z_{3}\right|-z_{1}\right|$, where $i=\sqrt{-1}$ then
A. A,B and C lie on a circle with center $\frac{z_{2}+z_{3}}{2}$
$B . A, B$ and C are collinear points.
$C . A, B, C$ from an equilateral triangle.
D. A, B, C form an obtuse angle triangle.

Answer: A

60. If $a_{1}, a_{2} \ldots a_{n}$ are nth roots of unity then
$\frac{1}{1-a_{1}}+\frac{1}{1-a_{2}}+\frac{1}{1-a_{3}} \ldots+\frac{1}{1-a_{n}}$ is equal to
A. $\frac{n-1}{2}$
B. $\frac{n}{2}$
C. $\frac{2^{n}-1}{2}$
D. none of these

Answer: A

- Watch Video Solution

61. Let $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ be such that $\angle A O B=\theta\left(O^{\prime}\right)$ being the origin). If we define $z_{1} \times z_{2}=\left|z_{1}\right|\left|z_{2}\right| \sin \theta$, then $z_{1} \times z_{2}$ is also equal to
A. $\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=0$
B. $\operatorname{Re}\left(\bar{z}_{1} z_{2}\right)=0$
C. $\operatorname{Im}\left(\bar{z}_{1} z_{2}\right)=0$
D. none of these

Answer: C

- Watch Video Solution

62. If one root of $z^{2}+(a+i) z+b+i c=0$ is real, where $a, b, c \in R$, then
$c^{2}+b-a c=$
A. 0
B. -1
C. 1
D. none of these

Answer: A

63. If A and B represent the complex numbers z_{1} and z_{2} such that $\left|z_{1}+z_{2}\right|=\left|z_{1}-z_{2}\right|$, then the circumcenter of $\triangle O A B$, where O is the origin, is
A. $\frac{z_{1}+z_{2}}{3}$
B. $\frac{z_{1}+z_{2}}{2}$
C. $\frac{z_{1}-z_{2}}{2}$
D. none of these

Answer: B

- Watch Video Solution

64. If $z_{1} \neq-z_{2}$ and $\left|z_{1}+z_{2}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}\right|$ then :
A. $0 \leq A \leq \frac{15}{2}$
B. $0<A<\frac{15}{2}$
C. $0 \leq A \leq \frac{17}{2}$
D. $0 \leq A<\frac{17}{2}$

Answer: D

- Watch Video Solution

65. Let O, A, B be three collinear points such that $O A . O B=1$. If O and B
represent the complex numbers O and z, then A represents
A. $\frac{1}{Z}$
B. \bar{z}
C. $\frac{1}{\bar{Z}}$
D. none of these

Answer: C

66. If z_{0}, z_{1} represent points P and Q on the circle $|z-1|=1$ taken in anticlockwise sense such that the line segment $P Q$ subtends a right angle at the center of the circle, then $z_{1}=$
A. $1+i\left(z_{0}-1\right)$
B. $i z_{0}$
C. 1-i($\left.z_{0}-1\right)$
D. $i\left(z_{0}-1\right)$

Answer: A

- Watch Video Solution

67. The center of a square $A B C D$ is at the origin and point A is reprsented by z_{1}. The centroid of $\triangle B C D$ is represented by
A. $\frac{z_{1}}{3}$
B. $-\frac{z_{1}}{3}$
C. $\frac{i z_{1}}{3}$
D. $-\frac{i z_{1}}{3}$

Answer: B

- Watch Video Solution

68. The value of k for which the inequality $|\operatorname{Re}(z)|+|\operatorname{Im}(z)| \leq \lambda|z|$ is true for all $z \in C$, is
A. 2
B. $\sqrt{2}$
C. 1
D. none of these

Answer: B

69. The value of λ for which the inequality $\left|\frac{z_{1}}{\left|z_{1}\right|}+\frac{z_{2}}{\left|z_{2}\right|}\right| \leq \lambda$ is true for all $z_{1}, z_{2} \in C$, is
A. 1
B. 2
C. 3
D. none of these

Answer: B

70. If z_{1} and z_{2} both satisfy $z+z=2|z-1|$ and $\arg \left(z_{1}-z_{2}\right)=\frac{\pi}{4}$, then find $\operatorname{Im}\left(z_{1}+z_{2}\right)$.
A. 0
B. 1
C. 2
D. none of these

Answer: C

- Watch Video Solution

71. If z satisfies $|z+1|<|z-2|$, then $v=3 z+2+i$ satisfies:
A. $|\omega+1|<|\omega-8|$
B. $|\omega+1|<|\omega-7|$
C. $\omega+\bar{\omega}>7$
D. $|\omega+5|<|\omega-4|$

Answer: A

72. If z complex number satisfying $|z-1|=1$, then which of the following is correct
A. $\arg (z-1)=2 \arg (z)$
B. $2 \arg (z)=\frac{2}{3} \arg \left(z^{2}-z\right)$
C. $\arg (z-1)=2 \arg (z+1)$
D. $\arg z=2 \arg (z+1)$

Answer: A

- Watch Video Solution

73. If z_{1}, z_{2}, z_{3} are the vertices of an isoscles triangle right angled at z_{2}, then
A. $z_{1}^{2}+2 z_{2}^{2}+z_{3}^{2}=2 z_{2}\left(z_{1}+z_{3}\right)$
B. $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=2 z_{2}\left(z_{1}+z_{3}\right)$
C. $z_{1}^{2}+z_{2}^{2}+2 z_{3}^{2}=2 z_{2}\left(z_{1}+z_{3}\right)$
D. $2 z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=2 z_{2}\left(z_{1}+z_{3}\right)$

Answer: A

- Watch Video Solution

74. Show that all the roots of the equation $a_{1} z^{3}+a_{2} z^{2}+a_{3} z+a_{4}=3$, (where $\left|a_{i}\right| \leq 1, i=1,2,3,4$,) lie
outside the circle with centre at origin and radius $2 / 3$.
A. 1
B. $1 / 3$
C. 2/3
D. none of these

Answer: C

75. If $|z-1|=1$, where z is a point on the argand plane, show that $\frac{z-2}{z}=i \tan (\arg z)$, where $i=\sqrt{-1}$.
A. $\tan (a r g) z$
B. $\cot (\arg z)$
C. itan (arg $z)$
D. none of these

Answer: C

- Watch Video Solution

76. Let z be a non-real complex number

$$
1+i \tan \left(\frac{\arg (z)}{2}\right)
$$

lying on $|z|=1$, prove that $z=\square($ where $i=\sqrt{-1}$. $)$

$$
1-i \tan \left(\frac{\arg (z)}{2}\right)
$$

$1-i \tan \left(\frac{\arg z}{2}\right)$
A.
$1+i \tan \left(\frac{\arg z}{2}\right)$
$1+i \tan \left(\frac{\arg z}{2}\right)$
B.
$1-i \tan \left(\frac{\operatorname{argz}}{2}\right)$
C. $\frac{1-i \tan (\operatorname{argz})}{}$
$1+i \tan \left(\frac{\arg z}{2}\right)$
D. none of these

Answer: B

- Watch Video Solution

77. If $|z|=2$ and locusof5z-1isthe $\circ \leq h a v \in$ gradiusa and $z 1^{\wedge} 2+z_{-} 2^{\wedge} 2-$
$2 z_{-} 1 z_{-} 2 \cos$ theta=0, then $\left|z_{-} 1\right|:\left|z_{-} 2\right|=(A) a(B) 2 a(C) a / 10^{`}(\mathrm{D})$ none of these
A. $\mathrm{a}: 1$
B. $2 a: 1$
C. $a: 10$
D. none of these

Answer: C

- Watch Video Solution

78. If $|z+\bar{z}|+|z-\bar{z}|=8$, then z lies on
A. a circle
B. a straight line
C. a square
D. an ellipse

Answer: C

79. If a point z_{1} is the reflection of a point z_{2} through the line $b \bar{z}+\bar{b} z=c, b \in 0$, in the Argand plane, then $b \bar{z}_{2}+\bar{b} z_{1}=$
A. 4 c
B. 2c
C. c
D. none of these

Answer: C

- Watch Video Solution

80. If z is a complex number satisfying $\left|z^{2}+1\right|=4|z|$, then the minimum value of $|z|$ is
A. $2 \sqrt{5}+4$
B. $2 \sqrt{5}-4$
C. $\sqrt{5}-2$
D. none of these

Answer: C

- Watch Video Solution

81. If z_{1} and z_{2} are two complex numbers satisying the equation.

$$
\left|\frac{i z_{1}+z_{2}}{i z_{1}-z_{2}}\right|=1 \text {, then } \frac{z_{1}}{z_{2}} \text { is }
$$

A. 0
B. purely real
C. negative real
D. purely imaginary

Answer: D

82. If α is an imaginary fifth root of unity, then $\log _{2}\left|1+\alpha+\alpha^{2}+\alpha^{3}-\frac{1}{\alpha}\right|=$
A. 1
B. 0
C. 2
D. -1

Answer: A

- Watch Video Solution

83. The roots of the equation $(1+i \sqrt{3})^{x}-2^{x}=0$ form
A. an A.P.
B. a G.P.
C. an H.P.
D. none of these

- Watch Video Solution

84. If $|z|=1$ and $w=\frac{z-1}{z+1}$ (where $z \neq-1$), then $\operatorname{Re}(w)$ is 0 (b) $\frac{1}{|z+1|^{2}}$
$\left|\frac{1}{z+1}\right|, \frac{1}{|z+1|^{2}}$
(d) $\frac{\sqrt{2}}{\left.|z| 1\right|^{2}}$
A. 0
B. $-\frac{1}{|z+1|^{2}}$
C. $\left|\frac{z}{z+1}\right| \frac{.1}{|z+1|^{2}}$
D. $\frac{\sqrt{2}}{|z+1|^{2}}$

Answer: A

- Watch Video Solution

85. about to only mathematics
A. $\frac{5 \pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{3 \pi}{4}$
D. $\frac{\pi}{4}$

Answer: C

- Watch Video Solution

86. Let $O P . O Q=1$ and let O, P and Q be three collinear points. If O and Q represent the complex numbers of origin and z respectively, then P represents
A. $\frac{1}{Z}$
B. \bar{z}
C. $\frac{1}{\bar{Z}}$
D. $-Z$

Answer: C

D Watch Video Solution

87. If $|z|=1$ and $z \neq 1$, then all the values of $\frac{z}{1-z^{2}}$ lie on a line not passing through the origin $|z|=\sqrt{2}$ the x-axis (d) the y-axis
A. a line not passing through the origin
B. $|z|=\sqrt{2}$
C. the x-axis
D. the y-axis

Answer: D

88. Let A, B and C be three sets of complex numbers as defined below:

$$
\begin{aligned}
& A=\{z: \operatorname{Im}(z) \geq 1\} \\
& B=\{z:|z-2-i|=3\} \\
& C=\{z: \operatorname{Re}(1-i) z)=3 \sqrt{2} \text { where } i=\sqrt{-1}
\end{aligned}
$$

The number of elements in the set $A \cap B \cap C$, is
A. 0
B. 1
C. 2
D. ∞

Answer: B

- Watch Video Solution

89. Let

$$
S=S_{1} \cap S_{2} \cap S_{3},
$$

where
$s_{1}=\{z \in C:|z|<4\}, s_{2}=\left\{z \in C: \ln \left[\frac{z-1+\sqrt{3} i}{1-\sqrt{31}}\right]>0\right\}$ and
$S_{3}=\{z \in C: R e z>0\}$ Area of $S=$
A. 25 and 29
B. 30 and 34
C. 35 and 39
D. 40 and 44

Answer: C

- Watch Video Solution

90. In Q.no. 88, if z be any point in $A \quad B \quad C$ and ω be any point satisfying $|\omega-2-i|<3$. Then, $|z|-|\omega|+3$ lies between
A. -6 and 3
B. -3 and 6
C. -6 and 6
D. -3 and 9

Answer: D

91. A particle P starts from the point $z_{0}=1+2 i$, where $i=\sqrt{-1}$. It moves first horizontally away from origin by 5 units and then vertically away from origin by 3 units to reach a point z_{1} From z_{1} the particle moves $\sqrt{2}$ units in the direction of the vector $\hat{i}+\hat{j}$ and then it moves through an angle $\frac{\pi}{2}$ in anticlockwise direction on a circle with centre at origin, to reach a point z_{2} The point z_{2} is given by $6+7 i(b)-7+6 i 7+6 i(d)-6+7 i$
A. $6+7 i$
B. $-7+6 i$
C. $7+6 i$
D. $-6+7 i$

Answer: D

- Watch Video Solution

92. If $w=\alpha+i \beta$, where $\beta \neq 0$ and $z \neq 1$, satisfies the condition that
$\left(\frac{w-\bar{w} z}{1-z}\right)$ is a purely real, then the set of values of z is $|z|=1, z \neq 2$
$|z|=1$ andz $\neq 1$ (c) $z=\bar{z}(d)$ None of these
A. $\{z\{|z|=1\}$
B. $\{z: z=\bar{z}\}$
C. $\{z: z \neq 1\}$
D. $\{z:|z|=1, z \neq 1\}$

Answer: D

- Watch Video Solution

93. If z and \bar{z} represent adjacent vertices of a regular polygon of n sides
where centre is origin and if $\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}=\sqrt{2}-1$, then n is equal to:
A. 8
B. 16
C. 24
D. 32

Answer: A

- Watch Video Solution

94. If|z| $=\max \{|z-1|,|z+1|\}$, then
A. $|z+\bar{z}|=\frac{1}{2}$
B. $z+\bar{z}=1$
C. $|z+\bar{z}|=1$
D. z-barz=5`

Answer: C

95. If ω is a cube root of unity but not equal to 1 , then minimum value of $\left|a+b \omega+c \omega^{2}\right|$, (where a, b and c are integers but not all equal), is
A. $\sqrt{3}$
B. 1/2
C. 1
D. 0

Answer: C

- Watch Video Solution

96.

The
shaded
region,
where
$P=(-1,0), Q=(-1+\sqrt{2}, \sqrt{2}) R=(-1+\sqrt{2},-\sqrt{2}), S=(1,0)$

represented by :

A. $|z+1|>2,|\arg (z+1)|<\frac{\pi}{4}$
B. $|z+1|<2,|\arg (z+1)|<\frac{\pi}{4}$
C. $|z-1|>2,|\arg (z+1)|>\frac{\pi}{4}$
D. $|z-1|<2,|\arg (z+1)|>\frac{\pi}{2}$

Answer: A

D Watch Video Solution

97. If a, b and c are distinct integers and $\omega \omega(\neq 1)$ is a cube root of unity, then the minimum value of $\left|a+b \omega+c \omega^{2}\right|+\left|a+b \omega^{2}+c \omega\right|$, is
A. $2 \sqrt{3}$
B. 3
C. $4 \sqrt{2}$
D. 2

Answer: A

- Watch Video Solution

98. Let a and b be two positive real numbers and z_{1} and z_{2} be two non-
zero complex numbers such that $a\left|z_{1}\right|=b\left|z_{2}\right|$.If $z=\frac{a z_{1}}{b z_{2}}+\frac{b z_{2}}{a z_{1}}$, then
A. $\operatorname{Re}(z)=0$
B. $\operatorname{lm}(z)=0$
C. $|z|=\frac{a}{b}$
D. $|z|>2$

Answer: B

- Watch Video Solution

99. If points having affixes $z,-i z$ and 1 are collinear, then z lies on
A. a straight line
B. a circle
C. an ellipse
D. a pair of straight lines.

Answer: B

- Watch Video Solution

100. If $0 \leq \arg (z) \leq \frac{\pi}{4}$, then the least value of $|z-i|$, is
A. 1
B. $\frac{1}{\sqrt{2}}$
C. $\sqrt{2}$
D. none of these

Answer: B

- Watch Video Solution

101. If $\left|z_{1}\right|+\left|z_{2}\right|=1$ andz $z_{1}+z_{2}+z_{3}=0$ then the area of the triangle whose vertices are z_{1}, z_{2}, z_{3} is $3 \sqrt{3} / 4$ b. $\sqrt{3} / 4 \mathrm{c} .1 \mathrm{~d} .2$
A. $\frac{3 \sqrt{3}}{4}$
B. $\frac{\sqrt{3}}{4}$
C. 1
D. 2

Answer: A

- Watch Video Solution

102. Let z_{1} and z_{2} be two distinct complex numbers and $z=(1-t) z_{1}+t z_{2}$, for some real number t with $0<t<1$ and $i=\sqrt{-1}$. If $\arg (\mathrm{w})$ denotes the principal argument of a non-zero compolex number w, then
A. $\left|z-z_{2}\right|+\left|z-z_{2}\right|=\left|z_{1}-z_{2}\right|$
B. $\arg \left(z-z_{1}\right)=\arg \left(z-z_{2}\right)$
C. $\left|\begin{array}{ll}z-z_{1} & \bar{z}-\bar{z}_{1} \\ z_{2}-z_{1} & \bar{z}_{2}-\bar{z}_{1}\end{array}\right|=0$
D. $\arg \left(z-z_{1}\right)=\arg \left(z_{2}-z_{1}\right)$

Answer: B

- Watch Video Solution

103. about to only mathematics
A. 1
B. 0
C. 2
D. 3

Answer: A

- Watch Video Solution

104. The set of points z in the complex plane satisfying
$|z-i| z||=|z+i| z| \quad|$ is contained or equal to the set of points z satisfying
A. $\operatorname{lm}(z)=0$
B. $\operatorname{Im}(z) \leq 1$
C. $|\operatorname{Re}(z)| \leq 2$
D. $|z| \leq 3$

D Watch Video Solution

105. The set of points z satisfying $|z+4|+|z-4|=10$ is contained or equal to
A. an ellipse with eccentricity $=\frac{4}{5}$
B. the set of points z satisfying $|z| \leq 3$
C. the set of points z satisfying $|\operatorname{Re}(z)| \leq 2$
D. the set of points z satisfying $|\operatorname{lm}(z)|<1$

Answer: A

D Watch Video Solution

106. If $|\omega|=2$, then the set of points $z=\omega-\frac{1}{\omega}$ is contained in or equal to the set of points z satisfying
A. $\operatorname{Im}(z)=0$
B. $|\operatorname{Im}(z)| \leq 1$
C. $|\operatorname{Re}(z)| \leq 2$
D. $|z| \leq 3$

Answer: D

- Watch Video Solution

107. If $|\omega|=1$, then the set of points $z=\omega+\frac{1}{\omega}$ is contained in or equal to the set of points z satisfying.
A. $\operatorname{Re}(z) \leq 2$ and $\operatorname{Im}(z)=0$
B. $\operatorname{Re}(z) \leq 1$ and $\operatorname{Im}(z)=0$
C. $\mid \operatorname{Re}(z) \leq 2$ and $\operatorname{Im}(z)=0$
D. $\mid \operatorname{Re}(z) \leq 1$ and $\operatorname{Im}(z)=0$

Answer: C

108. The number of complex numbersd z, such that $|z-1|=|z+1|=|z-i|$, where $i=\sqrt{-1}$ equals to
A. 2
B. ∞
C. 0
D. 1

Answer: D

- Watch Video Solution

109. Let α and β be real and z be a complex number. If $z^{2}+a z+\beta=0$ has two distinct roots on the line $\operatorname{Re}(z)=1$, then it is necessary that

$$
\text { A. } \beta \subset(0,1)
$$

B. $\beta \in(-1,0)$
C. $|\beta|-1$
D. $\beta \in(1, \infty)$

Answer: D

- Watch Video Solution

110. If $\omega=1$ is the complex cube root of unity and matrix $H=\left|\begin{array}{cc}\omega & 0 \\ 0 & \omega\end{array}\right|$, then H^{70} is equal to:
A. $-H$
B. H^{2}
C. H
D. 0

Answer: C

111. The maximum value of $\left|\arg \left(\frac{1}{1-z}\right)\right| f$ or $|z|=1, z \neq 1$ is given by.
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. π

Answer: C

112. about to only mathematics
A. 3
B. 4
C. 5
D. $5 / 2$

Answer: C

- Watch Video Solution

113. Let a, b and c be three real numbers satisfying
$\left[\begin{array}{ll}a & b c\end{array}\left|\begin{array}{ccc}1 & 9 & 7 \\ 8 & 2 & 7 \\ 7 & 3 & 7\end{array}\right|=\left[\begin{array}{lllll}0 & 0 & 0 &]\end{array} \ldots(\mathrm{c}(\mathrm{i})\right.\right.$
Let ω be a solution of $x^{3}-1=0$ with $\lim (\omega)>0$. If $\mathrm{a}=2$ with b and c satisfying Eq.(i) then the value of $\frac{3}{\omega^{4}}+\frac{1}{\omega^{b}}+\frac{1}{\omega^{c}}$ is :
A. -2
B. 2
C. 3
D. -3
114. The set $\left\{\operatorname{Re}\left(\frac{2 i z}{1-z^{2}}\right):\right.$ zisacomplexvmber, $\left.|z|=1, z= \pm 1\right\}$ is
A. $(-\infty,-1)(1, \infty)$
B. $(-\infty, 0) \cup(1, \infty)$
C. $[2, \infty)$
D. $(-\infty,-1) \cup[1, \infty)$

Answer: D

- Watch Video Solution

115. about to only mathematics
A. 3
B. 6
C. 9
D. 1

Answer: A

- Watch Video Solution

116. If $\left|z_{1}\right|=\left|z_{2}\right|$ and $\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=0$, then
$7 \sqrt{7}$
A. $\overline{2 \sqrt{3}}$
$5 \sqrt{7}$
B. $\overline{2 \sqrt{3}}$
$14 \sqrt{7}$
C. $\frac{\sqrt{3}}{\sqrt{3}}$
D. $\frac{7 \sqrt{7}}{5 \sqrt{3}}$

Answer: B

117. Let complex numbers α and $\frac{1}{\alpha}$ lies on circle $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$ and $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=4 r^{2}$ respectively. If $z_{0}=x_{0}+i y_{0}$ satisfies the equation $2\left|z_{0}\right|^{2}=r^{2}+2$ then $|\alpha|$ is equal to
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{2}$
C. $\frac{1}{\sqrt{7}}$
D. $\frac{1}{3}$

Answer: C

- Watch Video Solution

118. about to only mathematics
A. $\frac{\pi}{2}, \frac{5 \pi}{6}$
B. $\pi, \frac{2 \pi}{3}$
C. $\frac{2 \pi}{3}, \frac{5 \pi}{3}$
D. $\frac{5 \pi}{3}, \frac{7 \pi}{3}$

Answer: B

- Watch Video Solution

119.

Let

$$
S=S_{1} \cap S_{2} \cap S_{3},
$$

where
$s_{1}=\{z \in C:|z|<4\}, S_{2}=\left\{z \in C: \ln \left[\frac{z-1+\sqrt{3} i}{1-\sqrt{31}}\right]>0\right\}$ and
$S_{3}=\{z \in C: R e z>0\}$ Area of $S=$
A. $\frac{10 \pi}{3}$
B. $\frac{20 \pi}{3}$
C. $\frac{16 \pi}{3}$
D. $\frac{32 \pi}{3}$

Answer: B
120.
$s_{1}=\{z \in C:|z|<4\}, s_{2}=\left\{z \in C: \ln \left[\frac{z-1+\sqrt{3} i}{1-\sqrt{31}}\right]>0\right\}$ and
$S_{3}=\{z \in C: R e z>0\}$ Area of $S=$
A. $\frac{2-\sqrt{3}}{2}$
B. $\frac{2+\sqrt{3}}{2}$
C. $\frac{3-\sqrt{3}}{2}$
$\frac{3+\sqrt{3}}{2}$

Answer: C

- Watch Video Solution

121. Let $z_{k}=\frac{\cos (2 k \pi)}{10}+i \frac{\sin (2 k \pi)}{10}, k=1,2, \ldots \ldots \ldots ., 9$. Then, $\frac{1}{10}\left\{\left|1-z_{1}\right|\left|1-z_{2}\right| \ldots \ldots\left|1-z_{9}\right|\right\}$ equals
A. 0
B. 1
C. 2
D. 3

Answer: B

- Watch Video Solution

122. In Q. No. 121, $1-\sum_{k=1}^{9} \frac{\cos (2 k \pi)}{10}$ equals
A. 0
B. 1
C. 2
D. 10

Answer: C
123. If z is a complex number such that $|z| \geq 2$, then the minimum value of $\left|z+\frac{1}{2}\right|(1)$ is equal to $\frac{5}{2}(2)$ lies in the interval $(1,2)(3)$ is strictly greater than $\frac{5}{2}(4)$ is strictly greater than $\frac{3}{2}$ but less than $\frac{5}{2}$
A. is strictly greater than $\frac{5}{2}$
B. is strictly greater than $\frac{3}{2}$ but less than $\frac{5}{2}$
C. is equal to $\frac{5}{2}$
D. lies in the interval $(1,2)$

Answer: D

- Watch Video Solution

124. A complex number z is said to be unimodular if $|z|=1$. Suppose z_{1} and z_{2} are complex numbers such that $\frac{z_{1}-2 z_{2}}{2-z_{1} z_{2}}$ is unimodular and z_{2} is not unimodular. Then the point z_{1} lies on a
A. circle of radius 2
B. circle of radius $\sqrt{2}$
C. straight line parallel to x-axis.
D. straight line parallel to y-axis.

Answer: A

D Watch Video Solution

125. about to only mathematics
A. pair of straight lines
B. circle of radius $\sqrt{2}$
C. parabola
D. ellipse

Answer: C

126. $f(n)=\cot ^{2}\left(\frac{\pi}{n}\right)+\cot ^{2} \frac{2 \pi}{n}+\ldots \ldots \ldots \ldots . . .+\cot ^{2} \frac{(n-1) \pi}{n},(n>1, n \in N)$
then $\lim n \rightarrow \infty \frac{f(n)}{n^{2}}$ is equal to (A) $\frac{1}{2}$ (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) 1
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. 1

Answer: B

- Watch Video Solution

127. If z_{1} and z_{2} are the complex roots of the equation $(x-3)^{3}+1=0$, then $z_{1}+z_{2}$ equal to
A. $0 \leq d<\frac{15}{2}$
B. $0<d \leq \frac{15}{2}$
C. $0 \leq d \leq \frac{17}{2}$
D. $0<d<\frac{17}{2}$

Answer: C

- Watch Video Solution

128. If $|z-1|=1$ and $\arg (z)=\theta$, where $z \neq 0$ and θ is acute, then $\left(1-\frac{2}{z}\right)$ is equal to
A. $\tan \theta$
B. $I \tan \theta$
C. $\frac{\tan \theta}{2}$
D. $I \frac{\tan \theta}{2}$

Answer: B

129. If z is a complex number lying in the first quadrant such that $\operatorname{Re}(z)+\operatorname{Im}(z)=3$, then the maximum value of $\{\operatorname{Re}(z)\}^{2} \operatorname{Im}(z)$, is
A. 1
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

130. about to only mathematics
A. $\frac{1}{2}\left|z_{1}-z_{2}\right|^{2}$
B. $\frac{1}{2}\left|z_{1}-z_{2}\right| r$
C. $\frac{1}{2}\left|z_{1}-z_{2}\right|^{2} r^{2}$
D. $\frac{1}{2}\left|z_{1}-z_{2}\right| r^{2}$

Answer: B

- Watch Video Solution

131. If z is a complex number satisfying $|z 2+1|=4|z|$, then the minimum value of $|z|$ is

- Watch Video Solution

$\left.\begin{array}{l}\text { 132. Locus of } \quad \text { o } \\ \{(3 \pi / 4 w h e n ~\end{array} z|<=|z-2|),(-\pi / 4 w h e n|z|>|z-4|)\right\}$ is straight lines passing \quad arg[z-(1+i)] = through $(2,0)$ straight lines passing through $(2,0)(1,1)$ a line segment a set of two rays
A. a striaght line passing through $(2,0)$
B. a straight line passing through $(2,0)$ and $(1,1)$
C. a line segment
D. a set of two rays

- Watch Video Solution

133. Let $z \in C \quad$ and if $A=\{z, \arg$
$B=\left\{z, \arg (z-3-3 i)=\frac{2 \pi}{3}\right\}$. Then $n(A \cap B)$ is equal to
A. 1
B. 2
C. 3
D. 0

Answer: D

- Watch Video Solution

134. If z is any complex number satisfying $|z-3-2 i|$ less than or equal 2 , then the minimum value of $|2 z-6+5 i|$ is (1) 2 (2) 1 (3) 3 (4) 5
A. 2
B. 1
C. 3
D. 5

- Watch Video Solution

135. Let $z=1+a i$ be a complex number, $a>0$,such that z^{3} is a real number. Then the sum $1+z+z^{2}+\ldots+z^{11}$ is equal to:
A. $-1250 \sqrt{3} i$
B. $1250 \sqrt{3} i$
C. $-1365 \sqrt{3} i$
D. $1365 \sqrt{3} i$

Answer: C

- Watch Video Solution

136. Let $a, b \in R$ and $a^{2}+b^{2} \neq 0$.

Suppose $S=\left\{z \in C: z=\frac{1}{a+i b t}, t \in R, t \neq 0\right\}$, where $i=\sqrt{-1}$. If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $z \in S$, then (x, y) lies on
A. on the circle with radius $\frac{1}{2 a}$ and center $\left(-\frac{1}{2 a}, 0\right)$
B. on the circle with radius $\frac{1}{2 a}$ and center $\left(\frac{1}{2 a}, 0\right)$
C. on the x-axis
D. on the y-axis.

Answer: B

137. Let $a, b \in R$ and $a^{2}+b^{2} \neq 0$.

Suppose $S=\left\{z \in C: z=\frac{1}{a+i b t}, t \in R, t \neq 0\right\}$, where $i=\sqrt{-1}$. If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $z \in S$, then (x, y) lies on
A. the x-axis for $a \neq 0, b=0$
B. the y-axis for $a \neq 0, b=0$
C. the y-axis for $a \neq 0, b \neq 0$
D. the x - axis for $\mathrm{a}=0, b \neq 0$

- Watch Video Solution

138. Let $a, b \in R$ and $a^{2}+b^{2} \neq 0$.

Suppose $S=\left\{z \in C: z=\frac{1}{a+i b t}, t \in R, t \neq 0\right\}$, where $i=\sqrt{-1}$. If $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $z \in S$, then (x, y) lies on

$$
\text { A. } a=0, b \neq 0
$$

B. $a \neq 0, b=0$
C. $a \neq 0, b \neq 0$
D. all $a, b \in R$

- Watch Video Solution

139. The point represented by $2+i$ in the Argand plane moves 1 unit eastwards, then 2-units northwards and finally from there $2 \sqrt{2}$ units in the south-westwards direction. Then its new position in the Argand plane is at the point represented by
A. $2+2 i$
B. $-2-2 i$
C. $1+i$
D. $-1-i$

Answer: C

Watch Video Solution

140. Let ω be a complex number such that $2 \omega+1=z$, when $z=\sqrt{3}$ if
$\left|\begin{array}{lll}1 & 1 & 1 \\ 1 & -\omega^{2}-1 & \omega^{2} \\ 1 & \omega^{2} & \omega^{7}\end{array}\right|=3 k$, then k is equal to
A. -1
B. 1
C. $-z$
D. z

- Watch Video Solution

141. Let a, b, x and y be real numbers such that $a-b=1$ and $y \neq 0$. If the complex number $z=x+i y$ satisfies $\operatorname{Im}\left(\frac{a z+b}{z+1}\right)=y$ then which of the
following is (are) possible value (s) of x ?
A. $-1-\sqrt{1-y^{2}}$
B. $1+\sqrt{1+y^{2}}$
C. $1-\sqrt{1+y^{2}}$
D. $-1+\sqrt{1-y^{2}}$

Answer: A:D

- Watch Video Solution

Section II - Assertion Reason Type

1. For any two complex numbers z_{1} and z_{2}
$\left|z_{1}+z_{2}\right|^{2}=\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.
B. Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.
C. Statement- 1 is True, statement-2 is false,
D. statement-1 is False, Statement-2 is true.

Answer: a

- Watch Video Solution

2. Statement-1: for any two complex numbers z_{1} and z_{2}
$\left|z_{1}+z_{2}\right|^{2} \leq\left(1+\frac{1}{l} a m b a\right)\left|z_{2}\right|^{2}$, where λ is a positive real number.
Statement: $2 A M \geq G M$.
A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.
B. Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.
C. Statement- 1 is True, statement- 2 is false,
D. statement-1 is False, Statement-2 is true.

Answer: a

- Watch Video Solution

3. Statement-1, If $z_{1}, z_{2}, z_{3}, \ldots \ldots \ldots \ldots \ldots \ldots, z_{n}$ are uni-modular complex numbers, then

$$
\left|z_{1}+z+(2)+\ldots \ldots \ldots \ldots+z_{n}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots \ldots \ldots \ldots .+\frac{1}{z_{n}}\right|
$$

Statement-2: For any complex number $z, z \bar{z}=|z|^{2}$
A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement- 1 .
B. Statement-1 is true, statement -2 is true, Statement- 2 is not a correct explanation for statement-1.
C. Statement- 1 is True, statement-2 is false,
D. statement-1 is False, Statement-2 is true.

Answer: b

- Watch Video Solution

4. Statement-1, if z_{1} and z_{2} are two complex numbers such that $\left|z_{1}\right| \leq 1,\left|z_{2}\right| \leq 1$, then
$\left.\left|z_{1}-z_{2}\right|^{2} \leq\left(\left|z_{1}\right|-\left|z_{2}\right|\right)^{2}-\arg \left(z_{2}\right)\right\}^{2}$
Statement- $2 \sin \theta>\theta$ for all $\theta>0$.
A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.
B. Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.
C. Statement-1 is True, statement-2 is false,
D. statement-1 is False, Statement-2 is true.

Answer: c

- Watch Video Solution

5. Statement -1: for any complex number $\mathrm{z},|\operatorname{Re}(\mathrm{z})|+|\operatorname{Im}(\mathrm{z})| \leq|\mathrm{z}|$

Statement-2: $|\sin \theta| \leq 1$, for all θ

A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.
B. Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.
C. Statement- 1 is True, statement-2 is false,
D. statement-1 is False, Statement-2 is true.

Answer: d

- Watch Video Solution

6. Statement-1: for any non-zero complex number z, $\left|\frac{z}{|z|}-1\right| \leq \arg (z)$

Stetement-2 $: \sin \theta \leq \theta$ for $\theta \geq 0$
A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.
B. Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.
C. Statement-1 is True, statement-2 is false,
D. statement- 1 is False, Statement-2 is true.

Answer: a

- Watch Video Solution

7. Statement-1: for any non-zero complex number $|z-1| \leq||z|-1|+|z|$ arg
(z)

Statement-2 : For any non-zero complex number z

$$
\left|\frac{z}{|z|}-1\right| \leq \arg (z)
$$

A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.
B. Statement- 1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.
C. Statement- 1 is True, statement-2 is false,
D. statement-1 is False, Statement-2 is true.

Answer: a

- Watch Video Solution

8. Statement-1: If z_{1}, z_{2} are affixes of two fixed points A and B in the Argand plane and $P(z)$ is a variable point such that "arg" $\frac{z-z_{1}}{z-z_{2}}=\frac{\pi}{2}$, then
the locus of z is a circle having z_{1} and z_{2} as the end-points of a diameter.
Statement-2: $\arg \frac{z_{2}-z_{1}}{z_{1}-z}=\angle A P B$
A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.
B. Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.
C. Statement-1 is True, statement-2 is false,
D. statement-1 is False, Statement-2 is true.

Answer: d

- Watch Video Solution

9. Statement-1: If z is a complex number satisfying $(z-1)^{n}, n \in N$, then the locus of z is a straight line parallel to imaginary axis.

Statement-2: The locus of a point equidistant from two given points is the perpendicular bisector of the line segment joining them.
A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.
B. Statement-1 is true, statement -2 is true, Statement- 2 is not a correct explanation for statement-1.
C. Statement- 1 is True, statement-2 is false,
D. statement-1 is False, Statement-2 is true.

Answer: a

D Watch Video Solution

10. Let z_{0} be the circumcenter of an equilateral triangle whose affixes are z_{1}, z_{2}, z_{3}.

Statement-1: $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=3 z_{0}^{2}$
Statement-2: $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=2\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right)$
A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.
B. Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.
C. Statement-1 is True, statement-2 is false,
D. statement-1 is False, Statement-2 is true.

Answer: c

- Watch Video Solution

11. Let z_{1} and z_{2} be the roots of the equation $z^{2}+p z+q=0$. Suppose z_{1} and z_{2} are represented by points A and B in the Argand plane such that $\angle A O B=\alpha$, where O is the origin.

Statement-1: If $\mathrm{OA}=\mathrm{OB}$, then $p^{2}=4 q \frac{\cos ^{2} \alpha}{2}$
Statement-2: If affix of a point P in the Argand plane is z , then $z e^{i a}$ is represented by a point Q such that $\angle P O Q=\alpha$ and $O P=O Q$.
A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.
B. Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.
C. Statement- 1 is True, statement-2 is false,
D. statement-1 is False, Statement-2 is true.

Answer: a

- Watch Video Solution

12. Statement-1: The locus of point z satisfying $\left|\frac{3 z+i}{2 z+3+4 i}\right|=\frac{3}{2}$ is a straight line.

Statement-2 : The locus of a point equidistant from two fixed points is a straight line representing the perpendicular bisector of the segment joining the given points.
A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.
B. Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.
C. Statement-1 is True, statement-2 is false,
D. statement-1 is False, Statement-2 is true.

Answer: a

- Watch Video Solution

13. Statement-1: If a,b,c are distinct real number and $\omega(\neq 1)$ is a cube root of unity, then $\left|\frac{a+b \omega+c \omega^{2}}{a \omega^{2}+b+c \omega}\right|=1$ Statement-2: For any non-zero complex number $\begin{aligned}\text { z,|z } / \text { bar z }) \mid=1\end{aligned}$
A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.
B. Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.
C. Statement-1 is True, statement-2 is false,
D. statement-1 is False, Statement-2 is true.

Answer: b

- Watch Video Solution

14. Let z be a unimodular complex number.

Statement-1: $\arg \left(z^{2}+\bar{z}\right)=\arg (z)$
Statement-2:barz=cos(argz) - isin(argz)
A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.
B. Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.
C. Statement-1 is True, statement-2 is false,
D. statement-1 is False, Statement-2 is true.

D Watch Video Solution

15. Let z and omega be complex numbers such that $|z|=|\omega|$ and $\arg (z)$ dentoe the principal of z.

Statement-1: If $\operatorname{argz+} \arg \omega=\pi$, then $z=-\bar{\omega}$
Statement $-2:|z|=|\omega|$ implies $\arg z-\arg \bar{\omega}=\pi$, then $z=-\bar{\omega}$
A. Statement-1 is True, Statement-2 is True: Statement-2 is a correct exp,anation for statement-1.
B. Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.
C. Statement-1 is True, statement-2 is false,
D. statement-1 is False, Statement-2 is true.

Answer: c

Exercise

1. Which of the following is correct?
A. $1+i>2-i$
B. $2+\mathrm{i}>1+i$
C. $2-\mathrm{i}>1+i$
D. none of these

Answer: D

- Watch Video Solution

2. If $a=\sqrt{2 i}$, then which of the following is correct?
A. $a=1+i$
B. $a=1-i$
C. $a=-2(\sqrt{2}) i$
D. none of these

Answer: A

- Watch Video Solution

3. Let z_{1}, z_{2} be two complex numbers such that $z_{1}+z_{2}$ and $z_{1} z_{2}$ both are real, then
A. $z_{1}=-z_{2}$
B. $z_{1}=\bar{z}_{2}$
C. $z_{1}=-\bar{z}_{2}$
D. $z_{1}=z_{2}$

Answer: b
4. If the complex numbers z_{1}, z_{2}, z_{3} are in AP, then they lie on
A. a circle
B. a parabola
C. a line
D. an ellipse

Answer: c

Watch Video Solution

5. The locus of complex number z for which $\left(\frac{z-1}{z+1}\right)=k$, where k is nonzero real, is
A. a circle with center on y-axis
B. a circle with center on x-axis
C. a straight line parallel to x-axis
D. a straight line making $\pi / 3$ angle with the x-axis.

Answer: c

D Watch Video Solution

6. The locus of the point z satisfying the condition $\arg \frac{z-1}{z+1}=\frac{\pi}{3}$ is
A. parabola
B. Statement-1 is true, statement -2 is true, Statement-2 is not a correct explanation for statement-1.
C. circle
D. pair of straight Ine

Answer: a

- Watch Video Solution

7. If $\sqrt{x+i y}= \pm(a+i b)$, then find $\sqrt{x-i y}$.
A. $\pm(b+i a)$
B. $\pm(a-i b)$
C. $\pm(b-i a)$
D. $\pm(a+i b)$

Answer: c

D Watch Video Solution

8. The locus of the point z satisfying the condition $\arg \frac{z-1}{z+1}=\frac{\pi}{3}$ is
A. parabola
B. circle
C. pair of straight lines
D. none of these

Answer: d
9. IF $(\sqrt{3}+i)^{10}=a+i b$, then a and b are respectively
A. $128 \& 128 \sqrt{3}$
B. 64 and $64 \sqrt{3}$
C. 512 and $512 \sqrt{3}$
D. none of these

Answer: c

- Watch Video Solution

10. If $\operatorname{Re}\left(\frac{z-8 i}{z+6}\right)=0$, then z lies on the curve
A. $x^{2}+y^{2}+6 x-8 y=0$
B. $4 x-3 y+24=0$
C. $x^{2}+y^{2}-8=0$
D. none of these

Answer: a

- Watch Video Solution

11. If $z=\left[\left(\frac{\sqrt{3}}{2}\right)+\frac{i}{2}\right]^{5}+\left[\left(\frac{\sqrt{3}}{2}\right)-\frac{i}{2}\right]^{5}$, then a. $\operatorname{Re}(z)=0$ b. $\operatorname{Im}(z)=0$ c. $\operatorname{Re}(z)>0 \mathrm{~d} . \operatorname{Re}(z)>0, \operatorname{Im}(z)<0$
A. $\operatorname{Re}(z)=0$
B. $\operatorname{lm}(z)=0$
C. $\operatorname{Re}(z)>0, \operatorname{Im}(z)>0$
D. $\operatorname{Re}(z)>0, \operatorname{Im}(z)<0$

Answer: B

12. If $z=x+y i$ and $\omega=\frac{(1-z i)}{z-i}$, then $|\omega|=1$ implies that in the complex plane
A. z lies on imaginary axis
B. z lies on real axis
C. z lies on unit circle
D. none of these

Answer: b

- Watch Video Solution

13. Let $3-i$ and $2+i$ be affixes of two points A and B in the Argand plane and P represents the complex number $\mathrm{z}=x+i y$. Then, the locus of the P if $|z-3+i|=|z-2-i|$, is
A. circle on $A B$ as diameter
B. the line $A B$
C. the perpendicular bisector of $A B$
D. none of these

Answer: c

- Watch Video Solution

14. $P O Q$ is a straight line through the origin O, P and Q represent the complex numbers $\mathrm{a}+\mathrm{ib}$ and $\mathrm{c}+\mathrm{id}$ respectively and $\mathrm{OP}=\mathrm{OQ}$. Then, which one of the following is true?
A. $|a+i b|=|c+i d|$
B. $a+b=c+d$
C. $\arg (a+i b)=\arg (c+i d)$
D. none of these

Answer: a

15. If $z_{1}=a+i b$ and $z_{2}=c+i d$ are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=0$, then the pair ofcomplex nunmbers $\omega_{1}=a+i c$ and $\omega_{2}=b+i d$ satisfies
A. $\left|\omega_{1}\right|=1$
B. $\left|\omega_{2}\right|=1$
C. $\operatorname{Re}\left(\omega_{1} \bar{\omega}^{2}\right)=0$
D. all of these

Answer: d

D Watch Video Solution

16. Let $z_{1} a n d z_{2}$ be complex numbers such that $z_{1} \neq z_{2}$ and $\left|z_{1}\right|=\left|z_{2}\right|$ If z_{1} has positive real part and z_{2} has negative imaginary part, then $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}$ may be (a)zero (b) real and positive (c)real and negative (d) purely imaginary
A. cannot be zero
B. is real and positive
C. is real and negative
D. is purely imaginary

Answer: d

- Watch Video Solution

17. about to only mathematics
A. -1
B. 0
C. $-i$
D. i

Answer: D

18. The equation $\bar{b} z+b \bar{z}=c$, where b is a non-zero complex constant and c is a real number, represents
A. a circle
B. a straight line
C. a pair of straight line
D. none of these

Answer: b

- Watch Video Solution

19. If $\left|a_{i}\right|<1 \lambda_{i} \geq 0$ for $i=1,2,3, \ldots \ldots . n$ and $\lambda_{1}+\lambda_{2}+\ldots \ldots . .+\lambda_{n}=1$ then the value of $\left|\lambda_{1} a_{1}+\lambda_{2} a_{2}+\ldots \ldots .+\lambda_{n} a_{n}\right|$ is:
A. equal to 1
B. less than 1
C. greater than 1
D. none of these

Answer: b

- Watch Video Solution

20. For any two complex numbers, z_{1}, z_{2} and any two real numbers a and b, $\left|a z_{1}-b z_{2}\right|^{2}+\left|b z_{1}+a z_{2}\right|^{2}=$
A. $(a+b)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
B. $\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$
C. $\left(a^{2}+b^{2}\right)\left(\left|z_{1}\right|+\left|z_{2}\right|\right)$
D. none of these

Answer: b

- Watch Video Solution

21. Common roots of the equation $z^{3}+2 z^{2}+2 z+1=0$ and $z^{2020}+z^{2018}+1=0$, are
A. ω, ω^{2}
B. $1, \omega, \omega^{2}$
C. $-1, \omega, \omega^{2}$
D. $-\omega,-\omega^{2}$

Answer: a

- Watch Video Solution

22. If z_{1} and z_{2} are two complex numbers such that $\left|\frac{z_{1}-z_{2}}{1-\bar{z}_{1} z_{2}}\right|=1$, then which one of the following is true?
A. $\left|z_{1}\right|=1,\left|z_{2}\right|=1$
B. $z_{1}=e^{i \theta}, \theta \in R$
C. $z_{2}=e^{i \theta}, \theta \in R$
D. all of these

Answer: b

- Watch Video Solution

23. The points representing cube roots of unity
A. are collinear
B. lie on a circle of radius $\sqrt{3}$
C. from an equilateral triangle
D. none of these

Answer: c

24. If z_{1} and z_{2} are two complex numbers such that $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=1$, then
A. $z_{1}=k z_{2}, k \in R$
B. $z_{1}=i k z_{2}, k \in R$
C. $z_{1}=z_{2}$
D. none of these

Answer: B

- Watch Video Solution

25. If z_{1}, z_{2} are two complex numbers such that $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=1$ and $i z_{1}=K z_{2}$, where $K \in R$, then the angle between $z_{1}-z_{2}$ and $z_{1}+z_{2}$ is
A. $\frac{\tan ^{-1}(2 k)}{k^{2}+1}$
B. $\frac{\tan ^{-1}(2 k)}{1-k^{2}}$
C. $-2 \tan ^{-1} k$
D. none of these

Answer: c

D Watch Video Solution

26. If n is a positive integer greater than unity z is a complex number satisfying the equation $z^{n}=(z+1)^{n}$, then
A. $\operatorname{Re}(z)<0$
B. $\operatorname{Re}(z)>0$
C. $\operatorname{Re}(z)=0$
D. none of these

Answer: A

27. If n is positive integer greater than unity and z is a complex number satisfying the equation $z^{n}=(z+1)^{n}$, then
A. $\operatorname{lm}(z)<0$
B. $\operatorname{lm}(z)>0$
C. $\operatorname{Im}(z)=0$
D. none of these

Answer: d

- Watch Video Solution

28. If at least one value of the complex number $z=x+i y$ satisfies the condition $|z+\sqrt{2}|=\sqrt{a^{2}-3 a+2}$ and the inequality $|z+i \sqrt{2}|<a$, then
A. $a>2$
B. $a=2$
C. $a<2$
D. $a>1$

Answer: a

- Watch Video Solution

29. Given z is a complex number with modulus 1 . Then the equation $[(1+i a) /(1-i a)]^{4}=z$ has all roots real and distinct two real and two imaginary three roots two imaginary one root real and three imaginary
A. all roots, real and distinct
B. two real and two imaginary
C. three roots real and one imaginary
D. one root real and three imaginary

Answer: a

- Watch Video Solution

30. The center of a regular polygon of n sides is located at the point $\mathrm{z}=0$, and one of its vertex z_{1} is known. If z_{2} be the vertex adjacent to z_{1}, then z_{2} is equal to \qquad .
A. $z_{1}\left(\cos 2 \frac{\pi}{n} \pm i \sin 2 \frac{\pi}{n}\right)$
B. $z_{1}\left(\frac{\cos \pi}{n} \pm i \frac{\sin \pi}{n}\right)$
C. $z_{1}\left(\frac{\cos \pi}{2 n} \pm \frac{\sin \pi}{2 n}\right)$
D. none of these

Answer: a

- Watch Video Solution

31. If the points z_{1}, z_{2}, z_{3} are the vertices of an equilateral triangle in the Argand plane, then which one of the following is not correct?
A. $\frac{1}{z_{1}-z_{2}}+\frac{1}{z_{2}-z_{3}}+\frac{1}{z_{3}-z_{1}}=0$
B. $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}$
C. $\left(z_{1}-z_{2}\right)^{2}+\left(z_{2}-z_{3}\right)^{2}+\left(z_{3}-z_{1}\right)^{2}=0$
D. $z_{1}^{3}+z_{2}^{3}+z_{3}^{3}+3 z_{1} z_{2} z_{3}=0$

Answer: d

- Watch Video Solution

32. For any complex number z, the minimum value of $|z|+|z-1|$
A. $\operatorname{Re}(\mathrm{z})<0$
B. 1
C. 2
D. 0

Answer: b
33. The inequality $|z-4|<|z-2|$ represents
A. $\operatorname{Re}(z)<0$
B. $\operatorname{Re}(z)>0$
C. $\operatorname{Re}(z)>2$
D. $\operatorname{Re}(z)>3$

Answer: d

- Watch Video Solution

34. Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$.
A. 1
B. 2
C. infinite
D. none of these

D Watch Video Solution

35. If $\operatorname{Im} \frac{2 z+1}{i z+1}=-2$, then locus of z, is
A. a circle
B. a parabola
C. a straight line
D. none of these

Answer: A

- Watch Video Solution

36. about to only mathematics
A. 1
B. 2
C. 3
D. 4

Answer: a

- Watch Video Solution

37. If $x=-5+2 \sqrt{-4}$, find the value of $x^{4}+9 x^{3}+35 x^{2}-x+4$.
A. 0
B. -160
C. 160
D. -164

Answer: b

38. If z_{1}, z_{2}, z_{3} are vertices of an equilateral triangle with z_{0} its centroid, then $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=$
A. z_{0}^{2}
B. $9 z_{0}^{2}$
C. $3 z_{0}^{2}$
D. $2 z_{0}^{2}$

Answer: c

Watch Video Solution

39. If z_{1}, z_{2} are two complex numbers such that $\operatorname{Im}\left(z_{1}+z_{2}\right)=0 \operatorname{Im},\left(z_{1} z_{2}\right)=0$ then :
A. $z_{1}=-z_{2}$
B. $z_{1}=z_{2}$
C. $z_{1}=\bar{z}_{2}$
D. $z_{1}=-\bar{z}_{2}$

Answer: c

- Watch Video Solution

40. If $z^{2}+z|z|+\left|z^{2}\right|=0$, then the locus z is a. a circle b. a straight line c. a pair of straight line d. none of these
A. a circle
B. a straight line
C. a pair of straight lines
D. none of these

Answer: c

- Watch Video Solution

41. If $\log _{\sqrt{3}}\left(\frac{|z|^{2}-|z|+1}{2+|z|}\right)<2$, then the locus of z is
A. $|z|=5$
B. $|z|<5$
C. $|z|>5$
D. none of these

Answer: c

- Watch Video Solution

42. Let $g(x)$ and $h(x)$ are two polynomials such that the polynomial $\mathrm{P}(\mathrm{x})$ $=g\left(x^{3}\right)+x h\left(x^{3}\right)$ is divisible by $x^{2}+x+1$, then which one of the following is not true?
A. $g(1)=h(1)=0$
B. $g(1)=h(1) \neq 0$
C. $g(1)=-h(1)$
D. $g(1)+h(1)=0$

Answer: a

- Watch Video Solution

43. If $g(x)$ and $h(x)$ are two polynomials such that the polynomials $P(x)=g\left(x^{3}\right)+x h\left(x^{3}\right)$ is divisible by $x^{2}+x+1$, then which one of the following is not true?
A. $g(1)=h(1)=0$
B. $g(1)=h(1) \neq 0$
C. $g(1)=-h(1)$
D. $g(1)+h(1)=0$

Answer: b
44. if $x_{k}=\frac{\cos \pi}{3^{k}}+i \frac{\sin \pi}{3^{k}}$, find $x_{1} x_{2} x_{3} \ldots \ldots \infty$
(ii) Express $\left(\frac{1+\sin \alpha+I \sin \alpha}{1+\sin \alpha-i \cos \alpha}\right)^{n}$ in the form $\mathrm{A}+\mathrm{B}$
A. 1
B. -1
C. i
D. $-i$

Answer: C

- Watch Video Solution

45. If

$$
\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right) \cdots \cdot\left(a_{n}+i b_{n}\right)=A+i B
$$

then
$\left(a_{1}^{2}+b_{1}^{2}\right)\left(a_{2}^{2}+b_{2}^{2}\right) \ldots \ldots\left(a_{n}^{2}+b_{n}^{2}\right)$ is equal to (A) 1 (B) $\left(A^{2}+B^{2}\right)(\mathrm{C})(A+B)$
(D) $\left(\frac{1}{A^{2}}+\frac{1}{B^{2}}\right)$
A. 1
B. $A^{2}+B^{2}$
C. $A+B$
D. $\frac{1}{A^{2}}+\frac{1}{B^{2}}$

Answer: b

- Watch Video Solution

46. If $\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right) \ldots \ldots \ldots \ldots \ldots . .\left(a_{n}+i b_{n}\right)=A+i B$, then
$\sum_{i=1}^{n} \tan ^{-1}\left(\frac{b_{i}}{a_{i}}\right)$ is equal to
A. $\frac{B}{A}$
B. $\tan \left(\frac{B}{A}\right)$
C. $\tan ^{-1}\left(\frac{B}{A}\right)$
D. $\tan ^{-1}\left(\frac{A}{B}\right)$

Answer: c

- Watch Video Solution

47.

$\cos \alpha+2 \cos \beta+3 \cos \gamma=\sin \alpha+2 \sin \beta+3 \sin \gamma=0$, thenthevalueofsin $\alpha+8 s \in 3 \beta+$ $\sin (a+b+\gamma)$ b. $3 \sin (\alpha+\beta+\gamma)$ c. $18 \sin (\alpha+\beta+\gamma)$ d. $\sin (\alpha+2 \beta+3)$
A. $\sin (\alpha+\beta+\gamma)$
B. $3 \sin (\alpha+\beta+\gamma)$
C. $18 \sin (\alpha+\beta+\gamma)$
D. $\sin (\alpha+2 \beta+3 \gamma)$

Answer: c

48. If α, β and γ are the cube roots of $P(p)<0)$, then for any x, y, and $z, \frac{x \alpha+y \beta+z \gamma}{x \beta+y \gamma+z \alpha}$ is equal to
A. ω, ω^{2}
B. $-\omega,-\omega^{2}$
C. $1,-1$
D. none of these

Answer: a

- Watch Video Solution

49. prove that $\tan \left(i \operatorname{In}\left(\frac{a-i b}{a+i b}\right)\right)=\frac{2 a b}{a^{2}-b^{2}}$
(where $\mathrm{a}, \mathrm{b} \in R^{+}$and $i=\sqrt{-1}$).
A. $\frac{a b}{a^{2}+b^{2}}$
B. $\frac{2 a b}{a^{2}-b^{2}}$
C. $\frac{a b}{a^{2}-b^{2}}$
D. $\frac{2 a b}{a^{2}+b^{2}}$

Answer: b

- Watch Video Solution

50. Find the relation if $z_{1}, z_{2}, z_{3}, z_{4}$ are the affixes of the vertices of a parallelogram taken in order.
A. $z_{1}+z_{4}=z_{2}+z_{3}$
B. $z_{1}+z_{3}=z_{2}+z_{4}$
C. $z_{1}+z_{2}=z_{3}+z_{4}$
D. none of these
51. The locus of the points representing the complex numbers z for which $|z|-2=|z-i|-|z+5 i|=0$, is
A. a circle with center at the origin
B. a straight line passing through the origin
C. the single point $(0,-2)$
D. none of these

Answer: c

- Watch Video Solution

52. For $n=6 k, k \in z,\left(\frac{1-i \sqrt{3}}{2}\right)^{n}+\left(\frac{-1-i \sqrt{3}}{2}\right)^{n}$ has the value
A. -1
B. 0
C. 1

D. 2

Answer: d

- Watch Video Solution

53. The product of all values of $(\cos \alpha+i \sin \alpha)^{3 / 5}$ is
A. 1
B. $\cos \alpha+i \sin \alpha$
C. $\cos 3 \alpha+i \sin 3 \alpha$
D. $\cos 5 \alpha+i \sin 5 \alpha$

Answer: C

- Watch Video Solution

54. If $C^{2}+S^{2}=1$, then $\frac{1+C+i S}{1+C-i S}$ is equal to
A. $C+i S$
B. $C-i S$
C. $S+i C$
D. $S-i C$

Answer: a

- Watch Video Solution

55. The centre of a square $A B C D$ is at $z=0, A$ is z_{1}. Then, the centroid of $\triangle A B C$ is (where, $i=\sqrt{-1}$)
A. $z_{1}(\cos \pi \pm i \sin \pi)$
B. $\frac{z_{1}}{3}(\cos \pi \pm \sin \pi)$
C. $z_{1}\left(\cos \left(\frac{\pi}{2}\right) \pm \sin \left(\frac{\pi}{2}\right)\right)$
D. $\frac{Z_{1}}{3}\left(\cos \left(\frac{\pi}{2}\right) \pm \sin \left(\frac{\pi}{2}\right)\right)$

- Watch Video Solution

56. The number of solutions of the system of equations $\operatorname{Re}\left(z^{2}\right)=0,|z|=2$, is
A. 4
B. 3
C. 2
D. 1

Answer: a

Watch Video Solution

57. The vector $z=-4+5 i$ is turned counter clockwise through an angle of 180° and stretched 1.5 times. The complex number corresponding to the
newly obtained vector is
A. $6-\frac{15}{2} i$
B. $-6+\frac{15}{2} i$
C. $6+\frac{15}{2} i$
D. $6+\frac{15}{2} i$

Answer: A

D Watch Video Solution

58. The value of $\left[\sqrt{2}\left(\cos \left(56^{\circ} 15^{\prime}\right)+i \sin \left(56^{\circ} 15^{\prime}\right)\right]^{8}\right.$, is
A. $4 i$
B. $8 i$
C. $16 i$
D. $-16 i$

Answer: c

D Watch Video Solution

59. Find the complex number z satisfying the equation $\left|\frac{z-12}{z-8 i}\right|=\frac{5}{3},\left|\frac{z-4}{z-8}\right|=1$
A. 6
B. $6 \pm 8 i$
C. $6+8 i, 6+17 i$
D. $8 \pm 6 i$

Answer: c

D Watch Video Solution

60. The vertices B and D of a parallelogram are $1-2 i$ and $4-2 i$ if the diagonals are at right angles and $A C=2 B D$, the complex number
representing A is
A. $\frac{5}{2}$
B. $3 i-\frac{3}{2}$
C. $3 i-4$
D. $3 i+4$

Answer: b

- Watch Video Solution

61. If the complex number z_{1} and z_{2} are such that $\arg \left(z_{1}\right)-\arg \left(z_{2}\right)=0$ and $\left[\left|z_{1}\right|>\left|z_{2}\right|\right]$, then show that $\left|z_{1}-z_{2}\right|=\left|z_{1}\right|-\left|z_{2}\right|$.
A. $\left|z_{1}\right|+\left|z_{2}\right|$
B. $\left|z_{1}\right|-\left|z_{2}\right|$
C. $\left|\left|z_{1}\right|-\left|z_{2}\right|\right.$
D. 0

Answer: c

- Watch Video Solution

62. The join of $z_{1}=a+i b$ and $z_{2}=\frac{1}{-a+i b}$ passes through
A. $z=0$
B. $z=1+i 0$
C. $z=0+i$
D. $z=1+i$

Answer: a

- Watch Video Solution

63. If $z_{1}, z_{2}, z_{3}, z_{4}$ are the affixes of the four points in the Argand plants,z is the affix of a point such that $\left|z-z_{1}\right|=\left|z-z_{2}\right|=\left|z-z_{3}\right|=\left|z-z_{4}\right|$, then prove that $z_{1}, z_{2}, z_{3}, z_{4}$ are concycline.
A. concylic
B. vertices of a triangle
C. vertices of a rhombus
D. in a straight line

Answer: a

- Watch Video Solution

64. The value of $\sum_{r=1}^{8}\left(\sin \left(\frac{2 r \pi}{9}\right)+i \cos \left(\frac{2 r \pi}{9}\right)\right)$, is
A. -1
B. 1
C. i
D. $-i$

Answer: d
65. If $z_{1}, z_{2}, z_{3}, \ldots, z_{n}$ aren, nth $\sqrt[s]{\text { of }}$ unity, thenf or $\mathrm{k}=1,2,3, \ldots \mathrm{n}$
A. $\left|z_{k}\right|=k\left|z_{n}+1\right|$
B. $\left|z_{k+1}\right|=k\left|z_{k}\right|$
c. $\left|Z_{K+1}\right|=\left|Z_{k}\right| Z_{k+1} \mid$
D. $\left|z_{k}\right|=\left|z_{k+1}\right|$

Answer: d

- Watch Video Solution

66. If z_{1}, z_{2} and z_{3}, z_{4} are two pairs of conjugate complex numbers, the
find the value of $\arg \left(\frac{z_{1}}{z_{4}}\right)+\arg \left(z_{2} / z_{3}\right)$.
A. 0
B. $\pi / 2$
C. $3 \pi / 2$
D. π

Answer: A

- Watch Video Solution

67. If $\left|z_{1}\right|=\left|z_{2}\right|$ and $\arg \left(z_{1}\right)+\arg \left(z_{2}\right)=0$, then
A. $z_{1}=z_{2}$
B. $z_{1}=\bar{z}_{2}$
C. $z_{1} z_{2}=1$
D. $z_{1} \bar{z}_{2}=1$

Answer: B
68. If one vertex of a square whose diagonals intersect at the origin is
$3(\cos \theta+i \sin \theta)$, then find the two adjacent vertices.
A. $\pm 3(\sin \theta-i \sin \theta)$
B. $\pm(\sin \theta+i \cos \theta$
C. $\pm(\cos \theta-i \sin \theta)$
D. $z_{1} \bar{z}_{2}=1$

Answer: a

- Watch Video Solution

69. The value of z satisfying the equation $\log z+\log z^{2}++\log z^{n}=0$ is
A. $\frac{\cos (4 m \pi)}{n(n+1)}+i \frac{\sin (4 m \pi)}{n(n+1) 0}, m=1,2, \ldots \ldots \ldots$.
B. $\frac{\cos (4 m \pi)}{n(n+1)}-i \frac{\sin (4 m \pi)}{n(n+1)}, m=1,2, \ldots$
C. $\frac{\sin (4 m \pi)}{n}+i \frac{\cos (4 m \pi)}{n}, m=1,2, \ldots \ldots \ldots \ldots$
D. 0

Answer: a

- Watch Video Solution

70. If $\left|z_{1}\right|=\left|z_{2}\right|=\ldots=\left|z_{n}\right|=1$, prove that
$\left|z_{1}+z_{2}+\ldots+z_{n}\right|=\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots \frac{1}{z_{n}}\right|$
A. n
B. $\left|\frac{1}{z_{1}}+\frac{1}{z_{2}}+\ldots \ldots \ldots \ldots \ldots+\frac{1}{z_{n}}\right|$
C. 0
D. none of these

Answer: b
71. If ω is a cube root of unity and $(1+\omega)^{7}=A+B \omega$ then find the values of A and $B `$
A. 0,1
B. 1,1
C. 1,0
D. $-1,1$

Answer: b

- Watch Video Solution

72. If $\omega(\neq 1)$ is a cube root of unity, then value of the determinant
$\left|11+i+\omega^{2} \omega^{2} 1-i-1 \omega^{2}-1-i-i+\omega-1-1\right|$ is 0 b. 1 c. i d. ω
A. 0
B. 1
C. i
D. ω

- Watch Video Solution

73. Let z and ω be two non-zero complex numbers, such that $|z|=|\omega|$ and $\arg (z)+\arg (\omega)=\pi$. Then, z equals
A. ω
B. $-\omega$
C. $\bar{\omega}$
D. $-\bar{\omega}$

Answer: D

- Watch Video Solution

74. If $z \neq 0$ be a complex number and $\arg (z)=\pi / 4$, then
A. $\operatorname{Re}(z)=\operatorname{Im}(z)$ only
B. $\operatorname{Re}(z)=\operatorname{Im}(z)>0$
C. $\operatorname{Re}\left(z^{2}\right)=\operatorname{Im}\left(z^{2}\right)$
D. none of these

Answer: b

- Watch Video Solution

75. $(1+i)^{8}+(1-i)^{8}=$?
A. 16
B. - 16
C. 32
D. -32

Answer: c

76. What is the smallest positive integer n for which $(1+i)^{2 n}=(1-i)^{2 n}$?
A. 4
B. 8
C. 3
D. 12

Answer: c

- Watch Video Solution

77. If α and β are different complex numbers with $|\beta|=1, f \in d\left|\frac{\beta-\alpha}{1-\alpha \beta}\right|$
A. 0
B. 8
C. 2

D. 2

Answer: c

- Watch Video Solution

78. For any complex number z, the minimum value of $|z|+|z-1|$, is
A. 1
B. 0
C. 1/2
D. 3/2

Answer: a

- Watch Video Solution

79. If $\frac{3 \pi}{2}>\alpha>2 \pi$, find the modulus and argument of $(1-\cos 2 \alpha)+i \sin 2 \alpha$.
A. $-2 \cos \alpha[\cos (\pi+\alpha)+i \sin (\pi+\alpha)]$
B. $2 \cos \alpha[\cos \alpha+i \sin \alpha\}$
C. $2 \cos \alpha[\cos (\pi-\alpha)+i \sin (\pi-\alpha)\}$
D. $-2 \cos \alpha[\cos (\pi-\alpha)+i \sin (\pi-\alpha)\}$

Answer: a

- Watch Video Solution

80. If the roots of $(z-1)^{n}=i(z+1)^{n}$ are plotted in ten Arg and plane, then prove that they are collinear.
A. lie on a parabola
B. are concylic
C. are collinear
D. the vertices of a triangle
81. Area of the triangle formed by 3 complex numbers, $1+i, i-1,2 i$, in the Argand plane, is
A. $1 / 2$
B. 1
C. $\sqrt{2}$
D. 2

Answer: B

- Watch Video Solution

82. If ω is a comples cube root of unity, then $\left(1-\omega+\omega^{2}\right)^{6}+\left(1-\omega^{2}+\omega\right)^{6}$ is :
A. 0
B. 6
C. 64
D. 128

Answer: D

- Watch Video Solution

83. The locus represented by the equation $|z-1|=|z-i|$ is
A. a circle of radius 1
B. an ellipse with foci at 1 and $-i$
C. a line through the origin
D. a circle on the line joining 1 and $-i$ as diameter.

Answer: C

84. If $z=i \log (2-\sqrt{3})$ then cosz
A. i
B. 2 i
C. 1
D. 2

Answer: d

- Watch Video Solution

85.

$a=\cos \alpha+i \sin \alpha, b=\cos \beta+i \sin \beta, c=\cos \gamma+i \sin \gamma$ and $\frac{b}{c}+\frac{c}{a}+\frac{a}{b}=1$, then $\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)=$
A. $3 / 2$
B. $-3 / 2$
C. 0
D. 1

Answer: d

- Watch Video Solution

86. If z_{1}, z_{2}, z_{3} are vertices of an equilateral triangle inscribed in the circle $|z|=2$ and if $z_{1}=1+\imath \sqrt{3}$, then
A. $z_{2}=-2, z_{3}=1-i \sqrt{3}$
B. $z_{2}=2, z_{3}=1-i \sqrt{3}$
C. $z_{2}=-2, z_{3}=-1-i \sqrt{3}$
D. $z_{2}=1-i \sqrt{3}, z_{3}=1-i \sqrt{3}$

Answer: a
87. The general value of the real angle θ, which satisfies the equation, $(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \cdot(\cos n \theta+i \sin n \theta)=1$ is given by?

Watch Video Solution

88. State true or false for the following.

If z is a complex number such that $z \neq 0$ and $\operatorname{Re}(z)=0$ then $\operatorname{Im}\left(z^{2}\right)=0$.
A. $\operatorname{Re}\left(z^{2}\right)=0$
B. $\operatorname{Im}\left(z^{2}\right)=0$
C. $\operatorname{Re}\left(z^{2}\right)=\operatorname{Im}\left(z^{2}\right)$
D. none of these

Answer: b

- Watch Video Solution

89. If $z+z^{-1}=1$, then find the value of $z^{100}+z^{-100}$.
A. i
B. $-i$
C. 1
D. -1

Answer: d

- Watch Video Solution

90. Let A, B and C represent the complex number z_{1}, z_{2}, z_{3} respectively on the complex plane. If the circumcentre of the triangle $A B C$ lies on the origin, then the orthocentre is represented by the number
A. $z_{1}+z_{2}-z_{3}$
B. $z_{2}+z_{3}-z_{1}$
C. $z_{3}+z_{1}-z_{2}$
D. $z_{1}+z_{2}+z_{3}$

Answer: d

- Watch Video Solution

91. Find the number of solutions of the equation $z^{2}+|z|^{2}=0$.
A. 1
B. 2
C. 3
D. infinity many

Answer: d

D Watch Video Solution

92. The number of solutions of the equation $z^{2}+\bar{z}=0$ is .
A. 2
B. 4
C. 6
D. none of these

Answer: b

- Watch Video Solution

93. The centre of a square is at the origin and one of the vertex is $1-i$ extremities of diagonal not passing through this vertex are

$$
\text { A. } 1-I,-1+i
$$

B. 1-I, - $1-i$
C. $-1+I,-1-i$
D. none of these

Answer: d

94. Let zand ω be two complex numbers such that $|z| \leq 1,|\omega| \leq 1$ and $|z-i \omega|=|z-i \omega|=2$, thenz equals 1 or i b. i or -i c. 1 or -1 d. i or -1
A. 1 or i
B. i or $-i$
C. 1 or - 1
D. i or -1

Answer: b

Watch Video Solution
95. The system of equation $|z+1+i|=\sqrt{2}$ and $|z|=3\}$, (where $i=\sqrt{-1}$) has
A. no solutions
B. one solution
C. two solution
D. none of these

Answer: a

D Watch Video Solution

96. The triangle with vertices at the point $z_{1} z_{2},(1-i) z_{1}+i z_{2}$ is
A. right angled but not isoscles
B. isosceles but not right angled
C. right angled and isosceles
D. equilateral

Answer: c

97. Let a and b two fixed non-zero complex numbers and z is a variable comlex number. If the lines $a \bar{z}+\bar{a} z+1=0$ and $\operatorname{ar}(z)+\bar{b} z-1=0$ are mutually perpendicular, then
A. $\alpha \beta+\bar{\alpha} \bar{\beta}=0$
B. $\alpha \beta-\bar{\alpha} \bar{\beta}=0$
C. $\bar{\alpha}-\alpha \bar{\beta}=0$
D. $\alpha \bar{\beta}+\bar{\alpha} \beta=0$

Answer: d

D Watch Video Solution

98. The centre of a square $A B C D$ is at $z=0, A$ is z_{1}. Then, the centroid of $\triangle A B C$ is (where, $i=\sqrt{-1}$)
A. $z_{1}(\cos \pi \pm i \sin \pi)$
B. $\frac{1}{3} z_{1}(\cos \pi \pm i \sin \pi)$
C. $z_{1}\left(\cos \left(\frac{\pi}{2}\right) \pm i \sin \left(\frac{\pi}{2}\right)\right)$
D. $\frac{1}{3} z_{1}\left(\cos \left(\frac{\pi}{2}\right) \pm i \sin \left(\frac{\pi}{2}\right)\right)$

Answer: d

- Watch Video Solution

99. If $z=x+i y$, then the equation $\left|\frac{2 z-i}{z+1}\right|=m$ does not represents a circle, when m is (a) $\frac{1}{2}$ (b). 1 (c). 2 (d). 3
A. $1 / 2$
B. 1
C. 2
D. 3

Answer: C

100. If $x^{2}-2 x \cos \theta+1=0$, then the value of $x^{2 n}-2 x^{n} \cos n \theta+1, n \in N$ is equal to
A. $\cos 2 n \theta$
B. $\sin 2 n \theta$
C. 0
D. $\cos n \theta$

Answer: c

- Watch Video Solution

101. If $p^{2}-p+1=0$, then the value of $p^{3 n}$ can be
A. 1
B. -1
C. 0
D. $\cos n \pi$

Answer: d

- Watch Video Solution

102. The complex number $\frac{2^{n}}{(1+i)^{2 n}}+\frac{(1+i)^{2 n}}{2^{n}}, n \in I$ is equal to :
A. 0
B. 2
C. $\left[1+(-1)^{n}\right] i^{n}$
D. 1

Answer: d

103. If $\arg \left(z_{1} z_{2}\right)=0$ and $\left|z_{1}\right|=\left|z_{2}\right|=1$, then
A. $z_{1}+z_{2}=0$
B. $z_{1} \overline{\bar{z}}_{2}=1$
C. $z_{1}=\bar{z}_{2}$
D. $z_{1}+\bar{z}_{2}=0$

Answer: C

- Watch Video Solution

104. If $i=\sqrt{-1}, \omega$ is non-real cube root of unity then

$$
(1+i)^{2 n}-(1-i)^{2 n}
$$

$\left(1+\omega^{4}-\omega^{2}\right)\left(1-\omega^{4}+\omega^{2}\right)$
A. 0 , if n is an even integer
B. 0 for all $n \in Z$
C. 2^{n-1} i for all $n \in N$
D. none of these

Answer: A

- Watch Video Solution

105. If z is a complex number satisfying $z+z^{-1}=1$ then $z^{n}+z^{-n}, n \in N$, has the value
A. $2(-1)^{n}$, where n is a multiple of 3
B. $(-1)^{n}$, where n is not a multiple of 3
C. $(-1)^{n+1}$, where n is not a multiple of 3
D. none of these

Answer: a

- Watch Video Solution

106. $x^{3 m}+x^{3 n-1}+x^{3 r-2}$, where, $m, n, r \in N$ is divisible by
A. m,n,k are rational
B. $\mathrm{m}, \mathrm{n}, \mathrm{k}$ are integers
C. m,n,k are positive integers
D. none of these

Answer: b

- Watch Video Solution

107. If z is nanreal root of $\sqrt[7]{-1}$, then find the value of $z^{86}+z^{175}+z^{289}$.
A. 0
B. -1
C. 3
D. 1

D Watch Video Solution

108. The locus of point z satisfying $\operatorname{Re}\left(z^{2}\right)=0$, is
A. a pair of straight lines
B. a circle
C. a rectangular hyperbola
D. none of these

Answer: A

D Watch Video Solution

109. The curve represented by $\operatorname{Im}\left(z^{2}\right)=k$, where k is a non-zero real number, is
A. a pair of straight line
B. an ellipse
C. a parabola
D. a hyperbola

Answer: d

D Watch Video Solution

110. If $\log _{\tan 30^{\circ}}\left[\frac{2|z|^{2}+2|z|-3}{|z|+1}\right]<-2$ then $|z|=$
A. $|z|<3 / 2$
B. $|z|>3 / 2$
C. $|z|>2$
D. $|z|<2$
111. The roots of the cubic equation $(z+a b)^{3}=a^{3}$, such that $a \neq 0$, respresent the vertices of a trinagle of sides of length
A. $\frac{1}{\sqrt{3}}|\alpha \beta|$
B. $\sqrt{3}|\alpha|$
C. $\sqrt{3}|\beta|$
D. $\frac{1}{\sqrt{3}}|\alpha|$

Answer: cb

- Watch Video Solution

112. The roots of the cubic equation $(z+a b)^{3}=a^{3}$, such that $a \neq 0$, respresent the vertices of a trinagle of sides of length
A. represent sides of an equilateral triangle
B. represent the sides of an isosceles triangle
C. represent the sides of a triangle whose one side is of length $\sqrt{3} \alpha$
D. none of these

Answer: d

- Watch Video Solution

113. If ω is a complex cube root of unity, then the equation $|z-\omega|^{2}+\left|z-\omega^{2}\right|^{2}=\lambda$ will represent a circle, if
A. $\gamma \in(0,3 / 2)$
B. $\gamma \in[3 / 2, \infty)$
C. $\gamma \in(0,3)$
D. $\gamma \in[3, \infty)$

Answer: b

114. If ω is a complex cube root of unity, then the equationi $|z-\omega|^{2}+\left|z-\omega^{2}\right|^{2}=\gamma$ represent a circle, if
A. 4
B. 3
C. 2
D. $\sqrt{2}$

Answer: B

- Watch Video Solution

115. The equation $z \bar{z}+(4-3 i) z+(4+3 i) \bar{z}+5=0$ represents a circle of radius
A. 5
B. $2 \sqrt{5}$
C. 5/2
D. none of these

Answer: B

- Watch Video Solution

116. z is such that $\arg \left(\frac{z-3 \sqrt{3}}{z+3 \sqrt{3}}\right)=\frac{\pi}{3}$ then locus z is
A. $|z-3 i|=6$
B. $|z-3 i|=6, \operatorname{Im}(z)>0$
C. $|z-3 i|=6, \operatorname{Im}(z)<0$
D. none of these

Answer: b

- Watch Video Solution

A. a hyperbola
B. an ellipse
C. a straight line
D. none of these

Answer: a

D Watch Video Solution

118. If $|z-4+3 i| \leq 1$ and m and n be the least and greatest values of $|z|$ and K be the least value of $\frac{x^{4}+x^{2}+4}{x}$ on the interval $(0, \infty)$, then $K=$
A. m
B. n
C. $m+n$
D. $m n$

Watch Video Solution

119. If $1, \alpha, \alpha^{2}, \ldots \ldots \ldots ., \alpha^{n-1}$ are the $\mathrm{n}, n^{\text {th }}$ roots of unity and z_{1} and z_{2} are any two complex numbers such that $\sum_{r=0}^{n-1}\left|z_{1}+\alpha^{R} z_{2}\right|^{2}=\lambda\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)$, then $\lambda=$
A. n
B. $(n-1)$
C. $(n+1)$
D. 2 n

Answer: a

- Watch Video Solution

120. If $z_{r}(r=0,1,2, \ldots \ldots \ldots \ldots, 6)$ be the roots of the equation
$(z+1)^{7}+z^{7}=0$, then $\sum_{r=0}^{6} \operatorname{Re}\left(z_{r}\right)=$
A. 0
B. $3 / 2$
C. $7 / 2$
D. $-7 / 2$

Answer: d

- Watch Video Solution

121. The least positive integer n for which $\left(\frac{1-i}{1-i}\right)^{n}=\frac{2}{\pi} \sin ^{-1} \frac{1+x^{2}}{2 x}$, where $\mathrm{x}>0$ and $i=\sqrt{-1}$ is :
A. 2
B. 4
C. 8
D. 12

(D) Watch Video Solution

122. The area of the triangle formed by the points representing $-z$, iz and $z-i z$ in the Argand plane, is
A. $\frac{1}{2}|z|^{2}$
B. $|z|^{2}$
C. $\frac{3}{2}|z|^{2}$
D. $\frac{1}{4}|z|^{2}$

Answer: c

- Watch Video Solution

123. If $z_{0}=\frac{1-i}{2}$, then the value of the product $\left(1+z_{0}\right)\left(1+z_{0}^{2}\right)\left(1+z_{0}^{2^{2}}\left(1+z_{0}^{2^{3}}\right) \ldots .\left(1+z_{0}^{2^{n}}\right)\right.$ must be
A. $(1-i)\left(1+\frac{1}{\frac{2}{2^{n-1}}}\right)$, if $n>1$
B. $(1-i)\left(1-\frac{1}{2^{2^{n}}}\right)$, if $n>1$
C. $(1-i)\left(1-\frac{1}{2^{n-1}}\right)$, if $n>1$
D. $(1-i)\left(1+\frac{1}{2^{2^{n}}}\right)$, ifn >1

Answer: b

- Watch Video Solution

124. The greatest positive argument of complex number satisfying
$|z-4|=\operatorname{Re}(z)$ is $\frac{\pi}{3}$ b. $\frac{2 \pi}{3}$ c. $\frac{\pi}{2}$ d. $\frac{\pi}{4}$
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: d

- Watch Video Solution

125. If the points in the complex plane satisfy the equations $\log _{5}(|z|+3)-\log _{\sqrt{5}}(|z-1|)=1$ and $\arg (z-1)=\frac{\pi}{4}$ are of the form $A_{1}+i B_{1}$, then the value of $A_{1}+B_{1}$, is
A. $2 \sqrt{2}$
B. $\sqrt{2}$
C. $4 \sqrt{2}$
D. 0

Answer: a

126. A complex number z with $(\operatorname{Im})(z)=4$ and a positive integer n be such
that $\frac{Z}{z+n}=4 i$, then the value of n, is
A. 4
B. 16
C. 17
D. 32

Answer: c

- Watch Video Solution

127. If $\arg \left(\frac{z_{1}-\frac{z}{|z|}}{\frac{z}{|z|}}\right)=\frac{\pi}{2}$ and $\left|\frac{z}{|z|}-z_{1}\right|=3$, then $\left|z_{1}\right|$ equals to a. $\sqrt{3} \mathrm{~b}$. $2 \sqrt{2}$ c. $\sqrt{10}$ d. $\sqrt{26}$
A. $\sqrt{26}$
B. $\sqrt{10}$
C. $\sqrt{3}$
D. $2 \sqrt{2}$

Answer: b

- Watch Video Solution

128. If z_{1} and z_{2} satisfy the equation $|z-2|=|\operatorname{Re}(z)|$ and $\arg ^{\prime}(z 1-z 2)=\mathrm{p}^{(} / 3$, then $\operatorname{Im}(z 1+z 2)=k /$ sqrt 3 where k is
A. 0
B. $\pm \frac{\pi}{2}$
C. $\pm \pi$
D. $\pm \frac{\pi}{4}$
129. If $A=\mid z \in C: z=x+i x-1$ for all $x \in R\}$ and $|z| \leq|\omega|$ for all z, $\omega \in A$, then z is equal to
A. $\frac{1}{2}(1+i)$
B. $-\frac{1}{2}(1-i)$
C. $-\frac{1}{2}(1+i)$
D. $\frac{1}{3}(1-2 i)$

Answer: b

- Watch Video Solution

Chapter Test

1. The locus of the center of a circle which touches the circles
$\left|z-z_{1}\right|=a,\left|z-z_{2}=b\right|$ externally will be
A. an ellipse
B. a hyperbola
C. a circle
D. none of these

Answer: b

- Watch Video Solution

2. Prove that for positive integers n_{1} and n_{2}, the value of expression $(1+i)^{n_{1}}+\left(1+i^{3}\right)^{n_{1}}+\left(1+i^{7}\right)^{n_{2}}$, where $i=\sqrt{-1}$, is a real number.
A. $n_{1}=n_{2}+1$
B. $n_{1}=n_{2}-1$
C. $n_{1}=n_{2}$
D. $n_{1}>0, n_{2}>0$
3. The value of $|\sqrt{2 i}-\sqrt{2 i}|$ is :
A. 2
B. $\sqrt{2}$
C. 0
D. $2 \sqrt{2}$

Answer: a

- Watch Video Solution

4. Prove that the triangle formed by the points $1, \frac{1+i}{\sqrt{2}}$, andi as vertices in the Argand diagram is isosceles.
A. scalene
B. equilateral
C. isosceles
D. right-angled

- Watch Video Solution

5. The value of $\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)+\left(\frac{1-i \sqrt{3}}{1+i \sqrt{3}}\right)^{6}$ is :
A. 2
B. -2
C. 1
D. 0

Answer: a

6. If $\alpha+i \beta=\tan ^{-1}(z), z=x+i y$ and α is constant, the locus of ' z ' is
A. $x^{2}+y^{2}+2 x \cot 2 \alpha=1$
B. $\cot 2 \alpha\left(x^{2}+y^{2}\right)=1+x$
C. $x^{2}+y^{2}+2 y \tan \alpha=1$
D. $x^{2}+y^{2}+2 x \sin x 2 \alpha=1$

Answer: a

- Watch Video Solution

7. If $\cos A+\cos B+\cos C=0, \sin A+\sin B+\sin C=0$ and $A+B+C=180^{\circ}$ then the value of $\cos 3 A+\cos 3 B+\cos 3 C$ is :
A. 3
B. -3
C. $\sqrt{3}$
D. 0

- Watch Video Solution

8.

Find
the
sum
$1 \times(2-\omega) \times\left(2-\omega^{2}\right)+2 \times(-3-\omega) \times\left(3-\omega^{2}\right)+\ldots+(n-1) \times(n-\omega) \times(n-c$
, where ω is an imaginary cube root of unity.
A. $\left\{\frac{n(n+1)}{2}\right\}^{2}$
B. $\left\{\frac{n(n+1)}{2}\right\}^{2}-n$
C. $\left\{\frac{n(n+1)}{2}\right\}^{2}+n$
D. none of these

Answer: c

- Watch Video Solution

9. The value of the expression
$\left(1+\frac{1}{\omega}\right)+\left(1+\frac{1}{\omega^{2}}\right)+\left(2+\frac{1}{\omega}\right)\left(2+\frac{1}{\omega^{2}}\right)+\left(3+\frac{1}{\omega}\right)\left(3+\frac{1}{\omega^{3}}\right)+\ldots .+(n+$
where ω is a non-zero complex cube root of unity is:
A. $\frac{n\left(n^{2}+2\right)}{3}$
B. $\frac{n\left(n^{2}-2\right)}{3}$
C. $\frac{n\left(n^{2}+1\right)}{3}$
D. none of these

Answer: a

- Watch Video Solution

10. The condition that $x^{n+1}-x^{n}+1$ shall be divisible by $x^{2}-x+1$ is that :
A. $n=6 k+1$
B. $n=6 k-1$
C. $n=3 k+1$
D. none of these

Answer: a

- Watch Video Solution

11. The expression $(1+i)^{n_{1}}+\left(1+i^{3}\right)^{n_{2}}$ is real iff
A. $n_{1}=-n_{2}$
B. $n_{1}=4 r+(-1)^{r} n_{2}$
C. $n_{1}=2 r+(-1)^{r} n_{2}$
D. none of these

Answer: b

12. If $\left|\begin{array}{lll}6 i & 3 i & 1 \\ 4 & 3 i & -1 \\ 20 & 3 & i\end{array}\right|=x+i y$, then (x, y) is equal to
A. $x=3, y=1$
B. $x=1, y=3$
C. $x=0, y=3$
D. none of these

Answer: D

- Watch Video Solution

13.

$$
\cos \alpha+2 \cos \beta+3 \cos \gamma=\sin \alpha+2 \sin \beta+3 \sin \gamma=0, \text { thenthevalueofsin } \alpha+8 s \in 3 \beta+
$$

$$
\sin (a+b+\gamma) \text { b. } 3 \sin (\alpha+\beta+\gamma) \text { c. } 18 \sin (\alpha+\beta+\gamma) \text { d. } \sin (\alpha+2 \beta+3)
$$

A. 0
B. 3
C. 18
D. -18

Answer: c

- Watch Video Solution

14.

$\cos \alpha+2 \cos \beta+3 \cos \gamma=\sin \alpha+2 \sin \beta+3 \sin \gamma=0$, thenthevalueofsin $\alpha+8 s \in 3 \beta+$ $\sin (a+b+\gamma)$ b. $3 \sin (\alpha+\beta+\gamma)$ c. $18 \sin (\alpha+\beta+\gamma)$ d. $\sin (\alpha+2 \beta+3)$
A. 0
B. 3
C. 8
D. -18

Answer: a
15. Sum of the series $\sum_{r=0}^{n}(-1)^{r} \wedge n C_{r}\left[i^{5 r}+i^{6 r}+i^{7 r}+i^{8 r}\right]$ is
A. 2^{n}
B. $2^{n / 2+1}$
C. $n^{n}+2^{n / 2+1}$
D. $2^{n}+2^{n / 2+1} \frac{\cos (n \pi)}{4}$

Answer: d

- Watch Video Solution

16. If $a z_{1}+b z_{2}+c z_{3}=0$ for complex numbers z_{1}, z_{2}, z_{3} and real numbers a,b,c then z_{1}, z_{2}, z_{3} lie on a
A. straight line
B. circle
C. depends on the choice of a, b, c
D. none of these

Answer: c

- Watch Video Solution

17. If $2 z_{1}-3 z_{2}+z_{3}=0$, then z_{1}, z_{2} and z_{3} are represented by
A. three vertices of a triangle
B. three collinear points
C. three vertices of a rhombus
D. none of these

Answer: B

- Watch Video Solution

18. If $\operatorname{Re}\left(\frac{z+4}{2 z-1}\right)=\frac{1}{2}$ then z is represented by a point lying on
A. a circle
B. an ellipse
C. a straight line
D. none of these

Answer: C

- Watch Video Solution

19. The vertices of a square are z_{1}, z_{2}, z_{3} and z_{4} taken in the anticlockwise order, then $z_{3}=$
A. $z_{1}+z_{2}+z_{3}+z_{4}=0$
B. $z_{1}+z_{2}=z_{3}+z_{4}$
C. $\operatorname{amp}\left(\frac{z_{2}-z_{4}}{z_{1}-z_{3}}\right)=\frac{\pi}{2}$
D. $\operatorname{amp} \frac{z_{1}-z_{2}}{z_{3}-z_{4}}=\frac{\pi}{2}$

Answer: c

- Watch Video Solution

20. Let $\lambda \in R$. If the origin and the non-real roots of $2 z^{2}+2 z+\lambda=0$ form the three vertices of an equilateral triangle in the Argand lane, then λ is 1
b. $\frac{2}{3}$ c. 2 d. -1
A. 1
B. 2
C. -1
D. none of these

Answer: d

21. If z_{1}, z_{2}, z_{3}, represent vertices of an equilateral triangle such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$ then
A. $z_{2}+z_{2}+z_{3}=0$ and $z_{1} z_{2} z_{3}=1$
B. $z_{1}+z_{2}+z_{3}=1$ and $z_{1} z_{2} z_{3}=1$
C. $z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}=0$ and $z_{1}+z_{2}+z_{3}=0$
D. $z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}=0$ and $z_{1} z_{2} z_{3}=1$

Answer: a

- Watch Video Solution

22. If P, P^{\prime} represent the complex number z_{1} and its additive inverse respectively, then the equation of the circle with $P P^{\prime}$ as a diameter is
A. $\frac{Z}{z_{1}}=\frac{\bar{z}_{1}}{z}$
B. $z \bar{z}+z_{1} \bar{z}_{1}=0$
C. $z \bar{z}_{1}+\bar{z} z_{1}=0$
D. none of these

Answer: a

- Watch Video Solution

23. Let $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ be the vertices of an equilateral triangle $A B C$
in the Argand plane, then the number $\frac{z_{2}-z_{3}}{2 z_{1}-z_{2}-z_{3}}$, is
A. purely real
B. purely imaginary
C. a complex number with non-zero and imaginary parts
D. none of these

Answer: b

D Watch Video Solution

24. The area of the triangle (in square units) whose vertices are i, ω and ω^{2} where $i=\sqrt{-1}$ and ω, ω^{2} are complex cube roots of unity, is
$3 \sqrt{3}$
A. $\frac{}{2}$
$3 \sqrt{3}$
B. $\frac{}{4}$
C. 0
D. $\frac{\sqrt{3}}{4}$

Answer: d

- Watch Video Solution

25. Show that the complex number z, satisfying the condition $\arg { }^{`}((z-1) /(z$
$+1))=(\mathrm{pi}) /(4)$ lies on a circle.
A. $(\sqrt{2}+1)+0 i$
B. $0+(\sqrt{2}+1) i$
C. $0+(\sqrt{2}-1) i$
D. $(-\sqrt{2}+1)+0 i$

Answer: b

- Watch Video Solution

26. If A, B, C are three points in the Argand plane representing the complex
numbers, z_{1}, z_{2}, z_{3} such that $z_{1}=\frac{\lambda z_{2}+z_{3}}{\lambda+1}$, where $\lambda \in R$, then the distance of A from the line $B C$, is
A. λ
B. $\frac{\lambda}{\lambda+1}$
C. 1
D. 0

Answer: d

27. If $z\left(z^{-}+\alpha\right)+\bar{z}(z+\alpha)=0$, where α is a complex constant, then z is represented by a point on
A. a circle
B. a straight line
C. a parabola
D. none of these

Answer: a

- Watch Video Solution

28. Let A, B, C be three collinear points which are such that $A B . A C=1$ and the points are represented in the Argand plane by the complex numbers, $0, z_{1}$ and z_{2} respectively. Then,

$$
\text { A. } z_{1} z_{2}=1
$$

B. $z_{1} \bar{z}_{2}=1$
c. $\left|z_{1}\right|\left|z_{2}\right|=1$
D. $z_{1}=\bar{z}_{2} \mid$

Answer: c

- Watch Video Solution

29. $z_{1}, z_{2}, z_{3}, z_{4}$ are distinct complex numbers representing the vertices of a quadrilateral $A B C D$ taken in order. If $z_{1}-z_{4}=z_{2}-z_{3}$ and $\arg \left[\left(z_{4}-z_{1}\right) /\left(z_{2}-z_{1}\right)\right]=\pi / 2$, the quadrilateral is
A. a rhombus
B. a square
C. a rectangle
D. not a cyclic quadrilateral

Answer: c

30. If z be a complex number, then
$|z-3-4 i|^{2}+|z+4+2 i|^{2}=k$ represents a circle, if k is equal to
A. 30
B. 40
C. 55
D. 35

Answer: c

- Watch Video Solution

31. In Argand diagram, $\mathrm{O}, \mathrm{P}, \mathrm{Q}$ represent the origin, z and $\mathrm{z}+\mathrm{iz}$ respectively then $\angle O P Q=$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{2 \pi}{3}$

Answer: c

- Watch Video Solution

32. If $\frac{2 z_{1}}{3 z_{2}}$ is purely imaginary number, then $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|^{4}$ is equal to
A. $3 / 2$
B. 1
C. $2 / 3$
D. $4 / 9$

Answer: b
33. If ω is a cube root of unity then find the value of $\sin \left(\left(\omega^{10}+\omega^{23}\right) \pi-\frac{\pi}{4}\right)$
A. $\frac{1}{\sqrt{2}}$
B. $\frac{\sqrt{3}}{2}$
C. $-\frac{1}{\sqrt{3}}$
D. $-\frac{\sqrt{3}}{2}$

Answer: A

Watch Video Solution

34. If center of a regular hexagon is at the origin and one of the vertices on the Argand diagram is $1+2 i$, then its perimeter is $2 \sqrt{5}$ b. $6 \sqrt{2}$ c. $4 \sqrt{5}$ d. $6 \sqrt{5}$

$$
\text { A. } 2 \sqrt{5}
$$

B. $6 \sqrt{2}$
C. $4 \sqrt{5}$
D. $6 \sqrt{5}$

Answer: D

- Watch Video Solution

35. if the roots of the equation $z^{2}+(p+i q) z+r+i s=0$ are real wher $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}, \in \mathrm{R}$, then determine $s^{2}+q^{2} r$.
A. $p q s=s^{2}+q^{2} r$
B. $p q r=r^{2}+p^{2} s$
C. $p r s=q^{2}+r^{2} p$
D. $q r s=p^{2}+s^{2} q$

Answer: a

36. Q. Let z_{1}, z_{2}, z_{3} be three vertices of an equilateral triangle circumscribing the circle $|z|=\frac{1}{2}$, if $z_{1}=\frac{1}{2}+\sqrt{3} \frac{i}{2}$ and z_{1}, z_{2}, z_{3} are in anticlockwise sense then z_{2} is
A. $1+i \sqrt{3}$
B. $1-i \sqrt{3}$
C. 1
D. -1

Answer: d

- Watch Video Solution

37. If ω is the complex cube root of unity, then the value of $\omega+\omega^{\frac{1}{2}+\frac{3}{8}+\frac{9}{32}+\frac{27}{128}+}$
B. 1
C. $-i$
D. i

Answer: a

- Watch Video Solution

38. The locus of $z=I+2 \exp \left(i\left(\theta+\frac{\pi}{4}\right)\right)$, (where θ is parameter) is
A. a circle
B. an ellipse
C. a parabola
D. hyperbola

Answer: a

39. If z lies on the circle $|z-1|=1$, then $\frac{z-2}{z}$ is
A. purely real
B. Purely imaginary
C. positive real
D. hyperbola

Answer: b

- Watch Video Solution

40. If $a>0$ and the equation $\left|z-a^{2}\right|+|z-2 a|=3$, represents an ellipse, then 'a' belongs to the interval
A. $(1,3)$
B. $(\sqrt{2}, \sqrt{3})$
C. $(0,3)$
D. $(1, \sqrt{3})$

Answer: c

- Watch Video Solution

41. For any complex number z, find the minimum value of $|z|+|z-2 i|$
A. 0
B. 1
C. 2
D. 4

Answer: c

- Watch Video Solution

42. Find the greatest and the least value of $\left|z_{1}+z_{2}\right|$ if $z_{1}=24+7$ land $\left|z_{2}\right|=6$.
A. 31,19
B. 25,16
C. 31,25
D. 19,16

Answer: a

- Watch Video Solution

43. about to only mathematics
A. 0
B. 2
C. 7
D. 17

Answer: b

- Watch Video Solution

44. If $k>1,\left|z_{1}\right|<k$ and $\left|\frac{k-z_{1} \bar{z}_{2}}{z_{1}-k z_{2}}\right|=1$, then
A. $\left|z_{2}\right|<k$
B. $\left|z_{2}\right|=k$
C. $z_{2}=0$
D. $\left|z_{2}\right|=1$

Answer: d

45. If $|z-i|=1$ and $\arg (z)=\theta$ where $0<\theta<\frac{\pi}{2}$, then $\cot \theta-\frac{2}{z}$ equals
A. $2 i$
B. $-i$
C. i
D. $1+i$

Answer: c

- Watch Video Solution

46. If $\operatorname{Re}(z)<0$ then the value of $\left(1+z+z^{2}+\ldots . .+z^{n}\right)$ cannot exceed
A. $\left|z^{n}\right|-\frac{1}{|z|}$
B. $n|z|^{n}+1$
C. $|z|^{n}-\frac{1}{|z|}$
D. $|z|^{n}+\frac{1}{|z|}$

Answer: c

- Watch Video Solution

47. If $z 1$ and $z 2$ are two non zero complex numbers such that $\mid z 1+z 2$

- Watch Video Solution

48. a and b are real numbers between 0 and 1 such that the points $Z_{1}=a+i, Z_{2}=1+b i, Z_{3}=0$ form an equilateral triangle, then a and b are equal to
A. $a=\sqrt{3}-1, b=\frac{\sqrt{3}}{2}$
B. $a=2-\sqrt{3}, b=2-\sqrt{3}$
C. $a=1 / 2, b=3 / 4$
D. none of these

D Watch Video Solution

49. If ω is a cube root of unity, then find the value of the following:
$\frac{a+b \omega+c \omega^{2}}{c+a \omega+b \omega^{2}}+\frac{a+b \omega+c \omega^{2}}{b+c \omega+a \omega^{2}}$
A. 1
B. 0
C. -1
D. 2

Answer: D

- Watch Video Solution

50. If a, b, c and u, v, w are the complex numbers representing the vertices of two triangles such that $(c=(1-r) a+r b$ and $w=(1-r) u+r v$, where r
is a complex number, then the two triangles have the same area (b) are similar are congruent (d) None of these
A. have the same area
B. are similar
C. are congruent
D. none of these

Answer: b

D Watch Video Solution

51. If $Z=r e^{i \theta}$ then $\left|e^{i z}\right|$ is equal to:
A. $e^{-r \sin \theta}$
B. $r e^{-r \sin \theta}$
C. $e^{-r \cos \theta}$
D. $r e^{-r \cos \theta}$

- Watch Video Solution

52. If a complex number z lies in the interior or on the boundary of a circle or radius 3 and center at ($-4,0$), then the greatest and least values of $|z+1|$ are
A. 5,0
B. 6,1
C. 6,0
D. none of these

Answer: c

53. Let z_{1} and z_{2} be two non - zero complex numbers such that $\frac{z_{1}}{z_{2}}+\frac{z_{2}}{z_{1}}=1$ then the origin and points represented by z_{1} and z_{2}
A. z_{1}, z_{2} are collinear
B. z_{1}, z_{2} are the origin from a right angled triangle
C. z_{1}, z_{2} and the origin form an equilateral triangle
D. none of these

Answer: c

- Watch Video Solution

54. If z_{1}, z_{2}, z_{3} be vertices of an equilateral triangle occurig in the anticlockwise sense, then
A. $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=2\left(z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}\right)$
B. $\frac{1}{z_{1}+z_{2}}+\frac{1}{z_{2}+z_{3}}+\frac{1}{z_{3}+z_{1}}=0$
C. $z_{1}+\omega z_{2}+\omega^{2} z_{3}=0$
D. none of these

Answer: c

- Watch Video Solution

55. Let z be a complex number satisfying $|z-5 i| \leq 1$ such that $\operatorname{amp}(z)$ is minimum, then z is equal to
A. $\frac{2 \sqrt{6}}{5}+\frac{24 i}{5}$
B. $\frac{24}{5}+\frac{2 \sqrt{6} i}{5}$
C. $\frac{2 \sqrt{6}}{5}-\frac{24 i}{5}$
D. none of these

Answer: a

56. If $|z-25 i| \leq 15$ then \mid maximum $\operatorname{amp}(z)$ - minimum $\operatorname{amp}(z) \mid$ is equal to
A. $\cos ^{-1}\left(\frac{3}{5}\right)$
B. $\pi-2 \cos ^{-1}\left(-\frac{3}{5}\right)$
C. $\frac{\pi}{2}+\cos ^{-1}\left(\frac{3}{5}\right)$
D. none of these

Answer: b

- Watch Video Solution

57. Let z be a complex number (not lying on x-axis) of maximum modulus
such that $\left|z+\frac{1}{z}\right|=1$. Then,
A. $\operatorname{lm}(z)=0$
B. $\operatorname{Re}(z)=0$
C. $\operatorname{amp}(z)=\pi$
D. $\operatorname{Re}(z)=1$

Answer: b

- Watch Video Solution

58. The maximum distance from the origin of coordinates to the point z
satisfying the equation $\left|z+\frac{1}{z}\right|=a$ is
A. $\frac{1}{2}\left(\sqrt{a^{2}+1}+a\right)$
B. $\frac{1}{2}\left(\sqrt{a^{2}+2}+a\right)$
C. $\frac{1}{2}\left(\sqrt{a^{2}-4}+a\right)$
D. $\frac{1}{2}\left(\sqrt{a^{2}+1}-a\right)$

Answer: c

- Watch Video Solution

