©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - OBJECTIVE RD SHARMA

ENGLISH

DERIVATIVE AS A RATE MEASURER

Illustration

1. If the rate of change of area of a circle is
equal to the rate of change of its diameter,
then its radius is equal to (a) unit (b) unit (c)

units (d) units

A. $\frac{2}{\pi}$ unit
B. $\frac{1}{\pi}$ unit
C. $\frac{\pi}{2}$ units
D. π units

Answer: A
(Watch Video Solution
2. The rate of change of volume of a sphere is equal to the rate of change of its radius, then

its radius is equal to

A. 1 unit
B. $\sqrt{2 \pi}$ units
C. $\frac{1}{\sqrt{2 \pi}}$ unit
D. $\frac{1}{2 \sqrt{\pi}}$ unit

Answer: D

- Watch Video Solution

3. Find the surface area of a sphere when its
volume is changing at the same rate as its radius.
A. 1
B. $1 / 2 \sqrt{\pi}$
C. 4π
D. $4 \pi / 3$

Answer: A

D Watch Video Solution
4. If the area of an expanding circular region increases at a constant rate with respect to time, then the rate of increase of the perimeter with respect to the time
A. Varies inversely as radius
B. Varies directly as radius
C. Remains constant
D. Varies directly as square of the radius

Answer: A
5. The speed v of a particle moving along a straight line is given by $a+b v^{2}=x^{2}$ where x is its distance from the origin. The acceleration of the particle is
A. $\frac{x}{b}$
B. $\frac{x}{a b}$
C. $a b x$
D. $a x$

D Watch Video Solution

6. A particle is moving along the curve $x=a t^{2}+b t+c$. If $a c=b^{2}$, then particle
would be moving with uniform
A. rotation
B. velocity
C. acceleration
D. retardation

Answer: C

- Watch Video Solution

7. The distance travelled by a motor car in t second after the brakes are applied is s feet, where $s=22 \mathrm{t}-12 t^{2}$. The distance travelled by the car before it stops, is
A. 10.08 ft
B. 10 ft
C. 11 ft

D. 11.5 ft

Answer: A

D Watch Video Solution

8. A particle moves in a straight line so that
$s=\sqrt{t}$, then its acceleration is proportional
to
A. $(\text { velocity })^{3}$
B. velocity
C. $(\text { velocity })^{2}$
D. (velocity) $3 / 2$

Answer: A

- Watch Video Solution

Section I Solved Mcqs

1. If $V=\frac{4}{3} \pi r^{3}$, at what rate in cubic units is V increasing when $\mathrm{r}=10$ and $\frac{d r}{d t}=0.01$?
A. π
B. 4π
C. 40π
D. $4 \pi / 3$

Answer: B

D Watch Video Solution

2. The Sides of an equilateral triangle expands at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. The rate of increase of
its area when each side is 10 cm ,is
A. $10 \sqrt{2} \mathrm{~cm}^{2} / \mathrm{sec}$
B. $10 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{sec}$
C. $10 \mathrm{~cm}^{2} / \mathrm{sec}$
D. $5 \mathrm{~cm}^{2} / \mathrm{sec}$

Answer: B

D Watch Video Solution

3. The radius of a sphere is changing at the rate of $0.1 \mathrm{~cm} / \mathrm{sec}$. The rate of change of its surface area when the radius is 200 cm is
A. $8 \pi \mathrm{~cm}^{2} / \mathrm{sec}$
B. $12 \pi \mathrm{~cm}^{2} / \mathrm{sec}$
C. $160 \pi \mathrm{~cm}^{2} / \mathrm{sec}$
D. $200 \mathrm{~cm}^{2} / \mathrm{sec}$

Answer: C

- Watch Video Solution

4. A cone whose height is always equal to its
diameter is increasing in volume at the rate of
$40 \mathrm{~cm} 3 / \mathrm{sec}$. At what rate is the radius
increasing when its circular base area is 1 m 2 ?
(a) $1 \mathrm{~mm} / \mathrm{sec}$ (b) $0.001 \mathrm{~cm} / \mathrm{sec}$ (c) $2 \mathrm{~mm} / \mathrm{sec}$ (d)
$0.002 \mathrm{~cm} / \mathrm{sec}$
A. $1 \mathrm{~mm} / \mathrm{sec}$
B. $0.001 \mathrm{~cm} / \mathrm{sec}$
C. $2 \mathrm{~mm} / \mathrm{sec}$
D. $0.002 \mathrm{~cm} / \mathrm{sec}$

Answer: D

D Watch Video Solution
5. A cylindrical vessel of radius 0.5 m is filled with oil at the rate of $0.25 \pi \mathrm{~m}^{3} /$ minute. The rate at which the surface of the oil is rising, is
(a) $1 \mathrm{~m} / \mathrm{min}$.
(b) $2 \mathrm{~m} / \mathrm{min}$.
(c) $5 \mathrm{~m} / \mathrm{min}$.
(d)
$1.25 \mathrm{~m} / \mathrm{min}$.
A. $1 \mathrm{~m} /$ minute
B. $2 \mathrm{~m} /$ minute
C. $5 \mathrm{~m} /$ minute
D. $1.25 \mathrm{~m} /$ minute
6. The distance moved by the particle in time is given by $x=t^{3}-12 t^{2}+6 t+8$. At the instant when its acceleration is zero, the velocity is (a) 42 (b) -42
(c) 48
(d) -48
A. 42
B. -42
C. 48
D. -48

Answer: B

- Watch Video Solution

7. The altitude of a cone is 20 cm and its semivertical angle is 30°. If the semi-vertical angle is increasing at the rate of 2^{0} per second, then the radius of the base is increasing at the rate of (a) $30 \mathrm{~cm} / \mathrm{sec} \quad$ (b) $\frac{160}{3} \mathrm{~cm} / \mathrm{sec}$
$10 \mathrm{~cm} / \mathrm{sec} \quad$ (d) $160 \mathrm{~cm} / \mathrm{sec}$
A. $30 \mathrm{~cm} / \mathrm{sec}$
B. $\frac{160}{3} \mathrm{~cm} / \mathrm{sec}$
C. $10 \mathrm{~cm} / \mathrm{sec}$
D. $160 \mathrm{~cm} / \mathrm{sec}$

Answer: B

D Watch Video Solution

8. For what values of x is the rate of increase of $x^{3}-5 x^{2}+5 x+8$ is twice the rate of increase of x ?
A. $-3,-\frac{1}{3}$
B. $-3, \frac{1}{3}$
C. $3,-\frac{1}{3}$
D. $3, \frac{1}{3}$

Answer: D

D Watch Video Solution

9. The coordinates of the point on the ellipse
$16 x^{2}+9 y^{2}=400$ where the ordinate
decreases at the same rate at which abscissa
increases are :
A. $(3,16 / 3)$
B. $(-3,16 / 3)$
C. $(3,16 / 3)$
D. $(3,-3)$

Answer: A
(Watch Video Solution
10. The radius of the base of a cone is increasing at the rate of $3 \mathrm{~cm} /$ minute and the altitude is decreasing at the rate of 4 $\mathrm{cm} /$ minute. At what rate, lateral surface is changing when the radius in 7 cm and altitude is 24 cm ?
A. $54 \pi \mathrm{~cm}^{2} / \mathrm{min}$
B. $7 \pi c m^{2} / \mathrm{min}$
C. $27 \mathrm{~cm}^{2} / \mathrm{min}$
D. none of these

D Watch Video Solution

11. The rate of change of surface area of a sphere of radius r when the radius is increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$ is proportional to
A. $\frac{1}{r^{2}}$
B. $\frac{1}{r}$
C. r^{2}

D. r

Answer: D

D Watch Video Solution

12. A particle's velocity v at time t is given by
$v=2 e^{2 t} \cos \frac{\pi t}{3}$. The least value of t at which
the acceleration becomes zero, is :
A. 0
B. $\frac{3}{2}$

> C. $\frac{3}{\pi} \tan ^{-1}\left(\frac{6}{\pi}\right)$
> D. $\frac{3}{\pi} \cot ^{-1}\left(\frac{6}{\pi}\right)$

Answer: C

- Watch Video Solution

13. If $s=4 t+\frac{1}{t}$ is the equation o motion of
a particle, then the acceleration when velocity
vanishes, is
A. 0
B. 16
C. 8
D. 1

Answer: B

D Watch Video Solution

14. Find the surface area of a sphere when its
volume is changing at the same rate as its radius.
A. 1
B. $\frac{1}{2 \sqrt{\pi}}$
C. 4π
D. $\frac{4 \pi}{3}$

Answer: A

D Watch Video Solution
15. A variable trisriable triangle is inscribed in
a circle ofus R. If the rate of change of a side is
R times the rate of change of the opposite angle, then the opposite angle is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: C
(Watch Video Solution
16. Two measurements of a cylinder are varying
in such a way that the volume is kept constant.
If the rates of change of the radius (r) and height (h) are equal in magnitude but opposite in sign, then
A. $r=2 h$
B. $h=2 r$
C. $h=r$
D. $h=2 r$

- Watch Video Solution

17. The rate of increase of length of the shadow of a man 2 metres height, due to a lamp at 10 metres height, when he is moving away from it at the rate of $2 \mathrm{~m} / \mathrm{sec}$, is
A. $\frac{1}{2} m / \mathrm{sec}$
B. $\frac{2}{5} m / \mathrm{sec}$
C. $\frac{1}{3} m / \mathrm{sec}$
D. $5 \mathrm{~m} / \mathrm{sec}$

Answer: A

D Watch Video Solution

18. If the velocity of a body moving in a straight line is proportional to the square root of the distance traversed, then it moves with
A. variable force
B. constant force
C. zero force
D. zero acceleration

Answer: B

D Watch Video Solution

19. If the length of the diagonal of a square is
increasing at the rate of $0.2 \mathrm{~cm} / \mathrm{sec}$, then the rate of increase of its area when its side is $30 / \sqrt{2} \mathrm{~cm}$, is
A. $3 \mathrm{~cm}^{2} / \mathrm{sec}$
B. $\frac{6}{\sqrt{2}} \mathrm{~cm}^{2} / \mathrm{sec}$
C. $3 \sqrt{2} \mathrm{~cm}^{2} / \mathrm{sec}$

D. $6 \mathrm{~cm}^{2} / \mathrm{sec}$

Answer: D

D Watch Video Solution

20. The surface area of a cube is increasing at
the rate of $2 \mathrm{~cm}^{2} / \mathrm{sec}$. When its edge is 90 cm ,
the volume is increasing at the rate of
A. $1620 \mathrm{~cm}^{3} / \mathrm{sec}$
B. $810 \mathrm{~cm}^{3} / \mathrm{sec}$

C. $405 \mathrm{~cm}^{3} / \mathrm{sec}$

D. $45 \mathrm{~cm}^{3} / \mathrm{sec}$

Answer: D

D Watch Video Solution

21. A particle is moving in a straight line such
that its distance s at any time t is given by $s=\frac{t^{4}}{4}-2 t^{3}+4 t^{2}-7 . \quad$ Find \quad when its
velocity is maximum
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

22. A ladder 10 metres long rests with one end against a vertical wall, the other on the floor.

The lower end moves away from the wall at
the rate of 2 metres/minute. The rate at which
the upper end falls when its base is 6 metres
away from the wall
A. 3 metres/min
B. 2/3 metres/min
C. $-3 / 2$ metres/min
D. none of these

Answer: C

D Watch Video Solution
23. If a particle moves along a line by
$S=\sqrt{1+t} \quad$ then \quad its acceleration is proportional to
A. square of the velocity

B. cube of the displacement

C. cube of the velocity
D. square of the displacement

Answer: C

24. If a particle is moving such that the velocity

 acquired is proportional to the square root of the distance covered, then its acceleration isA. a constant
B. $\propto s^{2}$
C. $\propto \frac{1}{s^{2}}$
D. $\propto s$

Answer: A

25. Gas is being pumped into a a spherical balloon at the rate of $30 \mathrm{ft}^{3} / \min$. Then the rate at which the radius increases when it reaches the value 15 ft , is
A. $\frac{1}{30 \pi} f t / \min$
B. $\frac{1}{15 \pi} f t / \min$
C. $\frac{1}{20} \mathrm{ft} / \mathrm{min}$
D. $\frac{1}{25} \mathrm{ft} / \mathrm{min}$

Answer: A
26. A spherical iron ball 10 cm in radius is coated with a layer of ice of uniform thickness
that melts at a rate of $50 \mathrm{~cm}^{3} / m \in$. When
the thickness of ice is 5 cm , then find the rate at which the thickness of ice decreases.
A. $\frac{5}{6 \pi} \mathrm{~cm} / \mathrm{min}$
B. $\frac{1}{54 \pi} \mathrm{~cm} / \min$
C. $\frac{1}{18 \pi} \mathrm{~cm} / \mathrm{min}$
D. $\frac{1}{36 \pi} \mathrm{~cm} / \mathrm{min}$

Answer: C

D Watch Video Solution

27. The weight W of a certain stock of fish is given by $\mathrm{W}=\mathrm{nw}$, where n is the size of stock and w is the average weight of a fish. If n and
w change with time t as $\mathrm{n}=2 t^{2}+3$ and $w=t^{2}-t+2$, then the rate of change of W with respect to t at $\mathrm{t}=1$, is
A. 1
B. 13
C. 5
D. 8

Answer: B

D Watch Video Solution

Exercise

1. The edge of a cube is equal to the radius of a sphere. If the edge and the radius increase
at the same rate, then the ratio of the increases in surface areas of the cube and sphere is
A. $2 \pi: 3$
B. $3: 2 \pi$
C. $6: \pi$
D. none of these

Answer: B

D Watch Video Solution
2. If the velocity v of a particle moving along a straight line and its distance s from a fixed point on the line are related by $v^{2}=a^{2}+s^{2}$, then its acceleration equals
A. as
B. s
C. s^{2}
D. 2 s

Answer: B

- Watch Video Solution

3. If the rate of change of sine of an angle θ is k, then the rate of change of its tangent is
A. k^{2}
B. $\frac{1}{k^{2}}$
C. k
D. $\frac{1}{k}$

Answer: B
4. If a particle moves according to the law $s=6 t^{2}-\frac{t^{3}}{2}$, then the time at which it is momentarily at rest is
A. $t=0$ only
B. $t=8$ only
C. $t=0,8$
D. none of these

Answer: C

5. A particle moves on a line according to the law $s=a t^{2}+b t+c$. If the displacement after

1 sec is 16 cm , the velocity after 2 sec is 24
$\mathrm{cm} / \mathrm{sec}$ and acceleration is $8 \mathrm{~cm} / \mathrm{sec}^{2}$, then
A. $a=4, b=8, c=4$
B. $a=4, b=4, c=8$
C. $a=8, b=4, c=4$
D. none of these

Answer: A
6. If a particle moving along a line follows the law $t=a s^{2}+b s+c$, then the retardation of the particle is proportional to
A. square of the velocity
B. cube of the displacement
C. cube of the velocity
D. square of the displacement
7. If the semivertical angle of a cone is 45°.

Then the rate of change of its volume is
A. curved surface area times the rate of
change of r
B. base area times the rate of change of I
C. base area times the rate of change of r
D. none of these

- Watch Video Solution

8. On the curve $x^{3}=12 y$, find the interval of values of x for which the abscissa changes at a faster rate than the ordinate?
A. $(-2,2)$
B. $(-\infty,-2) \cup(2, \infty)$
C. $[-2,2]$
D. none of these
9. If the rate of change of area of a square plate is equal to that of the rate of change of its perimeter, then length of the side, is
A. 1 unit
B. 2 units
C. 3 units
D. 4 units
10. A stone dropped into a quiet lake. If the waves moves in circles at the rate of $30 \mathrm{~cm} / \mathrm{sec}$ when the radius is 50 cm , the rate o increase of enclosed area, is
A. $30 \pi m^{2} / \mathrm{sec}$
B. $30 \mathrm{~m}^{2} / \mathrm{sec}$
C. $3 \pi m^{2} / \mathrm{sec}$
D. none of these

Answer: D

D Watch Video Solution

11. The side of a square is equal to the diameter of a circle. If the side and radius change at the same rate, then the ratio of the change of their areas, is
A. $1: \pi$
B. $\pi: 1$
C. $2: \pi$

D. $1: 2$

Answer: C

D Watch Video Solution

12. A variable $\Delta A B C$ is inscribed in a circle of
diameter x units. At a particular instant the rate of change of side a, is $\frac{x}{2}$ times the rate of change of the opposite angle A then $A=$
A. $\pi / 6$
B. $\pi / 3$
C. $\pi / 4$
D. $\pi / 2$

Answer: B

D Watch Video Solution
13. The radius and height of a cylinder are equal. If the radius of the sphere is equal to the height of the cylinder, then the ratio of the
rates of increase of the volume of the sphere and the volume of the cylinder, is
A. $4: 3$
B. $3: 4$
C. $4: 3 \pi$
D. $3 \pi: 4$

Answer: A
(Watch Video Solution
14. The points on the curve $12 y=x^{3}$ whose ordinate and abscissa change at the same rate, are

$$
\begin{aligned}
& \text { A. }(-2,-2 / 3),(2,2 / 3) \\
& \text { B. }(-2 / 3,-2),(2 / 3,2) \\
& \text { C. }(-2,-2 / 3) \text { only } \\
& \text { D. }(2 / 3,2) \text { only }
\end{aligned}
$$

Answer: A
15. A particle moves along the parabola $y^{2}=2 a x$ in such a way that its projection on
y-axis has a constant velocity. Show that its projection on the x-axis moves with constant acceleration
A. constant velocity
B. constant acceleration
C. variable velocity
D. variable acceleration

Answer: B
16. The diameter of a circle is increasing at the
rate of $1 \mathrm{~cm} / \mathrm{sec}$. When its radius is π, the rate of increase of its area, is
A. $\pi c m^{2} / \mathrm{sec}$
B. $2 \pi c m^{2} / \mathrm{sec}$
C. $\pi^{2} c m^{2} / \mathrm{sec}$
D. $2 \pi^{2} \mathrm{~cm}^{2} / \mathrm{sec}$
17. A man 2 metres tall walks away from a lamp post 5 metres height at the rate of $4.8 \mathrm{~km} / \mathrm{hr}$.

The rate of increase of the length of his shadow, is
A. $1.6 \mathrm{~km} / \mathrm{hr}$
B. $6.3 \mathrm{~km} / \mathrm{hr}$
C. $5 \mathrm{~km} / \mathrm{hr}$
D. $3.2 \mathrm{~km} / \mathrm{hr}$

Answer: D

D Watch Video Solution

18. At an instant the diagonal of a square is
increasing at the rate of $0.2 \mathrm{~cm} / \mathrm{sec}$ and the area is increasing at the rate of $6 \mathrm{~cm}^{2} / \mathrm{sec}$. At the moment its side, is
A. $\frac{30}{\sqrt{2}} \mathrm{~cm}$
B. $30 \sqrt{2} \mathrm{~cm}$
C. 30 cm
D. 15 cm

Answer: A

D Watch Video Solution

19. If $s=a e^{t}+b e^{-t}$ is the equation of motion of a particle, then its acceleration is equal to
A. s
B. 2s
C. 3s
D. 4 s

Answer: A

D Watch Video Solution

20. A circular metal plate is heated so that its
radius increases at a rate of 0.1 mm per minute. Then the rate at which the plate's area is increasing when the radius is 50 cm , is
A. $10 \pi \mathrm{~mm}^{\wedge} 2 /$ minute
B. $100 \pi \mathrm{~mm}^{\wedge} 2 /$ minute
C. $\pi \mathrm{mm}^{\wedge} 2 /$ minute
D. $-\pi \mathrm{mm}^{\wedge} 2 /$ minute

Answer: B

D Watch Video Solution

21. The distances moved by a particle in time t
seconds is given by $s=t^{3}-6 t^{2}-15 t+12$.

The velocity of the particle when acceleration becomes zero, is
A. 15
B. -27
C. $6 / 5$
D. none of these

Answer: B
(Watch Video Solution
22. If $s=e^{t}(\sin t-\cos \mathrm{t})$ is the equation of motion of a moving particle, then acceleration at time t is given by
A. $2 e^{t}(\cos \mathrm{t}+\sin \mathrm{t})$
B. $2 e^{t}(\cos t-\sin t)$
C. $e^{t}(\cos t-\sin t)$
D. $e^{t}(\cos t+\sin t)$

Answer: A

D Watch Video Solution
23. A spherical balloon is being inflated so that
ists volume increases uniformal at the rate of
$40 \mathrm{~cm}^{3} / \mathrm{min}$.
At $r=8$, its surface area increase at the rate
A. $10 \mathrm{~cm}^{2}$ minute
B. $20 \mathrm{~cm}^{2}$ minute
C. $40 \mathrm{~cm}^{2}$ minute
D. none of these

Answer: A
24. If a point is moving in a line so that its
velocity at time t is proportional to the square of the distance covered, then its acceleration at time t varies as
A. cube of the distance
B. the distance
C. square of the distance
D. none of these

Answer: A

D Watch Video Solution

25. The edge of a cube is equal to the radius o
the sphere. If the rate at which the volume of
the cube is increasing is equal to λ, then the rate of increase of volume of the sphere, is
A. $\frac{4 \pi \lambda}{3}$
B. $4 \pi \lambda$
C. $\frac{\lambda}{3}$

D. none of these

Answer: A

D Watch Video Solution

26. The side of an equilateral triangle is 'a' units and is increasing at the rate of λ units $/ \mathrm{sec}$. The rate of increase of its area, is
A. $\frac{2}{\sqrt{3}} \lambda a$
B. $\sqrt{3} \lambda a$
C. $\frac{\sqrt{3}}{2} \lambda a$
D. none of these

Answer: C

- Watch Video Solution

