©゙’ doubtnut

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

MAXIMA AND MINIMA

Illustration

1. Let $f(x)=\left(1+b^{2}\right) x^{2}+2 b x+1$ and let $m(b)$ be the minimum value of $f(x)$. As b varies, the range of $m(b)$ is
A. [0,1]
B. $(0,1 / 2]$
C. $[1 / 2,1]$
D. $[0,1]$

Answer: D

Watch Video Solution

2. if $f(x)=\int_{0}^{x}\left(t^{2}+2 t+2\right) \mathrm{dt}$ where $x \in[2,4]$ then
A. the minimum value of $f(x)$ is $\frac{32}{3}$
B. the minimum value of $f(x)$ Is 10
C. the maxium value of $f(x)$ is 10
D. none of these

Answer: A

- Watch Video Solution

3. The minimum value that
$f(x)=4 x^{2}-4 x+11+\sin 3 \pi x$ attains is
A. 12
B. 10
C. 8
D. none of these

Answer: D

- Watch Video Solution

4. If ma and M respectively denote the minimum and maximum of $f(x)=(x-1)^{2}+3$ for $x \in[-3,1]$ then the ordered pair $(m, M)=$
A. $(-3,19)$
B. $(3,19)$
C. $(-19,3)$
D. $(-19,-3)$

Answer: B

Watch Video Solution
5. If m and M are the minimum and the maximum values of
$4+\frac{1}{2} \sin ^{2} 2 x-2 \cos ^{4} x, x \in R$ then
A. $\frac{7}{4}$
B. $\frac{15}{4}$
C. $\frac{9}{4}$
D. $\frac{1}{4}$

Answer: C
6. Let $f(x)=\left|x-x_{1}\right|+\left|x-x_{2}\right|$ where x_{1} and x_{2} are disinct real numbers of points at which $f(x)$ is mimum is
A. More than 3
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

7. The number of points in the interval $[-\sqrt{13} \sqrt{13}]$ at which $f(x)$ $=\sin x^{2}+\cos x^{2}$ attains its maximum value is
A. 2
B. 8
C. 0
D. 4

Answer: D

- Watch Video Solution

8. Let the tangent to the graph of $y=f(x)$ at the point $x=a$ be parallel to the x -axis and let $f^{\prime}(a-h)>0$ and $f(a+h)<0$, where h is a very small positive number.Then, the ordinate of the points is
A. a maximum
B. a maximum
C. both a maximum and a mimum
D. neither a maximum nor a minimum

9. The condition

$f(x)=x^{3}+p x^{2}+q x+r(x \in R)$ to have no extreme value is
A. $p^{2}<3 q$
B. $2 p^{2}<q$
C. $p^{2}<\frac{q}{4}$
D. $p^{2}>3 q$

Answer: A

- Watch Video Solution

10. In the interval $[0,1]$, the function $x^{25}(1-x)^{75}$ takes its maximum
value at the point (a) O (b) $\frac{1}{4}$ (c) $\frac{1}{2}$ (d) $\frac{1}{3}$
A. 0
B. $1 / 4$
C. $1 / 2$
D. $1 / 3$

Answer: B

- Watch Video Solution

11. The value of a so that the sum of the cubes of the roots of the equation $x^{2} a x+(2 a-3)=0$ assumes the minimum vlaue's
A. $a=1$
B. $a=3$
C. $a=0$
D. non of these

Answer: B

Watch Video Solution

12. If $f(x)=2 x^{3}-21 x^{2}+36 x-30$, then
A. $f(x)$ has minimum at $x=1$
B. $f(x)$ has maximum at $x=6$
C. $f(x)$ has maximum at $x=1$
D. $f(x)$ has no maximum of minimum

Answer: C

D Watch Video Solution

13. The maximum ordinate of a point on the graph of the function $f(x)$
$=\sin x(1+\cos x)$ is
A. $\frac{2+\sqrt{3}}{4}$
B. $\frac{3 \sqrt{3}}{4}$
C. 1
D. non of these

Answer: D

- Watch Video Solution

14. Find the value of a for which the sum of the squares of the roots of the equation $x^{2}-(a-2) x-a-1=0$ assumes the least value.
A. 2
B. 0
C. 3
D. 1

Answer: D

- Watch Video Solution

15. The minimum distance of a point on the curve $y=x^{2}-4$ from origin,
A. $\frac{\sqrt{5}}{2}$
B. $\frac{\sqrt{19}}{2}$
C. $\sqrt{\frac{15}{2}}$
D. $\sqrt{\frac{19}{2}}$

Answer: C

- Watch Video Solution

16. Twenty metres of wire is available for fencing off a flower-bed in the form of a circular sector. Then the maximum area (in sqm) of the flower-bed is: (1) 25 (2) 30 (3) 12.5 (4) 10
A. 12.5
B. 10
C. 25
D. 30

Answer: C

- Watch Video Solution

$$
\cos (2 x) \quad \cos (2 x) \quad \sin (2 x)
$$

17. $\mathrm{f}(\mathrm{x})=-\cos x \quad \cos x \quad-\sin x$
$\sin x \quad \sin x \quad \cos x$
A. $\mathrm{f}(\mathrm{x})=0$ at exactly three points in $(-\pi, \pi)$
B. $f(x)=0$ at more than three points in $(-\pi, \pi)$
C. $f(x)$ attains its minimum at $x=0$
D. $f(x)$ attains its minimums at $x=0$

Answer: B::C

- Watch Video Solution

18. The minmumu value of the fucntion
$f(x)=\frac{a^{2}}{x}+\frac{b^{2}}{a-x}, a>0, b>0$, in $(0, \mathrm{a})$ is
A. $a+b$
B. $\frac{1}{a+b}$
C. $\frac{(a+b)^{2}}{a}$
D. $\frac{a+b}{a^{2}}$

Answer: C

19. A wire of length 2 units is cut into two parts which are bent respectively to from a square ofside c units and a circle of radius r units if the sum of the sum of the areas of the square and the circle so fromed is minimum then
A. $2 x=(\pi 4) r$
B. $(4-\pi) x=\pi r$
C. $x=2 r$
D. $2 \mathrm{x}=\mathrm{r}$

Answer: C
20. The minimum value of $a \tan ^{2} x+b \cot ^{2} x$ equals the maximum
value of $a \sin ^{2} \theta+b \cos ^{2} \theta$ where $a>b>0$
when
A. $a=b$
B. $a=2 b$
C. $a=3 b$
D. $a=4 b$

Answer: D

- Watch Video Solution

21. The number of critical points of $f(x)=\frac{|x-1|}{x^{2}}$ is
A. 1
B. 2
C. 3
D. none of these

Answer: C

- Watch Video Solution

22. All possible value of $f(x)=(x+1)^{\frac{1}{3}}-(x-1)^{\frac{1}{3}}$ on [0,1] is 1 (b) 2
(c) 3 (d) $\frac{1}{3}$
A. 1
B. 2
C. 3
D. $1 / 3$

Answer: B
23. The difference between the greatest between the greatest and least value of the function $f(x)=\sin 2 x-x$ on $[-\pi / 2, \pi / 6]$, is
A. $\frac{\sqrt{3}+\sqrt{2}}{2}$
B. $\frac{\sqrt{3}+\sqrt{2}}{2}+\frac{\pi}{6}$
C. $\frac{\sqrt{3}}{2}+\frac{\pi}{2}$
D. $\frac{\sqrt{3}+\sqrt{2}}{2}-\frac{\pi}{3}$

Answer: C

(D) Watch Video Solution

24. Let $f(x)=\cos \pi x+10 x+3 x^{2}+x^{3},-2 \leq x \leq 3$. The absolute minimum value of $f(x)$ is 0 (b) -15 (c) $3-2 \pi$ none of these
A. 0
B. -15
C. $3-2 \pi$
D. none of these

Answer: B

- Watch Video Solution

Section I Solved Mcqs

1. The value of a for which the function $f(x)=a \sin x+\left(\frac{1}{3}\right) \sin 3 x$ has an extremum at $x=\frac{\pi}{3}$ is (a) 1 (b) -1 (c) 0 (d) 2
A. 1
B. -1
C. 0
D. 2

Answer: D

- Watch Video Solution

2. If $f(x)=a \log |x|+b x^{2}+x$ has extreme values at $x=-1$ and at $x=2$, then find a and b.
A. $a=2, b=-1$
B. $a=2, b=-1 / 2$
C. $a=-2, b=1 / 2$
D. none of these

Answer: B

D Watch Video Solution

3. The critical points of $f(x)=\frac{|2-x|}{x^{2}}$ is / are
A. $x=0,2$
B. $x=2,4$
C. $x=2,-4$
D. none of these

Answer: D

- Watch Video Solution

4. The set of all values of a for which the function $f(x)=\left(a^{2}-3 a+2\right)\left(\cos ^{2} \frac{x}{4}-\sin ^{2} \frac{x}{4}\right)+(a-1) x+\sin 1$ does not possess critical points is $(\mathrm{A})[1, \infty)(B)(0,1) \cup(1,4)$ (C) $(-2,4)$
(D) $(1,3) \cup(3,5)$
A. $[1, \infty]$
B. $(0,1) \cup(1,4)$
C. $(-2,4)$
D. $(1,3) \cup(3,5)$

Answer: B

- Watch Video Solution

5. The value of a for which the function $f(x)=(4 a-3)(x+\log 5)+2(a-7) \cot \left(\frac{x}{2}\right) \sin ^{2}\left(\frac{x}{2}\right)$ does not possess critical points is (a) $\left(-\infty,-\frac{4}{3}\right)$ (b) $(-\infty,-1)(\mathrm{c})[1, \infty)$ (d) $(2, \infty)$
A. $(\infty, 4 / 3)$
B. $(\infty, 1)$
C. $(1, \infty)$
D. $(2, \infty)$

Answer: A::D

6. For $a \in[\pi, 2 \pi]$ and $n \in Z$ the critical points of g
$f(x)=\frac{1}{3} \sin a \tan ^{3} x+(\sin a-1) \tan x+\frac{\sqrt{a-2}}{8-a}$ are
A. $x=n \pi$
B. $x=2 n \pi$
C. $x=(2 n+1) \pi$
D. none of these

Answer: D

(D) Watch Video Solution

7. Suppose the cubic $x^{3}-p x+q$ has three real roots where $p>0$ and $q>0$. Then which one of the following holds?
A. The cubic has minimum at both $\sqrt{\frac{p}{3}}$ and $-\sqrt{\frac{p}{3}}$
B. The cubic has maximum at both $\sqrt{\frac{p}{3}}$ and $-\sqrt{\frac{p}{3}}$
C. The cubic has minimum at $\sqrt{\frac{p}{3}}$ and maximum at $-\sqrt{\frac{p}{3}}$
D. The cubic has minimum at $-\sqrt{\frac{p}{3}}$ and maximum at $\sqrt{\frac{p}{3}}$

Answer: C

Watch Video Solution

8. The critical points of the function $f(x)=(x-2)^{2 / 3}(2 x+1)$ are
A. 1 and 2
B. 1 and $-\frac{1}{2}$
C. -1 and 2
D. 1

Answer: A

9. If p and q are positive real numbers such that $p^{2}+q^{2}=1$, then the maximum value of $(p+q)$ is :
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{2}$
C. 2
D. $\frac{1}{2}$

Answer: B

- Watch Video Solution

10. Given $P(x)=x^{4}+a x^{3}+b x^{2}+c x+d$ such that $x=0$ is the only real root of $P^{\prime}(x)=0$. If $P(-1)<P(1)$, then in the interval $[-1,1]$
A. $P(-1)$ is the minimum and $p(1)$ the maximum of P
B. (-1) is not minimum but $p(1)$ the maximum of P
C. $p(-1)$ is the minimum but $P(1)$ is not the maximum of P
D. Niether $p(-1)$ is the maxiumum nor $P(1)$ is the maximum of P

Answer: B

Watch Video Solution

11. The difference between the greatest and least value of the functions, $f(x)=\cos x+\frac{1}{2} \cos 2 x-\frac{1}{3} \cos 3 x$ is
A. $2 / 3$
B. $8 / 7$
C. $9 / 4$
D. $3 / 8$

Answer: C

12. A straight line through the point (h, k) where $h>0$ and $k>0$, makes positive intercepts on the coordinate axes. Then the minimum length of line intercepted between the coordinate axes is
A. $\left(h^{2 / 3}+k^{2 / 3}\right)^{3 / 2}$
B. $\left(h^{3 / 2}+k^{3 / 2}\right)^{2 / 3}$
C. $\left(h^{2 / 3}-k^{2 / 3}\right)^{2 / 3}$
D. $\left(h^{3 / 2}-k^{3 / 2}\right)^{2 / 3}$

Answer: A

D Watch Video Solution

13. The total number of local maxima and local minima of the function
$f(x)=\left\{\begin{array}{ll}(2+x)^{3}, & -3<x \leq-1 \\ x^{\frac{2}{3}}, & -1<x<2\end{array}\right.$ is
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

14. Consider the function $f:(-\infty, \infty) \rightarrow(-\infty, \infty)$ defined by $f(x)=\frac{x^{2}-a x+1}{x^{2}+a x+1} ; 0<a<2$. Which of the following is true ?
A. $f(x)$ is decreasing on ($-1,1$) and has local minimum at $x=1$
B. $f(x)$ is increasing on $(-1,1)$ and has local minimum at $x=1$
C. $f(x)$ is increasing on($-1,1$) and has neither a local maximum nor a
D. $f(x)$ is crdeeasing on $(-1,1)$ but has neither a local maximum nor a local minimum at $\mathrm{x}=1$

Answer: A

- Watch Video Solution

15. If $f(x)=\left\{\begin{array}{lll}|x|, & \text { for } & 0<|x| \leq 2 \\ 1, & f \text { or } & x=0\end{array}\right.$. Then, at $\mathrm{x}=0, f$ has
A. $f(x)$ is decreasing on $(-1,1)$ and has local minimum at $x=1$
B. $\mathrm{f}(\mathrm{x})$ is increasing on $(-1,1)$ and has local minimum at $\mathrm{x}=1$
C. $f(x)$ is increasing on $(-1,1)$ and has neither a local maximum nor a local minimum at $\mathrm{x}=1$
D. $f(x)$ is crdeeasing on($-1,1$) but has neither a local maximum nor a local minimum at $x=1$
16. If $f(x)$ is a cubic polynomial which has local maximum
at $\quad x=-1, \operatorname{Iff}(2)=18, f(1)=-1$ and $f^{\prime}(x)$ has local minimum at $x=0$, then
A. the distance between $(-1,2)$ and $(\alpha, f(\alpha)$ where $x=\alpha$ is the point of local minima is $2 \sqrt{5}$
B. $f(x)$ is increasing for ${ }^{`} x$ in $[1,2$ sqrt5] and has a local minima at $x=1$
C. the value of $f(0)$ is 5
D. none of these

Answer: B

17. If $f(x)=\left\{\begin{array}{ll}e^{x} & , 0 \leq x<1 \\ 2-e^{x-1} & , 1<x \leq 2 \\ x-e & , 2<x \leq 3\end{array} \quad\right.$ and $g(x)=\int_{0}^{x} f(t) d t$, $x \in[1,3]$, then
A. $\mathrm{g}(\mathrm{x})$ has a local maxima at $x=1+\log _{e} 2$ and local minima at $\mathrm{x}=\mathrm{e}$
B. $f(x)$ has a local maxima at $x=1$ and local minima at $x=2$
C. $f(x)$ and $f(x)$ have same points of local maxima and local minima
D. none of these

Answer: C

- Watch Video Solution

18. For the functions $f(x)=\int_{0}^{x} \frac{\sin t}{t} d t$ where $x>0$. At $x=n \pi \mathrm{f}(\mathrm{x})$ attains
A. maximum or minimum according as n is odd or even respectively .
B. minimum or maximum according as n is odd or even respectively
C. maximum at $\mathrm{x}=\mathrm{n} \pi$
D. minimum at $\mathrm{x}=\mathrm{n} \pi$

Answer: A

- Watch Video Solution

19.

$f(x)=\int_{0}^{x}(\sin t-\cos t)\left(e^{t}-2\right)(t-1)^{3}(t-1)^{3}(t-2)^{5} d t, 0<x \leq 4$
Then , the number of points where $f(x)$ assumes local maximum value, is
A. 1
B. 2
C. 3
D. none of these

Answer: C

- Watch Video Solution

20. Let $f(x)$ be a function defined as follows: $f(x)=\sin \left(x^{2}-3 x\right), x \leq 0 ;$ and $6 x+5 x^{2}, x>0 \quad$ Then at $x=0, f(x)$ (a)has a local maximum (b)has a local minimum (c)is discontinuous (d) none of these
A. has a local maxima
B. has a local minimum
C. is discontinuous
D. none of these

- Watch Video Solution

21. Let $f(x)$ be a function defined by
$f(x)=\int_{1}^{x} t\left(t^{2}-3 t+2\right) d t, x \in[1,3]$
Then the range of $f(x)$, is
A. $[0,2]$
B. $\left[-\frac{1}{4}, 4\right]$
C. $\left[-\frac{1}{4}, 2\right]$
D. none of these

Answer: C
22. The function $f(x)=\left(4 \sin ^{2} x-1\right)^{n}\left(x^{2}-x+1\right), n \in N$, has a local minimum at $x=\frac{\pi}{6}$. Then n is any even number n is an odd number n is odd prime number n is any natural number
A. can be any odd natural number
B. can only be an odd prime number d
C. can be any even natural number
D. can only be a multiple of 4 .

Answer: C

- Watch Video Solution

23. Find the set of critical points of the function

$$
f(x)=x-\log x+\int_{2}^{x}\left(\frac{1}{z}-2-2 \cos 4 z\right) d z
$$

$$
\text { A. }\left\{\frac{\pi}{6}+\frac{n \pi}{2}: n=0,1,2 \ldots\right\}
$$

B. $\{n \pi: n \in N\}$
C. $\left\{n \pi+\frac{\pi}{6}: n \in N\right\} \cup\left\{\frac{\pi}{2}\right\}$
D. none of these

Answer: A

D Watch Video Solution

24. If $h(x)=f(x)+f(-x)$, " then " $h(x)$ has got and extreme value at a point where $f^{\prime}(x)$ is
A. an even function
B. an odd function
C. zero
D. none of these
25. Let $f(x)=(x-2)^{2} x^{n}, n \in N$ Then $\mathrm{f}(\mathrm{x})$ has a minimum at
A. $x=2$ for all $n \in N$
B. $x=2$ ifn is odd
C. $x=0$ ifn is even
D. $x=0$ is if n is odd

Answer: A: C

- Watch Video Solution

26. The difference between the greateset ahnd least vlaue of the function $f(x)=\int_{0}^{x}\left(6 t^{2}-24\right) \mathrm{dt}$ on $[1,3] \mathrm{dt}$ on $[1,3]$ is
A. 14
B. 10
C. 5
D. 4

Answer: A

D Watch Video Solution

27. Set of values of b for which local extrema of the function $f(x)$ are positive where $f(x)=\frac{2}{3} a^{2} x^{3}-\frac{5 a}{2} x^{2}+3 x+b$ and maximum occurs at $x \frac{1}{3}$ is -
A. $(-4, \infty)$
B. $(-3 / 8, \infty)$
C. $(-10,3 / 8)$
D. non of these

Answer: B

Watch Video Solution

28. if $f(x)=\left(\frac{\sin (x+\alpha)}{\sin (x+\beta)}\right), \alpha \neq \beta$ then $\mathrm{f}(\mathrm{x})$ has
A. maximum at $\mathrm{x}=0$
B. minimum at $x=0$
C. neither maximum nor minimum
D. non of these

Answer: C

- Watch Video Solution

29. if $f(x)=\left(\frac{\sin (x+\alpha)}{\sin (x+\beta), \alpha \neq \beta}\right.$ then $\mathrm{f}(\mathrm{x})$ has
A. maximum at $x=0$
B. minimum at $\mathrm{x}=0$
C. neith maximum nor minimum
D. none of these

Answer: B

- Watch Video Solution

30. Let $f(x)=1+2 x^{2}+2^{2} x^{4}+\ldots .+2^{10} x^{20}$. The , $f(x)$ has
A. more than one minimum
B. exactly one minimum
C. at least one maximum
D. neither a maximum nor a minimum
31. The function $f(x)=\frac{x}{1+x \tan x}$
A. one point of minimum in the interval $(0, \pi / 2)$
B. one point of maxmimum $(0, \pi / 2)$
C. no points of maximum, no point of minimum in the interval $(0, \pi / 2)$
D. two points of maxima in the interval $(0, \pi / 2)$

Answer: B

D Watch Video Solution

32. A polynomial function $f(x)$ is such that $f^{\prime}(4)=f^{\prime \prime}(4)=0$ and $f(x)$ has minimum value 10 at $x=4$.Then
A. $f^{\prime \prime}(x)=4+(x-4)^{4}$
B. $f(x)=10+(x-4)^{4}$
C. $f(x)-(x-4)^{4}$
D. non of these

Answer: B

D Watch Video Solution

33. about to only mathematics
A. 0
B. 1
C. 2
D. Infinite
34. In the interval $(0, \pi / 2)$ the fucntion $f(x)=\tan ^{n} x+\cot ^{n} \mathrm{x}$ attains
A. the minimum value which is independent of n
B. a minimum vlaue which is a fuction of n
C. the minimum vlaue which is a function of 1
D. non of these

Answer: A

- Watch Video Solution

35. The fraction exceeding its pth power by the greatest number possible, where $p \geq 2$, is
A. $\left(\frac{1}{n}\right)^{\frac{1}{n-1}}$
B. $\left(\frac{1}{n}\right)^{n-1}$
C. $n^{\frac{1}{n}-1}$
D. non of these

Answer: A

Watch Video Solution
36. The greatest value of the fucntion $f(x)=\sin ^{-1} x^{2}$ in interval $[-1 / \sqrt{2}, 1 / \sqrt{2}]$ is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{2}$
C. $-\frac{\pi}{2}$
D. $\frac{\pi}{6}$

Answer: D

Watch Video Solution
37. The minimum value of the fuction $f(x)=2|x-2|+5|x-3|$ for
all $x \in R, i s$
A. 3
B. 2
C. 5
D. 7

Answer: B

- Watch Video Solution

38. The minimum value of the fuction $f(x)$ given by $f(x)=\frac{x^{m}}{m}+\frac{x^{-n}}{n}$ where $\frac{1}{m}+\frac{1}{n}=1$ and $m>1$ is
A. 1
B. 0
C. 2
D. non of these

Answer: A

- Watch Video Solution

39. The largest term in the sequence $a_{n}=\frac{n^{2}}{n^{3}+200}$ is given by $\frac{529}{49}$
(b) $\frac{8}{89} \frac{49}{543}$ (d) none of these
A. $\frac{49}{543}$
B. $\frac{8}{89}$
C. $\frac{1}{52}$
D. non of these

Answer: A

(D) Watch Video Solution

40. Let $f(x)=a x^{3}+b x^{2}+c x+1$ has exterma at $x=\alpha, \beta$ such that $\alpha \beta<0$ and $f(\alpha) f(\beta)<0 \mathrm{f}$. Then the equation $f(x)=0$ has (a)three equal real roots (b)one negative root if $f(\alpha)<0$ and $f(\beta)>0$ (c)one positive root if $f(\alpha)<0$ and $f(\beta)>0$ (d) none of these
A. three distinct real roots
B. one positive root if $f(\alpha)<0$ and $f(\beta)>0$
C. on negative root if $f(\alpha)>0$ and $(\beta)<0$
D. all the above
41. $P=x^{3}-\frac{1}{x^{3}}, Q=x-\frac{1}{x} x \in(1, \infty)$ then minimum value of P
$\overline{\sqrt{3} Q^{2}}$
A. $2 \sqrt{2}$
B. $-2 \sqrt{3}$
C. non-existent
D. non of these

Answer: A

(D) Watch Video Solution

42. Let $f(x)=\cos 2 \pi x+x-[x]([$,$] denote the greatest integer$ function). Then number of points in $[0,10]$ at which $f(x)$ assumes its local maximum value, is
A. 0
B. 10
C. 9
D. Infinite

Answer: B

D Watch Video Solution

43. Let $f(x)=a-(x-3)^{8 / 9}$ then greatest value of $\mathrm{f}(\mathrm{x})$ is
A. 3
B. a
C. no maximum vlaue
D. non of these
44. A function f such that $f^{\prime}(a)=f^{\prime}(a)=\ldots=f^{2 n}(a)=0$, and f has a local maximum value b at $x=a$, if $f(x)$ is
A. $(x-a)^{2 n-2}+b$
B. $b-1-(x+a)^{2 n+1}$
C. $b-(x-a)^{2 n+2}$
D. $(x-a)^{2 n+2}+b$

Answer: C

D Watch Video Solution

45. Let $f(x)= \begin{cases}3 x^{2}-2 x+10 & x<1 \\ -2 & x>1\end{cases}$

The set of values of b for which $f(x)$ has greatest value at $x=1$ is
A. $(-6,-2)$
B. $(2,6)$
C. $(-6,-2) \cup(2,6)$
D. $(-6,6)$

Answer: C

D Watch Video Solution

46. The maximum value of $\cos \left(\int_{2 x}^{x^{2}} e^{t} \sin ^{2} \quad \mathrm{tdt}\right)$
A. $\frac{1}{2}$
B. 0
C. 1
D. non -existent
47. Let $f(x)=\left\{\begin{array}{ll}1+\sin x, & x<0 \\ x^{2}-x+1, & x \geq 0\end{array}\right.$, then:
A. f has a local maximum at $x=0$
B. f has a local minimum at $x=0$
C. f is increasing in ($0,1 / 2$)
D. f is decreasing in ($0,1 / 2$)

Answer: B

- Watch Video Solution

48. Let $\mathrm{f}(\mathrm{x})=x^{n+1}+a x^{n}$, where $a>0$. Then, $\mathrm{x}=0$ is point of
A. local minimum for any integer n
B. local minimum if n is an even integer
C. local maximum if n is an even integer
D. local minimum if n is am odd interger

Answer: C

- Watch Video Solution

49. The greph of $y=x^{3}+a x^{2}+b x+c$ has no extemun if and only if
A. $a^{2}=b$
B. $a^{2}<3 b$
C. $a^{2}>2 b$
D. $a^{2}>2 b^{2}$

Answer: B
50. If $\mathrm{f}(\mathrm{x})=\int_{x}^{x^{2}}(t-1) d t, 1 \leq x \leq 2$ then the greatest value of $\phi(\mathrm{x})$, is
A. 2
B. 4
C. 8
D. none of these

Answer: B

- Watch Video Solution

51. If the parabola $y=a x^{2}+b x+c$ has vertex at(4,2) and $a \in[1,3]$ then the difference beteween the extreme value of $a b c$ is equal to
A. 3600
B. 144
C. 3456
D. none of these

Answer: C

D Watch Video Solution

52. Let $f(x)=\operatorname{In}\left(2 x-x^{2}\right)+\sin \frac{\pi x}{2}$. Then

- Watch Video Solution

53. Find a quadratic polynomial $\varphi(x)$ whose zeros are the maximum
and minimum values of the function

$$
f(x)=\left|\begin{array}{ccc}
1+\sin ^{2} x & \cos ^{2} x & \sin 2 x \\
\sin ^{2} x & 1+\cos ^{2} x & \sin 2 x \\
\sin ^{2} x & \cos ^{2} x & 1+\sin 2 x
\end{array}\right|
$$

A. $\alpha+\beta^{9}=4$
B. $\alpha^{3}-\beta^{7}=26$
C. $\alpha^{2 n}-\beta^{2 n}$ is always and even integer for $n \in N$
D. a triangle can be costructed having its sides as α, β and $\alpha-\beta$

Answer: D

(D) Watch Video Solution

54. Let $f(x)=\left\{\begin{array}{l}x^{2}+4 x,-3 \leq x \leq 0 \\ -\sin x, 0<x \leq \pi / 2 \\ -\cos x-1, \pi / 2<x \leq \pi\end{array}\right.$
which one of the following is not true?
A. $x=-2$ is the point of global minimum
B. $x=\pi$ is the point of global maximum
C. $\mathrm{f}(\mathrm{x})$ is not differentiable at $x=\frac{\pi}{2}$
D. $f(x)$ is discontinunous at $x=0$

Answer: A,D

55. If α be the number of solutions of the equation $[\sin \mathrm{x}]=|\mathrm{x}|)$ and β be the greatest value of the function
$f(x)=\cos \left(x^{2}-\left[x^{2}\right)\right)$ in the interval $][-1,1]$ the
A. $\alpha=\beta$
B. $\alpha>\beta$
C. $\alpha<\beta$
D. non of these

Answer: A

D Watch Video Solution

56.

$f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-2\left(x_{1}+x_{2}+x_{3}+x_{4}\right)+10$
and $x_{1}, x_{3} \in[-1,2]$ and $x_{2}, x_{4} \in[1,4]$ then the maximum value of f is
A. 24
B. 20
C. 32
D. none of these

Answer: C

- Watch Video Solution

57. Let f, g and h be real-valued functions defined on the interval $[0,1]$ by

$$
f(x)=e^{x^{2}}+e^{-x^{2}}, g(x)=x e^{x^{2}}+e^{-x^{2}} \quad \text { and }
$$

$h(x)=x^{2} e^{x^{2}}+e^{-x^{2}}$, If a, b and c denote respectively the absolute maximum of f, g and h on $[0,1]$, then

$$
\text { A. } a=b \text { and } c \neq b
$$

B. $a=c$ and $a \neq b$
C. $a \neq b$ and $c \neq b$
D. $a=b=c$

Answer: D

Watch Video Solution

58. Let f be a function defined on R (the set of all real numbers) such that $f^{\prime}(x)=2010(x-2009)(x-2010)^{2}(x-2011)^{3}(x-2012)^{4}$, for all $x \in R$. If g is a function defined on R with values in the interval $(0, \infty)$ such that $f(x)=\ln (g(x))$, for all $x \in R$, then the number of point is R at which g has a local maximum is \qquad
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

59.

Let
$f: R \vec{R}$
be
defined
by
$f(x)=\{k-2 x$, if $x \leq-12 x+3, f x \succ 1\}$. If f has a local minimum at $x=1$, then a possible value of k is (1) 0 (2) $-\frac{1}{2}$ (3) -1
(4) 1
A. $-1 / 2$
B. -1
C. 1
D. 0

Answer: B
60. For $x \varepsilon\left(0, \frac{5 \pi}{2}\right)$, definite $f(x)=\int_{0}^{x} \sqrt{t} \sin t d t$. Then f has
A. local maximum at π and 2π
B. local manimum at π and 2π
C. local minimum at π and maximum at 2π
D. local maximum at π and minimum at 2π

Answer: D

(D) Watch Video Solution

61. Let $p(x)$ be a real polynomial of least degree which has a local maximum at $x=1$ and a local minimum at $x=3$. If $p(1)=6 \operatorname{and} p(3)=2$, then $p^{\prime}(0)$ is \qquad
A. 8
B. 9
C. 3
D. 6

Answer: B

Watch Video Solution

62. Let $I R \vec{I} R$ be defined as $f(x)=|x|++x^{2}-1 \mid$. The total number of points at which f attains either a local maximum or a local minimum is \qquad
A. 2
B. 4
C. 5
D. 6

Answer: C

- Watch Video Solution

63. If $f(x)=\int_{0}^{x} e^{t^{2}}(t-2)(t-3) d t$ for all $x \in(0, \infty)$, then
A. f has a local maximum at $x=2$ and local minimum at $x=3$
B. f is dereasing on $(2,3)$
C. there exists $c \in(0, \infty)$ such that $f(c)=0$
D. f is inceresing on R^{+}

Answer: D

- Watch Video Solution

64. The funciton $f(X)=2|x|+|x+2|-||x+2|-|x||$ has a local mimimum or a
A. -2 and $-\frac{2}{3}$
B. (b)-2 and $0^{`}$
C. $-\frac{2}{3}$ and 2
D. 2 and -2

Answer: A

- Watch Video Solution

65. Let $f:[0,1] \rightarrow R$ be a function. Suppose the function f is twice differentiable,

$$
f(0)=f(1)=0 \quad \text { and }
$$ satisfies

$f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}, x \in[0,1]$ Which of the following is true for $0<x<1$?
A. $0<f(x)<\infty$
B. $-\frac{1}{2}<f(x)<\frac{1}{2}$
C. $-\frac{1}{4}<f(x)<1$
D. $-\infty<f(x)<0$

Answer: D

- Watch Video Solution

66. Let $f:[0,1] \rightarrow R$ be a function.such that $f(0)=f(1)=0$ and $f^{\prime \prime}(x)+f(x) \geq e^{x}$ for all $x \in[0,1]$.If the fucntion $f(x) e^{-x}$ assumes its minimum in the interval $[0,1]$ at $x=\frac{1}{4}$ which of the following is true?
A. $f(x)<0 f(x)$ for $\frac{1}{4}<x<\frac{3}{4}$
B. $f(x) \geq f(x) f$ or $0<x<\frac{1}{4}$
C. $f(x)<f(x)$ for $0<x<\frac{1}{4}$
D. $f(x) f$ or $\frac{3}{4}<x<$

Answer: C

67. A rectangular sheet of fixed perimeter with sides having their lengths in the ratio $8: 15$ is converted into anopen rectangular box by folding after removing squares of equal area from all four corners. If the total area of removed squares is 100 , the resulting box has maximum volume. Then the length of the sides of the rectangular sheet are 24 (b) 32 (c) 45 (d) 60
A. 24,45
B. 32,65
C. 24,60
D. 32,60

Answer: A

68. Let $f(X)$ be a polynomila of degree four having extreme values at x $=1$ and $\mathrm{x}=2$. .If $\lim _{x \rightarrow 0}\left[1+\frac{f(x)}{x^{2}}\right]=3$ then $\mathrm{f}(2)$ is equal to
A. 0
B. 4
C. -8
D. -4

Answer: A

- Watch Video Solution

69. A cylindrical container is to be made from certain solid material with the following constraints: It has a fixed inner volume of Vm^{3}, has a 2 mm thick solid wall and is open at the top. The bottom of the container is a solid circular disc of thickness 2 mm and is of radius equal to the outer radius of the container. If the volume the material
used to make the container is minimum when the inner radius of the container is 10 mm . then the value of $\frac{V}{250 \pi}$ is
A. 6
B. 8
C. 7
D. 4

Answer: D

(D) Watch Video Solution

70. The minimum value of the function,
$f(x)=x^{3 / 2}+x^{-3 / 2}-4\left(x+\frac{1}{x}\right)$. For all permissible real values of x is
A. -10
B. -6
C. -7
D. -8

Answer: A

(D) Watch Video Solution

71. The least value of $\alpha \in R$ for which $4 a x^{2}+\frac{1}{x} \geq 1$, for all $x>0$, is
A. $\frac{1}{64}$
B. $\frac{1}{32}$
C. $\frac{1}{27}$
D. $\frac{1}{25}$

Answer: C

72. The abscissae of a point, tangent at which to the curve $y=e^{x} \sin x, x \in[0, \pi]$ has maximum slope is
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer: C

Watch Video Solution

Section li Assertion Reason Type

$$
\begin{aligned}
& \text { 1. Statement }-1 \text { The maximum value of } \\
& f(x)=\frac{1}{3 x^{4}+8 x^{3}-18 x^{2}+60} \text { is } \frac{1}{53}
\end{aligned}
$$

Statement -2 : The function $\mathrm{g}(\mathrm{x})=\frac{1}{f(x)}$ attains its minimum value at $x=1$ and $x=-3$
A. Statement-1 is True, Statement-2 is True,Statement -2 is a correct explanation for Statement -1
B. Statement -1 True ,Statement -2 is True ,Stament -2 is not a correct explanation for Statement -!
C. Statement -1 is True Statement -2 is False
D. Statement -1 is Flase,Statement -2 is True

Answer: A

- Watch Video Solution

2. $f(x)=\left\{\begin{array}{lc}e^{x}+1, & -1 \leq x>0 \\ e^{x}, & x=0 \\ e^{x}-1, & 0<x \leq 1\end{array}\right.$

Statement -1 is bounded but never attains its macimum and minimum
values
Statement-2 $x=0$ is the point of discontinuity of $f(x)$
A. Statement-1 is True, Statement-2 is True,Statement -2 is a correct
explanation for Statement -2
B. Statement -1 True ,Statement -2 is True ,Stament -2 is not a correct explanation for Statement -!
C. Statement -1 is True Statement -2 is False
D. Statement -1 is Flase,Statement -2 is True

Answer: A

- Watch Video Solution

3. Statement-1 . The critical points of $\mathrm{f}(\mathrm{x})=\mathrm{x} \cos \mathrm{x}$ occur in $(\pi / 4, \pi / 3)$

Statement-2 : The functions $\mathrm{g}(\mathrm{x})=\mathrm{xtanx}$ increase ion $(0, \pi / 2)$
A. Statement-1 is True, Statement-2 is True,Statement -2 is a correct explanation for Statement -3
B. Statement -1 True ,Statement -2 is True ,Stament -2 is not a correct explanation for Statement -!
C. Statement -1 is True Statement -2 is False
D. Statement -1 is Flase,Statement -2 is True

Answer: B

D Watch Video Solution

4. Let $f(x)=2 \sin x+\operatorname{tax}-3 x$

Statement-1: $f(x)$ does not attain extreme in $(-\pi / 2, \pi / 2)$
Statement-2 : $\mathrm{f}(\mathrm{x})$ is strictly increasing on $(-\pi / 2, \pi / 2)$
A. Statement-1 is True, Statement-2 is True,Statement -2 is a correct
B. Statement -1 True ,Statement -2 is True ,Stament -2 is not a correct explanation for Statement -!
C. Statement -1 is True Statement -2 is False
D. Statement -1 is Flase,Statement -2 is True

Answer: A

D Watch Video Solution

5. Let $\tan ^{-1} \frac{1-x}{1+x}$ Stament-1: The difference of the greatest and smaallest values of $f(x)$ on $[0,1] i s f(0)-f(1)=\pi / 4$

Statement-2 : $g(x)=\tan ^{-1} x$ is an increasing functions on $[0, \infty]$
A. Statement-1 is True, Statement-2 is True,Statement -2 is a correct
explanation for Statement -5
B. Statement -1 True ,Statement -2 is True ,Stament -2 is not a correct explanation for Statement -!
C. Statement -1 is True Statement -2 is False
D. Statement -1 is Flase,Statement -2 is True

Answer: A

- Watch Video Solution

6. Let $f: R \rightarrow R$ be a continuous function defined by $f(x)=\frac{1}{e^{x}+2 e^{-x}}$. Statement-1: $f(c)=\frac{1}{3}$, for some $c \in R$. Statement-2: $0<f(x) \leq \frac{1}{2 \sqrt{2}}$, for all $x \in R$. (1) Statement- 1 is true, Statement-2 is true; Statement-2 is not the correct explanation for Statement-1 (2) Statement-1 is true, Statement-2 is false (3) Statement-1 is false, Statement-2 is true (4) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation for Statement-1
A. Statement-1 is True, Statement-2 is True,Statement -2 is a correct explanation for Statement -6
B. Statement -1 True ,Statement -2 is True ,Stament -2 is not a correct explanation for Statement -!
C. Statement -1 is True Statement -2 is False
D. Statement -1 is Flase,Statement -2 is True

Answer: A

- Watch Video Solution

7. Let be a function defined by $f(x)= \begin{cases}\frac{\tan x}{x}, & x \neq 0 \\ 1, & x=0\end{cases}$

Statement-1: $x=0$ is a point on minima of f
Statement-2: $f^{\prime}(0)=0$
A. Statement-1 is True, Statement-2 is True,Statement -2 is a correct explanation for Statement -7
B. Statement -1 True ,Statement -2 is True ,Stament -2 is not a correct explanation for Statement -!
C. Statement -1 is True Statement -2 is False
D. Statement -1 is Flase,Statement -2 is True

Answer: B

- Watch Video Solution

Exercise

1. For the curve $y=x e^{x}$, the point
A. $x=-1$ is a point of minimum
B. $x=0$ is a point of minimum
C. $x=-1$ is a point of maximum
D. $x=0$ is a point of maximum

Answer: A

2. The greatest value of the function $f(x)=\frac{\sin 2 x}{\sin \left(x+\frac{\pi}{4}\right)}$ on the interval $\left(0, \frac{\pi}{2}\right)$ is
A. $1 / \sqrt{2}$
B. $\sqrt{2}$
C. 1
D. $-\sqrt{2}$

Answer: B

- Watch Video Solution

3. Let $P(x)=a_{0}+a_{1} x^{2}+a_{2} x^{4}++a_{n} x^{2 n}$ be a polynomial in a real variable x with $0<a_{0}<a_{1}<a_{2}\left\langle a_{n}\right.$. The function $P(x)$ has a. neither a maximum nor a minimum b. only one maximum c. only one
minimum d. only one maximum and only one minimum e. none of these
A. niether a maximum nor a minimum
B. only one maximum
C. only one minimum
D. none of these

Answer: C

D Watch Video Solution

4. A differentiable function $f(x)$ has a relative minimum at $x=0$.

Then the function $f=f(x)+a x+b$ has a relative minimum at $x=0$ for (a) all a and allb (b) all b if $a=0$ (c)all $b>0$ (d) all $a>0$
A. all a and all b
B. all b if $a=0$
C. all b gt 0
D. all a gt 0

Answer: B

(D) Watch Video Solution

5. Investigate for the maxima and minima of the function $f(x)=\int_{1}^{x}\left[2(t-1)(t-2)^{3}+3(t-1)^{2}(t-2)^{2}\right] d t$
A. 1
B. 2
C. 3
D. 4
6. If the function $f(x)=x^{3}+3(a-7) x^{2}+3\left(a^{2}-9\right) x-1$ has a positive point Maximum, then
A. $a \in(3, \infty) \cup(-\infty,-3)$
B. $a \in(-\infty,-3) \cup(3,29 / 7)$
C. $(-\infty, 7)$
D. $(-\infty, 29)$

Answer: B

(D) Watch Video Solution

7. Show that the maximum value of $\left(\frac{1}{x}\right)^{x}$ is $e^{\frac{1}{e}}$.
A.e
B. e^{e}
C. $e^{1 / e}$
D. $(1 / e)^{1 / e}$

Answer: C

- Watch Video Solution

8. If the function $f(x)=2 x^{3}-9 a x^{2}+12 a^{2} x+1$, where $a>0$, attains its maximum and minimum at p and q, respectively, such that $p^{2}=q$, then a equal to (a) 1 (b) 2 (c) $\frac{1}{2}$ (d) 3
A. 0
B. 1
C. 2
D. none of these

Answer: C

9. The maximum distance of the point ($k, 0$) from the curve $2 x^{2}+y^{2}-2 x=0$ is equal to
A. $\sqrt{1-2 a+a^{2}}$
B. $\sqrt{1+2 a+2 a^{2}}$
C. $\sqrt{1+2 a-a^{2}}$
D. $\sqrt{1-2 a+2 a^{2}}$

Answer: D

- Watch Video Solution

10. A cubic function $f(x)$ vanishes at $x=-2$ and has relative minimum/maximum at $x=-1$ andx $=\frac{1}{3}$ if $\int_{-1}^{1} f(x) d x=\frac{14}{3}$. Find the cubic function $f(x)$.
A. $x^{3}+x^{2}-x$
B. $x^{3}+x^{2}-x+1$
C. $x^{3}+x^{2}-x+2$
D. $x^{3}+x^{2}-x-2$

Answer: C

- Watch Video Solution

11. An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of the triangle is maximum when $\theta=\frac{\pi}{6}$
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: A

- Watch Video Solution

12. Find minimum value of $p x+q y$ where $p>0, q>0, x>0, y>0$ when $x y=r,{ }^{2}$ without using derivatives.
A. $2 r \sqrt{p q}$
B. $2 p q \sqrt{r}$
C. $-2 r \sqrt{p q}$
D. none of these

Answer: A

D Watch Video Solution

13. The maximum slope of curve $\mathrm{y}=-x^{3}+3 x^{2}+9 x-27$ is
A. 0
B. 12
C. 16
D. 32

Answer: B

- Watch Video Solution

14. If $\frac{x+c}{1+x^{2}}$ where c is a constant, then when y is stationary, xy is equal to
A. $1 / 2$
B. $3 / 4$
C. $5 / 8$
D. 1

D Watch Video Solution

15. N Characters of information are held on magnetic tape, in batches of x characters each, the batch processing time is $\alpha+\beta x^{2}$ seconds, α and β are constants. The optical value of x for fast processing is
A. α / β
B. β / α
C. $\sqrt{\alpha / \beta}$
D. $\sqrt{\beta / \alpha}$

Answer: C

16. Statement I If $A>0, B>0$ and $A+B=\frac{\pi}{3}$, then the maximum value of $\tan A \tan B$ is $\frac{1}{3}$.

Statement II If $a_{1}+a_{2}+a_{3}+\ldots+a_{n}=k$ (constant), then the value $a_{1} a_{2} a_{3} \ldots a_{n}$ is greatest when
$a_{1}=a_{2}=a_{3}=\ldots+a_{n}$
A. $1 / \sqrt{3}$
B. $1 / 3$
C. 3
D. $\sqrt{3}$

Answer: B

- Watch Video Solution

17. The largest value of $2 x^{3}-3 x^{2}-12 x+5$ for $-2 \leq x \leq 2$ occurs when
A. -2
B. -1
C. 2
D. 4

Answer: D

- Watch Video Solution

18. The first and second order derivatives of a function $f(x)$ exit at all point in (a,b) with $\mathrm{f}^{\prime}(\mathrm{c})=0$, where $a<c<b$, of c and $\mathrm{f}^{\prime}(x)>0$ for all points on the immediate right of c , and $f^{\prime}(x)<0$ for all points on the immediate left of c then at $\mathrm{x}=\mathrm{c},, \mathrm{f}(\mathrm{x})$ has a
A. local maximum
B. local minimum
C. point of inflexion
D. none of these

Answer: B

D Watch Video Solution

19. The minimum value of $2^{x^{2}-3} \wedge$ (3) +27 is 2^{27} (b) 2 (c) 1 (d) none of these
A. 2^{27}
B. 2
C. 1
D. 4

Answer: C

20. Let $\mathrm{f}(\mathrm{x})=\cos \mathrm{x} \sin 2 \mathrm{x}$. Then, $\min (f(x):-\pi \leq x \leq \pi)$ is
A. $-9 / 7$
B. $9 / 7$
C. $-1 / 9$
D. $-2 / 9$

Answer: A

D Watch Video Solution

21. If $f(x)=\sin ^{6} x+\cos ^{6} x$, then which one of the following is false
A. $f(x) \leq 1$
B. $f(x) \leq 2$
C. $f(x)>\frac{1}{4}$
D. $f(x) \leq \frac{1}{8}$

Answer: D

Watch Video Solution

22. The value of a for which the function
$f(x)=a \sin x+\left(\frac{1}{3}\right) \sin 3 x$ has an extremum at $x=\frac{\pi}{3}$ is (a) 1 (b)
-1 (c) 0 (d) 2
A. 3
B. $1 / 3$
C. 2
D. $1 / 2$

Answer: C

23. If $a x+\frac{b}{x} \geq c$ for all positive x , where $a, b, c>0$, then-
A. $a b \geq \frac{c^{2}}{4}$
B. $a b<\frac{c^{2}}{4}$
C. $b c \geq \frac{a^{2}}{41}$
D. $a c \geq \frac{b^{2}}{4}$

Answer: A

- Watch Video Solution

24.

The
greatest
value
of
$f(x)=\cos \left(x e^{[x]}+7 x^{2}-3 x\right), x \in[-1, \infty], \quad$ is (where [.] represents the greatest integer function). - 1 (b) 1 (c) 0 (d) none of these
A. -1
B. 1
C. 0
D. $\cos 1$

Answer: B

Watch Video Solution
25. The points of extremum of $\phi(x)=\int_{1}^{x} e^{-t^{2 / 2}}\left(1-t^{2}\right) d t$ are
A. $x=0,1$
B. $x=1,-1$
C. $x=1 / 2$
D. $x=-1 / 2$

Answer: B
26. Let $f(x)=\int_{0}^{x} \frac{\cos t}{t} d t$ Then at $x=(2 n+1) \frac{\pi}{2} \mathrm{f}(\mathrm{x})$ has
A. maxima when $n=-2,-4,-6$,.. and minima when $n=-1,3,-5, .$.
B. maxima when $\mathrm{n}=-1,-3,-5, .$. and minima when $\mathrm{n}=1,3,5, \ldots$
C. minima when $\mathrm{n}=0,2,4, \ldots$ and maxima when $\mathrm{n}=1,3,5, \ldots$
D. none of these

Answer: B

Watch Video Solution

27. It is given that at $x=1$, the function $x^{4}-62 x^{2}+a x+9$ attains its maximum value on the interval $[0,2]$. Find the value of a.
A. 120
B. -120
C. 52
D. 60

Answer: A

D Watch Video Solution

28. The minimum value of $\left(1+\frac{1}{\sin ^{n} \alpha}\right)\left(1+\frac{1}{\cos ^{n} \alpha}\right)$ is
A. 1
B. 2
C. $\left(1+2^{n / 2}\right)^{2}$
D. 4

Answer: C

29. The minimum value of $(x-a)(x-b)$ is
A. ab
B. $\frac{(a-b)^{2}}{4}$
C. 0
D. $\frac{-(a-b)^{2}}{4}$

Answer: D

- Watch Video Solution

30. The altitude of a right circular cone of minimum volume circumscired about a sphere of radius r is
A. $2 r$
B. $3 r$
C. $5 r$
D. $\frac{3}{2} r$

Answer: D

- Watch Video Solution

31. If $(x-a)^{2 m}(x-b)^{2 n+1}$, where m and n are positive integers and $a>b$, is the derivative of a function f then-
A. $x=a$ is a point of minimum
B. $x=b$ is a point of maximum
C. $x=a$ is not a point of maximum or minimum
D. none of these

Answer: C

32. If $(x-a)^{2 m}(x-b)^{2 n+1}$, where m and n are positive integers and $a>b$, is the derivative of a function f then-
A. $x=b$ is point of minimum
B. $x=b$ is a point of maximum
C. $x=b$ is a point of inflextion
D. none of these

Answer: A

- Watch Video Solution

33. In a $\triangle A B C, \angle B=90^{\circ}$ and $b+a=4$. The area of the triangle is maximum when $\angle C$ is (a) $\frac{\pi}{4}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{3}$ (d) none of these
A. $\pi / 4$
B. $\pi / 6$
C. $\pi / 3$
D. none of these

Answer: C

D Watch Video Solution

34. The function $f(x)$ given by
$f(x)=\left|\begin{array}{lll}x-1, & x+1, & 2 x+1 \\ x+1, & x+3, & 2 x+3 \\ 2 x+1, & 2 x-1, & 4 x+1\end{array}\right|$ has
A. one point of maximum and one point of minimum
B. one point of maximum only
C. one point of maximum only
D. none of these

Answer: D

35. Maximum area of a reactangle which can be inscribed in a circle of a given radius R is
A. πr^{2}
B. r^{2}
C. $\pi r^{2} / 4$
D. $2 r^{2}$

Answer: D

- Watch Video Solution

36. If $f(x)=\left\{\begin{array}{l}3 x^{2}+12 x-1,-1 \leq x \leq 2 \\ 37-x, 2<x \leq 3\end{array}\right.$ then
A. $f(x)$ is increasing in $[-1,2]$
B. $f(x)$ is continuous in $[-1,3]$
C. $f(x)$ is maximum at $x=2$
D. all of the above

Answer: D

- Watch Video Solution

37. The perimeter of a sector is p. The area of the sector is maximum when its radius is
A. $p / 2$
B. $1 / \sqrt{p}$
C. \sqrt{p}
D. $p / 4$

Answer: D
38. If $a^{2} x^{4}-b^{2} y^{4}=c^{6}(a, b, x, y, c>0)$ then the maximum value of $x y$ is
A. $\frac{c^{3}}{2 a b}$
B. $\frac{c^{3}}{\sqrt{2 a b}}$
C. $\frac{c^{3}}{a b}$
D. $\frac{c^{3}}{\sqrt{a b}}$

Answer: B

- Watch Video Solution

39. The function $\int_{-1}^{x} t\left(e^{t}-1\right)(t-1)(t-2)^{3}(t-3)^{5} d t$ has local minimum at $x=$
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

40. Let $\mathrm{f}(\mathrm{x})$ be a function such that $f^{\prime}(a) \neq 0$. Then , at $\mathrm{x}=\mathrm{a}, \mathrm{f}(\mathrm{x})$
A. cannot have a maximum
B. cannot have a minimum
C. must have niether a maximum nor a minimum
D. none of these

Answer: C

41. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be positive real parameter and $a x^{2}+\frac{b}{x^{2}} \geq c, \forall x \varepsilon R$ then (A) $4 a b \geq c^{2}$ (B) $4 c \geq b^{2}$ (C) $4 b c \geq c^{2}$ (D) $4 a c<b^{2}$
A. $4 a b \geq c^{2}$
B. $4 a c \geq b^{2}$
C. $4 b c \geq a^{2}$
D. $4 a c<b^{2}$

Answer: A

- Watch Video Solution

42. If $x y=a^{2}$ and $S=b^{2} x+c^{2} y$ where a, b and c are constants then the minimum value of S is
A. abc
B. $\sqrt{a} b c$
C. 2 abc
D. none of these

Answer: C

(D) Watch Video Solution

43. Let $f(x)=e^{x} \sin x$, slope of the curve $\mathrm{y}=\mathrm{f}(\mathrm{x})$ is maximum at $\mathrm{x}=\mathrm{a}$ if 'a' equals
A. 0
B. $\pi / 4$
C. $\pi / 2$
D. none of these

Answer: C

44. If $a>b>0$ then maximum value of $\frac{a b\left(a^{2}-b^{2}\right) \sin x \cos x}{a^{2} \sin ^{2} x+b^{2} \cos ^{2} x}, x \in(0, \pi / 2)$ is
A. $a^{2}-b^{2}$
B. $\frac{a^{2}-b^{2}}{2}$
c. $\frac{a^{2}+b^{2}}{2}$
D. none of these

Answer: B

- Watch Video Solution

45. The maximum value of the function $f(x)=\frac{(1+x)^{0.3}}{1+x^{0.3}}$ in $[0,1]$ is
A. 1
B. $2^{0.7}$
C. $2^{-0.7}$
D. $2^{0.3}$

Answer: A

- Watch Video Solution

46. If $g(x)=\max \left(y^{2}-x y\right)(0 \leq y \leq 1)$, then the minimum value of $g(x)$ (for real x) is
A. $\frac{1}{4}$
B. $3-\sqrt{8}$
C. $3+\sqrt{8}$
D. $\frac{1}{2}$

Answer: B

47. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are positive constants such that $a>b$ then the maximum value of r, given by $\frac{c^{4}}{r^{2}}=\frac{a^{2}}{\sin ^{2} \theta}+\frac{b^{2}}{\cos ^{2} \theta}$, must be
A. $\frac{c^{2}}{a-b}$
B. $\frac{c^{2}}{a+b}$
C. $\frac{c^{2}}{\sin ^{2} \theta}$
D. $\frac{c^{2}}{\sqrt{a b}}$

Answer: B

- Watch Video Solution

Chapter Test

1. The maximum value of $\left(\frac{1}{x}\right)^{2 x^{2}}$ is
A. e
B. \sqrt{e}
C. `
D. $e^{1 / e}$

Answer: B

D Watch Video Solution

2. If $a x^{2}+\frac{b}{x} \geq c$ for all positive x where $a>0$ and $b>0$, show that $27 a b^{2} \geq 4 c^{3}$.
A. $27 a b^{2} \geq 4 c^{3}$
B. $27 a b^{2}<4 c^{3}$
C. $4 a b^{2} \geq 27 c^{3}$
D. none of these

Answer: A

3. The greatest value of the funxtion $f(x)=x e^{-x}$ in $[0, \infty]$ is
A. 0
B. $1 / e$
C. $-e$
D. e

Answer: B

- Watch Video Solution

4. Let $f(x)=x^{3}-6 x^{2}+12 x-3$. Then at $\mathrm{x}=2 \mathrm{f}(\mathrm{x})$ has
A. a maximum
B. a minimum
C. both a maximum and a minimum
D. neither a maximum nor a minimum

Answer: D

- Watch Video Solution

5. In the right triangle $B A C, \angle A=\frac{\pi}{2}$ and $a+b=8$. The area of the triangle is maximum when $\angle C$, is
A. $\pi / 3$
B. $\pi / 4$
C. $\pi / 6$
D. $\pi / 2$

Answer: A
6. The range of values of a for which the function
$f(x)=\left(a^{2}-7 a+12\right) \cos x+2(a-4) x+3 e^{5}$
does not process critical points is
A. $(1,5)$
B. $(1,4) \cup(4,5)$
C. $(1,4)$
D. none of these

Answer: B

- Watch Video Solution

7. If the function

$$
f(x)=(2 a-3)(x+2 \sin 3)+(a-1)\left(\sin ^{4} x+\cos ^{4} x\right)+\log 2
$$ does not process critical poits, then

A. $a \in(-\infty, 4 / 3) \cup(2, \infty)$
B. $a \in(4 / 3,2)$
C. $a \in(4 / 3, \infty)$
D. $a \in(2, \infty)$

Answer: A

- Watch Video Solution

8. The function $\mathrm{y}=\frac{a x+b}{x-1}(x-4)$ has turning point at $\mathrm{P}(2,-1)$ Then find the values of a and b.
A. $a=0, b=1$
B. $a=0, b=-1$
C. $a=1, b=0$
D. $a=-1, b=0$

Answer: C

Watch Video Solution
9. Find the least value of the expressions $2 \log _{10} x-\log _{x} 0.01$, where $x>0, x \neq 1$.
A. 1
B. -1
C. 2
D. $1 / 2$

Answer: D

10. The maximum value of the function $f(x)$ given by
$f(x)=x(x-1)^{2}, 0<x<2$, is
A. 0
B. $4 / 27$
C. -4
D. $1 / 4$

Answer: B

- Watch Video Solution

11. The least value of a for which the equation $\frac{4}{\sin x}+\frac{1}{1-\sin x}=a$ has at least one solution in the interval $\left(0, \frac{\pi}{2}\right) 9$ (b) 4 (c) 8 (d) 1
A. `4
B. 1
C. 3
D. 9

Answer: C

- Watch Video Solution

12. The minimum value of $f(x)=e^{\left(x^{4}-x^{3}+x^{2}\right)}$ is
A. e
B. e^{2}
C. 1
D. e^{-1}

Answer: C

13. Let $f(x)=\frac{a}{x}+x^{2}$. If it has a maximum at $x=-3$, then find the value of a.
A. -1
B. 16
C. 1
D. 4

Answer: D

- Watch Video Solution

14. Find the maximum value of $4 \sin ^{2} x+3 \cos ^{2} x+\sin \frac{x}{2}+\cos \frac{x}{2}$.
A. 4
B. $3+\sqrt{2}$
C. $4+\sqrt{2}$
D. $2+\sqrt{2}$

Answer: C

D Watch Video Solution

15. The least value of the $f(x)$ given by
$f(x)=\tan ^{-1} x-\frac{1}{2} \log _{e} x$ in the interval $[1 / \sqrt{3}, \sqrt{3}]$, is
A. $\frac{\pi}{6}+\frac{1}{4} \log _{e} 3$
B. $\frac{\pi}{3}-\frac{1}{4} \log _{e} 3$
C. $\frac{\pi}{6}-\frac{1}{4} \log _{e} 3$
D. $\frac{\pi}{3}+\frac{1}{4} \log _{e} 3$

Answer: B

16. The slope of the tangent to the curve $y=e^{x} \cos x$ is minimum at $x=a, 0 \leq a \leq 2 \pi$, then the value of a is
A. 0
B. π
C. 2π
D. $3 \pi / 2$

Answer: B

- Watch Video Solution

17. The value of a for which the function

$$
f(x)=\left\{\begin{array}{ll}
\tan ^{-1} a-3 x^{2} & , 0<x<1 \\
-6 x & , \quad x \geq 1
\end{array} \text { has a maximum at } \mathrm{x}=1\right. \text {, is }
$$

A. 0
B. 1
C. 2
D. none of these

Answer: D

- Watch Video Solution

18. The minimum value of $27^{\cos 3 x} 81^{\sin 3 x}$ is
A. $1 / 243$
B. -5
C. $1 / 5$
D. $1 / 3$

Answer: A

Watch Video Solution
19. If $f(x)=\frac{x^{2}-1}{x^{2}+1}$. For every real number x, then the minimum value of f. (a) does not exist because f is unbounded (b) is not attained even through f is bounded (c) is equal to 1 (d) is equal to -1
A. does not exits because f - is unbounded
B. is not attained even though f is bounded
C. is equal to 1
D. is equal to - 1

Answer: D

- Watch Video Solution

20. $f(x)=|x|+|x-1|+|x-2|$, then which one of the following is not correct ?
A. $f(x)$ has a minimum at $x=1$
B. $f(x)$ has a maximum at $x=0$
C. $f(x)$ has niether a maximum nor a minimum at $x=0$
D. $f(x)$ has niether a maximum nor a minimum $x=2$

Answer: B

Watch Video Solution

21. Write the maximum value of $f(x)=\frac{\log x}{x}$, if it exists.
A. $1 / e$
B. e
C. $2 / e$
D. 1

Answer: A
22. The function $f(x)=2 x^{3}-3 x^{2}-12 x-4$ has
A. no maxima and minima
B. one maximum and one minimum
C. two maxima
D. two minima

Answer: B

- Watch Video Solution

23. In (-4,4) the function $f(x)=\int_{-10}^{x}\left(t^{2}-4\right) e^{-4 t} d t$, has
A. no extrema
B. one extremum
C. two extrema
D. four ectrema

Answer: C

- Watch Video Solution

24. On $[1, \mathrm{e}]$ the greatest value of $x^{2} \log _{e} x$, is
A. e^{2}
B. $\frac{1}{2} \log \left(\frac{1}{\sqrt{e}}\right)$
C. $e^{2} \log \sqrt{e}$
D. e

Answer: A
25. If $f(x)=\frac{x^{2}-1}{x^{2}+1}$. For every real number x, then the minimum value of f. (a) does not exist because f is unbounded (b) is not attained even through f is bounded (c) is equal to 1 (d) is equal to -1
A. does not exits because f is unbounded
B. is not attained even though f is bounded
C. is equal to 1
D. is equal to -1

Answer: D

D Watch Video Solution

26. If $f: R \rightarrow R$ be defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+\cos \mathrm{x}$, then f
A. has a minimum at $x=\pi$
B. has a maximum at $x=0$
C. is decreasing on R
D. in increasing function on R

Answer: D

(D) Watch Video Solution

27. The maximum distance from origin of a point on the curve $x=a \sin t-b \sin \left(\frac{a t}{b}\right), y=a \cos t-b \cos \left(\frac{a t}{b}\right)$, borth $\mathrm{a}, \mathrm{b}>0$ is
A. $a-b$
B. $a+b$
C. $\sqrt{a^{2}+b^{2}}$
D. $\sqrt{a^{2}-b^{2}}$

Answer: B

28. The maximum value of $x^{\frac{1}{x}}, x>0$ is $e^{\frac{1}{e}}$ (b) $\left(\frac{1}{e}\right)^{e}$ (c) 1 (d) none of these
A. $1 / e$
B. e
C. $e^{1 / e}$
D. $1 / e$

Answer: C

- Watch Video Solution

29. The perimeter of a sector is a constant. If its area is to be maximum, the sectorial angle is
A. $\frac{\pi^{c}}{6}$
B. $\frac{\pi^{c}}{4}$
C. 4^{c}
D. 2^{c}

Answer: D

Watch Video Solution

