

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

PROPERTIES OF TRIANGLES AND CIRCLES CONNECTED WITH THEM

Illustration

1. In any
$$\Delta$$
 ABC, \sum a(sin B - sin C) =

A. 2s

B.
$$a^2 + b^2 + c^2$$

C. 0

D. none of these

2. In any
$$\Delta$$
 ABC, \sum a sin (B -C) =

C.
$$a^2 + b^2 + c^2$$

3. In any $\Delta ABC,~\sum a^2 \left(\sin^2 B - \sin^2 C
ight) =$

B.
$$a^2 + b^2 + c^2$$

D. none of these

Watch Video Solution

- **4.** In any $\Delta ABC, \; \sum (b-c) \cot \text{A/2}$ =
 - A. 0
 - B. 1
 - C. -1
 - D. none of these

Watch Video Solution

5. If in a triangle ABC, $\frac{\sin A}{\sin C} = \frac{\sin (A-B)}{\sin (B-C)}$, then

A. A.P

B. G.P.

C. H.P.

D. none of these

Watch Video Solution

6. In a ΔABC , if a =2, B = 60°and C =75°, then b=

A. $\sqrt{3}$

B. $\sqrt{6}$

C. $\sqrt{9}$

D. $1 + \sqrt{2}$

7. In a
$$\Delta ABC$$
, if $A=45^{\circ}$ and $B=75^{\circ}$, then $a+\sqrt{2}c=$

A.b

B. 2b

C. $\sqrt{2}b$

D. $\sqrt{3}b$

8. If the angles of a triangle are in the ratio 2 : 3 : 7 ,then the sides are in the ratio

A.
$$\sqrt{2}$$
: 2: $\sqrt{3} + 1$

B.
$$2:\sqrt{2}:\sqrt{3}:1$$

C.
$$\sqrt{2}$$
: $\sqrt{3}+1$: 2

9. If two angles of a $\triangle ABC$ are 45 ° and 60°, then the ratio of the smallest and greatest sides are

A.
$$\left(\sqrt{3}-1\right)$$
 : 1`

$$\mathsf{B.}\,\sqrt{3}\!:\!\sqrt{2}$$

C. 1:
$$\sqrt{3}$$

D.
$$\sqrt{3}:1$$

Watch Video Solution

10. If $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$ and the side a=2, then find the area of the triangle

C.
$$\sqrt{3}/2$$

D.
$$\sqrt{3}$$

11. The perimeter of a triangle ABC is six times the arithmetic mean of the sines of its angles. If the side a is 1, then find angle A

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{2}$$

D.
$$\pi$$

12. If in a ΔABC , c = 3b and C - B = 90°, then tanB=

A.
$$2+\sqrt{3}$$

$$\mathrm{B.}\,2-\sqrt{3}$$

D.
$$1/3$$

Watch Video Solution

13. The side of a triangle are in the ratio $1: \sqrt{3}: 2$, then the angles of the triangle are the ratio

14. If
$$b+c=3a$$
, then find the value of $\cot. \ \frac{B}{2} \cot. \ \frac{C}{2}$

C.
$$\sqrt{3}$$

15. The angles of a triangle are in the ratio 3 : 5 : 10, the ratio of the smallest side to the greatest side is

A. 1:
$$\sin 10^{\circ}$$

B. 1:
$$2\mathrm{sin}\,10^\circ$$

C. 1: $2\cos 10^{\circ}$

D. 1: $2\cos 10^{\circ}$

Watch Video Solution

16. In any ΔABC , $2[bc\cos A + ca\cos B + ab\cos C] =$

A.
$$a^2+b^2+c^2$$

B. abc

C. a+b+c

D. none of these

17. If the sides of a triangle are a, b and $\sqrt{a^2+ab+b^2}$, then find the greatest angle

A.
$$60^{\circ}$$

 $B.90^{\circ}$

C. 120°

D. none of these

Watch Video Solution

18. In a triangle ABC, a=4, b=3 , $\angle A=60^{\circ}$, then c is the root of the equation

A.
$$c^2 - 3c - 7 = 0$$

B.
$$c^2 + 3c + 7 = 0$$

C.
$$c^2 - 3c + 7 = 0$$

D.
$$c^2 + 3c - 7 = 0$$

19. In a $\triangle ABC$, if(c+a+b) (a+b-c) =ab, then the measure of angle C is

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{6}$$
C. $\frac{2\pi}{3}$

D.
$$\frac{\pi}{2}$$

20. In a triangle ABC, if the sides a,b,c, are roots of
$$x^3-11x^2+38x-40=0,$$
 then find the value of $\frac{\cos A}{a}+\frac{\cos B}{b}+\frac{\cos C}{c}$

- $\mathsf{B.}\;\frac{3}{4}$
- $\mathsf{C.}\ \frac{4}{3}$
- $\mathsf{D.}\;\frac{9}{16}$
- Watch Video Solution

21. In a ΔABC ,

$$\frac{b^2-c^2}{a\sec A}+\frac{c^2-a^2}{b\sec B}+\frac{a^2-b^2}{c\sec C}=$$

- A. 1
- B. 0
- C. abc
- D. none of these

22. In a ΔABC , if a = 4, b = 5 , c = 6 then angle C is equal to

$$\mathsf{B.}\; \frac{1}{2}A$$

Watch Video Solution

23. In a ΔABC , if $\Delta C=60^{\circ}$, then

$$\frac{b}{c^2 - a^2} + \frac{a}{c^2 - b^2} =$$

$$\mathsf{B.}\,\frac{1}{a+b+c}$$

C. abc

24. In a triangle
$$ABC, 2ac\sin\Bigl(\dfrac{1}{2}(A-B+C)\Bigr)=$$

A.
$$a^2 + b^2 - c^2$$

B.
$$c^2 + a^2 - b^2$$

$$\mathsf{C.}\,b^2-c^2-a^2$$

D.
$$c^2 - a^2 - b^2$$

Watch Video Solution

25. The angles A,B and C of a ΔABC are in A.PP. If AB=6, BC=7, then AC=

A. 5 units

- B. 7 units
- C. 8 units
- D. none of these

- **26.** In a triangle ABC, $a(b\cos C c\cos B)$ is :
 - A. a^2
 - B. b^2-c^2
 - C. 0
 - D. none of these

27. The straight roads intersect at an angle of 60°. A bus on one road is 2 km away from the intersection and a car on tire other road is 3 km away from the intersection. Then, the direct distance between the two vehicles, is

- A. 1 km
- B. $\sqrt{2}$ km
- C. 4 km
- D. $\sqrt{7}$ km

- **28.** In a ΔABC , $b\cos^2\left(\frac{C}{2}\right)+c\cos^2\left(\frac{B}{2}\right)$ is equal to
 - A. s
 - B. 2s

C. s/2

D. none of these

Watch Video Solution

29. In a
$$\Delta ABC$$
, $\sum{(b+c)\cos{A}} =$

A. a+b+c

B. a+b-c

C. a-b+c

D. none of these

A. a

B.b

C. c

D. 0

Watch Video Solution

31. In a ΔABC , $b\cos^2$, $\frac{A}{2}+a\cos^2\frac{B}{2}=\frac{3}{2}c$, then a,c,b in (with usual notations)

A. a,b,c are in A.P.

B. a,c,b are in A.P.

C. a,b,c are in G.P.

D. none of these

32. In any
$$\triangle ABC$$
, $\sum \frac{\cos A}{b\cos C + c\cos B}$ is equal to

A.
$$a^2 + b^2 + c^2$$

$$\mathsf{B.}\,\frac{a^2+b^2+c^2}{abc}$$

C.
$$\dfrac{a^2+b^2+c^2}{2abc}$$

D. none of these

Watch Video Solution

33. In a ΔABC , if a=13,b =14, c =15, then $\sin\left(\frac{A}{2}\right)$ =

A.
$$\frac{1}{\sqrt{5}}$$

$$\mathsf{B.}\;\frac{2}{\sqrt{5}}$$

$$\mathsf{C.}\,\frac{3}{\sqrt{5}}$$

D.
$$\frac{4}{\sqrt{5}}$$

34. If in a
$$\Delta ABC$$
, Δ = (c + a - b) (a + b - c), then tan A is equal to

A.
$$\frac{2}{\sqrt{3}}$$

B.
$$\frac{8}{15}$$

c.
$$\frac{15}{16}$$

D. none of these

35. In a
$$\Delta ABC,$$
 $2arac{\sin^2C}{2}+2crac{\sin^2A}{2}=$

D. s

Watch Video Solution

36. In a
$$\Delta ABC$$
, if $\dfrac{ an A}{2}=\dfrac{5}{6}$ and $\dfrac{ an B}{2}=\dfrac{20}{37}$ then $\dfrac{ an C}{2}=$

- A. $\frac{4}{5}$
- $\mathsf{B.}\;\frac{3}{5}$
- c. $\frac{2}{5}$

D. none of these

Watch Video Solution

37. In a ΔABC , if a =2x, b =2y and $\angle C=120^\circ$, then area of the triangle is

A. xy

B. $\sqrt{3}xy$

C. 3xy

D. 2xy

Watch Video Solution

38. Prove that $a^2\sin 2B + b^2\sin 2A = 4\Delta$

A. 2λ

B. λ

 $\mathsf{C.}\,4\lambda$

D. none of these

39. If
$$c^2=a^2+b^2$$
 , then prove that $4s(s-a)(s-b)(s-c)=a^2b^2$

A.
$$a^2b^2$$

B.
$$c^2a^2$$

C.
$$b^2c^2$$

D.
$$s^4$$

- **40.** In any ΔABC , prove that $\Delta=rac{a^2-b^2}{2}rac{\sin A\sin B}{\sin (A-B)}.$
 - A. 2Δ
 - B. 4Δ
 - C. Δ
 - D. 3Δ

41. In
$$\Delta ABC$$
, $(a+b+c)\left(an\!\left(rac{A}{2}
ight)+ an\!\left(rac{B}{2}
ight)
ight)=$

A.
$$2c\frac{\cot C}{2}$$

$$\mathsf{B.}\ 2a\frac{\cot A}{2}$$

$$\mathsf{C.}\,2b\frac{\cot B}{2}$$

D.
$$\frac{\tan C}{2}$$

42. In
$$\triangle ABC, rac{ an A}{2} = rac{5}{6}, rac{ an C}{2} = rac{2}{5}$$
, then

A.
$$b^2 = ac$$

$$\mathtt{B.}\,2b=ac$$

$$\mathsf{C.}\, 2ac = b(a+c)$$

D. a+b+c

Watch Video Solution

43. In a
$$\Delta ABC$$
, 2Δ (cot B + cot C)=

A. b^2

 $B. c^2$

 $C. a^2$

D. $2a^2$

44. In a $\triangle ABC$,

$$ig(c^2+a^2-b^2ig) an B + ig(a^2+b^2-c^2ig) an C =$$

A.
$$4\Delta$$

- B. 8Δ
- $C.6\Delta$
- D. 12Δ

- **45.** In a ΔABC prove that $\cot A + \cot B + \cot C = rac{a^2 + b^2 + c^2}{4\Lambda}$
 - A. a+b+c
 - B. $a^{-1} + b^{-1} + c^{-1}$
 - $C. a^2 + b^2 + c^2$
 - D. none of these

46. In any $\triangle ABC$, a cos A +b cos B + c cos C =

A.
$$\frac{\Delta^2}{abc}$$

B.
$$\frac{4\Delta^2}{abc}$$

c.
$$\frac{8\Delta^2}{abc}$$

D. none of these

Watch Video Solution

47. A triangular park is enclosed on two sides by a fence and on the third side by a straight river bank. The two sides having fence are of same length x. The maximum area enclosed by the park is

A.
$$\frac{3}{2}x^2$$

B.
$$\sqrt{\frac{x^3}{8}}$$
C. $\frac{1}{2}x^2$

C.
$$\frac{1}{2}x^2$$

- **48.** In any ΔABC , $\sin A + \sin B + \sin C =$
 - A. $\frac{2s}{R}$
 - $\operatorname{B.}\frac{s}{R}$
 - C. $\frac{3s}{R}$

D. none of these

Watch Video Solution

49. In a ΔABC

$$rac{b\sin(C-A)}{c^2-a^2} + rac{c\sin(A-B)}{a^2-b^2} =$$

A.
$$\frac{1}{2I}$$

$$\mathsf{B.}\,\frac{1}{R}$$

$$\operatorname{C.}\frac{2}{R}$$

D. none of these

Watch Video Solution

50. If the radius of the circum-circle of an isosceles triangles ABC is equal to AB (= AC), then angle A is:

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{3}$$

$$\mathsf{C.}\ \frac{2\pi}{3}$$

D.

51. In a
$$\Delta ABC$$
, R^2 (sin 2A+sin 2B+sin 2C)=

- A. Δ
- B. 3Δ
- C. 4Δ
- D. 2Δ

- 52. The diameter of the circumcircle of a triangle with sides 5 cm, 6 cm and 7 cm, is
 - A. $\frac{3\sqrt{6}}{2}$ cm
 - $\mathrm{B.}~2\sqrt{6}~\mathrm{cm}$
 - $\mathrm{C.}~\frac{35}{48}~\mathrm{cm}$

D. none of these

Watch Video Solution

- **53.** If Δ denotes the area of ΔABC , then $b^2\sin 2C + c^2\sin 2B$ is equal to
 - A. Δ
 - B. 2Δ
 - $\mathsf{C}.\,3\Delta$
 - D. 4Δ

Watch Video Solution

54. If R denotes circum-radius of ΔABC , evaluate $\frac{b^2-c^2}{2aR}$.

A. cos (B-C)

B. cos B-cosC

C. sin (B - C)

D. none of these

Watch Video Solution

55. If in $\Delta ABC,\,b^2\sin2C+c^2$ sin 2B = 2bc,then the triangle is

A. equilateral

B. isosceles with $\angle B = \angle C$

C. right angled at A

D. none of these

56. If a ΔABC is right angled at B, then the diameter of the incircle of the triangle is

A.
$$2(c+a-b)$$

B. c+a - 2b

C. c + a- b

D. none of these

Watch Video Solution

57. In a triangle a = 13, b = 14, c = 15, r =

A. 4

B. 8

C. 2

D. 6

A. r=4R

$$\operatorname{B.} r = \frac{R}{2}$$

$$\mathsf{C.}\,r=\frac{R}{3}$$

D. none of these

Watch Video Solution

59. In an equilateral triangle, the inradius, circumradius, and one of the exradii are in the ratio

B. 1:2:3

C. 1: 3: 7

D. 3:7:9

Watch Video Solution

60. If in a triangle, $\left(1-rac{r_1}{r_2}
ight)\left(1-rac{r_1}{r_3}
ight)=2$, then the triangle is

A. right angled

B. isosceles

C. equilateral

D. none of these

61. If in a triangle
$$rac{r}{r_1}=rac{r_2}{r_3}$$
, then

A.
$$A=90^\circ$$

B.
$$B=90^\circ$$

C. C =
$$90^{\circ}$$

62. In a triangle ABC,
$$r_1+r=r_2+r_3$$
. If the measure of angle A is 60°, then $\frac{s}{a}=$

A.
$$\frac{2}{3}$$

c.
$$\frac{4}{3}$$

D.
$$\frac{3}{2}$$

63. In a triangle with sides a, b, c if r1>r2>r3 (which are the ex-radii), then

$$\mathsf{A.}\, a > b > c$$

$$\mathrm{B.}\, a < b < c$$

C.
$$a > b$$
 and $b < c$

D.
$$a < b$$
 and $b > c$

64. If ΔABC is right angled at A,then r_2+r_3 =

A.
$$r_1 - r$$

B.
$$r_1 + r$$

C.
$$r-r_1$$

D. R

Watch Video Solution

65. $r + r_3 + r_1 - r_2 =$

A. 4R cos A

B. 4R cos B

C. 4R cos C

D. 4R

66. In a
$$\Delta ABC, r_1+r_2+r_3-r$$
=

A. 4R cos A

B. 4R cos B

C. 4R cos C

D. 4R

Watch Video Solution

67. In a ΔABC ,with usual notations, observe the two statements given below:

(I)
$$rr_1r_2r_3=\Delta^2$$
 (II) $r_1r_2+r_2r_3+r_3r_1=s^2$

Which one of the following is correct?

A. both I and II are true

B. I is true, II is false

C. I is false, II is true

D. both I and II are false

Watch Video Solution

68. Prove the questions

$$rac{1}{r_1^2} + rac{1}{r_2^2} + rac{1}{r_3^2} + rac{1}{r^2} = rac{a^2 + b^2 + c^2}{\Delta^2}$$

A. 0

B.
$$\dfrac{a^2+b^2+c^2}{\Delta^2}$$

C.
$$\dfrac{\Delta^2}{a^2+b^2+c^2}$$

D.
$$\frac{a^2 + b^2 + c^2}{\Lambda^2}$$

1. In a
$$\triangle ABC$$
, $\frac{a+c}{a-c}\tan\left(\frac{B}{2}\right)$ is equal to

A.
$$an\!\left(rac{B}{2}+C
ight)$$

B.
$$an\!\left(B+rac{C}{2}
ight)$$

$$\mathsf{C.}\cot\left(rac{B}{2}+C
ight)$$

2. In a ΔABC ,which one of the following is true?

A.
$$(b+c)rac{\cos A}{2}=a\sin\!\left(rac{B+C}{2}
ight)$$

$${\tt B.}\,(b+c){\rm cos}\Big(\frac{B+C}{2}\Big)=a\frac{{\rm sin}\,A}{2}$$

C.
$$(b-c) \cos \left(rac{B-C}{2}
ight) = a rac{\cos A}{2}$$

D.
$$(b-c)rac{\cos A}{2}=a\sin\!\left(rac{B-C}{2}
ight)$$

3. In a
$$\Delta ABC, a\cos^2\left(rac{B}{2}
ight) + b\cos^2\left(rac{A}{2}
ight)$$
 is equal to

A. s

B. 2s

C. s/2

D. none of these

Watch Video Solution

4. One angle of an isosceles triangle is 120^0 and the radius of its incricel is $\sqrt{3}$. Then the area of the triangle in sq. units is $7+12\sqrt{3}$ (b) $12-7\sqrt{3}$ $12+7\sqrt{3}$ (d) 4π

A.
$$7+12\sqrt{3}$$

B.
$$12-7\sqrt{3}$$

$$\mathsf{C.}\ 12 + 7\sqrt{3}$$

D. 4π

Watch Video Solution

5. Internal bisector of $\angle A$ of $\triangle ABC$ meets side BC to D. A line drawn through D perpendicular to AD intersects the side AC at E and side AB at.

F. If a,b,c represent sides of ΔABC , then

A. AE is HM of b and c

$$\mathrm{B.}\,AD = \frac{2bc}{b+c}\frac{\cos A}{2}$$

C.
$$EF=rac{4b}{b+c}rac{\sin A}{2}$$

D. All of these

6. In a triangle ABC with fixed base BC, the vertex A moves such that

$$\cos B + \cos C = 4\sin^2 A/2$$

If a, b and c denote the lengths of the sides of the triangle opposite to the angles A,B and C respectively, then

D. locus of point A is a pair of straight lines

Watch Video Solution

7. In a $\triangle ABC$, if $\tan \frac{A}{2} = \frac{5}{6}$, $\tan \frac{B}{2} = \frac{20}{37}$, then which of the following is/are correct ?

$$\mathrm{B.}\, a > b > c$$

C. 2c=a+b

D. none of these

Watch Video Solution

- **8.** In ΔABC ,if A:B:C =3:5:4,then $a+b+\sqrt{2}c=$
 - A. 2b
 - B. 2c
 - C. 3b
 - D. 3a

9. If the lengths of the sides of a triangle are a - b , a + b and

$$\sqrt{3a^2+b^2},$$
 $(a,b>,0)$, then the largest angle of the triangle , is

A.
$$\frac{2\pi}{3}$$

$$\mathrm{B.}\ \frac{3\pi}{4}$$

$$\operatorname{C.}\frac{\pi}{2}$$

D.
$$\frac{7\pi}{8}$$

Watch Video Solution

10. If the angles of the triangle are in A.P. and $3a^2=2b^2$, then angle C ,is

A.
$$\frac{\pi}{6}$$

B.
$$\frac{\pi}{3}$$

$$\mathsf{C.}\,\frac{\pi}{4}$$

D.
$$\frac{5\pi}{12}$$

11. In a
$$\Delta ABC$$
 ,a =5 , b= 4 , and $an\!\left(rac{C}{2}
ight)=\sqrt{rac{7}{9}},$ then c =

- A. 6
- B. 3
- C. 2
- D. none of these

- 12. If in a $\triangle ABC \sin A = \frac{4}{5}$ and $\sin B = \frac{12}{13}$, then $\sin C = \frac{12}{13}$
 - $\mathsf{A.}\ \frac{33}{65}$
 - B. $\frac{56}{65}$

$$\frac{33}{56}$$

Watch Video Solution

13. If in a $\triangle ABC$, a = 6 , b = 3 and cos (A -B) = $\frac{4}{5}$, then its area in square units, is

A. 8

B. 9

C. 6

D. none of these

14. The perimeter of a triangle ABC is six times the arithmetic mean of the sines of its angles. If the side a is 1, then find angle A

A.
$$\frac{\pi}{6}$$

$$\operatorname{B.}\frac{\pi}{3}$$

$$\mathsf{C.}\ \frac{\pi}{2}$$

D.
$$\pi$$

15. In a $\triangle ABC$, a=2b and $|A-B|=\frac{\pi}{3}$. Determine the $\angle C$.

A.
$$\frac{\pi}{4}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{6}$$

D. none of these

16. If in a ${}^{!}ABC$, \sin A, \sin B and \sin C are in A.P, then

A. the altitudes are in A.P.

B. the altitudes are in H.P.

C. the medians are in G.P.

D. the medians are in A.P.

Watch Video Solution

17. If in ΔABC , the altitudes from the vertices A, B and C on opposite sides are in HP, then sin A sin B and sin C are in

A. H.P.

B. AGP

C. A.P.

D. G.P.

Watch Video Solution

18. In a triangle ABC cos A = $\frac{7}{8}$, cos B = $\frac{11}{16}$.then, cos C is equal to

$$\mathsf{A.} - \frac{1}{4}$$

$$\mathsf{B.}-\frac{1}{2}$$

C. 0

D. $\frac{1}{4}$

19. If tan of the angles A , B , C are the solutions of the equations $an^3x-3k an^2x-3 an x+k=0$, then the triangle ABC is

- A. isosceles
- B. equilateral
- C. acute angled
- D. none of these

Answer: D

Watch Video Solution

20. If the angles of a triangle are in the ratio 4:1:1, then the ratio of the longest side to the perimeter is (a) $\sqrt{3}$: $\left(2+\sqrt{3}\right)$ (b) 1:6 (c) $1:2+\sqrt{3}$ (d) 2:3

A.
$$\sqrt{3}$$
 : $2+\sqrt{3}$

C.
$$1$$
: $2+\sqrt{3}$

Watch Video Solution

21. In triangle ABC, let $\angle C = \pi/2$. If r is the inradius and R is circumradius of the triangle, then 2(r+R) is equal to

22. Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius r. If PS and RQ intersect at apoint X on the circumference of the circle, then 2r equals :

A.
$$\sqrt{PQ.~RS}$$

B.
$$\frac{PQ + RS}{2}$$

C.
$$\frac{2PQ.\ RS}{PQ+RS}$$

D.
$$\sqrt{rac{PQ^2+RS^2}{2}}$$

23. If a , b , c denote the sides of a !ABC such that the equation

$$x^2+\sqrt{2}x+1=0$$
 and $ax^2+bx+c=0$ have a common root , then C =

A.
$$\frac{\pi}{4}$$

B.
$$\frac{\pi}{3}$$

C.
$$\frac{\pi}{2}$$

Watch Video Solution

- **24.** If in a $\triangle ABC$,b = 12 units , c = 5 units and \triangle = 30 sq. units , then the distance between vertex A and incentre of the triangle is equal to
 - A. 2 units
 - B. $2\sqrt{2}$ units
 - C. $\sqrt{2}$ units
 - D. none of these

0

25. In a ABC , ABC , ABC , and A=30 , then A=30 , then A=30 is equal to

A.
$$\frac{3\sqrt{3}}{2\sqrt{2}}$$
B. $\frac{3\left(\sqrt{3}-1\right)}{2\sqrt{2}}$
C. $\frac{3\left(\sqrt{3}-1\right)}{2\sqrt{3}}$

D. none of these

Watch Video Solution

26. In a triangle ! ABC, a^2cos^2A=b^2+c^2 then

A.
$$0 < A < rac{\pi}{4}$$

B.
$$\frac{\pi}{4} < A < \frac{\pi}{2}$$

C.
$$rac{\pi}{2} < A < \pi$$

D.
$$A=rac{\pi}{2}$$

27. In a triangle ABC , the sides a , b , c are in G.P., then the maximum value of $\angle B$ is

A.
$$30^\circ$$

C. 60°

B. 45°

D. 90°

Watch Video Solution

28. The area of a triangle is $\sqrt{3}$ sq. units and $\angle B$ =60 If a^2, b^2, c^2 are in A.P., the length of side AC is

A. $2\sqrt{3}$ units

B. 2 units

C. 3 units

D. $3\sqrt{3}$ units

Watch Video Solution

29. If in a $\ \triangle \ ABC$, $\tan \ \frac{A}{2}$ and $\tan \ \frac{B}{2}$ are the roots of the equation

$$6x^2 - 5x + 1 = 0$$
, then

A.
$$a^2+b^2>c^2$$

B.
$$a^2 - b^2 = c^2$$

C.
$$a^2 + b^2 = c^2$$

D. none of these

30. In a !ABC the length of the median AD to the side BC is 4 units. If $\angle A=60^\circ$ and the area of the triangle is $2\sqrt{3}$ sq. units. The length of side BC, is

A.
$$2\sqrt{3}$$

B.
$$4\sqrt{3}$$

31. Two sides of a tariangle are given by the roots of the equation $x^2-2\sqrt{3}x+2=0.$ The angle between the sides is $\frac{\pi}{3}.$ Find the perimeter of $\Delta.$

A.
$$6+\sqrt{3}$$

$$\mathrm{B.}\,2\sqrt{3}+\sqrt{6}$$

C.
$$2\sqrt{3}+\sqrt{10}$$

Watch Video Solution

32. If in
$$\triangle ABC$$
, $\frac{c+a}{b}+\frac{c+b}{a}=\frac{c}{r}$ then

A.
$$\angle B = rac{\pi}{2}$$

B.
$$\angle C = \frac{\pi}{2}$$

C.
$$\angle A = \frac{\pi}{2}$$

D. none of these

33. In a !ABC , there is a point D on the side BC such that $\frac{BD}{DC} = \frac{1}{2}$.If

$$\angle B=rac{\pi}{3}, \angle C=rac{\pi}{4}$$
 and $\sin\angle(CAD)=\lambda\sin\angle BAD$ then λ is equal to

A.
$$\frac{1}{\sqrt{6}}$$

B. $\sqrt{6}$

$$\mathsf{C.}\;\frac{1}{\sqrt{3}}$$

D. $\sqrt{3}$

34. If G is the centroid of a ΔABC , then $GA^2+GB^2+GC^2$ is equal to

A.
$$a^2 + b^2 + c^2$$

B.
$$\frac{a^2 + b^2 + c^2}{3}$$

c.
$$\frac{a^2 + b^2 + c^2}{2}$$

D.
$$\frac{\left(a+b+c\right)^2}{3}$$

35. In an equilateral triangle the ratio of circum-radius and in-radius is

- A. 3:1
- B.1:1
- $\mathsf{C.}\,2\!:\!\sqrt{3}$
- D.2:1

Watch Video Solution

36. In an equilateral triangle, the inradius, circumradius, and one of the exradii are in the ratio

A. 1:1:1

- B. 1:2:3
- C.2:1:3
- D. 3:2:4

Watch Video Solution

37. In a scalene triangle ABC, AD and CF are the altitudes drawn from A and C on the sides BC and AB repectively. If the area of the triangle ABC and BDF are 18sq.units and 2 sq. units respectively and DF = $2\sqrt{2}$, then R =

- A. $\frac{9}{4}$
- C. 9
- D. none of these

38. Sides of ΔABC are in A.P. If $a<\min\{b,c\}$, then \cos A may be equal

to

A.
$$\frac{3c-4b}{2b}$$

B.
$$\frac{3c-4b}{2c}$$

C.
$$\frac{4c-3b}{2b}$$

D.
$$\frac{4c-3b}{2c}$$

39. If a right angled triangle ABC of maximum Δ area is inscribed in a circle of radius R , then

A.
$$\Delta=2R^2$$

B.
$$r=\left(\sqrt{2}-1
ight)R$$

C.
$$rac{1}{r_1} + rac{1}{r_2} + rac{1}{r_3} = rac{\sqrt{2}-1}{R}$$

D.
$$s = (\sqrt{2} - 1)R$$

Watch Video Solution

- **40.** In $\ \bigtriangleup \ ABC, \angle A = rac{\pi}{2}b = 4, c = 3$,then the value of $rac{R}{r}$ is equal to
 - A. $\frac{5}{2}$
 - $\mathsf{B.}\,\frac{7}{2}$
 - c. $\frac{9}{2}$
 - D. $\frac{35}{24}$

- **41.** If in a !ABC ,CD is the bisector of $\angle ACB$, then CD =
- A. $\frac{a+b}{2ab} \frac{\cos C}{2}$

B.
$$\frac{a+b}{ab} \frac{\cos C}{2}$$

$$\mathsf{C.}\,\frac{2ab}{a+b}\frac{\cos C}{2}$$

D.
$$\dfrac{b\sin A}{\sin\!\left(B+rac{C}{2}
ight)}$$

42. Let ABC be a triangle and O be its orthocentre .If R and
$$R_1$$
 are the circum-radii of triangle ABC and AOB , then

A.
$$R_1 > R$$

$$\mathsf{B.}\,R_1=R$$

$$\mathsf{C.}\,R_1 < R$$

43. If the area(!) and an $angle(\theta)$ of a triangle are given , when the side opposite to the given angle is minimum , then the length of the remaining two sides are

A.
$$\sqrt{\frac{2!}{\sin \theta}}$$
, $\sqrt{\frac{3!}{\sin \theta}}$
B. $\sqrt{\frac{2!}{\sin \theta}}$, $\sqrt{\frac{2!}{\sin \theta}}$
C. $\sqrt{\frac{4!}{\sin \theta}}$, $\sqrt{\frac{4!}{\sin \theta}}$
D. $\sqrt{\frac{6!}{\sin \theta}}$, $\sqrt{\frac{6!}{\sin \theta}}$

44. If the sides of a triangle are in A.P. and the greatest angle of the triangle exceeds the least by 90° , then sine of the third angle is

A.
$$\frac{\sqrt{5}}{4}$$

$$\text{B.}\ \frac{\sqrt{6}}{4}$$

$$\mathsf{C.}\ \frac{\sqrt{7}}{4}$$

Watch Video Solution

- **45.** In the !ABC , the altitudes are in H.P., then
 - A. angles A,B,C are in A.P.
 - B. sides a,b,c are in A.P.
 - C. sinA,sinB,sinC are in A.P
 - D. none of these

Watch Video Solution

46. In a ΔABC , $\angle B=rac{2\pi}{3}$ and cos A + cos c = λ . Then , the exhaustive set of value of λ is

A.
$$(1, 3/2]$$

B.
$$\left(3/2,\sqrt{3}\right)$$

C.
$$(1/2, \sqrt{3}/2)$$

Watch Video Solution

47. In ABC , least value of $\dfrac{e^A}{A} + \dfrac{e^B}{B} + \dfrac{e^C}{C}$ is equal to

A.
$$rac{9}{\pi}e^{\pi/3}$$

B.
$$rac{\pi}{3}e^{\pi/3}$$

C.
$$\frac{\pi}{9}e^{\pi/3}$$

D. none of these

48. If circum-radius and in-radius of a triangle ABC be 10 and 3 units respectively, then a cot A +b cot B +c cot C is equal to

- A. 13
- B. 26
- C. 39
- D. none of these

- **49.** In ${}^{1}\!ABC$, x , y , and z are the distance of incentre from angular points
- A , B ,and C respectively . If $\dfrac{xyz}{abc}=\dfrac{\lambda r}{s}$, then λ =
 - A. 1
 - B. 2
 - C. 3

Watch Video Solution

50. If Δ denote the area of any triangle with semi-perimeter , then

A.
$$\Delta < rac{s^2}{2}$$

B.
$$\Delta>rac{s^2}{4}$$

$$\mathsf{C.}\,\Delta < \frac{s^2}{4}$$

D.
$$\Delta < s^2$$

Watch Video Solution

51. In any !ABC, $\sin \frac{A}{2}$ is

A. less than $\frac{b+c}{a}$

B. less than or equal to $\frac{a}{b+c}$

C. greater than $\dfrac{2a}{a+b+c}$

D. none of these

Watch Video Solution

52. In a $\, riangle \, ABC, AB=2, BC=4, CA=3$. If D is the mid-point of BC,

then the correct statement(s) is/are

A. $\cos B
eq \frac{11}{16}$

B. $\cos C
eq rac{7}{8}$

 $\mathsf{C.}\,AD \neq 2.4$

D. $AD^2=2.5$

53. In a triangle, $a^2+b^2+c^2=ca+ab\sqrt{3}$. Then the triangles is :

A. equilateral

B. right angled and isosceles

C. right angled and not isosceles

D. none of these

Watch Video Solution

54. In TriangleABC with fixed length of BC, the internal bisector of angle C meets the side ABatD and the circumcircle at E. The maximum value of $CD \times DE$ is c^2 (b) $\frac{c^2}{2}$ (c) $\frac{c^2}{4}$ (d) none of these

A.
$$\frac{b^2}{4}$$

B.
$$\frac{c^2}{4}$$

$$\operatorname{C.}\frac{a^2}{4}$$

D. none of these

55. In triangle ABC,AD and BE are the medians drawn through the angular points A and B respectively. $\angle DAB=2\angle ABE=36^\circ$ and AD=6 units then circumradius of the triangle is equal to

A.
$$(3-\sqrt{5})\cos ecC$$

B.
$$(3+\sqrt{5})\cos ecC$$

$$\mathsf{C.}\,2(3-\sqrt{5})\cos ecC$$

D.
$$2(3+\sqrt{5})$$
cosecC

56. If the median AM , angle bisector AD and altitude AH drawn from vertex A of a triangle ABC divide angle A into four equal (D lying between

H and M), then

A.
$$A=rac{\pi}{3}$$

$$\operatorname{B.}A = \frac{\pi}{2}$$

C.
$$\frac{AC}{AB} = \sqrt{2} + 1$$

D.
$$\dfrac{AC}{AB}=\dfrac{1}{\sqrt{2}+1}$$

Watch Video Solution

57. Which of the following pieces of data does NOT uniquely determine an acute-angled triangle ABC(R) being the radius of the circumcircle)? (a) $a, \sin A, \sin B$ (b) a, b, c(c)a ,sinB ,R(d)a ,sinA ,R`

A. a,sinA,sinB

B. a,b,c

C. a,sinB,R

D. a,sinA,R

58. If a chord AB of a circle subtends an angle $heta(\neq \pi/3)$ at a point C on the circumference such that the triangle ABC has maximum area , then

A.
$$A=rac{\pi}{3}+rac{ heta}{2},$$
 $B=rac{2\pi}{3}-rac{3 heta}{2}$

B.
$$A=rac{\pi}{4}+rac{ heta}{2},$$
 $B=rac{3\pi}{4}-rac{3 heta}{2}$

C.
$$A=rac{\pi}{6}+ heta, B=rac{5\pi}{6}+2 heta$$

D. none of these

Watch Video Solution

59. In a triangle ABC, medians AD and BE are drawn. If $AD=4, \angle DAB=\frac{\pi}{6} \ \text{and} \ \angle ABE=\frac{\pi}{3} \ \text{then the area of the triangle}$ ABC is :

A.
$$\frac{64}{3\sqrt{8}}$$

B.
$$\frac{8}{3\sqrt{3}}$$

C.
$$\frac{16}{3\sqrt{3}}$$
 D.
$$\frac{32}{3\sqrt{3}}$$

60. In a $\triangle ABC$ if sin A cos B = $\frac{1}{4}$ and 3 tan A = tan B , then the triangle is

A. right angled at A

B. right angled at B

C. right angled at C

D. not right angled

61. In a $\ \, \triangle \ \, ABC$ if $r_1=36,\, r_2=18$ and $r_3=12$, then the area of the triangle , in square units, is

A. 216

B. 316

C. 326

D. none of these

Watch Video Solution

62. In a $\ \bigtriangleup \ ABC$ if r_1 = 36 , $r_2=18$ and $r_3=12$, then the perimeter of the triangle , is

A. 36

B. 18

C. 72

D. none of these

Watch Video Solution

63. In a triangle ABC, AD, BE and CF are the altitudes and R is the circum radius, then the radius of the circel DEF is

A. $\frac{R}{2}$

B. 2R

C. R

D. none of these

Watch Video Solution

64. In a !ABC if a = 7, b = 8 and c = 9, then the length of the line joining

B to the mid-points of AC is

A. 6
B. 7
C. 5
D. none of these
Watch Video Solution
65. If the perimeter of a triangle and the diameter of an ex-circle are equal
, then the triangle is
A. right angled isosceles
B. right angled
B. right angled C. equilateral
C. equilateral

66. If D id the mid-point of the side BC of a triangle ABC and AD is perpendicular to AC, then

A.
$$b^2=a^2-c^2$$

B.
$$a^2 + b^2 = 5c^2$$

$$\mathsf{C.}\,3b^2=a^2-c^2$$

D.
$$3a^2=b^2-3c^2$$

67. ABC is a triangle. D is the middle point of BC. If AD is perpendicular to

AC, The value of cos A cos C, is

A.
$$\left(3rac{c^2-a^2}{ac}
ight.$$

B.
$$\frac{a^2-c^2}{2ac}$$

$$\operatorname{C.}\left(2\frac{c^2-a^2}{3ac}\right.$$

D. none of these

Watch Video Solution

- 68. If the median of a triangle through A is perpendicular to AB, then
 - A. 2tanA+tanB=0
 - B. 2tanA-tanB=0
 - C. tanA-2tanB=0
 - D. tanA+2tanB=0

- **69.** In a $\ riangle ABC$, if $r_1=2r_2=3r_3$, then a:b:c =
 - A. 3:4:5

B. 5:3:4

C. 5:4:3

D. none of these

Watch Video Solution

70. In ΔABC , if $r_1 < r_2 < r_3$, then find the order of lengths of the sides

A. a > b > c

B. a < b < c

 $\mathsf{C}.\, a < c < b$

D. none of these

71. In a
$$riangle ABC$$
 if $r_1=8, r_2=12$ and $r_3=24, ext{ then a =}$

B. 20

C. 12

D. none of these

Watch Video Solution

72. If I is the incentre of a ΔABC such that $\angle A=60^{\circ}$, then AI =

A. r

 $\mathsf{B.}\;\frac{r}{2}$

C. 2r

D. none of these

73. If I_1 is the centre of the escribed circle touching side BC of !ABC in which $\angle A=60^\circ$, then I_1 A =

A.
$$r_1$$

B.
$$\frac{r_1}{2}$$

 $\mathsf{C.}\,2r_1$

74. In a
$$\triangle$$
 ABC , if 2R + r = r_1 , then

A.
$$\angle A=\pi/2$$

B.
$$\angle B = \pi/2$$

C.
$$\angle C = \pi/2$$

D. none of these

Watch Video Solution

triangle **75.** The sides of a are $\sin lpha, \cos lpha, \sqrt{1+\sin lpha \cos lpha}$ for some $0<lpha<rac{\pi}{2}$ then the greatest angle of the triangle is:

A.
$$150^{\circ}$$

B.
$$90^{\circ}$$

C.
$$120^{\circ}$$

D.
$$60^{\circ}$$

- A. 1
- B. 2
- C. 3
- D. 4

77. If $\sin^2 \frac{A}{2}$, $\sin^2 \frac{B}{2}$, and $\sin^2 \frac{C}{2}$ are in H.P., then prove that the sides of triangle are in H.P

- A. A.P.
- B. G.P.
- C. H.P.
- D. none of these

78. In a
$$\triangle ABC$$
 , if $\dfrac{1}{b+c}+\dfrac{1}{c+a}=\dfrac{3}{a+b+c}$, then $\angle C=$

- A. 90°
- B. 60°
- C. 45°
- D. 30°

79. Observe the following statements: (I)

In

In

(II)

$$!ABC, brac{\cos^2C}{2}+\cos^2rac{B}{2}=s \qquad , \ !ABCrac{\cot A}{2}=rac{b+c}{2}\Rightarrow B=90^\circ$$

Which of the following is correct?

A. both I and II are true

B. I is true, II is false

C. I is false, II is true

D. both I and II are false

Watch Video Solution

80. In a triangle , if $r_1=2r_2=3r_3$, then $\displaystyle \frac{a}{b}$ + $\displaystyle \frac{b}{c}$ + $\displaystyle \frac{c}{a}$ is equal to

- $\text{A.}\ \frac{75}{60}$
- B. $\frac{155}{60}$
- $\mathsf{C.}\ \frac{176}{60}$
- $\mathsf{D.}\;\frac{191}{60}$

81. Sides a , b , c of
$$!ABC$$
 are in A.P. and a

$$\cos heta_1=rac{a}{b+c}\cos heta_2=rac{b}{a+c},\cos heta_3=rac{c}{a+b}$$
 , then $rac{ an^2(heta_1)}{2}+rac{ an^2(heta_3)}{2}$ =

C.
$$\sqrt{5}/3$$

82. Consider a triangle ABC and let a, b and c denote the lengths of the sides opposite to vertices A, B and C, respectivelu. Suppose a=6, b=10 and the triangle is $15\sqrt{3}$. If $\angle ACB$ is obtus and if r denotes than radius of the incircle of the triangle, then the value of r^2 is ____

B. 4

C. 3

D. 6

Watch Video Solution

83. If the angles A, B and C of a triangle are in an arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression $rac{a}{c} \sin 2C + rac{c}{a} \sin 2A$ is

- A. $\frac{1}{2}$
- B. $\frac{\sqrt{3}}{2}$
- C. 1
- D. $\sqrt{3}$

84. Let ABC be a triangle such that $\angle ACB = \frac{\pi}{6}$ and let a, b and c denote the lengths of the side opposite to A,B ,and C respectively. The value(s) of x for which $a=x^2+x+1, b=x^2-1, \text{ and } c=2x+1$ is(are) $-\left(2+\sqrt{3}\right)$ (b) $1+\sqrt{3}$ (c) $2+\sqrt{3}$ (d) $4\sqrt{3}$

A.
$$-\left(2+\sqrt{3}\right)$$

B.
$$1 + \sqrt{3}$$

$$\mathsf{C.}\,2+\sqrt{3}$$

D.
$$4\sqrt{3}$$

Watch Video Solution

85. For a regular polygon, let r and R be the radii of the inscribed and the cirumscribed circles, respectively. A false statement among the following is

A. There is a regular polygon with $rac{r}{R}=rac{2}{3}$

B. There is a regular polygon with $\frac{r}{R} = \frac{\sqrt{3}}{2}$

C. There is a regular polygon with $\frac{r}{R} = \frac{1}{2}$

D. There is a regular polygon with $\frac{r}{R} = \frac{1}{\sqrt{2}}$

Watch Video Solution

86. Let PQR be a triangle of area with a=2,b=7/2,and c=5/2, where a, b and c are the lengths of the sides of the triangle opposite to the angles at P,

Q and R respectively. Then (2sinP-sin2P)/(2sinP+sin2P) equals

A.
$$\frac{3}{4!}$$

B.
$$\frac{45}{4!}$$

$$\mathsf{C.}\left(\frac{3}{4!}\right)^2$$

D.
$$\left(\frac{45}{4!}\right)^2$$

87. ABCD is a trapezium such that AB and CD are parallel and $BC \perp CD$.

If $\angle ADB = \theta$, BC = p and CD = q, then AB is equal to

A.
$$rac{\left(p^2+q^2
ight)\sin heta}{p\cos heta+q\sin heta}$$

B.
$$rac{p^2+q^2\cos heta}{p\cos thet+q\sin heta}$$

C.
$$rac{p^2+q^2}{p^2\cos heta+q^2\sin heta}$$

D.
$$\dfrac{\left(p^2+q^2
ight)\!\sin heta}{\left(p\cos heta+q\sin heta
ight)^2}$$

Watch Video Solution

88. about to only mathematics

A. 16,18

B. 18,22

C. 22,24

D. 16,20

89. In a triangle, the sum of two sides is x and the product of the same two sides is y. If $x^2-c^2=y$, where c is the third side of the triangle, then the ratio of the in-radius to the circum-radius of the triangle is

A.
$$\frac{3y}{2x(x+c)}$$

$$\mathsf{B.}\,\frac{3y}{2c(x+c)}$$

$$\mathsf{C.}\,\frac{3y}{4x(x+c)}$$

D.
$$\frac{3y}{4c(x+c)}$$

Watch Video Solution

90. In ABC, if $\frac{\sin A}{c\sin B}+\frac{\sin B}{c}+\frac{\sin C}{b}=\frac{c}{ab}+\frac{b}{ac}+\frac{a}{bc}$, then the value of angle A is (a)120 0 (b) 90^0 (c) 60^0 (d) 30^0

A. 120°

B. $90\,^\circ$

C. 60°

D. 30°

Watch Video Solution

91. In $\triangle ABC$, if 2b=a+c and $A-C=90^{\circ}$, then sin B equal

All symbols used have usual meaning in ΔABC .

A.
$$\frac{\sqrt{7}}{5}$$

B. $\frac{\sqrt{5}}{8}$

C. $\frac{\sqrt{7}}{4}$

D. $\frac{\sqrt{5}}{3}$

92. In a ΔXYZ , let x,y,z be the lengths of sides opposite to the angles

$$X,Y,Z$$
 respectively and $2x=x+y+z$. If $\frac{s-x}{4}=\frac{s-y}{3}=\frac{s-z}{2}$ and area of incircle of the ΔXYZ is $\frac{8\pi}{3}$ then

- A. $6\sqrt{6}$ sq. units
- B. $3\sqrt{6}$ sq. units
- C. $12\sqrt{6}$ sq. units
- D. $6\sqrt{3}$ sq. units

93. If s-x/4= s-y/3=s-z/2 and area of incircle of the triangle XYZ is 8(pi)/3 thenThe radius of the circumcircle of \triangle XYZ

A.
$$\frac{35}{\sqrt{6}}$$

C.
$$\frac{35}{4\sqrt{6}}$$
D. $\frac{35}{6\sqrt{6}}$

94. If
$$r=\sqrt{\frac{8}{3}}$$
 and $R=\frac{35}{4\sqrt{6}}$ then the value of $\sin\frac{X}{2}\sin\frac{Y}{2}\sin\frac{Z}{2}$ =

A.
$$\frac{6}{35}$$

B.
$$\frac{4}{35}$$

C.
$$\frac{2}{35}$$
D. $\frac{8}{35}$

Watch Video Solution

95. If x=5,y=6,z=7.The value of $\sin^2\left(\frac{X+Y}{2}\right)$, is

- A.
 - B. -
- c. $\frac{2}{5}$

SOLVED MCQ

- **1.** P is a point on the altitude of !ABC such that $\angle CBP = \frac{B}{3}$,then A.P.is equal to
- A. $2a \frac{\sin C}{3}$
- B. $2b \frac{\sin A}{3}$
 - $\mathsf{C.}\,2c\frac{\sin B}{3}$

D.
$$2c \frac{\sin C}{3}$$

2. If p , q , r are the legths of the internal bisectors of angles A ,B , C respectively of a !ABC , then area of ABC

- A. $\frac{1}{a} + \frac{1}{b} \frac{1}{c}$
- $\operatorname{B.}\frac{1}{a}+\frac{1}{c}-\frac{1}{b}$
- $c. \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$
- $\mathrm{D.}\,\frac{1}{b}+\frac{1}{c}-\frac{1}{a}$

1. Statement I: If in a triangle $ABC, \sin^2 A + \sin^2 B + \sin^2 C = 2, \,\,$ then one of the angles must be 90° .

Statement II: In any triangle ABC

 $\cos 2A + \cos 2B + \cos 2C = -1 - 4\cos A\cos B\cos C$

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

 $\hbox{C. Statement-1 is True, Statement-2 is False.}\\$

D. Statement-1 is False, Statement- 2 is True.

2. Statement-1: In any ΔABC if A is obtuse, then tanBtanC < 1

Statement-2: In any !ABC, we have

tan A + tan B + tan C = tan A tan B tan C

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

- **3.** Let a and b denote llie lengths of the legs of a right triangle with following properties:
- (i) All three sides of the triangle are integers.
- (ii) The perimeter of the triangle is numerically equal to its area.

(iii) a ltb.

Statement-1: The number of such triangle is 2

Statement-2: Maximum possible perimeter of the triangle is 30°.

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

4. Statement-1: If the measures of two angles of a triangle are 45 ° and 60 °, then the ratio of the smallest and the greatest sides are $\left(\sqrt{3}-1\right)$: 1 Statement-2: The greatest side of a triangle is opposite to its greatest angle.

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

Watch Video Solution

5. Statement-1: In a !ABC,

$$(a+b+c)igg(rac{ an A}{2}+rac{ an B}{2}igg)=2crac{\cot C}{2}$$

Statement-2: In a !ABC, a = b cos C + c cos B

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

Watch Video Solution

6. Statement-1: In a !ABC, if

$$2a^2+4b^2+c^2=4ab+2ac$$
, then $\cos A=rac{1}{4}$

Statement-2: In a ΔABC if $\cos A=rac{1}{4}$, then

$$(a+b+c)(b+c-a)=\frac{5}{2}bc$$

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

- C. Statement-1 is True, Statement-2 is False.
- D. Statement-1 is False, Statement- 2 is True.

7. Statement-1: If the lengths of two sides of a triangle are roots of the equation $x^2-12x+35$ =0 and the angle opposite to third side is obtuse, then the square of the length of the third side is greater than 74.

Statement- 2: In a
$$!ABC, \cos C = rac{a^2 + b^2 - c^2}{2ab}$$

- A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.
- B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.
- C. Statement-1 is True, Statement-2 is False.
- D. Statement-1 is False, Statement- 2 is True.

8. Statement I In a triangle ABC if $an A\!:\! an B\!:\! an C=1\!:\!2\!:\!3,$ then

$$A=45^{\circ}$$

Statement II If p:q:r=1:2:3, then p=1

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

9. Statement-1: In any !ABC, if a : b : c = 4 : 5 : 6, then R:r=16:17.

Statement-2: In any $!ABC, \frac{R}{r} = \frac{abc}{4c}$

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

10. Statement I In any triangle ABC

 $a\cos A + b\cos B + c\cos C \le s.$

Statement II In any triangle ABC

$$\sin\left(\frac{A}{2}\right)\sin\left(\frac{B}{2}\right)\sin\left(\frac{C}{2}\right) \le \frac{1}{8}$$

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.

C. Statement-1 is True, Statement-2 is False.

D. Statement-1 is False, Statement- 2 is True.

11. Statement-1: In ABC, $r_1 + r_2 + r_3 - r = 4R$

Statement-2: In $!ABC, r_1r_2 + r_2r_3 + r_3r_1 = !^2$

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

B. Statement-1 is True, Statement-2 is True, Statement-2 is not a

correct explanation for Statement-1.

- C. Statement-1 is True, Statement-2 is False.
- D. Statement-1 is False, Statement- 2 is True.

12. Statement- 1: If the sines of the angles of a triangle are in A.P., then the altitudes ef the triangle are also in A.P.

Statement-2: Twice the area of a triangle is equal to the product of the lengths of a side and the altitude on it.

- A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.
- B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.
- C. Statement-1 is True, Statement-2 is False.
- D. Statement-1 is False, Statement- 2 is True.

Watch Video Solution

13. In !ABC it is given that a:b:c = cos A:cos B:cos C

Statement-1: !ABC is equilateral.

Statement-2:

cosA

$$=rac{b^2+c^2-a^2}{2bc},\cos B=rac{c^2+a^2-b^2}{2ac},\cos C=rac{a^2+b^2-c^2}{2ab}$$

A. Statement-1 is True, Statement-2 is true, Statement-2 is a correct explanation for Statement-1.

- B. Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-1.
- C. Statement-1 is True, Statement-2 is False.
- D. Statement-1 is False, Statement- 2 is True.

Exercise

1. If $b=\sqrt{3}, c=1$ and $\angle A=30^\circ$, then the measure of $\angle B$ is

A. 60°

B. 135°

C. 90°

D. 120°

Answer: D

Watch Video Solution

a = 1, b = 2 and $\angle c = 60^{0}$.

2. Find the area of the triangle ABC in which

A. 4sq.units

B. $\frac{1}{2}$ sq.units

C. $\frac{\sqrt{3}}{2}$ sq. units

D. $\sqrt{3}$ sq. units

Answer: C

Watch Video Solution

3. In a triangle ABC, vertex angles A,B,C and side BC are given .The area of

 \triangle ABC is

A.
$$\frac{s(s-a)(s-b)(s-c)}{2}$$

 $\mathsf{B.} \; \frac{b^2 \sin C \sin A}{\sin B}$

C. ab sin C

D. $\frac{1}{2} \frac{a^2 \sin B \sin C}{\sin A}$

Answer: D

4. The area of the circle and the area of a regular polygon of n sides and the perimeter of polygon equal to that of the circle are in the ratio of $\tan\left(\frac{\pi}{n}\right):\frac{\pi}{n}$ (b) $\cos\left(\frac{\pi}{n}\right):\frac{\pi}{n}$ $\frac{\sin\pi}{n}:\frac{\pi}{n}$ (d) $\cot\left(\frac{\pi}{n}\right):\frac{\pi}{n}$

A.
$$\tan\left(\frac{\pi}{n}\right) : \frac{\pi}{n}$$

$$\mathsf{B.}\cos\!\left(\frac{\pi}{n}\right)\!:\!\frac{\pi}{n}$$

$$\mathsf{C.}\sin\!\left(\frac{\pi}{n}\right)\!:\!\frac{\pi}{n}$$

D.
$$\cot\left(\frac{\pi}{n}\right):\frac{\pi}{n}$$

Answer: A

Watch Video Solution

5. If $\cot \frac{A}{2} = \frac{b+c}{a}$, then $\triangle ABC$ is

A. isosceles

B. equliteral

C. right angled

D. none of these

Answer: C

Watch Video Solution

- **6.** In $\triangle ABC$, $\frac{ an A}{2}=rac{5}{6}, \frac{ an C}{2}=rac{2}{5}$, then
 - A. a,b,c are in A.P
 - B. a,b,c are in A.P
 - C. b,a,c are in A.P
 - D. a,b,c are in G.P

Answer: B

to BC, then $\cos B + \cos C$ is equal to

7. In a triange, the line joining the circumcentre to the incentre is parallel

A.
$$3/2$$

B. 1

C.3/4

D.1/2

Answer: B

Watch Video Solution

8. In a triangle ABC,r=

A.
$$(s-a)rac{ an B}{2}$$

B.
$$(s-b)\frac{\tan B}{2}$$

$$\mathsf{C.}\,(s-b)rac{ an C}{2}$$

D.
$$(s-a)rac{ an C}{2}$$

Answer: B

Watch Video Solution

9. The exradii $r_1, r_2, \; {
m and} \; r_3 \; {
m of} \; \Delta ABC$ are in H.P. show that its sides a, b, and c are in A.P.

A. inH.P.

B. in A.P.

C. in G.P.

D. none of these

Answer: B

Watch Video Solution

10. In any triangle ABC, prove that:

$$a^3\cos(B-C)+b^3\cos(C-A)+c^3\cos(A-B)=3abc$$

C. c^2a^2 D. a^2, b^2

A. 3abc

D. 0

Answer: A

A. s^4

B. b^2c^2

Answer: D

B. 3(a+b+c)

C. abc(a+b+c)

Watch Video Solution

11. If $c^2=a^2+b^2,$ 2s=a+b+c, then 4s(s-a)(s-b)(s-c)=

12. The sides of a triangle are 13,14,15, then the radius of its in-circle is

A. 67/8

B.65/4

C. 4

D. 24

Answer: C

Watch Video Solution

13. If a $\cos A = b \cos B$, then the triangle is

A. equliteral

B. right angled

C. isosceles

D. isosceles or right angled

Answer: D

Watch Video Solution

- 14. The in-radius of the triangle whose sides are 3,5,6,is
 - A. $\sqrt{8/7}$
 - B. $\sqrt{8}$
 - $\mathsf{C}.\sqrt{7}$
 - D. $\sqrt{7/8}$

Answer: A

Watch Video Solution

15. In an equliateral triangle of side $2\sqrt{3}$ cm. The find circum-radius.

- A. 1cm
- B. $\sqrt{3}$ cm
 - C. 2cm
 - D. $2\sqrt{3}$ cm

Answer: C

Watch Video Solution

- **16.** If the angle opf a triangle are in the ratio 1:2:3, then show that the sides opposite to the respective angle are in the ratio 1: $\sqrt{3}$: 2.
 - A. 2:3:1
 - B. $\sqrt{3}:2:1$
 - C. 2: $\sqrt{3}$: 1
 - D. 1: $\sqrt{3}$: 2

Answer: D

17. In any $\Delta ABC, \ \prod \left(rac{\sin^2 A + \sin A + 1}{\sin A}
ight)$ is always greater than

A. 9

B. 3

C. 27

D. none of these

Answer: A

Watch Video Solution

18. In any $\Delta ABC, \ \prod \left(\dfrac{\sin^2 A + \sin A + 1}{\sin A} \right)$ is always greater than

A. 9

B. 3

C. 27
D. none of these
Answer: A
Watch Video Solution
19. In a right angled triangle ABC sin^(2)A+sin^(2)B+sin^(2)C=
A. 0
B. 1
C1
D. none of these
Answer: D
Watch Video Solution

20. In any ΔABC , is $2\cos B=rac{a}{2}$, then the triangle is

A. right angled

B. equilaterial

C. isosceles

D. none of these

Answer: C

21. If in a $\ \triangle \ ABC$,a sin A=b sin B, then the triangle, is

A. right angled

B. equilaterial

C. isosceles

D. none of these

Answer: A

Watch Video Solution

- **22.** In any ΔABC , If $\cot \frac{A}{2}$, $\cot \frac{B}{2}$, $\cot \frac{C}{2}$ are in AP, then a,b,c are in
 - A. A.P.
 - B. G.P.
 - C. H.P.
 - D. none of these

Answer: A

- **23.** In any $\triangle ABC$ b^(2)sin2C+c^(2)sin2B=
 - A. !

B. 2!

C. 3!

D. 4!

Answer: D

Watch Video Solution

24. If in a triangle ABC, $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$, then the triangle is

A. right angled

B. obtuse angled

C. equilaterial

D. isosceles

Answer: C

25. If in a triangle ABC, $\ igtriangledown = a^2 - \left(b - c\right)^2$, then tanA is equal to

$$\mathsf{A.}\ \frac{15}{16}$$

$$\text{B.}\ \frac{8}{15}$$

c.
$$\frac{8}{17}$$

D. $\frac{1}{2}$

Answer: B

Watch Video Solution

26. If the angles A,B,C of a triangle are in A.P. and sides a,b,c, are in G.P., then prove that $a^2,\,b^2,\,c^2$ are in A.P.

A. A.P.

B. H.P.

C. G.P.

D. none of these

Answer: A

Watch Video Solution

27. In a triangle, the lengths of the two larger sides are 10 and 9, respectively. If the angles are in A.P, then the length of the third side can be (a) $5-\sqrt{6}$ (b) $3\sqrt{3}$ (c) 5 (d) $5+\sqrt{6}$

A.
$$5\pm\sqrt{6}$$

$$\mathrm{B.}\,3\sqrt{3}$$

D.
$$\sqrt{5}\pm 6$$

Answer: A

B.
$$b\sin\lambda$$

B. $b\sin A>a, A>rac{\pi}{2}$

C. $b\sin A>a, A<rac{\pi}{2}$

A. $b\sin A=a, A<rac{\pi}{2}$

D. $b\sin A>a, A>rac{\pi}{2}, b>a$

Answer: A

Watch Video Solution

29. In a triangle, the length of two larger sides are 24 and 22 respectively.

If the angles are in A.P. then the third side is

A.
$$12+2\sqrt{13}$$

B.
$$12-\sqrt{13}$$

$$\mathsf{C.}\,2\sqrt{13}+2$$

D.
$$2\sqrt{13}-2$$

Answer: A

30. If in a triangle
$$ABC$$
, $a\cos^2\left(\frac{C}{2}\right)+c\cos^2\left(\frac{A}{2}\right)=\frac{3b}{2}$, then the sides $a,b,andc$ are in A.P. b. are in G.P. c. are in H.P. d. satisfy $a+b=$.

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: A

Watch Video Solution

31. If twice the square of the diameter of the circle is equal to half the sum of the squares of the sides of incribed triangle ABC,then $\sin^2 A + \sin^2 B + \sin^2 C$ is equal to

- A. 1
- B. 2
- C. 4
- D. 8

Answer: C

- **32.** In triangle ABC, angle A is greater than angle B. If the measure of angles A and B satisfy the equation $3\sin x-4\sin^3 x-k=0$. Find the value of angle C (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{2}$ (C) $\frac{2\pi}{3}$ (D) $\frac{5\pi}{6}$
 - A. $\pi/3$
 - B. $\pi/2$
 - C. $2\pi/3$
 - D. $5\pi/6$

Answer: C

Watch Video Solution

33. $\frac{2\cos A}{a}+\frac{\cos B}{b}+\frac{2\cos C}{c}=\frac{a}{ac}+\frac{b}{ca}$, then the values of the angle A is

A.
$$\pi/3$$

B.
$$\pi/4$$

C.
$$\pi/2$$

D.
$$\pi/6$$

Answer: C

Watch Video Solution

34. If A>0, B>0 and $A+B=\frac{\pi}{6}$, then the minimum value of $\tan A + \tan B$, is

A.
$$1/3$$

B. 1

 $\mathsf{C}.\,\infty$

D. $1/\sqrt{3}$

Answer: A

Watch Video Solution

35. If $\cos(\theta-\alpha), \cos\theta, \cos(\theta+\alpha)$ are in H.P.,then $\cos\theta\sec(\alpha/2)$ is equal

to

A. - 1

B. $\pm\sqrt{2}$

 $\mathsf{C}.\pm 2$

 ${\rm D.}\pm3$

Answer: B

36. If $\sin \beta$ is the GM between $\sin \alpha$ and $\cos \alpha$, then $\cos 2\beta =$

A.
$$2\sin^2\Bigl(rac{\pi}{4}-lpha\Bigr)$$

$${\rm B.}\,2\cos^2\!\left(\frac{\pi}{4}-\alpha\right)$$

C.
$$2\cos^2\!\left(rac{3\pi}{4}+2lpha
ight)$$

D.
$$2\sin^2\Bigl(rac{\pi}{4}+lpha\Bigr)$$

Answer: A

Watch Video Solution

37. If $\sin A = \sin^2 B$ and $2\cos^2 A = 3\cos^2 B$ then the triangle ABC is

A. right angled

B. obtuse angled

C. isosceles

D. equilateral

Answer: B

Watch Video Solution

38. If in a triangle ABC,

(sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB`then

A. $A=60^{\circ}$

B. $B=60^{\circ}$

C. $C=60^\circ$

D. none of these

Answer: C

 ΔABC , $\sin A + \sin B + \sin C = 1 + \sqrt{2}$ In 39. а

and

 $\cos A + \cos B + \cos C = \sqrt{2}$ if the triangle is

A. equilateral

B. isosceles

C. right angled

D. right angled isosceles

Answer: D

40. Point D,E are taken on the side BC of an acute angled triangle ABC, BD = DE = EC. If

that such

 $\angle BAD = x, \angle DAE = y \text{ and } \angle EAC = z$ then the value of

$$\frac{\sin(x+y)\sin(y+z)}{\sin x\sin z}$$
 is _____

A. 1

B. 2

C. 4

D. none of these

Answer: C

Watch Video Solution

- **41.** In a triangle ABC , if 3a = b + c , then cot $\frac{B}{2}$ cot $\frac{C}{2}$ =
 - A. 1
 - B. $\sqrt{3}$
 - C. 2
 - D. none of these

Answer: C

42. If A+ B+ C= π , n \in Z,then tan nA+ tan +nB +tan nC is equal to

A. 0

B. 1

C. tan nA tan nB tan nC

D. none of these

Answer: C

Watch Video Solution

- **43.** If A,B,C are angles of a triangle ,then the minimum value of $\tan^2\left(\frac{A}{2}\right)+\tan^2\left(\frac{B}{2}\right)+\tan^2\left(\frac{C}{2}\right)$, is
 - A. 0
 - B. 1
 - $\mathsf{C.}\,1/2$

D. none of these

Answer: B

Watch Video Solution

44. If in a triangle ABC, $\cos A + \cos B + \cos C = \frac{3}{2}$, prove that the triangle is equilateral.

- A. isosceles
- B. right angled
- C. equilaterial
- D. none of these

Answer: C

Watch Video Solution

45. If in a ΔABC , $\cos a\cos B\pm\sin A\sin B\sin C=$ 1, then show that $a\!:\!b\!:\!c=1\!:\!1\!:\!\sqrt{2}$.

A. isosceles

B. right angled

C. isosceles right angles

D. equilateral

Answer: C

Watch Video Solution

- **46.** If in a triangle ABC , $\frac{b+c}{11}=\frac{c+a}{12}=\frac{a+b}{13}$ then cosA is equal to
 - A. $\frac{1}{5}$
 - $\mathsf{B.}\,\frac{5}{7}$
 - c. $\frac{19}{35}$
 - D. none of these

Answer: A

47. If $p_1,\,p_2,\,p_3$ are altitudes of a triangle ABC from the vertices A,B,C and

riangle the area of the triangle, then $p_1^{-2}+p_2^{-2}+p_3^{-2}$ is equal to

A.
$$\frac{a+b+c}{\Lambda}$$

B.
$$\frac{a^2+b^2+c^2}{4\Lambda^2}$$

C.
$$\dfrac{a^2+b^2+c^2}{\Delta^2}$$

D. none of these

Answer: B

Watch Video Solution

48. If p_1, p_2, p_3 are altitudes of a triangle ABC from the vertices A,B,C and! the area of the triangle, then p_1, p_2, p_3 is equal to

A. abc

B. 8R

C.
$$a^2b^2c^2$$

D.
$$\frac{a^2 \cdot b^2 \cdot c^2}{8R^3}$$

Answer: D

Watch Video Solution

49. P_1, P_2, P_3 are altitudes of a triangle ABC from the vertices A, B, C and

 Δ is the area of the triangle,

The value of $P_1^{-1}+P_2^{-1}+P_3^{-1}$ is equal to-

A. $(s-a)/\Delta$

B. $(s-b)/\Delta$

C. $(s-c)/\Delta$

D. s/Δ

Answer: C

50. If median of the Δ ABC through A is perpendicular to BC, then which one of the following is correct ?

- A. tanA+tanB=0
- B. 2tanA+tanB=0
- C. tanA+2tanB=0
- D. none of these

Answer: C

Watch Video Solution

51. If in a triangle ABC, $\dfrac{\sin A}{\sin C} = \dfrac{\sin (A-B)}{\sin (B-C)}$, then

- A. a,b,c are in A.P
- $\mathrm{B.}\,a^2,\,b^2,\,c^2$ are in A.P
- C. a,b,c are in H.P

D. a^2 , b^2 , c^2 are in H.P

Answer: B

Watch Video Solution

- **52.** If in a $!ABC, a an A + b an B = (a+b) an \left(rac{A+B}{2}
 ight)$, then
 - A. A = B
 - B.A = -B
 - C. A = 2B
 - D.B = 2A

Answer: A

Watch Video Solution

53. If in a triangle $ABC, \cos A = \frac{\sin B}{2\sin C}$ then the triangle ABC , is

A. equilateral

B. isosceles

C. right angled

D. none of these

Answer: B

Watch Video Solution

54. If in a triangle ABC, $\frac{a^2-b^2}{a^2+b^2}$ = $\frac{\sin(A-B)}{\sin(A+B)}$ the triangle is

A. right angled or isosceles

B. right angled and isosceles

C. equilaterial

D. none of these

Answer: A

55. If in a triangle ABC, b + c = 3a, then $\tan\left(\frac{B}{2}\right)\tan\left(\frac{C}{2}\right)$ is equal to

56. Let ABC be a triangle such that $\angle A=45^{\circ}, \angle B=75^{\circ}, ext{ then } a+c\sqrt{2}$

- A. 1/2
- B. 1/3
- C. 1/4
- D. 1/5

Answer: A

Watch Video Solution

is equal to

A. 0

B.b

$$D.-b$$

Answer: C

Watch Video Solution

57. If in a ΔABC , $\cos A + 2\cos B + \cos C = 2$, then a,b, c are in

A. A.P.

B. H.P.

C. G.P

D. none of these

Answer: A

58. If the altitudes of a triangle are in A.P,then the sides of the triangle are in

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: C

Watch Video Solution

59. In any triangle ABC ,the distance of the orthocentre from the vertices A, B,C are in the ratio

A. sin A : sin B : sin C

B. cos A : cos B : cos C

C. tan A: tan B: tan C

Answer: B

Watch Video Solution

60. If R is the radius of circumscribing circle of a regular polygon of n-sides,then R =

A.
$$\frac{a}{2}\sin\left(\frac{\pi}{n}\right)$$

$$\mathsf{B.}\; \frac{a}{2} \mathrm{cos} \Big(\frac{\pi}{n} \Big)$$

C.
$$\frac{a}{2}$$
cos $ec\left(\frac{\pi}{n}\right)$

$$\mathrm{D.}\ \frac{a}{2} \cos ec \Big(\frac{\pi}{n}\Big)$$

Answer: C

61. If r is the radius of inscribed circle of a regular polygon of n-sides ,then

r is equal to

A.
$$\frac{a}{2}\cot\left(\frac{\pi}{2n}\right)$$

B.
$$\frac{a}{2}\cot\left(\frac{\pi}{n}\right)$$

C.
$$\frac{a}{2} \tan \left(\frac{\pi}{n} \right)$$

D. $\frac{a}{2}\cos\left(\frac{\pi}{n}\right)$

Answer: B

Watch Video Solution

62. The area of a regular polygon of n sides is (where r is inradius, R is circumradius, and a is side of the triangle (a) $\frac{nR^2}{2}\sin\left(\frac{2\pi}{n}\right)$ (b)

$$nr^2 \tan\left(\frac{\pi}{n}\right)$$
 (c) $\frac{na^2}{4} \frac{\cot \pi}{n}$ (d) $nR^2 \tan\left(\frac{\pi}{n}\right)$

A.
$$\frac{nR^2}{2}\sin\left(\frac{2\pi}{n}\right)$$

B.
$$nr^2 \tan\left(\frac{2\pi}{2n}\right)$$

C.
$$\frac{nr^2}{2} \sin\left(\frac{2\pi}{n}\right)$$
D. $nR^2 \tan\left(\frac{\pi}{n}\right)$

Answer: A

Watch Video Solution

- **63.** If r, r_1, r_2, r_3 have their usual meanings , the value of $\dfrac{1}{r_1}+\dfrac{1}{r_2}+\dfrac{1}{r_3}$, is
 - A. 1

B. 0

 $c.\frac{1}{r}$

D. none of these

Answer: C

64. If p_1, p_2, p_3 are respectively the perpendicular from the vertices of a triangle to the opposite sides, then find the value of $p_1p_2p_3$.

A.
$$\frac{a^2b^2c^2}{R^2}$$

B.
$$\frac{a^2b^2c^2}{4R^2}$$

C.
$$\frac{4a^2b^2c^3}{R^2}$$

D.
$$\frac{a^2b^2c^2}{8R^2}$$

Answer: D

Watch Video Solution

65. If p_1, p_2, p_3 are respectively the perpendiculars from the vertices of a triangle to the opposite sides , then $\frac{\cos A}{p_1} + \frac{\cos B}{p_2} + \frac{\cos C}{p_3}$ is equal to

A.
$$1/r$$

Answer: B

Watch Video Solution

- **66.** If in ΔABC , $8R^2=a^2+b^2+c^2$, then the triangle ABC is
 - A. right angled
 - B. isosceles
 - C. equilaterial
 - D. none of these

Answer: A

67. If $A_1,\,A_2,\,A_3$ denote respectively the areas of an inscribed polygon of 2n sides , inscribed polygon of n sides and circumscribed poylgon of n sides ,then $A_1,\,A_2,\,A_3$ are in

68. If the angles of a triangle are in A.P.with common difference equal 1/3

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: B

of the least angle ,the sides are in the ratio

A.
$$\sqrt{2}$$
 : $2\sqrt{3}$: $\sqrt{6} + \sqrt{2}$

$$\mathsf{B}.\,2\sqrt{2}\!:\!\sqrt{3}\!:\!\sqrt{6}-\sqrt{2}$$

C.
$$2\sqrt{2}$$
: $2\sqrt{3}$: $\sqrt{6} - \sqrt{2}$

D.
$$2\sqrt{2}$$
: $2\sqrt{3}$: $\sqrt{6}+\sqrt{2}$

Answer: D

Watch Video Solution

- 69. In a triangle ABC, A = 8, b = 10 and c = 12. What is the angle C equal to?
 - A. A/2
 - B. 2A
 - C. 3A
 - D. none of these

Answer: B

70. If the sides a, b, c of a triangle ABC are the roots of the equation

 $x^3-13x^2+54x-72=0$, then the value of $\dfrac{\cos A}{a}+\dfrac{\cos B}{b}+\dfrac{\cos C}{c}$

is equal to :

A. $\frac{169}{144}$

 $\mathsf{B.}\;\frac{61}{72}$

c. $\frac{61}{144}$ D. $\frac{169}{72}$

Answer: C

Watch Video Solution

71. The area of a ΔABC is $b^2-\left(c-a
ight)^2$. Then ,tan B =

A. $\frac{4}{3}$

 $\mathsf{B.}\;\frac{3}{4}$

C. 8/15

Answer: C

Watch Video Solution

72. If in a triangle ABC, $\frac{\sin A}{\sin C} = \frac{\sin (A-B)}{\sin (B-C)}$, then

A. A.P.

B. G.P.

C. H.P.

D. none of these

Answer: A

73. If in a triangle $ABC, 3\sin A = 6\sin B = 2\sqrt{3}\sin C$, then the angle A is

A.
$$0^{\circ}$$

B. 30°

C. 60°

D. 90°

Answer: D

74. The sides of a triangle are in A.P. and its area is $\frac{3}{5}$ th of an equilateral triangle of the same perimeter. Find the greatest angle of the triangle

- A. 1:2:3
- B. 3:5:7
- C. 1:3:5

Answer: B

Watch Video Solution

75. triangle In а $\sin^4 A + \sin^4 B + \sin^4 C = \sin^2 B \sin^2 C + 2 \sin^2 C \sin^2 A + 2 \sin^2 A \sin^2 B$

, then its angle A is equal to-

A.
$$\frac{\pi}{6}$$
, $\frac{5\pi}{6}$

B.
$$\frac{\pi}{3}, \frac{5\pi}{6}$$
C. $\frac{5\pi}{6}, \frac{2\pi}{3}$

D. none of these

Answer: A

76. In any triangle ABC , $\frac{ an\Big(rac{A}{2}\Big)- an\Big(rac{B}{2}\Big)}{ an\Big(rac{A}{2}\Big)+ an\Big(rac{B}{2}\Big)}$ is equal to

A.
$$rac{a-b}{a+b}$$

$$\operatorname{B.}\frac{a-b}{c}$$

$$\mathsf{C.}\; \frac{a-b}{a+b+c}$$

D.
$$\frac{c}{a+b}$$

Answer: B

Watch Video Solution

77. If the sides a,b and c of a ABC are in A.P.,then

$$\left(an\!\left(rac{A}{2}
ight)+ an\!\left(rac{C}{2}
ight)
ight)\!:\!\cot\!\left(rac{B}{2}
ight)\!,$$
 is

Answer: D

Watch Video Solution

78. If the sides of the triangle are the roots of the equation x^3-2x^2-x-16 =0, then the product of the in-radius and circumradius of the triangle ,is

- A. 3
- B. 6
- C. 4
- D. 2

Answer: C

79. If AD, BE and CF are the medians of a ΔABC , then evaluate $(AD^2 + BE^2 + CF^2)$: $(BC^2 + CA^2 + AB^2)$.

B.3:2

C.3:4

D. 2:3

Answer: C

Watch Video Solution

80. If a $\triangle ABC$ is right angled at B, then the diameter of the incircle of the triangle is

A.
$$\frac{\pi}{4}$$

B. $\frac{\pi}{3}$

C.
$$\frac{}{2}$$

Answer: C

Watch Video Solution

- **81.** If a^2 , b^2 , c^2 are in A.P., then which of the following is also in A.P.?
 - A. sin A, sin B, sin C
 - B. tan A, tan B, tan C
 - C. cot A, cot B, cot C
 - D. none of these

Answer: C

82. If in a
$$\Delta ABC$$
, $\sin^3 A + \sin^3 B + \sin^3 C$

 $=3\sin A.\sin B.\sin C, ext{ then find the value of determinant}$

$$\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$$

A. 0

B.
$$(a+b+c)^3$$

D. none of these

Answer: A

Watch Video Solution

83. If the ex-radii of a triangle are in H.P., then the corresponding sides are

A. A.P.

in

B. G.P.

C. H.P.

D. none of these

Answer: A

Watch Video Solution

84. If I is the incentre of a !ABC , then IA:IB:IC is equal to

 $\mathsf{A.}\cos ec\frac{A}{2} : \cos ec\frac{B}{2} : \cos ec\frac{C}{2}$

 $\mathsf{B.}\ \frac{\sin A}{2} : \frac{\sin B}{2} : \frac{\sin C}{2}$

 $\operatorname{C.}\frac{\operatorname{sec} A}{2} : \frac{\operatorname{sec} B}{2} : \frac{\operatorname{sec} C}{2}$

D. none of these

Answer: A

85. In a $\triangle ABC$, the HM of the ex-radii is equal to

A. 3r

B. 2R

C.R+r

D. none of these

Answer: A

- **86.** In a ΔABC if r_1 : r_2 : $r_3=2$: 4: 6, then a: b: c=
 - A. 3:5:7
 - B. 1:2:3
 - C.5:8:7
 - D. none of these

Answer: D

Watch Video Solution

87. If in a $ABC, \angle A = \pi/3$ and AD is a median , then

A.
$$2AD^2=b^2+c^2+bc$$

$${\rm B.}\,4AD^2 = b^2 + c^2 + bc$$

C.
$$6AD^2 = b^2 + c^2 + bc$$

D. none of these

Answer: B

88. In a
$$\triangle ABC \frac{\cos^2 A}{2} + \frac{\cos^2 B}{2} + \frac{\cos^2 C}{2} =$$

A.
$$2-\frac{r}{R}$$

B.
$$2-rac{r}{2R}$$

$$\mathsf{C.}\,2+\frac{r}{2R}$$

Answer: C

Watch Video Solution

89. The base of a triangle is 80cm and one of the base angles is 60° .If the sum of the lenghts of the other two sides is 90cm, then the length of the shortest side is

A. 15cm

B. 19cm

C. 21cm

D. 17cm

Answer: D

90. In a
$$\Delta ABC$$
 if $r_1=16,\,r_2=48$ and $r_3=24$, then its in-radius ,is

A. 7

B. 8

C. 6

D. none of these

Answer: B

Watch Video Solution

91. In a \triangle ABC if a =26, b= 30 and \cos C = $\frac{63}{65}$, then r_2 =

- A. 84

 - B. 45
 - C. 48

Answer: C

Watch Video Solution

- **92.** In a triangle ABC if sides a = 13, b =14 and c = 15, then reciprocals of
- $r_1,\,r_2,\,r_3$ are in the ratio
 - A. 6:7:8
 - B. 6:7:8
 - C. 8:7:6
 - D. none of these

Answer: C

93. In a ABC , if $\sin Aand\sin B$ are the roots of the equation $c^2x^2-c(a+b)x+ab=0,$ then find $\sin c$

$$\mathsf{B.}\;\frac{1}{2}$$

D. 0

Answer: C

Watch Video Solution

94. If a , b , c denote the sides of a !ABC such that the equation $x^2+\sqrt{2}x+1=0$ and $ax^2+bx+c=0$ have a common root , then C =

A.
$$30^{\circ}$$

B.
$$45^{\circ}$$

C.
$$90^{\circ}$$

D. 60°

Answer: B

Watch Video Solution

- **95.** In a ΔABC if b+c=2a and $\angle A=60^\circ$ then ΔABC is
 - A. equilateral
 - B. right angled
 - C. isosceles
 - D. scalene

Answer: A

96. In a
$$\Delta ABC$$
, if $b=20, c=21$ and $\sin A=\frac{3}{5},$ then the value of a is

C. 14

B. 13

D. 15

Answer: B

- 97. Let A, B and C are the angles of a plain triangle $an\!\left(rac{A}{2}
 ight)=rac{1}{3}, an\!\left(rac{B}{2}
 ight)=rac{2}{3}$.then $an\!\left(rac{C}{2}
 ight)$ is equal to
 - A. 7/9
 - B.2/9
 - C.1/3

D	2	/	3
υ.	4	/	v

Answer: A

Watch Video Solution

Chapter Test

- **1.** If the sides of a triangle are in the ratio $3\!:\!7\!:\!8$, then find $R\!:\!r$
 - A. 2:7
 - B.7:2
 - C. 3:7
 - $\mathsf{D.}\ 7\colon\! 3$

Answer: B

2. The area of a regular polygon of n sides is (where r is inradius, R is circumradius, and a is side of the triangle (a) $\frac{nR^2}{2}\sin\left(\frac{2\pi}{n}\right)$ (b) $nr^2\tan\left(\frac{\pi}{n}\right)$ (c) $\frac{na^2}{4}\frac{\cot\pi}{n}$ (d) $nR^2\tan\left(\frac{\pi}{n}\right)$

A.
$$\frac{1}{2}R^2\sin\!\left(\frac{2\pi}{n}\right)$$

B.
$$\frac{n}{2}R^2\sin\left(\frac{\pi}{n}\right)$$

$$\mathsf{C.}\,\frac{n}{2}R\sin\!\left(\frac{2\pi}{n}\right)$$

D.
$$\frac{nR^2}{2}\sin\left(\frac{2\pi}{n}\right)$$

Answer: D

Watch Video Solution

3. If the angles of a triangle are $30^\circ~{
m and}~45^\circ$, and the included side is $(\sqrt{3}+1)$ cm, then

A.
$$\frac{1}{\sqrt{3}-1}$$

B.
$$\sqrt{3} + 1$$

c.
$$\frac{1}{\sqrt{3}+1}$$

Answer: A

Watch Video Solution

4. In a $\triangle ABC, \angle B=\frac{\pi}{3}$ and $\angle C=\frac{\pi}{4}$ let D divide BC internally in the ratio 1:3, then $\frac{\sin(\angle BAD)}{\sin(\angle CAD)}$ is equal to :

A.
$$\frac{1}{\sqrt{6}}$$

B.
$$\frac{1}{3}$$

$$C. \frac{1}{\sqrt{3}}$$

D.
$$\sqrt{\left(\frac{2}{3}\right)}$$

Answer: A

5. If A is the area and 2s is the sum of the sides of a triangle, then

$$A \leq rac{s^2}{4}$$
 (b) $A \leq rac{s^2}{3\sqrt{3}} \ 2R \sin A \sin B \sin C$ (d) $none of these$

A.
$$A \leq rac{s^2}{3\sqrt{3}}$$

$$\mathtt{B.}\,A \leq \frac{s^2}{2}$$

C.
$$A>rac{s^2}{\sqrt{3}}$$

D. none of these

Answer: A

- **6.** If in a triangle ABC, right angled at B, s-a=3, s-c=2, then the values of a and c are respectively
 - A. 2,3
 - B. 3,4
 - C. 4,3

D. 6,8

Answer: B

Watch Video Solution

7. If the sides of a triangle are a, b and $\sqrt{a^2+ab+b^2}$, then find the greatest angle

A. 60°

B. 90°

C. 120°

D. 135°

Answer: C

8. In a
$$\Delta ABC\sum{(b+c)rac{ an A}{2} anigg(rac{B-C}{2}igg)}=$$

A. a

B.b

C. c

D. 0

Answer: D

Watch Video Solution

9. In
$$\triangle ABC$$
, $\angle A=\frac{\pi}{3}$ and b : $c=2$: 3 , $an heta=\frac{\sqrt{3}}{5}$, $0< heta<\frac{\pi}{2}$

then

A.
$$B=60^{\circ}+0$$

B.
$$C=60^{\circ}+ heta$$

C.
$$C=60^{\circ}- heta$$

D.
$$C=60^{\circ}- heta$$

Watch Video Solution

- **10.** In a ΔABC , AD is the altitude from A. Given $b>c, \angle C=23^{\circ} ~~ ext{and}~~AD=rac{abc}{(b^2-c^2)}$, find $\angle B$.
 - A. 53°
 - B. 113°
 - $\mathsf{C.\,87}^\circ$
 - D. none of these

Answer: B

11. If the angles A, B, C (in that order) of triangle ABC are in arithmetic progression, and $L=\lim_{A o C}rac{\sqrt{3-4\sin A\sin C}}{|A-C|}$ then find the value of $100L^{2}$.

B. 2

C. 3

D. 4

Answer: A

- 12. If the radius of the incircle of a triangle withits sides 5k, 6k and 5k is 6, then k is equal to
 - A. 3
 - B. 4

C. 5

D. 6

Answer: B

Watch Video Solution

13. Two sides of a triangle are $2\sqrt{2}$ and $2\sqrt{3}cm$ and the angle opposite to the shorter side of the two is $\frac{\pi}{4}$. The largest possible length of the third side is

A.
$$(\sqrt{6}+\sqrt{2})cm$$

B.
$$\left(\sqrt{6}+\sqrt{2}\right)cm$$

C.
$$\left(\sqrt{6}-\sqrt{2}\right)cm$$

D. none of these

Answer: A

14. In a riangle ABC, a=13cm, b=12 and c=5cm The distance of A

from BC is

A.
$$\frac{144}{13}$$

$$\mathsf{B.}\;\frac{65}{12}$$

c.
$$\frac{60}{13}$$

Answer: C

D. $\frac{25}{13}$

Watch Video Solution

15. In a $riangle ABC, B=rac{\pi}{8}, C=rac{5\pi}{8}.$ The altitude from A to the side BC, is

A.
$$\frac{a}{2}$$

C.
$$\frac{1}{2}(b+c)$$

Answer: A

Watch Video Solution

16.

In

$$\Delta ABC, A=rac{2\pi}{3}, b-c=3\sqrt{3}cm$$
 and $\ \, {
m area\,of}\ \, \Delta ABC=rac{9\sqrt{3}}{2}cm^2,$ then BC =

A.
$$6\sqrt{3}$$

B. 9cm

C. 18cm

D. 12cm

Answer: B

A.
$$\cos \theta$$

17. In ΔABC if $a=(b-c){
m sec}\, heta$ then ${2\sqrt{bc}\over b-c}{
m sin}\Big({A\over 2}\Big)=$

18. In a ΔABC , $(a+b+c)(b+c-a)=\lambda bc$. (where symbols have

their usual meaning) & $\lambda \in I$, then greatest value of λ is

B. $\cot \theta$

C.
$$\tan \theta$$

D. $\sin \theta$

Answer: C

- - A. $\lambda < 0$
 - B. $\lambda > 4$
 - $C.\lambda > 0$
 - $D.0 < \lambda < 4$

Answer: D

Watch Video Solution

- **19.** If in ΔABC , a=2b and A=3B, then A is equal to
 - A. 90°
 - B. 60°
 - C. 30°
 - D. 45°

Answer: A

Watch Video Solution

20. Let the angles A,BandC of triangle ABC be in AP and let $b\!:\!c$ be $\sqrt{3}\!:\!\sqrt{2}$. Find angle A

- A. 75°
- B. 45°
- C. 60°
- D. 15°

Answer: A

Watch Video Solution

- 21. In a triangle ABC, AD, BE and CF are the altitudes and R is the circum radius, then the radius of the circel DEF is
 - A. $\frac{R}{2}$
 - B. 2R
 - C.R
 - $\mathrm{D.}\ \frac{3}{2}R$

Answer: A

22. If in a
$$\triangle ABC = \frac{a}{\cos A} = \frac{b}{\cos B}$$
, then

$$\mathsf{B.} \sin^2 A + \sin^2 B = \sin^2 C$$

D. none of these

Answer: C

Watch Video Solution

23. In a \triangle ABC, $\frac{s}{R}=$

A. sin A+sin B+ sin C

B. cos A +cos B+ cos C

C. 2

D. none of these

Answer: A

Watch Video Solution

24. If in a $\triangle ABC$, $A=rac{\pi}{3}$ and AD is the median, then

A.
$$2AD^2 = b^2 + c^2 + bc$$

$${\tt B.}\,4AD^2 = b^2 + c^2 + bc$$

$$\mathsf{C.}\,6AD^2 = b^2 + c^2 + bc$$

D. none of these

Answer: B

25.

Prove

that

 $aig(b^2+c^2ig)\cos A+big(c^2+a^2ig)\cos B+cig(a^2+b^2ig)\cos C=3abc$

A. $3abc^2$

B. $3a^2bc$

C. 3abc

D. $3ab^2C$

Answer: C

Watch Video Solution

26. The angle of a right-angled triangle are in AP. Then, find the ratio of the in-radius and the perimeter.

A.
$$\left(2-\sqrt{3}\right)$$
: $2\sqrt{3}$

B.
$$1$$
: $8\sqrt{3}(2+\sqrt{3})$

C.
$$\left(2+\sqrt{3}\right)$$
: $4\sqrt{3}$

D. none of these

Answer: A

Watch Video Solution

27. Find the sum of the radii of the circles, which are respectively inscribed and circumscribed about the a regular polygon of n sides.

A.
$$\frac{a}{4}\cot\frac{\pi}{2\pi}$$

B.
$$a\cot\frac{\pi}{n}$$

C.
$$\frac{a}{2}$$
cot $\frac{\pi}{2\pi}$

D.
$$a\cot\frac{\pi}{2\pi}$$

Answer: D

28. If
$$0 < x < \frac{\pi}{2}$$
 then

A.
$$\frac{\pi}{3}$$

$$\mathsf{B.}\;\frac{\pi}{2}$$

D.
$$\frac{\pi}{2} - x$$

Watch Video Solution

x > 0, y > 0. The triangle is

29. The sides of a triangle are 3x+4y, 4x+3y and 5x+5y units, where

A. right angled

B. obtuse angled

C. equilateral

D. none of these

Watch Video Solution

30. The perimeter of a triangle is 16 cm. One of the sides is of length 6 cm.

If the area of thetriangle is 12 sq. cm, then the triangle is

- A. right angled
- B. isoscles
- C. equilateral
- D. scalene

Answer: B

D. $\frac{\pi}{3}$

A. $\frac{\pi}{2}$

B. $\frac{\pi}{4}$

C. $\frac{2\pi}{3}$

Answer: D

Watch Video Solution

A. Δ

C. 3Δ

Answer: D

33. Prove that
$$rac{\cos C + \cos A}{c+a} + rac{\cos B}{b} = rac{1}{b}$$

A.
$$\frac{1}{a}$$

$$\mathsf{B.}\; \frac{1}{b}$$

c.
$$\frac{1}{c}$$

D.
$$\frac{c+a}{b}$$

Watch Video Solution

34. If the sides of triangle a, b, c be in A.P. then $an. \ \frac{A}{2} + an. \ \frac{C}{2}$ is :

A.
$$1/4$$

Watch Video Solution

- 35. In a triangle ABC, cos A+cos B+cos C=
 - A. $1+rac{r}{R}$
 - ${\tt B.}\,1-\frac{r}{R}$
 - $\mathsf{C.}\,1-\frac{R}{r}$
 - D. $1+rac{R}{r}$

Answer: A

$$2 \cot B \cot C = 1.$$

Prove

that

that

 $\text{if} \quad A+B+C=\pi, \ \ \text{and} \ \ \cos A=\cos B\cos C, \quad \ \text{show}$

A. 2

36.

- B. 3
- C.1/2
- D. 5

Answer: C

 $aig(b^2+c^2ig)\cos A+big(c^2+a^2ig)\cos B+cig(a^2+b^2ig)\cos C=3abc$

37.

- A. abc
- B. 2abc
- C. 3abc

Answer: C

Watch Video Solution

38. The sides of a triangle are $x^2+x+1,\,2x+1,\,andx^2-1$. Prove that the greatest angle is 120°

A. 120°

B. 60°

C. 40°

D. 30°

Answer: A

39. In a
$$riangle ABC$$
, if $C=60^{\circ}$, then $\dfrac{a}{b+c}+\dfrac{b}{c+a}=$

- A. 2
- B. 1
- C. 4
- D. none of these

- **40.** In a $\ \triangle \ ABC$, if a,c,b are in A.P. then the value of $\dfrac{a\cos B b\cos A}{a-b}$, is
 - A. 3
 - B. 2
 - C. 1
 - D. none of these

Watch Video Solution

41. If a ΔABC is right angled at B, then the diameter of the incircle of the triangle is

- A. c+a-b
- B. 2(c+a-b)
- C. c+a-2b
- D. c+a+2b

Answer: A

Watch Video Solution

42. The angle of a right-angled triangle are in AP. Then , find the ratio of the in-radius and the perimeter.

A.
$$\left(2+\sqrt{3}\right), 2\sqrt{3}$$

B.
$$\left(2+\sqrt{3}
ight),\sqrt{3}$$

C.
$$(2 - \sqrt{3}) : 2\sqrt{3}$$

D. $(2-\sqrt{3}):4\sqrt{3}$

Answer: C

Watch Video Solution

43. The angle of a triangle are in the ratio 1:2:7, prove that the ratio of the greatest side to the least side is $\left(\sqrt{5}+1\right)$: $\left(\sqrt{5}-1\right)$.

A.
$$\left(\sqrt{5}+1\right):\left(\sqrt{5}-1\right)$$

B.
$$\left(\sqrt{5}-1\right)$$
: $\left(\sqrt{5}+1\right)$

C.
$$\left(\sqrt{5}+2\right)$$
: $\left(\sqrt{5}-2\right)$

D.
$$\left(\sqrt{5}-2\right)$$
 : $\left(\sqrt{5}+2\right)$

Answer: B

44. In
$$\triangle ABC$$
, let $a=5, b=4$ and $\cos\left(A-B=\frac{31}{32}\right)$, then which of the following statement (s) is (are) correct?

[Note All symbols used have usuall meaning in a triangle]

A.
$$1/4$$

B.1/8

C.1/6

 $\mathsf{D}.\,1/2$

Answer: B

45. In a
$$riangle ABC$$
 if ${
m c}=(a+b){
m sin}\, heta$ and ${
m cos}\, heta=rac{k\sqrt{a}b}{a+b},$ then $k=$ A. $2\cosrac{C}{2}$

B. $2\cos\frac{B}{2}$

C. $2\cos\frac{A}{2}$

D. $\cos \frac{C}{2}$

Watch Video Solution

46. In $\triangle ABC$, if $\frac{s-a}{\Lambda}=\frac{1}{8}$, $\frac{s-b}{\Lambda}=\frac{1}{12}$ and $\frac{s-c}{\Lambda}=\frac{1}{24}$, then

Answer: A

b =

A. 16

B. 20

C. 24

Answer: A

47. In a triangle ABC if $2a = \sqrt{3}b + c$, then possible relation is

A.
$$c^2=a^2+b^2-ab$$

B.
$$a^2 = b^2 + c^2$$

C.
$$b^2=a^2+c^2-\sqrt{3}ac$$

D. none of these

Answer: B

- **48.** If in a triangle ABC, $a\cos^2\left(\frac{C}{2}\right)+c\cos^2\left(\frac{A}{2}\right)=\frac{3b}{2}$, then the sides a,b,andc are in A.P. b. are in G.P. c. are in H.P. d. satisfy a+b=
 - A. A.P.
 - B. G.P.
 - C. H.P.

D. none of these

Answer: A

Watch Video Solution

- 49. The sides of a right angled triangle are in A.P., then they are in the ratio:
 - A. 3:4:5
 - B. 4:5:6
 - C. 3:4:6
 - D. none of these

Answer: A

50. In a triangle $ABC, B=90^\circ$ then the value of $an\Bigl(rac{A}{2}\Bigr)=$

A.
$$\sqrt{rac{b+c}{b-c}}$$

B.
$$\sqrt{rac{b-c}{b+c}}$$

$$\mathsf{C.}\; \sqrt{\frac{a+c}{a-c}}$$

D.
$$\sqrt{rac{a-c}{a+c}}$$

Answer: B

Watch Video Solution

51. In a $\triangle ABC$, if $B=90^\circ$, then the value of $\tan \frac{A}{2}$ in terms of the sides, is

A. xyz

B. x^2yz

 $\mathsf{C.}\, x^2 y^2 z^2$

D. none of these

Answer: D

Watch Video Solution

52. In a
$$\Delta ABC$$
 ,a =5 , b= 4 , and $an\!\left(rac{C}{2}
ight) = \sqrt{rac{7}{9}}$, then c =

A.
$$\sqrt{6}$$

C. 6

B. $\sqrt{5}$

D. 5

Answer: C

53. In a
$$\triangle$$
 ABC , if $C=60^{\circ}$, then $\frac{a}{b+c}+\frac{b}{c+a}=$

A. 2

B. 4

C. 3

D. 1

Answer: D

Watch Video Solution

54. If p_1, p_2, p_3 are altitudes of a triangle ABC from the vertices A,B,C and

$$riangle$$
 the area of the triangle, then $p_1^{-2}+p_2^{-2}+p_3^{-2}$ is equal to

A.
$$rac{\cot A + \cos B + \cot C}{\Delta}$$

B.
$$\frac{\Delta}{\cot A + \cos B + \cot C}$$

C.
$$\Delta(\cot A + \cos B + \cot C)$$

D. none of these

Answer: A

55. Show that
$$rac{r_1}{bc}+rac{r_2}{ca}+rac{r_3}{ab}=2R-r$$

A.
$$\dfrac{1}{2R}-\dfrac{1}{r}$$

B. 2R-r

C. r-2R

$$\text{D.}\,\frac{1}{r}-\frac{1}{2R}$$

Answer: D

