© 'doubtnut

MATHS

SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

Illustration

1. Let \vec{a}, \vec{b} and \vec{c} be three vectors. Then scalar triple product $[\vec{a} \vec{b} \vec{c}]$ is equal to
A. $\left[\begin{array}{lll}\vec{b} & \vec{a} & \vec{c}\end{array}\right]$
B. $[\vec{a} \vec{c} \vec{b} \vec{b}]$
C. $\left[\begin{array}{llll}\vec{c} & \vec{b} & \vec{a}\end{array}\right]$
D. $[\vec{b} \vec{c} \vec{c} \vec{a}]$

D Watch Video Solution

2. If $\quad[\vec{a} \vec{b} \vec{c}]=1 \quad$ then value of
$\frac{\vec{a} \cdot \vec{b} \times \vec{c}}{\vec{c} \times \vec{a} \cdot \vec{b}}+\frac{\vec{b} \cdot \vec{c} \times \vec{a}}{\vec{a} \times \vec{b} \cdot \vec{c}}+\frac{\vec{c} \cdot \vec{a} \times \vec{b}}{\vec{b} \times \vec{c} \cdot \vec{a}}$ is
A. 3
B. 1
C. -1
D. None of these

Answer: A

- Watch Video Solution

3. If $\vec{u}, \vec{v}, \vec{w}$ are three vectors such that $[\vec{u} \vec{v} \vec{w}]=1$, then $3[\vec{u} \vec{v} \vec{w}]-[\vec{v} \vec{w} \vec{u}]-2[\vec{w} \vec{v} \vec{u}]=$
A. 0
B. 2
C. 3
D. 4

Answer: D

- Watch Video Solution

4. If $\vec{r}=x(\vec{a} \times \vec{b})+y(\vec{b} \times \vec{c})+z(\vec{c} \times \vec{a})$

Such that $x+y+z \neq 0$ and $\vec{r} \cdot(\vec{a}+\vec{b}+\vec{c})=x+y+z$, then $[\vec{a} \vec{b} \vec{c}]=$
A. 0
B. 1
C. -1
D. 2

Answer: B

- Watch Video Solution

5. If $\quad \vec{\alpha}=x(\vec{a} \times \vec{b})+y(\vec{b} \times \vec{c})+z(\vec{c} \times \vec{a}) \quad$ and $[\vec{a} \vec{b} \vec{c}]=\frac{1}{8}$, then $x+y+z=$
A. $8 \vec{\alpha} \cdot(\vec{a}+\vec{b}+\vec{c})$
B. $\vec{\alpha} \cdot(\vec{a}+\vec{b}+\vec{c})$
C. $8(\vec{a}+\vec{b}+\vec{c})$
D. None of these

Answer: A

6. If $\vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}, \vec{b}=\hat{i}-2 \hat{j}+\hat{k}$ and $\vec{c}=-3 \hat{i}+\hat{j}+2 \hat{k}$, then $[\vec{a} \vec{b} \vec{c}]=$
A. 30
B. -30
C. 15
D. -15

Answer: B

- Watch Video Solution

7. $\quad \vec{a}=\hat{i}-\hat{k}, \vec{b}=x \hat{i}+\hat{j}+(1-x) \hat{k} \quad$ and
$\vec{c}=y \hat{i}+x \hat{j}+(1+x-y) \hat{k}$, then $[\vec{a} \vec{b} \vec{c}]$ depends on
A. neither x nor y
B. both x and y
C. only x
D. only y

Answer: A

- Watch Video Solution

8. Volume of the parallelopiped with its edges represented by the vectors $\hat{i}+\hat{j}, \hat{i}+2 \hat{j}$ and $\hat{i}+\hat{j}+\pi \hat{k}$, is
A. π
B. $\pi / 2$
C. $\pi / 3$
D. $\pi / 4$

Answer: A

- Watch Video Solution

9. Let $\overrightarrow{P R}=3 \hat{i}+\hat{j}-2 \hat{k}$ and $\overrightarrow{S Q}=\hat{i}-3 \hat{j}-4 \hat{k}$ determine diagonals of a parallelogram PQRS. And $\overrightarrow{P T}=\hat{i}+2 \hat{j}+3 \hat{k}$ be onther vector. Then the volume of the parallelepiped determined by the vectors $\overrightarrow{P T}, \overrightarrow{P Q}$ and $\overrightarrow{P S}$ is
A. 5
B. 20
C. 10
D. 30

Answer: A

- Watch Video Solution

10. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors and λ is a real number, then the vectors $\vec{a}+2 \vec{b}+3 \vec{c}, \lambda \vec{b}+4 \vec{c}$ and $(2 \lambda-1) \vec{c}$ are non coplanar for A. no value of λ
B. all except one value of λ
C. all except two values of λ
D. all values of λ

Answer: C

- Watch Video Solution

11. The points
with
position
vectors
$\alpha \hat{i}+\hat{j}+\hat{k}, \hat{i}-\hat{j}-\hat{k}, \hat{i}+2 \hat{j}-\hat{k}, \hat{i}+\hat{j}+\beta \hat{k}$ are coplanar if
A. $(1-\alpha)(1+\beta)=0$
B. $(1-\alpha)(1-\beta)=0$
C. $(1+\alpha)(1+\beta)=0$
D. $(1+\alpha)(1-\beta)=0$

Answer: A

12. The number of distinct real values of λ for which the vectors $\vec{a}=\lambda^{3} \hat{i}+\hat{k}, \vec{b}=\hat{i}-\lambda^{3} \hat{j}$ and $\vec{c}=\hat{i}+(2 \lambda-\sin \lambda) \hat{j}-\lambda \hat{k}$ are coplanar is
A. 0
B. 1
C. 1
D. 3

Answer: B

Watch Video Solution

13. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}=x \hat{i}+(x-2) \hat{j}-\hat{k}$. If the vector \vec{c} lies in the plane of \vec{a} and \vec{b}, then x is equal to:
A. -4
B. -2
C. 0
D. 1

Answer: B

- Watch Video Solution

14. If u, v and w are non-coplanar vectors and p, q are real numbers, then the equality [3u pvpw]-[pv w qu]-[2w qv pu]=0 holds for
A. exactly one value of (p, q)
B. exactly two values of (p, q)
C. more than two but not all values of (p, q)
D. all values of (p, q)

Answer: A

15. The value of $\vec{a} \cdot(\vec{b}+\vec{c}) \times(\vec{a}+\vec{b}+\vec{c})$, is
A. $2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
B. $[\vec{a} \vec{b} \vec{c}]$
C. 0
D. None of these

Answer: C

- Watch Video Solution

16. The vectors

$$
\begin{aligned}
& \vec{a}=x \hat{i}+(x+1) \hat{j}+(x+2) \hat{k} \\
& \vec{b}=(x+3) \hat{i}+(x+4) \hat{j}+(x+5) \hat{k} \\
& \text { and } \vec{c}=(x+6) \hat{i}+(x+7) \hat{j}+(x+8) \hat{k} \text { are coplanar for }
\end{aligned}
$$

A. all values of x
B. $x<0$ only
C. $x>0$ only
D. None of these

Answer: A

- Watch Video Solution

17. If a, b and c are non-coplanar vectors and λ is a real number, then $\left[\lambda(a+b)\left|\lambda^{2} b\right| \lambda c \mid \lambda c\right]=\left[\begin{array}{lll}a & a+c & b\end{array}\right]$ fforr
A. exactly two values of λ
B. exactly two values of λ
C. no value of λ
D. exacty one value of λ

Answer: C

18. The number of real values of a for which the vectors $\hat{i}+2 \hat{j}+\hat{k}, a \hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+a \hat{k}$ are coplanar is
A. 1
B. 2
C. 3
D. 0

Answer:

- Watch Video Solution

19. The number of distinct real values of λ, for which the vectors $-\lambda^{2} \hat{i}+\hat{j}+\hat{k}, \hat{i}-\lambda^{2} \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\lambda^{2} \hat{k}$ are coplanar, is
A. 0
B. 1
C. 2
D. 3

Answer: C

- Watch Video Solution

20. If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, then $\left[\begin{array}{lll}2 \vec{a}-3 \vec{b} & 7 \vec{b}-9 \vec{c} & 12 \vec{c}-23 \vec{a}\end{array}\right]$
A. 0
B. $\frac{1}{2}$
C. 24
D. 32

Answer: A

21. If the vectors $\vec{a}, \vec{b}, \vec{c}$ are non -coplanar and l, m, n are distinct scalars such that
$[l \vec{a}+m \vec{b}+n \vec{c} l \vec{b}+m \vec{c}+n \vec{a} l \vec{c}+m \vec{a}+n \vec{b}]=0$ then
A. $l m+m n+n l=0$
B. $l+m+n=0$
C. $l^{2}+m^{2}+n^{2}=0$
D. $l^{3}+m^{3}+n^{3}=0$

Answer: B

- Watch Video Solution

22. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ the value of $\left[\begin{array}{ll}\vec{a}+\vec{b} & \vec{b}+\vec{c} \\ c\end{array}+\vec{a}\right]$ is
A. 0
B. $2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
C. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
D. $-\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$

Answer: B

- Watch Video Solution

23. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ the value of $\left[\begin{array}{ccc}\vec{a}-\vec{b} & \vec{b}-\vec{c} & \vec{c}-\vec{a}\end{array}\right]$, is
A. 0
B. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
C. $-\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
D. $-2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$

Answer: A

24. If \vec{u}, \vec{v} and \vec{w} are three non coplanar vectors then $(\vec{u}+\vec{v}-\vec{w}) \cdot(\vec{u}-\vec{v}) \times(\vec{v}-\vec{w})$ equals (A) $\vec{u} \cdot(\vec{v} \times \vec{w})$
$\vec{u} \cdot \vec{w} \times \vec{v}$ (C) $2 \vec{u} \cdot(\vec{v} \times \vec{w})$ (D) 0
A. $\vec{u} \cdot(\vec{v} \times \vec{w})$
B. $\vec{u} \cdot(\vec{w} \times \vec{v})$
C. $3 \vec{u} \cdot(\vec{c} \times \vec{w})$
D. 0

Answer: A

- Watch Video Solution

25. If $\vec{a}, \vec{b}, \vec{c}$ are unit coplanar vectors then the scalar triple product $[2 \vec{a}-\vec{b}, 2 \vec{b}-c, \overrightarrow{2} c-\vec{a}]$ is equal to (A) 0 (B) 1 (C) $-\sqrt{3}$ (D) $\sqrt{3}$
A. 0
B. 1
C. $-\sqrt{3}$
D. $\sqrt{3}$

Answer: A

- Watch Video Solution

26. Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero non coplanar vectors and \vec{p}, \vec{q} and \vec{r} be three vectors given by $\vec{p}=\vec{a}+\vec{b}-2 \vec{c}, \vec{q}=3 \vec{a}-2 \vec{b}+\vec{c}$ and $\vec{r}=\vec{a}-4 \vec{b}+2 \vec{c}$

If the volume of the parallelopiped determined by \vec{a}, \vec{b} and \vec{c} is V_{1} and that of the parallelopiped determined by \vec{p}, \vec{q} and \vec{r} is V_{2}, then $V_{2}: V_{1}=$
A. 3:1
B. 7:1
C. 11: 1
D. $15: 1$

- Watch Video Solution

27. \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors and \vec{r}. Is any arbitrary vector.

Prove that
$[\vec{b} \vec{c} \vec{r}] \vec{a}+[\vec{c} \vec{a} \vec{r}] \vec{b}+[\vec{a} \vec{b} \vec{r}] \vec{c}=[\vec{a} \vec{b} \vec{c}] \vec{r}$.
A. $2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{r}$
B. $3\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{r}$
C. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
D. None of these

Answer: C

- Watch Video Solution

28. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vetors represented by non-current edges of a parallelopiped of volume 4 units, then the value of

$$
(\vec{a}+\vec{b}) \cdot(\vec{b} \times \vec{c})+(\vec{b}+\vec{c}) \cdot(\vec{c} \times \vec{a})+(\vec{c}+\vec{a}) \cdot(\vec{a} \times \vec{b}
$$

, is
A. 12
B. 4
C. ± 12
D. 0

Answer: C

D Watch Video Solution

29. The three concurrent edges of a parallelopiped represent the vectors $\vec{a}, \vec{b}, \vec{c}$ such that $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=V$. Then the volume of the parallelopiped whose three concurrent edges are the three diagonals of three faces of the given parallelopiped is
A. 2 V
B. 3 V
C. V
D. 6 V

Answer: A

- Watch Video Solution

30. The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors $\widehat{a}, \hat{b}, \hat{c}$ such that $\widehat{a} \cdot \hat{b}=\hat{b} \cdot \hat{c}=\hat{c} \cdot \widehat{a}=\frac{1}{2}$. Then, the volume of the parallelopiped is
A. $\frac{1}{\sqrt{2}}$
B. $\frac{1}{2 \sqrt{2}}$
C. $\frac{\sqrt{3}}{2}$
D. $\frac{1}{\sqrt{3}}$

- Watch Video Solution

31. Let \vec{a}, \vec{b}, and \vec{c} be three non-coplanar ubit vectors such the angle between every pair of them is $\frac{\pi}{3}$. if $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}=p \vec{a}+q \vec{b}+r \vec{c}$, where p, q and r are scalars, then the value of $\frac{p^{2}+2 q^{2}+r^{2}}{q^{2}}$ is
A. 2
B. 4
C. 6
D. 8

Answer: B

- Watch Video Solution

32. The volume of the tetrahedron whose vertices are the points $\hat{i}, \hat{i}+\hat{j}, \hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}+3 \hat{j}+\lambda \hat{k}$ is $1 / 6$ units, Then the values of λ
A. does not exist
B. is 7
C. is -1
D. is any real value

Answer: D

- Watch Video Solution

33. Let G_{1}, G_{2} and G_{3} be the centroids of the triangular faces OBC,OCA and OAB , respectively, of a tetrahedron OABC . If V_{1} denotes the volume of the tetrahedron OABC and V_{2} that of the parallelepiped with $O G_{1}, O G_{2}$ and $O G_{3}$ as three concurrent edges, then prove that $4 V_{1}=9 V_{2}$.
A. $4 V_{1}=9 V_{2}$
B. $9 V_{1}=4 V_{2}$
C. $3 V_{1}=2 V_{2}$
D. $3 V_{2}=2 V_{1}$

Answer: A

- Watch Video Solution

34. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ the value of $\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})+\vec{c} \times(\vec{a} \times \vec{b})$, is
A. $\overrightarrow{0}$
B. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{a}$
c. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{b}$
D. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{c}$

(D) Watch Video Solution

35. Let $\vec{a}, \vec{b}, \vec{c}$ be any three vectors.Then vectors
$\vec{u}=\vec{a} \times(\vec{b} \times \vec{c}), \vec{v}=\vec{b} \times(\vec{c} \times \vec{a})$
$\vec{w}=\vec{c} \times(\vec{a} \times \vec{b})$ are such that they are
A. collinear
B. non-coplanar
C. coplanar
D. none of these

Answer: C

- Watch Video Solution

36.

Prove
that
$\hat{i} \times(\vec{a} \times \vec{i})+\hat{j} \times(\vec{a} \times \vec{j})+\hat{k} \times(\vec{a} \times \vec{k})=2 \vec{a}$
A. \vec{a}
B. $2 \vec{a}$
C. $3 \vec{a}$
D. $\overrightarrow{0}$

Answer: B

- Watch Video Solution

37. let \vec{a}, \vec{b} and \vec{c} be three unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$. If \vec{b} is not parallel to \vec{c}, then the angle between \vec{a} and \vec{b} is:
A. $\frac{3 \pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{2 \pi}{3}$
D. $\frac{5 \pi}{6}$

- Watch Video Solution

38. If $\vec{a} \times(\vec{b} \times \vec{c})=\vec{b} \times(\vec{c} \times \vec{a})$ and $\left[\begin{array}{ll}\vec{b} & \vec{b} \\ c\end{array}\right] \neq 0$ then $\vec{a} \times(\vec{b} \times \vec{c})$ is equal to
A. $\overrightarrow{0}$
B. $\vec{a} \times \vec{b}$
C. $\vec{b} \times \vec{c}$
D. $\vec{c} \times \vec{a}$

Answer: A

- Watch Video Solution

39. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors, then
$\left[\begin{array}{llll}\vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a}\end{array}\right]=$
A. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
B. $2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
C. $3\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
D. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}$

Answer: D

- Watch Video Solution

40. If $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]=\lambda[\vec{a} \vec{b} \vec{c}]^{2}$, then λ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: B

41. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar non null vectors such that $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=2$ then $\left\{\left[\begin{array}{lll}\vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a}\end{array}\right]\right\}^{2}=$
A. 4
B. 16
C. 8
D. none of these

Answer: B

- Watch Video Solution

42. If $(a \times b) \times c=a \times(b \times c)$, where a, b and c are any three vactors such that $a \cdot b \neq 0, b \cdot c \neq 0$, then a and c are
A. inclined at angle $\frac{\pi}{3}$ between them
B. inclined at angle of $\frac{\pi}{6}$ between them
C. perpendicular
D. parallel

Answer: D

- Watch Video Solution

43. \vec{a}, \vec{b} and \vec{c} are unimodular and coplanar. A unit vector \vec{d} is perpendicualt to them, $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\frac{1}{6} \hat{i}-\frac{1}{3} \hat{j}+\frac{1}{3} \hat{k}$, and the angle between \vec{a} and $\vec{b} i s 30^{\circ}$ then \vec{c} is
A. $\frac{1}{3}(-2 \hat{i}-2 \hat{j} \hat{k})$
B. $\pm \frac{1}{3}(-\hat{i}-2 \hat{j}+2 \hat{k})$
C. $\frac{1}{3}(2 \hat{i}+\hat{j}-\hat{k})$
D. $\pm \frac{1}{3}(-\hat{i}+2 \hat{j}-2 \hat{k})$

Answer: D

44. Let \vec{x}, \vec{y} and \vec{z} be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$ if \vec{a} is a non-zero vector perpendicular to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is a nonzero vector perpendicular to \vec{y} and $\vec{z} \times \vec{x}$, then
A. $\vec{b}=(\vec{b} \cdot \vec{z})(\vec{z}-\vec{x})$
B. $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{y}-\vec{z})$
c. $\vec{a} \cdot \vec{b}=-(\vec{a} \cdot \vec{y})(\vec{b} \cdot \vec{z})$
D. $\vec{a}=(\vec{a} \cdot \vec{y})(\vec{z}-\vec{y})$

Answer: A::B::C

- Watch Video Solution

45. If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}, \vec{b}, \vec{c}$, form a reciprocal system of vectors then
$\vec{a} \cdot \vec{a}^{\prime}+\vec{b} \cdot \vec{b}^{\prime}+\vec{c} \cdot \vec{c}^{\prime}=$
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

46. If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}, \vec{b}, \vec{c}$, form a reciprocal system of vectors then
$\vec{a} \cdot \vec{a}^{\prime}+\vec{b} \cdot \vec{b},+\vec{c} \cdot \vec{c},=$
A. $\overrightarrow{0}$
B. $\vec{a} \times b$
C. $\vec{b} \times \vec{c}$
D. $\vec{c} \times \vec{a}$

- Watch Video Solution

47. If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{a}, \vec{b}, \vec{c}$, form a reciprocal system of vectors then $[\vec{a}, \vec{b}, \vec{c}]=$,
A. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
B. $\frac{1}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}$
C. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}$
D. $\frac{-1}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}$

Answer: B

48. If $\vec{a}=-\hat{i}+\hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+0 \hat{j}+\hat{k}$ then find vector \vec{c} satisfying the following conditions, (i) that it is coplaner with \vec{a} and \vec{b},
(ii) that it is \perp to \vec{b} and (iii) that $\vec{a} \cdot \vec{c}=7$.
A. $-3 \hat{i}+5 \hat{j}+6 \hat{k}$
B. $\frac{1}{2}(-3 \hat{i}+5 \hat{j}+6 \hat{k})$
C. $3 \hat{i}-5 \hat{j}+6 \hat{k}$
D. $\frac{1}{2}(3 \hat{i}+5 \hat{j}-6 \hat{k})$

Answer: B

- Watch Video Solution

49. A solution of the vector equation $\vec{r} \times \vec{b}=\vec{a} \times \vec{b}$, where \vec{a}, \vec{b} are two given vectors is
where λ is a parameter.
A. $\vec{r}=\lambda \vec{b}$
B. $\vec{r}=\vec{a}+\lambda \vec{b}$
C. $\vec{r}=\vec{b}+\lambda \vec{a}$
D. $\vec{r}=\lambda \vec{a}$

Answer: B

- Watch Video Solution

50. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors, then a vector \vec{r} satisfying $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=1$, is
A. $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}$
B. $\frac{1}{\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]}\{\vec{a} \times \vec{b}+\vec{b} \times \overrightarrow{+} \vec{c} \times \vec{a}\}$
C. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]\{\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\overrightarrow{\times} \vec{a}\}$
D. none of these

Section I Solved Mcqs

1. Which of the following expressions are meaningful? a. $\vec{u} \cdot(\vec{v} \times \vec{w})$ b.
$\vec{u} \cdot \vec{v} \cdot \vec{w}$ c. $(\vec{u} \vec{v}) \cdot \vec{w}$ d. $\vec{u} \times(\vec{v} \cdot \vec{w})$
A. $\vec{u} \cdot(\vec{v} \times \vec{w})$
B. $(\vec{u} \cdot \vec{v}) \cdot \vec{w}$
c. $(\vec{u} \cdot \vec{v}) \vec{w}$
D. $\vec{u} \times(\vec{v} \cdot \vec{w})$

Answer: A: C

- Watch Video Solution

2. For three vectors, \vec{u}, \vec{v} and \vec{w} which of the following expressions is not equal to any of the remaining three ?
A. $\vec{u} \cdot(\vec{v} \times \vec{w})$
B. $(\vec{u} \times \vec{w}) \cdot \vec{u}$
C. $\vec{v} \cdot(\vec{u} \times \vec{w})$
D. $(\vec{u} \times \vec{v}) \cdot \vec{w}$

Answer: C

- Watch Video Solution

3. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\vec{c}=\hat{i}+\alpha \hat{j}+\beta \hat{k}$ are linearly dependent vectors and $|\vec{c}|=\sqrt{3}$ then:
A. $\alpha=1, \beta=-1$
B. $\alpha=1, \beta= \pm 1$
C. $\alpha=-1, \beta= \pm 1$
D. $\alpha= \pm 1, \beta=1$
4. The volume of the tetrahedron whose vertices are the points with positon vectors $\hat{i}-6 \hat{j}+10 \hat{k},-\hat{i}-3 \hat{j}+7 \hat{k}, 5 \hat{i}-\hat{j}+\lambda \hat{k} \quad$ and $7 \hat{i}-4 \hat{j}+7 \hat{k}$ is 11 cubic units if the value of λ is
A. $-1,7$
B. 1, 7
C. -7
D. $-1,-7$

Answer: B

- Watch Video Solution

5. If a vector \vec{a} is expressed as the sum of two vectors $\vec{\alpha}$ and $\vec{\beta}$ along and perpendicular to a given vector \vec{b} then $\vec{\beta}$ is equal to
A. $\frac{(\vec{a} \times \vec{b}) \times \vec{b}}{|\vec{b}|^{2}}$
B. $\vec{b} \times(\vec{a} \times \vec{b})$

C. $\frac{\vec{b} \times(\vec{a} \times \vec{b})}{|\vec{b}|}$
D. $\left\{\frac{\vec{a} \cdot \vec{b}}{(|\vec{b}|)^{2}}\right\} \vec{b}$

Answer: B

- Watch Video Solution

6. \vec{a} and \vec{b} are two given vectors. With theses vectors as adjacent sides, a parallelogram is construted. The vector which is the altitude of the parallelogram and which is perpendicular to \vec{a} is
A. $\left\{\frac{(\vec{a} \cdot \vec{b})}{|\vec{a}|^{2}}\right\} \vec{a}-\vec{b}$
B. $\frac{1}{|\vec{a}|^{2}}\{(\vec{a} \cdot \vec{b}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{b}\}$
$\vec{a} \times(\vec{a} \times \vec{b})$
C.

$$
|\vec{a}|^{2}
$$

D. $\frac{\vec{a} \times(\vec{b} \times \vec{a})}{|\vec{b}|^{2}}$

Answer: D

- Watch Video Solution

7. The angles of a triangle, two of whose sides are respresented by vectors $\sqrt{3}(\widehat{a} \times \vec{b})$ and $\hat{b}-(\widehat{a}$. Vecb $) \widehat{a}$ where \vec{b} is a non - zero vector and \vec{a} is a unit vector in the direction of \vec{a}. Are
A. $\pi / 4, \pi / 4, \pi / 2$
B. $\pi / 4, \pi / 3, \pi / 12$
C. $\pi / 6, \pi / 3, \pi / 2$
D. none of these

Answer: C

- Watch Video Solution

8. The three vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume: \qquad
A. $\frac{1}{3}$
B. 4
C. $\frac{3 \sqrt{3}}{4}$
D. $\frac{4}{3 \sqrt{3}}$

Answer: D

9. Let $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$, and $\vec{b}=\hat{i}+\hat{j}$ if c is a vector such that $\vec{a} \cdot \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2} \quad$ and \quad the angle between
$\vec{a} \times \vec{b}$ and $\vec{i} s 30^{\circ}$, then $|(\vec{a} \times \vec{b})| \times \vec{c} \mid$ is equal to
A. $2 / 3$
B. $3 / 2$
C. 2
D. 3

Answer: B

- Watch Video Solution

10. Let \vec{a} and \vec{b} be two non-collinear unit vectors. If $\vec{u}=\vec{a}-(\vec{a} \cdot \vec{b}) \vec{b}$ and $\vec{v}=\vec{a} \times \vec{b}$, then $|\vec{v}|$ is
A. $|\vec{u}|+|\vec{u} \cdot(\vec{a} \times \vec{b})|$
B. $|\vec{u}|+|\vec{u} \cdot \vec{a}|$
c. $|\vec{u}|+|\vec{u} \cdot \vec{b}|$
D. $|\vec{u}|+\vec{u} \cdot(\vec{a}+\vec{b})$

Answer: C

(D) Watch Video Solution

11. If the vectots $p \hat{i}+\hat{j}+\hat{k}, \hat{i}+q \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+r \hat{k}(p \neq q \neq r \neq 1)$ are coplanar, then the value of $p q r-(p+q+r)$, is
A. 0
B. -1
C. -2
D. 2

Answer: C

12. If $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} \perp \vec{a}$ then \vec{r} is equal to
A. $\frac{\vec{a} \times(\vec{c} \times \vec{b})}{\vec{a} \cdot \vec{b}}$
B. $\frac{\vec{b} \times(\vec{a} \times \vec{c})}{\vec{a} \cdot \vec{b}}$
C. $\frac{\vec{c} \times(\vec{a} \times \vec{b})}{\vec{a} \cdot \vec{b}}$
D. $\frac{\vec{c} \times(\vec{a} \times \vec{b})}{\vec{b} \cdot \vec{c}}$

Answer: A

- Watch Video Solution

13. If $\vec{a}, \vec{b}, \vec{c}$ are any three vectors such that
$(\vec{a}+\vec{b}) \cdot \vec{c}=(\vec{a}-\vec{b}) \vec{c}=0$ then $(\vec{a} \times \vec{b}) \times \vec{c}$ is
A. $\overrightarrow{0}$
B. \vec{a}
c. \vec{b}
D. none of these

Answer: A

(D) Watch Video Solution

14. Let $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+3 \hat{k}$. Then, the value of λ for which the vector $\vec{c}=\lambda \hat{i}+\hat{j}+(2 \lambda-1) \hat{k}$ is parallel to the plane containing \vec{a} and \vec{b}. Is
A. 1
B. 0
C. -1
D. 2
15. Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $\vec{a} \cdot \vec{b}=\vec{a} \cdot \vec{c}=0$, If the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$ then the volume of the parallelopiped whose three coterminous edges are $\vec{a}, \vec{b}, \vec{c}$ is
A. $\frac{\sqrt{3}}{2}$ cubic units
B. $\frac{1}{2}$ cubit unit
C. 1 cubic unit
D. none of these

Answer: A

- Watch Video Solution

16. If $\vec{a}, \vec{b}, \vec{c}$ are three non coplanar, non zero vectors then $(\vec{a} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{a} \cdot \vec{b})(\vec{c} \times \vec{a})+(\vec{a} \cdot \vec{c})(\vec{a} \times \vec{b})$
A. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{c}$
B. $\left[\begin{array}{lll}\vec{b} & \vec{c} & \vec{a}\end{array}\right] \vec{a}$
C. $\left[\begin{array}{lll}\vec{c} & \vec{a} & \vec{b}\end{array}\right] \vec{b}$
D. none of these

Answer: B

- Watch Video Solution

17. If the acute angle that the vector $\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}$ makes with the plane of the two vectors $2 \hat{i}+3 \hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+2 \hat{k}$ is $\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$ then
A. $\alpha(\beta+\gamma)=\beta \gamma$
B. $\beta(\gamma+\alpha)=\gamma \alpha$
C. $\gamma(\alpha+\beta)=\alpha \beta$
D. $\alpha \beta=\beta \gamma+\gamma \alpha=0$

Watch Video Solution

18. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors and $\vec{p}, \vec{q}, \vec{r}$ are their reciprocal then $(l \vec{a}+m \vec{b}+n \vec{c}) \cdot(\vec{l} p+\vec{m} q+\vec{n} r)$ is equal to
A. $l^{2}+m^{2}+n^{2}$
B. $l m+m n+n l$
C. 0
D. none of these

Answer: A

- Watch Video Solution

19. If $\vec{a} \vec{b}$ are non zero and non collinear vectors, then $\left[\begin{array}{ccc}\vec{a} & \vec{b} & \vec{i}\end{array}\right] \hat{i}+\left[\begin{array}{ccc}\vec{a} & \vec{b} & \vec{j}\end{array}\right] \hat{j}+\left[\begin{array}{ccc}\vec{a} & \vec{b} & \vec{k}\end{array}\right] \hat{k}$ is equal to
A. $\vec{a}+\vec{b}$
B. $\vec{a} \times \vec{b}$
C. $\vec{a}-\vec{b}$
D. $\vec{b} \times \vec{a}$

Answer: B

- Watch Video Solution

20. If \vec{r} is a unit vector such that
$\vec{r}=x(\vec{b} \times \vec{c})+y(\vec{c} \times \vec{a})+z(\vec{a} \times \vec{b})$, then
$|(\vec{r} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{r} \cdot \vec{b})(\vec{c} \times \vec{a})+(\vec{r} \cdot \vec{c})(\vec{c} \times \vec{b})|$ is
equal to
A. $\left|\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]\right|$
B. 1
C. $\left|\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]\right|$
D. 0

- Watch Video Solution

21. Let a, b, c be three vectors such that $\left[\begin{array}{lll}a & b & c\end{array}\right]=2$, if $r=l(b \times c)+m(c \times a)+n(a \times b)$ is perpendicular to $\mathrm{a}+\mathrm{b}+\mathrm{c}$, then the value of $(l+m+n)$ is
A. 2
B. 1
C. 0
D. none of these

Answer: C

22. If \vec{b} is a unit vector, then $(\vec{a} \cdot \vec{b}) \vec{b}+\vec{b} \times(\vec{a} \times \vec{b})$ is a equal to
A. $|\vec{a}|^{2} \vec{b}$
B. $(\vec{a} \cdot \vec{b}) \vec{a}$
C. \vec{a}
D. $(\vec{a} \cdot \vec{b}) \vec{b}$

Answer: C

- Watch Video Solution

23. If $\vec{a}, \vec{b}, \vec{c}$ are any three non coplanar vectors, then $\left[\begin{array}{llll}\vec{a}+\vec{b}+\vec{c} & \vec{a}-\vec{c} & \vec{a}-\vec{b}\end{array}\right]$ is equal to
A. 0
B. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
C. $2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
D. $=3\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$

Answer: D

- Watch Video Solution

24. If $\vec{a}, \vec{b}, \vec{c}$ are any three non coplanar vectors, then
$(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{b}+\vec{c}) \times(\vec{c}+\vec{a})$
A. 0
B. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
C. $2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
D. $3\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$

Answer: B

25. Let \vec{a}, \vec{b} and \vec{c} be three having magnitude 1,1 and 2 respectively such that $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$, then the acute angle between \vec{a} and \vec{c} is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: C

- Watch Video Solution

26. If $\vec{a}=(\hat{i}+\hat{j}+\hat{k}), \vec{a} \cdot \vec{b}=1$ and $\vec{a} \times \vec{b}=\hat{j}-\hat{k}$, then \vec{b} is
(a) $\hat{i}-\hat{j}+\hat{k}$ (b) $2 \hat{i}-\hat{k}$ (c) \hat{i} (d) $2 \hat{i}$
A. $\hat{i}-\hat{j}+\hat{k}$
B. $2 \hat{j}-\hat{k}$
C. \hat{i}
D. $2 \hat{i}$

Answer: C

- Watch Video Solution

27. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar non-zero vectors, then
$(\vec{a} \times \vec{b}) \times(\vec{a} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{b} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{c}$
is equal to
A. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}(\vec{a}+\vec{b}+\vec{c})$
B. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right](\vec{a}+\vec{b}+\vec{c})$
C. $\overrightarrow{0}$
D. none of these

Answer: B

28. If the vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are coplanar vectors, then $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$ is equal to
A. $\vec{a}+\vec{b}+\vec{c}+\vec{d}$
B. $\overrightarrow{0}$
c. $\vec{a}+\vec{b}=\vec{c}+\vec{d}$
D. none of these

Answer: B

- Watch Video Solution

29. $(\vec{a} \times \vec{b}) \cdot(\vec{c} \times \vec{d})$ is not equal to
A. $\vec{a} \cdot\{\vec{b} \times(\vec{c} \times \vec{d})\}$
B. $\{(\vec{a} \times \vec{b}) \times \vec{c}\} \vec{d}$
c. $(\vec{d} \times \vec{c}) \cdot(\vec{b} \times \vec{a})$
D. $(\vec{a} \cdot \vec{c})(\vec{b} \cdot \vec{d})-(\vec{a} \cdot \vec{d})(\vec{b} \cdot \vec{c})$

Answer: B

- Watch Video Solution

30. Let $\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$, and $\vec{b}=\hat{i}+\hat{j}$ if c is a vector such that $\vec{a} \cdot \vec{c}=|\vec{c}|,|\vec{c}-\vec{a}|=2 \sqrt{2} \quad$ and \quad the angle between $\vec{a} \times \vec{b}$ and $\vec{i} s 30^{\circ}$, then $|(\vec{a} \times \vec{b})| \times \vec{c} \mid$ is equal to
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. 2
D. 3

Answer: B

31. If \vec{a}, \vec{b} and \vec{c} are three non coplanar vectors and \vec{r} is any vector in space, then
$(\vec{a} \times \vec{b}) \times(\vec{r} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{r} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{r}$
A. $2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{r}$
B. $3\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{r}$
C. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{r}$
D. none of these

Answer: A

- Watch Video Solution

32. The number of faces of a triangular pyramid or tetrahedron is \qquad .
A. $\cos ^{-1}\left(\frac{1}{3}\right)$
B. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right.$
C. $\cos ^{-1}\left(\frac{2}{3}\right)$
D. none of these

Answer: A

- Watch Video Solution

33. The acute angle that the vector $2 \hat{i}-2 \hat{j}+\hat{k}$ makes with the plane determined by the vectors $2 \hat{i}+3 \hat{j}-\hat{k}$ and $\hat{i}-\hat{j}+2 \hat{k}$ is
A. $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
B. $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\tan ^{-1}(\sqrt{2})$
D. $\cot ^{-1}(\sqrt{3})$

Answer: B

D Watch Video Solution

34. If $\vec{a}, \vec{b}, \vec{c}$ are non-null non coplanar vectors, then
$[\vec{a}-2 \vec{b}+\vec{c} \vec{b}-2 \vec{c}+\vec{a} \vec{c}-2 \vec{a}+\vec{b}]=$
A. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
B. $3\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
C. 0
D. $12\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$

Answer: C

- Watch Video Solution

35. The three vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}, \hat{k}+\hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume: \qquad
A. $\frac{1}{3}$
B. 4
C. $\frac{3 \sqrt{3}}{4}$
D. $\frac{4}{3 \sqrt{3}}$

Answer: B

- Watch Video Solution

36. Let $G_{1}, G(2)$ and G_{3} be the centroid of the triangular faces OBC, OCA and OAB of a tetrahedron OABC. If V_{1} denotes the volume of tetrahedron OABC and V_{2} that of the parallelepiped with $O G_{1}, O G_{2}$ and $O G_{3}$ as three concurrent edges, then the value of $\frac{4 V_{1}}{V_{2}}$ is (where O is the origin
A. $4 V_{1}=9 V_{2}$
B. $9 V_{1}=4 V_{2}$
C. $3 V_{1}=2 V_{2}$
D. $3 V_{2}=2 V_{1}$

- Watch Video Solution

37. Let $\vec{r}, \vec{a}, \vec{b}$ and \vec{c} be four non -zero vectors such that $\vec{r} \cdot \vec{a}-0,|\vec{r} \times \vec{b}|=|\vec{r}||\vec{b}|$ and $|\vec{r} \times \vec{c}|=|\vec{r}| \vec{c} \mid$ then [a b c] is equal to
A. -1
B. 0
C. 1
D. 2

Answer: B
38. Let $\vec{V}=2 \hat{i}+\hat{j}-\hat{k}$ and $\vec{W}=\hat{i}+3 \hat{k}$. if \vec{U} is a unit vector, then the maximum value of the scalar triple product $[\vec{U} \vec{V} \vec{W}]$ is
A. -1
B. $\sqrt{10}+\sqrt{6}$
C. $\sqrt{59}$
D. $\sqrt{60}$

Answer: C

- Watch Video Solution

39. If a and b are unit vectors, then the vector defined as $V=(a+b) \times(a+b)$ is collinear to the vector
A. $\vec{a}+\vec{b}$
B. $\vec{a}-\vec{b}$
C. $2 \vec{a}+\vec{b}$
D. $2 \vec{a}-\vec{b}$

Answer: B

- Watch Video Solution

40. If $\vec{\alpha}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{\beta}=-\hat{i}+2 \hat{j}-4 \hat{k}, \vec{\gamma}=\hat{i}+\hat{j}+\hat{k}$, then $(\vec{\alpha} \times \vec{\beta}) \cdot(\vec{\alpha} \times \vec{\gamma})$ is equal to
A. -74
B. 74
C. 64
D. 60

Answer: A

41. Let $\alpha=a \hat{i}+b \hat{j}+c \hat{k}, \vec{\beta}=b \hat{i}+c \hat{j}+a \hat{k}$ and $\vec{\gamma}=c \hat{i}+a \hat{j}+b \hat{k}$ be three coplanar vectors with $a \neq b$ and $\vec{v}=\hat{i}+\hat{j}+\hat{k}$. Then \vec{v} is perpendicular to
A. $\vec{\alpha}$
B. $\vec{\beta}$
C. $\vec{\gamma}$
D. all of these

Answer: D

- Watch Video Solution

42. Given $|\vec{a}|=|\vec{b}|=1$ and $|\vec{a}+\vec{b}|=\sqrt{3}$ if \vec{c} is a vector such that $\vec{c}-\vec{a}-2 \vec{b}=3(\vec{a} \times \vec{b})$ then find the value of $\vec{c} \cdot \vec{b}$.
A. $-\frac{1}{2}$
B. $\frac{1}{2}$
C. $\frac{3}{2}$
D. $\frac{5}{2}$

Answer: D

- Watch Video Solution

43. If $\vec{\mu}$ and \vec{v} be unit vector. If \vec{v} is a vector such that
$\vec{v}+(\vec{v} \times \vec{u})=\vec{v}$, then $\vec{u}(\vec{v} \times \vec{v})$ will be equal to:
A. $1-\vec{v} \cdot \vec{w}$
B. $1-|\vec{w}|^{2}$
c. $|\vec{w}|^{2}-(\vec{v} \cdot \vec{w})^{2}$
D. all of these

Answer: D

44. If $\vec{a}, \vec{b}, \vec{c}$ be three vectors of magnitude $\sqrt{3}, 1,2$ such that $\vec{a} \times(\vec{a} \times \vec{c})+3 \vec{b}=\overrightarrow{0}$ if θ angle between \vec{a} and \vec{c} then $\cos ^{2} \theta$ is equal to
A. $\frac{3}{4}$
B. $\frac{1}{2}$
C. $\frac{1}{4}$
D. none of these

Answer: A

- Watch Video Solution

45. If $\vec{a} \perp \vec{b}$ then vector \vec{v} in terms of \vec{a} and \vec{b} satisfying the equations \vec{v}. Veca $=0 n a d \vec{v} . V e c b=1$ and $[\vec{a} \vec{a} \vec{b}]=1$ is
A. $\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}$
B. $\frac{\vec{b}}{|\vec{b}|}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|^{2}}$
C. $\frac{\vec{b}}{|\vec{b}|^{2}}+\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$
D. none of these

Answer: A

- Watch Video Solution

46. Find the value of a so that the volume of the parallelopiped formed by vectors $\hat{i}+a \hat{j}+\hat{k}, \hat{j}+a \hat{k}$ and $a \hat{i}+\hat{k}$ becomes minimum.
A. $\frac{1}{3}$
B. 3
C. $\frac{1}{\sqrt{3}}$
D. $\sqrt{3}$

Answer: C

0

47. let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1,1 and 2 , respectively, if $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$, then the acute angle between \vec{a} and \vec{c} is \qquad
A. $\frac{\pi}{4}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$
D. none of these

Answer: B

- Watch Video Solution

48. If \vec{A}, \vec{B} and \vec{C} are vectors such that $|\vec{B}|=|\vec{C}|$ prove that
$[(\vec{A}+\vec{B}) \times(\vec{A}+\vec{C})] \times(\vec{B}+\vec{C}) \cdot(\vec{B}+\vec{C})=0$
A. 1
B. -1
C. 0
D. none of these

Answer: C

- Watch Video Solution

49. If the magnitude of the moment about the pont $\hat{j}+\hat{k}$ of a force $\hat{i}+\alpha \hat{j}-\hat{k}$ acting through the point $\hat{i}+\hat{j}$ is $\sqrt{8}$, then the value of α is
A. 1
B. 2
C. 3
D. 4
50. If the volume of parallelopiped formed by the vectors a, b, c as three coterminous edges is 27 cu units, then the volume of the parallelopiped have $\quad \alpha=a+2 b-c, \beta=a-b$ and $\gamma=a-b-c \quad$ as \quad three coterminous edges is
A. 27 cubic units
B. 9 cubic units
C. 81 cubic units
D. none of these

Answer: C

- Watch Video Solution

51. If $|\vec{a}|=5,|\vec{b}|=3,|\vec{c}|=4$ and \vec{a} is perpendicular to \vec{b} and \vec{c} such that angle between \vec{b} and \vec{c} is $\frac{5 \pi}{6}$, then the volume of the
parallelopiped having \vec{a}, \vec{b} and \vec{c} as three coterminous edges is
A. 30 cubit units
B. 60 cubic units
C. 20 cubic units
D. none of these

Answer: A

- Watch Video Solution

52. If the vectors $\vec{a}, \vec{b}, \vec{c}$ and \vec{d} are coplanar vectors, then $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})$ is equal to
A. 1
B. \vec{a}
C. \vec{b}
D. $\overrightarrow{0}$

- Watch Video Solution

53.

Prove
that
$(\vec{a} \cdot(\vec{b} \times \hat{i})) \hat{i}+(\vec{a} \cdot(\vec{b} \times \hat{j})) \hat{j}+(\vec{a} \cdot(\vec{b} \times \hat{k})) \hat{k}=\vec{a} \times \vec{b}$
A. $2(\vec{a} \times \vec{b})$
B. $3(\vec{a} \times \vec{b})$
C. $\vec{a} \times \vec{b}$
D. $-(\vec{a} \times \vec{b})$

Answer: C

- Watch Video Solution

54. The unit vector which is orhtogonal to vector $3 \hat{i}+2 \hat{j}+6 \hat{k}$ and is coplanar with vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$, is
A. $\frac{1}{\sqrt{41}}(2 \hat{i}-6 \hat{j}+\hat{k})$
B. $\frac{1}{\sqrt{13}}(2 \hat{i}-3 \hat{j})$
C. $\frac{1}{\sqrt{10}}(3 \hat{j}-\hat{k})$
D. $\frac{1}{\sqrt{34}}(4 \hat{i}+3 \hat{j}-3 \hat{k})$

Answer: C

- Watch Video Solution

55. Let \vec{a}, \vec{b} and \vec{c} be non-zero vectors such that $\left.(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a} \right\rvert\,$. If θ is an acute angle between the vectors \vec{b} and \vec{c}, then $\sin \theta$ is equal to:
A. $\frac{2 \sqrt{2}}{3}$
B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

- Watch Video Solution

56. \vec{p}, \vec{q} and \vec{r} are three mutually prependicular vectors of the same magnitude . If vector \vec{x} satisfies the equation $\vec{p} s \times((\vec{x}-\vec{q}) \times \vec{p})+\vec{q} \times((\vec{x}-\vec{r}) \times \vec{q})+\vec{r} \times((\vec{x}-\vec{p})$ is given by
A. $\frac{1}{2}(\vec{p}+\vec{q}-2 \vec{r})$
B. $\frac{1}{2}(\vec{p}+\vec{q}+\vec{r})$
C. $\frac{1}{3}(\vec{p}+\vec{q}+\vec{r})$
D. $\frac{1}{3}(2 \vec{p}+\vec{q}-\vec{r})$

Answer: B

- Watch Video Solution

57. If \vec{a} and \vec{b} are vectors in space given by $\vec{a}=\frac{\hat{i}-2 \hat{j}}{\sqrt{5}}$ and $\vec{b}=\frac{2 \hat{i}+\hat{j}+3 \hat{k}}{\sqrt{14}}$ then find the value of $(2 \vec{a}+\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times(\vec{a}-2 \vec{b})]$
A. 2
B. 3
C. 4
D. 5

Answer: D

- Watch Video Solution

58. Two adjacent sides of a parallelogram $A B C D$ are given by $\vec{A} B=2 \hat{i}+10 \hat{j}+11 \hat{k}$ and $\vec{A} D=-\hat{i}+2 \hat{j}+2 \hat{k}$. The side $A D$ is rotated by an acute angle α in the plane of the parallelogram so that $A D$
becomes $A D^{\prime}$. If $A D^{\prime}$ makes a right angle with the side $A B$, then the cosine of the angel α is given by a. $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4 \sqrt{5}}{9}$
A. $\frac{8}{9}$
B. $\frac{\sqrt{17}}{9}$
C. $\frac{1}{9}$
D. $\frac{4 \sqrt{5}}{9}$

Answer: B

- Watch Video Solution

59. Let $a=\hat{j}-\hat{k}$ and $b=\hat{i}-\hat{j}-\hat{k}$. Then, the vector v satisfying $a \times b+c=0$ and $a \cdot b=3$, is
A. $\hat{i}-\hat{j}-2 \hat{k}$
B. $\hat{i}+\hat{j}-2 \hat{k}$
C. $-\hat{i}+\hat{j}-2 \hat{k}$
D. $2 \hat{i}-\hat{j}+2 \hat{k}$

Answer: C

- Watch Video Solution

60. The vector(s) which is /are coplanar with vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ and perpendicular to vector $\hat{i}+\hat{j}+\hat{k}$, is /are
A. $\hat{j}-\hat{k}$ and $-\hat{j}+\hat{k}$
B. $-\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$
C. $\hat{i}-\hat{j}$ and $\hat{j}-\hat{k}$
D. $-\hat{j}+\hat{k}$ and $-\hat{i}+\hat{j}$

Answer: Minimum value at $(\alpha)^{\alpha \wedge}(x)+$ alpha^^(1-(alpha) $\left.^{\wedge} \mathbf{x}\right)^{\wedge}$ is

D Watch Video Solution

61. Let $\vec{a}=-\hat{i}-\hat{k}, \vec{b}=-\hat{i}+\hat{j}$ and $\vec{c}=i+2 \hat{j}+3 \hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a}=0$ then find the value of $\vec{r} \cdot \vec{b}$.
A. 4
B. 8
C. 6
D. 9

Answer: D

- Watch Video Solution

62. $\vec{a}=\frac{1}{\sqrt{10}}(3 \hat{i}+\hat{k})$ and $\vec{b}=\frac{1}{7}(2 \hat{i}+3 \hat{j}-6 \hat{k})$, then the value of $(2 \vec{a}-\vec{b}) \cdot[(\vec{a} \times \vec{b}) \times(\vec{a}+2 \vec{b})]$ is:
A. -5
B. -3
C. 5
D. 3

Answer: A

- Watch Video Solution

63. If $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}+3 \hat{j}-\hat{k} \quad$ and
$\vec{c}=r \hat{i}+\hat{j}+(2 r-1) \hat{k}$ are three vectors such that \vec{c} is parallel to the plane of \vec{a} and \vec{b} then r is equal to,
A. 1
B. 0
C. 2
D. -1

Answer: B

64. If \vec{a}, \vec{b} are non zero vectors, then $((\vec{a} \times \vec{b}) \times \vec{a}) \cdot((\vec{b} \times \vec{a}) \times \vec{b})$ equals
A. $-(\vec{a} \cdot \vec{b})|(\vec{a} \times \vec{b})|^{2}$
B. $|\vec{a} \times \vec{b}|^{2} \vec{a}^{2}$
C. $|\vec{a} \times \vec{b}|^{2} \vec{b}^{2}$
D. $(\vec{a} \cdot \vec{b})|\vec{a} \times \vec{b}|^{2}$

Answer: D

- Watch Video Solution

Section li Assertion Reason Type

1. Statement 1: Let \vec{r} be any vector in space. Then, $\vec{r}=(\vec{r} \cdot \hat{i}) \hat{i}+(\vec{r} \cdot \hat{j}) \hat{j}+(\vec{r} \cdot \hat{k}) \hat{k}$
Statement 2: If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors and \vec{r} is any
vector in space then

$$
\vec{r}=\left\{\frac{\left[\begin{array}{ccc}
\vec{r} & \vec{b} & \vec{c}
\end{array}\right]}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}\right\} \vec{a}+\left\{\frac{\left[\begin{array}{ccc}
\vec{r} & \vec{c} & \vec{a}
\end{array}\right]}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}\right\} \vec{b}+\left\{\frac{\left[\begin{array}{ccc}
\vec{r} & \vec{a} & \vec{b}
\end{array}\right]}{\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]}\right\}
$$

A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

2. Statement 1: If \vec{a}, \vec{b} are non zero and non collinear vectors, then
$\vec{a} \times \vec{b}=\left[\begin{array}{lll}\vec{a} & \vec{b} & \hat{i}\end{array}\right] \hat{i}+\left[\begin{array}{lll}\vec{a} & \vec{b} & \hat{j}\end{array}\right] \hat{j}+\left[\begin{array}{ccc}\vec{a} & \vec{b} & \hat{k}\end{array}\right] \hat{k}$
Statement 2: For any vector \vec{r}
$\vec{r}=(\vec{r} \cdot \hat{i}) \hat{i}+(\vec{r} \cdot \hat{j}) \hat{j}+(\vec{r} \cdot \hat{k}) \hat{k}$
A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

3. Statement 1 : Let $\vec{a}, \vec{b}, \vec{c}$ be three coterminous edges of a parallelopiped of volume 2 cubic units and \vec{r} is any vector in space then $\mid(\vec{r} \cdot \vec{a})(\vec{b} \times \vec{c})+(\vec{r} \cdot \vec{b})(\vec{c} \times \vec{a})+(\vec{c} \cdot \vec{c})(\vec{a} \times \vec{b}|=2| \vec{r} \mid$

Statement 2: Any vector in space can be written as a linear combination of three non-coplanar vectors.
A.1. statement-1 is true, statement 2 is a correct explanation for statement -1
B. 2. statement-1 is true, statement-2 is not correct explanation for
C. 3. statement-1 is true, statement-2 is false
D. 4. Both statements are true

Answer: A

- View Text Solution

4. Let $\vec{a}, \vec{b}, \vec{c}$ be any three vectors,

Statement 1: $\left[\begin{array}{lll}\vec{a}+\vec{b} & \vec{b}+\vec{c} & \vec{c}+\vec{a}\end{array}\right]=2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
Statement 2: $\left[\begin{array}{llll}\vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a}\end{array}\right]=\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}$

- Watch Video Solution

5. Statement 1: Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors.

Stetement 2: If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors and \vec{r} is any vector in space then

$$
\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] \vec{c}+\left[\begin{array}{lll}
\vec{b} & \vec{c} & \vec{r}
\end{array}\right] \vec{a}+\left[\begin{array}{lll}
\vec{c} & \vec{a} & \vec{r}
\end{array}\right] \vec{b}=\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right] \vec{r}
$$

A. 1
B. 2
C. 3
D. 4

Answer: B

D Watch Video Solution

6. Statement 1 : Let $\vec{a}, \vec{b}, \vec{c}$ be three coterminous edges of a parallelopiped of volume V. Let V_{1} be the volume of the parallelopiped whose three coterminous edges are the diagonals of three adjacent faces of the given parallelopiped. Then $V_{1}=2 V$.

Statement 2: For any three vectors, $\vec{p}, \vec{q}, \vec{r}$

$$
\left[\begin{array}{lll}
\vec{p}+\vec{q} & \vec{q}+\vec{r} & \vec{r}+\vec{p}
\end{array}\right]=2\left[\begin{array}{lll}
\vec{p} & \vec{q} & \vec{r}
\end{array}\right]
$$

A. 1
B. 2
C. 3
D. 4

Answer: A

- Watch Video Solution

7. Statement 1: Let V_{1} be the volume of a parallelopiped ABCDEF having $\vec{a}, \vec{b}, \vec{c}$ as three coterminous edges and V_{2} be the volume of the parallelopiped $P Q R S T U$ having three coterminous edges as vectors whose magnitudes are equal to the areas of three adjacent faces of the parallelopiped $A B C D E F$. Then $V_{2}=2 V_{1}^{2}$
Statement 2: For any three vectors $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$
$[\vec{\alpha} \times \vec{\beta}, \vec{\beta} \times \vec{\gamma}, \vec{\gamma} \times \vec{\alpha}]=\left[\begin{array}{lll}\vec{\alpha} & \vec{\beta} & \vec{\gamma}\end{array}\right]^{2}$
A. 1. statement -1 is true, statement -2 is a correct explanation for statement -1
B. 2. statement-1 is true, statement-2 is not correct explanation for statement-1
C. 3. statement -1 is true , statement-2 is false
D. 4. statement-1 is false, statement-2 is correct

Answer: D

- Watch Video Solution

8. Statement 1: If V is the volume of a parallelopiped having three coterminous edges as \vec{a}, \vec{b}, and \vec{c}, then the volume of the parallelopiped having three coterminous edges as

$$
\begin{aligned}
& \vec{\alpha}=(\vec{a} \cdot \vec{a}) \vec{a}+(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c} \\
& \vec{\beta}=(\vec{a} \cdot \vec{b}) \vec{a}+(\vec{b} \cdot \vec{b}) \vec{b}+(\vec{b} \cdot \vec{c}) \vec{c} \\
& \vec{\gamma}=(\vec{a} \cdot \vec{c}) \vec{a}+(\vec{b} \cdot \vec{c}) \vec{b}+(\vec{c} \cdot \vec{c}) \vec{c} \text { is } V^{3}
\end{aligned}
$$

Statement 2: For any three vectors $\vec{a}, \vec{b}, \vec{c}$

$$
\left|\begin{array}{lll}
\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\
\vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\
\vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \vec{c}
\end{array}\right|=\left[\begin{array}{lll}
\vec{a} & \vec{b} & \vec{c}
\end{array}\right]^{3}
$$

A. 1
B. 2
C. 3
D. 4

Answer: C

- View Text Solution

9. Statement 1: Unit vectors orthogonal to the vector $3 \hat{i}+2 \hat{j}+6 \hat{k}$ and coplanar with the vectors $2 \hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$ are $\pm \frac{1}{\sqrt{10}}(3 \hat{j}-\hat{k})$.
Statement 2: For any three vectors \vec{a}, \vec{b}, and \vec{c} vector $\vec{a} \times(\vec{b} \times \vec{c})$ is orthogonal to \vec{a} and lies in the plane of \vec{b} and \vec{c}.
A. 1
B. 2
C. 3
D. 4

Answer: A

- View Text Solution

10. If G_{1}, G_{2}, G_{3} ar the centroids of the triangular faces OBC, OCA, OAB of a tetrahedron OABC. If λ be the ratio of the volume of the tetrahedron to the volume of the parallelepiped with $O G_{1}, O G_{2}, O G_{a}$ as coterminous edges. Then the value of 2008λ must be .
A. 1
B. 2
C. 3
D. 4

- Watch Video Solution

11. Statement 1: For any three vectors $\vec{a}, \vec{b}, \vec{c}$
$\left[\begin{array}{llll}\vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a}\end{array}\right]=0$
Statement 2: If $\vec{p}, \vec{q}, \vec{r}$ are linear dependent vectors then they are coplanar.
A. 1
B. 2
C. 3
D. 4

Answer: D

- View Text Solution

12. Let the vectors $\overrightarrow{P Q}, \overrightarrow{Q R}, \overrightarrow{R S}, \overrightarrow{S T}, \overrightarrow{T U}$ and $\overrightarrow{U P}$ represent the sides of a regular hexagon.

Statement $\mathrm{t} \overrightarrow{P Q} \times(\overrightarrow{R S}+\overrightarrow{S T}) \neq \overrightarrow{0}$
Statement II: $\overrightarrow{P Q} \times \overrightarrow{R S}=\overrightarrow{0}$ and $\overrightarrow{P Q} \times \overrightarrow{R S}=\overrightarrow{0}$ and $\overrightarrow{P Q} \times \overrightarrow{S T} \neq \overrightarrow{0}$
For the following question, choose the correct answer from the codes (A),
(B) , (C) and (D) defined as follows:
A. 1
B. 2
C. 3
D. 4

Answer: C

- Watch Video Solution

Exercise

1. For non-zero vectors \vec{a}, \vec{b} and $\vec{c},|(\vec{a} \times \vec{b}) \cdot \vec{c}|=|\vec{a}||\vec{b}||\vec{c}|$ holds if and only if
A. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{a} \cdot \vec{a}=0$
B. $\vec{a} \cdot \vec{b}=0=\vec{b} \cdot \vec{c}$
C. $\vec{b} \cdot \vec{c}=0=\vec{c} \cdot \vec{a}$
D. $\vec{c} \cdot \vec{a}=0=\vec{a} \cdot \vec{b}$

Answer: A

- Watch Video Solution

2. Let $\vec{a}=\hat{i}+\hat{j}-\hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and \vec{c} be a unit vector perpendicular to \vec{a} and coplanar with \vec{a} and \vec{b}, then it is given by
A. $\frac{1}{\sqrt{6}}(2 \hat{i}-\hat{j}+\hat{j} k)$
B. $\frac{1}{\sqrt{2}}(\hat{j}+\hat{k})$
C. $\frac{1}{\sqrt{6}}(\hat{i}-2 \hat{j}+\hat{k})$
D. $\frac{1}{2}(\hat{j}-\hat{k})$

Answer: A

- Watch Video Solution

3. If \vec{a} lies in the plane of vectors \vec{b} and \vec{c}, then which of the following is correct?
A. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0$
B. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=1$
C. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=3$
D. $\left[\begin{array}{lll}\vec{a} & \vec{c} & \vec{a}\end{array}\right]=1$

Answer: A

- Watch Video Solution

4. The value of $\left[\begin{array}{llll}\vec{a}-\vec{b} & \vec{b}-\vec{c} & \vec{c}-\vec{a}\end{array}\right]$, where $|\vec{a}|=1,|\vec{b}|=5,|\vec{c}|=3$, is
A. 0
B. 1
C. 6
D. none of these

Answer: A

- Watch Video Solution

5. If $\vec{a}, \vec{b}, \vec{c}$ are three mutually perpendicular unit vectors, then prove that $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{3}$
A. ± 1
B. 0
C. -2
D. 2

Answer: A

- Watch Video Solution

6. If $\vec{r} \cdot \vec{a}=\vec{r} \cdot \vec{b}=\vec{r} \cdot \vec{c}=0$ for some non-zero vectro \vec{r}, then the value of $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$ is
A. 2
B. 3
C. 0
D. none of these

Answer: C

7. If the vectors $a \hat{i}+\hat{j}+\hat{k}, \hat{i}+b \hat{j}+\hat{k}, \hat{i}+\hat{j}+c \hat{k}(a \neq 1, b \neq 1, c \neq 1)$ are coplanar then the value of $\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$ is (A) 0 (B) 1 (C) -1 (D) 2
A. -1
B. 0
C. 1
D. none of these

Answer: C

- Watch Video Solution

8. If $\hat{a}, \hat{b}, \hat{c}$ are three units vectors such that \hat{b} and \hat{c} are non-parallel and $\widehat{a} \times(\hat{b} \times \hat{c})=1 / 2 \hat{b}$ then the angle between \widehat{a} and \hat{c} is
A. 30°
B. 45°
C. 60°
D. 90°

Answer: C

- Watch Video Solution

9. For any three vectors $\vec{a}, \vec{b}, \vec{c}$ the vector $(\vec{b} \times \vec{c}) \times \vec{a}$ equals
A. $(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{b} \cdot \vec{c}) \vec{a}$
B. $(\vec{a} \cdot \vec{b}) \vec{c}-(\vec{a} \cdot \vec{c}) \vec{b}$
c. $(\vec{b} \cdot \vec{a}) \vec{c}-(\vec{c} \cdot \vec{a}) \vec{b}$
D. none of these

Answer: B and C

- Watch Video Solution

10.

\vec{a}, \vec{b} and $\vec{c},(\vec{a}-\vec{b}) \cdot(\vec{b}-\vec{c}) \times(\vec{c}-\vec{a})=$
A. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
B. $2\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
C. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}$
D. none of these

Answer: D

- Watch Video Solution

11. For any vectors \vec{r} the value of
$\hat{i} \times(\vec{r} \times \hat{i})+\hat{j} \times(\vec{r} \times \hat{j})+\hat{k} \times(\vec{r} \times \hat{k})$, is
A. $\overrightarrow{0}$
B. $2 \vec{r}$
C. $-2 \vec{r}$
D. none of these

Answer: B

- Watch Video Solution

12. If the
$\vec{a}=\hat{i}+a \hat{j}+a^{2} \hat{k}, \vec{b}=\hat{i}+b \hat{j}+b^{2} \hat{k}, \vec{c}=\hat{i}+c \hat{j}+c^{2} \hat{k}$ are three non-coplanar vectors and $\left|\begin{array}{lll}a & a^{2} & 1+a^{3} \\ b & b^{2} & 1+b^{3} \\ c & c^{2} & 1+c^{3}\end{array}\right|=0$, then the value of $a b c$ is
A. 0
B. 1
C. 2
D. -1

Answer: D

13. Let $\vec{a}, \vec{b}, \vec{c}$ be three noncolanar vectors and $\vec{p}, \vec{q}, \vec{r}$ are vectors defined by the relations
$\vec{p}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q}=\frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}, \vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$ then the value of
the expression $(\vec{a}+\vec{b}) \cdot \vec{p}+(\vec{b}+\vec{c}) \cdot \vec{q}+(\vec{c}+\vec{a}) \cdot \vec{r}$. is equal to (A) 0 (B) 1 (C) 2 (D) 3
A. 0
B. 1
C. 2
D. 3

Answer: D

- Watch Video Solution

14. If \vec{A}, \vec{B} and \vec{C} are three non - coplanar vectors, then $\frac{\vec{A} \cdot \vec{B} \times \vec{C}}{\vec{C} \times \vec{A} \cdot \vec{B}}+\frac{\vec{B} \cdot \vec{A} \times \vec{C}}{\vec{C} \cdot \vec{A} \times \vec{B}}=$
A. 0
B. 2
C. 1
D. none of these

Answer: A

- Watch Video Solution

15.

$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ and $\vec{c}=c_{1} \hat{i}+c_{2} \hat{j}+c_{3} \hat{k}$ be three non-zero vectors such that \vec{c} is a unit vector perpendicular to both \vec{a} and \vec{b}. If the angle between \vec{a} and $\vec{b} i s \pi / 6$ then the value of $\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$ is
A. 0
B. 1
C. $\frac{1}{4}|\vec{a}|^{2}|\vec{b}|^{2}$
D. $\frac{3}{4}|\vec{a}|^{2}|\vec{b}|^{2}$

Answer: C

- Watch Video Solution

16. If non-zero vectors \vec{a} and \vec{b} are perpendicular to each other, then the solution of the equation $\vec{r} \times \vec{a}=\vec{b}$ is given by
A. $\vec{r}=x \vec{a}+\frac{\vec{a} \times \vec{b}}{|\vec{a}|^{2}}$
B. $\vec{r}=x \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
c. $\vec{r}=x(\vec{a} \times \vec{b})$
D. $\vec{r}=x(\vec{b} \times \vec{a})$

- Watch Video Solution

17. show that $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$ if and only if \vec{a} and \vec{c} are collinear or $(\vec{a} \times \vec{c}) \times \vec{b}=\overrightarrow{0}$
A. $\vec{b} \times(\vec{c} \times \vec{a})=\overrightarrow{0}$
B. $\vec{a} \times(\vec{b} \times \vec{c})=\overrightarrow{0}$
C. $\vec{c} \times \vec{a}=\vec{a} \times \vec{b}$
D. $\vec{c} \times \vec{b}=\vec{b} \times \vec{a}$

Answer: A

- Watch Video Solution

18. If $\vec{a}, \vec{b}, \vec{c}$ and $\vec{p}, \vec{q}, \vec{r}$ are reciprocal system of vectors, then $\vec{a} \times \vec{p}+\vec{b} \times \vec{q}+\vec{c} \times \vec{r}$ equals:
A. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]$
B. $(\vec{p}+\vec{q}+\vec{r})$
C. $\overrightarrow{0}$
D. $\vec{a}+\vec{b}+\vec{c}$

Answer: C

- Watch Video Solution

19. $\vec{a} \times(\vec{a} \times(\vec{a} \times \vec{b}))$ equals
A. $(\vec{a} \cdot \vec{b})(\vec{a} \times \vec{b})$
B. $(\vec{a} \cdot \vec{a})(\vec{b} \times \vec{a})$
c. $(\vec{b} \cdot \vec{b})(\vec{a} \times \vec{b})$
D. $(\vec{b} \cdot \vec{b})(\vec{b} \times \vec{a})$

Answer: B
20. If $\vec{a}=\hat{i}+\hat{j}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and \vec{c} is a unit vector \perp to the vector \vec{a} and coplanar with \vec{a} and \vec{b}, then a unit vector \vec{d} is perpendicular to both \vec{a} and \vec{c} is:
A. $\frac{1}{\sqrt{6}}(2 \hat{i}-\hat{j}+\hat{j} k)$
B. $\frac{1}{\sqrt{2}}(\hat{j}+\hat{k})$
C. $\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})$
D. $\frac{1}{\sqrt{2}}(\hat{i}+\hat{k})$

Answer: B

- Watch Video Solution

21. If \vec{a}, \vec{b} and \vec{c} are non coplanar and unit vectors such that $\left.\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}\right)$ then the angle between vea and \vec{b} is
(A) $\frac{3 \pi}{4}$
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$
(D) π
A. $3 \pi / 4$
B. $\pi / 4$
C. $\pi / 2$
D. π

Answer: A

D Watch Video Solution

22. Let a, b and c be distinct non-negative numbers. If the vectors $a \hat{i}+a \hat{j}+c \hat{k}, \hat{i}+\hat{k}$ and $c \hat{i}+c \hat{j}+c \hat{k}$ lie in a plane,then c is:
A. the AM of a and b
B. the GM of a and b
C. the HM of a and b
D. equal to zero

Watch Video Solution

23. If $\vec{a} \times \vec{b}=\vec{c}$ and $\vec{b} \times \vec{c}=\vec{a}$, show $\widehat{\vec{a}}, \vec{b}, \vec{c}$ are orthogonal in pairs. Also show that |vecc|=|veca| and |vecb|=1`
A. $|\vec{a}|=1, \vec{b}=\vec{c}$
B. $|\vec{c}|=1,|\vec{a}|=1$
c. $|\vec{b}|=2, \vec{c}=2 \vec{a}$
D. $|\vec{b}|=1,|\vec{c}|=|\vec{a}|$

Answer: A::D

- Watch Video Solution

24. Let \vec{a}, \vec{b} and \vec{c} be vectors forming right- hand triad. Let $\vec{P}=\frac{\vec{b} \times \vec{c}}{[\vec{a} \vec{b} \vec{c}]}, \vec{q} \frac{\vec{c} \times \vec{a}}{[\vec{a} \vec{b} \vec{c}]}$ and $\vec{r}=\frac{\vec{a} \times \vec{b}}{[\vec{a} \vec{b} \vec{c}]}$ If x $\cup R^{+}$then
A. 3
B. 2
C. 1
D. 0

Answer: A

- Watch Video Solution

25.

$\vec{r} \times \vec{a}=\vec{b} \times \vec{a}, \vec{r} \times \vec{b}=\vec{a} \times \vec{b}, \vec{a} \neq \overrightarrow{0}, \vec{b} \neq \overrightarrow{0}, \vec{a} \neq \lambda \vec{b}$ and is not perpendicular to \vec{b}, then find \vec{r} in terms of \vec{a} and \vec{b}.
A. $\vec{a}-\vec{b}$
B. $\vec{a}+\vec{b}$
C. $\vec{a} \times \vec{b}+\vec{a}$
D. $\vec{a} \times \vec{b}+\vec{b}$

D Watch Video Solution

26. The vector \vec{a} coplanar with the vectors \hat{i} and \hat{j} perendicular to the vector $\vec{b}=4 \hat{i}-3 \hat{j}+5 \hat{k}$ such that $|\vec{a}|=|\vec{b}|$ is
A. $\sqrt{2}(3 \hat{i}+4 \hat{j})$ or $-\sqrt{2}(3 \hat{i}+4 \hat{j})$
B. $\sqrt{2}(4 \hat{i}+3 \hat{j})$ or $-\sqrt{2}(4 \hat{i}+3 \hat{j})$
c. $\sqrt{3}(4 \hat{i}+5 \hat{j})$ no $-\sqrt{3}(4 \hat{i}+5 \hat{j})$
D. $\sqrt{3}(5 \hat{i}+4 \hat{j})$ or $-\sqrt{3}(5 \hat{i}+4 \hat{j})$

Answer: A

- Watch Video Solution

27. If the vectors \vec{a} and \vec{b} are mutually perpendicular, then $\vec{a} \times\{\vec{a} \times\{\vec{a} \times\{\vec{a} \times \vec{b}\}\}$ is equal to:
A. $|\vec{a}|^{2} \vec{b}$
B. $|\vec{a}|^{3} \vec{b}$
C. $|\vec{a}|^{4} \vec{b}$
D. none of these

Answer: C

- Watch Video Solution

28. If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar non-zero vectors, then
$(\vec{a} \times \vec{b}) \times(\vec{a} \times \vec{c})+(\vec{b} \times \vec{c}) \times(\vec{b} \times \vec{a})+(\vec{c} \times \vec{a}) \times(\vec{c}$ is equal to
A. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{2}$
B. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{3}$
c. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]^{4}$
D. none of these

- Watch Video Solution

29. Let $\vec{a}=\hat{i}-\hat{j}, \vec{b}=\hat{j}-\hat{k}, \vec{c}=\hat{k}-\hat{i} . \operatorname{If} \hat{d}$ is a unit vector such that $\vec{a} \cdot \hat{d}=0=[\vec{b} \vec{c} \vec{d}]$ then \hat{d} equals
A. $\pm \frac{\hat{i}+\hat{j}-2 \hat{k}}{\sqrt{6}}$
B. $\pm \frac{\hat{i}+\hat{j}-\hat{k}}{\sqrt{3}}$
C. $\pm \frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
D. $\pm \hat{k}$

Answer: A

- Watch Video Solution

30.

If
the
vectors
$\left(\sec ^{2} A\right) \hat{i}+\hat{j}+\hat{k}, \hat{i}+\left(\sec ^{2} B\right) \hat{j}+\hat{k}, \hat{i}+\hat{j}+\left(\sec ^{2} c\right) \hat{k}$ are coplanar,
then the value of $\cos e c^{2} A+\cos ^{2} c^{2} B+\operatorname{cosec}^{2} C$, is
A. 1
B. 2
C. 3
D. none of these

Answer: B

- Watch Video Solution

31. x and y are two mutually perpendicular unit vector, if the vectors $a \widehat{a}+a \hat{y}+c(\widehat{x} \times \hat{y}) \cdot x+(\widehat{x}+\hat{y})$ and $c \widehat{x}+c \hat{y}+b(\widehat{x}+\hat{y})$, lie in a plane than c is:
A. A.M is x and y
B. G.M. of x and y
C. H.M. of x and y
D. equal to zero

Answer: B

- Watch Video Solution

32. The three concurrent edges of a parallelopiped represent the vectors $\vec{a}, \vec{b}, \vec{c}$ such that $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=V$. Then the volume of the parallelopiped whose three concurrent edges are the three diagonals of three faces of the given parallelopiped is
A. V
B. 2 V
C. 3 V
D. none of these

Answer: B

33. If $a=\hat{i}+\hat{j}+\hat{k}, b=\hat{i}+\hat{j}, c=\hat{i}$ and $(a \times b) \times c=\lambda a+\mu b$, then
$\lambda+\mu$ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: A

- Watch Video Solution

34. If $\vec{a}=2 \hat{i}-3 \hat{j}+5 \hat{k}, \vec{b}=3 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\vec{c}=5 \hat{i}-3 \hat{j}-2 \hat{k}$, then the volume of the parallelopiped with coterminous edges $\vec{a}+\vec{b}, \vec{b}+\vec{c}, \vec{c}+\vec{a}$ is
A. 2
B. 1
C. 16
D. 0

Answer: C

- Watch Video Solution

35. If $\vec{a}, \vec{b}, \vec{c}$ are linearly independent vectors, then

$$
\frac{(\vec{a}+2 \vec{b}) \times(2 \vec{b}+\vec{c}) \cdot(5 \vec{c}+\vec{a})}{\vec{a} \cdot(\vec{b} \times \vec{c})} \text { is equal to }
$$

A. 10
B. 14
C. 18
D. 12

Answer: D

36. If \vec{a}, \vec{b} are non-collinear vectors, then
$\left[\begin{array}{lll}\vec{a} & \vec{b} & \hat{i}\end{array}\right] \hat{i}+\left[\begin{array}{lll}\vec{a} & \vec{b} & \hat{j}\end{array}\right] \hat{j}+\left[\begin{array}{lll}\vec{a} & \vec{b} & \hat{k}\end{array}\right] \hat{k}=$
A. $\vec{a}+\vec{b}$
B. $\vec{a} \times \vec{b}$
C. $\vec{a}-\vec{b}$
D. $\vec{b} \times \vec{a}$

Answer: B

- Watch Video Solution

37. If $[2 \vec{a}+4 \vec{b} \quad \vec{c} \quad \vec{d}]=\lambda\left[\begin{array}{lll}\vec{a} & \vec{c} & \vec{d}\end{array}\right]+\mu\left[\begin{array}{lll}\vec{b} & \vec{c} & \vec{d}\end{array}\right]$, then $\lambda+\mu=$
A. 6
B. -6
C. 10
D. 8

Answer: A

- Watch Video Solution

38. If the volume of the tetrahedron whose vertices are $(1,-6,10),(-1,-3,7),(5,-1, \lambda)$ and $(7,-4,7)$ is 11 cubit units then $\lambda=$
A. 2,6
B. 3,4
C. 1,7
D. 5,6

Answer: C

39. $(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})=$
A. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{c}$
B. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{b}$
C. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{a}$
D. $a \times(\vec{b} \times \vec{c})$

Answer: A

D Watch Video Solution

40. When a right handed rectangular Cartesian system OXYZ is rotated about the z-axis through an angle $\frac{\pi}{4}$ in the counter-clockwise, direction it is found that a vector \vec{a} has the component $2 \sqrt{3}, 3 \sqrt{2}$ and 4 .
A. $5,-1,4$
B. $5,-1,4 \sqrt{2}$
C. $-1,-5,4 \sqrt{2}$
D. none of these

Answer: D

- Watch Video Solution

41. Prove that vectors

$$
\begin{aligned}
& \vec{u}=\left(a l+a_{1} l_{1}\right) \hat{i}+\left(a m+a_{1} m_{1}\right) \hat{j}+\left(a n+a_{1} n_{1}\right) \hat{k} \\
& \vec{v}=\left(b l+b_{1} l_{1}\right) \hat{i}+\left(b m+b_{1} m_{1}\right) \hat{j}+\left(b n+b_{1} n_{1}\right) \hat{k} \\
& \vec{w}=\left(w l+c_{1} l_{1}\right) \hat{i}+\left(c m+c_{1} m_{1}\right) \hat{j}+\left(c n+c_{1} n_{1}\right) \hat{k}
\end{aligned}
$$

A. form an equilteral triangle
B. are coplanar
C. are collinear
D. are mutually perpendicular

Answer: B

42. If $\vec{a} \times(\vec{a} \times \vec{b})=\vec{b} \times(\vec{b} \times \vec{c})$ and $\vec{a} \cdot \vec{b} \neq 0$, then $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=$
A. 0
B. 1
C. 2
D. 3

Answer: A

Watch Video Solution
43. $\left[\begin{array}{ccc}\vec{a} & \vec{b} & a \times \vec{b}\end{array}\right]+(\vec{a} \cdot \vec{b})^{2}=$
A. $|\vec{a}|^{2}|\vec{b}|^{2}$
B. $|\vec{a}+\vec{b}|^{2}$
c. $|\vec{a}|^{2}+|\vec{b}|^{2}$
D. none of these

Answer: A

- Watch Video Solution

44. Let $\vec{\alpha}, \vec{\beta}$ and $\vec{\gamma}$ be the unit vectors such that $\vec{\alpha}$ and $\vec{\beta}$ are mutually perpendicular and $\vec{\gamma}$ is equally inclined to $\vec{\alpha}$ and $\vec{\beta}$ at an angle θ. If $\vec{\gamma}=x \vec{\alpha}+y \vec{\beta}+z(\vec{\alpha} \times \vec{\beta})$, then which one of the folllowing is incorrect?
A. $z^{2}=1-2 x^{2}$
B. $z^{2}=1-2 y^{2}$
C. $z^{2}=1-x^{2}-y^{2}$
D. $x^{2}+y^{2}=1$

Answer: D

45. If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors, then
$\left[\begin{array}{lll}2 \vec{a}-3 \vec{b} & 7 \vec{b}-9 \vec{c} & 12 \vec{c}-23 \vec{a}\end{array}\right]$
A. 0
B. $1 / 2$
C. 24
D. 32

Answer: A

Watch Video Solution
46. If $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=3$, then the volume (in cubic units) of the parallelopiped with $2 \vec{a}+\vec{b}, 2 \vec{b}+\vec{c}$ and $2 \vec{c}+\vec{a}$ as coterminous edges is
B. 22
C. 25
D. 27

Answer: D

- Watch Video Solution

47. If V is the volume of the parallelepiped having three coterminous edges as \vec{a}, \vec{b} and \vec{c}, then the volume of the parallelepiped having three coterminous edges as

$$
\begin{aligned}
& \vec{\alpha}=(\vec{a} \cdot \vec{a}) \vec{a}+(\vec{a} \cdot \vec{b}) \vec{b}+(\vec{a} \cdot \vec{c}) \vec{c} \\
& \vec{\beta}=(\vec{b} \cdot \vec{a}) \vec{a}+(\vec{b} \cdot \vec{b})+(\vec{b} \cdot \vec{c}) \vec{c} \\
& \text { and } \vec{\lambda}=(\vec{c} \cdot \vec{a}) \vec{a}+(\vec{c} \cdot \vec{b}) \vec{b}+(\vec{c} \cdot \vec{c}) \vec{c} \text { is }
\end{aligned}
$$

A. V^{3}
B. 3 V
C. V^{2}
D. 2 V

Answer: A

- Watch Video Solution

48. Unit vectors \vec{a} and \vec{b} ar perpendicular, and unit vector \vec{c} is inclined at an angle θ to both \vec{a} and $\vec{b} . \operatorname{If\alpha } \vec{a}+\beta \vec{b}+\gamma(\vec{a} \times \vec{b})$ then.
A. $\alpha \neq \beta$
B. $\gamma^{2}=1-2 \alpha^{2}$
C. $\gamma^{2}=-\cos 2 \theta$
D. $\beta^{2}=\frac{1+\cos 2 \theta}{2}$

Answer: A

- Watch Video Solution

49. If vectors $\vec{A} B=-3 \hat{i}+4 \hat{k}$ and $\vec{A} C=5 \hat{i}-2 \hat{j}+4 \hat{k}$ are the sides of a $\triangle A B C$, then the length of the median through Ais a. $\sqrt{14} \mathrm{~b} \cdot \sqrt{18} \mathrm{c}$. $\sqrt{29}$ d. $\sqrt{5}$
A. $2 \sqrt{26}$
B. $4 \sqrt{13}$
C. $6 \sqrt{13}$
D. none of these

Answer: D

- Watch Video Solution

50. Let the position vectors of vertices A, B, C of $\triangle A B C$ be respectively \vec{a}, \vec{b} and \vec{c}. If \vec{r} is the position vector of the mid point of the line segment joining its orthocentre and centroid then $(\vec{a}-\vec{r})+(\vec{b}-\vec{r})+(\vec{c}-\vec{r})=$
A. A. 1
B. B. 2
C. C. 3
D. D. none of these

Answer: C

- Watch Video Solution

51. The position vector of a point P is $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ where $x, y, z \varepsilon N$ and $\vec{a}=\hat{i}+\hat{j}+\hat{k}$. If $\vec{r} \cdot \vec{a}=10$, then the number of possible position of P is
A. 36
B. 72
C. 66
D. none of these
52. \vec{a} and \vec{b} are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to \vec{a}, \vec{b} and $\vec{a} \times \vec{b}$ is equal to
A. $\frac{1}{\sqrt{2}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
B. $\frac{1}{2}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
C. $\frac{1}{\sqrt{3}}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$
D. $\frac{1}{3}(\vec{a}+\vec{b}+\vec{a} \times \vec{b})$

Answer: C

- Watch Video Solution

53. If the vectors $2 a \hat{i}+b \hat{j}+c \hat{k}, b \hat{i}+c \hat{j}+2 a \hat{k}$ and $c \hat{i}+2 a \hat{j}+b \hat{k}$ are coplanar vectors, then the straight lines $a x+b y+c=0$ will always pass through the point
A. $(1,2)$
B. $(2,-1)$
C. $(2,1)$
D. $(1,-2)$

Answer: C

- Watch Video Solution

54. Let $\alpha=a \hat{i}+b \hat{j}+c \hat{k}, \vec{\beta}=b \hat{i}+c \hat{j}+a \hat{k}$ and $\vec{\gamma}=c \hat{i}+a \hat{j}+b \hat{k}$ be three coplanar vectors with $a \neq b$ and $\vec{v}=\hat{i}+\hat{j}+\hat{k}$. Then \vec{v} is perpendicular to
A. $\vec{\alpha}$
B. $\vec{\beta}$
C. $\vec{\gamma}$
D. all of these

- Watch Video Solution

55. Let $\vec{a}, \vec{b}, \vec{c}$ be three mutually perpendicular vectors having same magnitude and \vec{r} is a vector satisfying
$\vec{a} \times((\vec{r}-\vec{b}) \times \vec{a})+\vec{b} \times((\vec{r}-\vec{c}) \times \vec{b})+\vec{c} \times((\vec{r}-\vec{a})$ then \vec{r} is equal to
А. А. $\frac{1}{3}(\vec{a}+\vec{b}+\vec{c})$
B. B. $\frac{1}{2}(\vec{a}+\vec{b}+\vec{c})$
C. C. $\frac{3}{2}(\vec{a}+\vec{b}+\vec{c})$
D. D. $2(\vec{a}+\vec{b}+\vec{c})$

Answer: B

D Watch Video Solution

56. Let \vec{a}, \vec{b} and \vec{c} be the three non-coplanar vectors and \vec{d} be a non zero vector which is perpendicular to $\vec{a}+\vec{b}+\vec{c}$ and is represented as $\vec{d}=x(\vec{a} \times \vec{b})+y(\vec{b} \times \vec{c})+z(\vec{c} \times \vec{a})$. Then,
A. $x^{3}+y^{3}+z^{3}=3 x y z$
B. $x y+y z+z x=0$
C. $x=y=z$
D. $x^{2}+y^{2}+z^{2}=x y+y z+z x$

Answer: A

- Watch Video Solution

57. Let \vec{r} be a unit vector satisfying
$\vec{r} \times \vec{a}=\vec{b}$, where $|\vec{a}|=\sqrt{3}$ and $|\vec{b}|=\sqrt{2}$, then
$\begin{array}{ll}\text { (a) } \vec{r}=\frac{2}{3}(\vec{a}+\vec{a} \times \vec{b}) & \text { (b) } \vec{r}=\frac{1}{3}(\vec{a}+\vec{a} \times \vec{b})\end{array}$
$\vec{r}=\frac{2}{3}(\vec{a}-\vec{a} \times \vec{b})(\mathrm{d}) \vec{r}=\frac{1}{3}(-\vec{a}+\vec{a} \times \vec{b})$
A. $\frac{2}{3}(\vec{a}+\vec{a} \times \vec{b})$
B. $\frac{1}{3}(\vec{a}+\vec{a} \times \vec{b})$
c. $\frac{2}{3}(\vec{a}-\vec{a} \times \vec{b})$
D. $\frac{1}{3}(-\vec{a}+\vec{a} \times \vec{b})$

Answer: B

- Watch Video Solution

58. Let \vec{a} and \vec{c} be unit vectors such that $|\vec{b}|=4$ and $\vec{a} \times \vec{b}=2(\vec{a} \times \vec{c})$. The angle between \vec{a} and \vec{c} is $\cos ^{-1}\left(\frac{1}{4}\right)$. If $\vec{b}-2 \vec{c}=\lambda \vec{a}$ then $\lambda=$
A. $\frac{1}{3}, \frac{1}{4}$
B. $-\frac{1}{3},-\frac{1}{4}$
C. $3,-4$
D. $-3,4$

D Watch Video Solution

59. If $\vec{a}+2 \vec{b}+3 \vec{c}=0$, then $\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}=$
A. $\overrightarrow{0}$
B. \vec{a}
C. \vec{b}
D. \vec{c}

Answer: A

60.

If
in
triangle
ABC,
$\overrightarrow{A B}=\frac{\vec{u}}{|\vec{u}|}-\frac{\vec{v}}{|\vec{v}|}$ and $\overrightarrow{A C}=\frac{2 \vec{u}}{|\vec{u}|}$, where $|\vec{u}| \neq|\vec{v}|$, then
(a) $1+\cos 2 A+\cos 2 B+\cos 2 C=0$ (b) $\sin A=\cos C$ (c)projection of $A C$ on $B C$ is equal to $B C$ (d) projection of $A B$ on $B C$ is equal to $A B$
A. $1+\cos 2 A+\cos 2 B+\cos 2 C=0$
B. $1+\cos 2 A+\cos 2 B+\cos 2 C=2$
C. both a and b
D. none of these

Answer: A

- Watch Video Solution

61. Let $A(2 \hat{i}+3 \hat{j}+5 \hat{k}), B(-\hat{i}+3 \hat{j}+2 \hat{k})$ and $C(\lambda \hat{i}+5 \hat{j}+\mu \hat{k})$ are vertices of a triangle and its median through A is equally inclined to the positive directions of the axes, the value of $2 \lambda-\mu$ is equal to
A. 0
B. 1
C. 4

D. 3

Answer: C

- Watch Video Solution

62. A plane is parallel to vectors $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{k}$ and another plane is parallel to vectors $\hat{i}+\hat{j}$ and $\hat{i}-\hat{k}$. The acute angle between the line of intersection of the two planes and the $\hat{i}-\hat{j}+\hat{k}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

D Watch Video Solution

63. If A, B, C, D are four points in space, then $|\overrightarrow{A B} x \overrightarrow{C D}+\overrightarrow{B C} \times \overrightarrow{A D}+\overrightarrow{C A} \times \overrightarrow{B D}|=k($ areof $\triangle A B C)$ wherek $=$
(A) 5 (B) 4 (C) 2 (D) none of these
A. 2
B. 1
C. 3
D. 4

Answer: D

- Watch Video Solution

