

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

1. Let
$$\overrightarrow{a}$$
, \overrightarrow{b} and \overrightarrow{c} be three vectors. Then scalar triple product $\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]$

is equal to

A.
$$\begin{bmatrix} \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{c} \\ \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{c} \end{bmatrix}$$

B. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{b} \end{bmatrix}$
C. $\begin{bmatrix} \overrightarrow{c} & \overrightarrow{b} & \overrightarrow{a} \end{bmatrix}$
D. $\begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix}$

Answer: D

D. None of these

Answer: A

3. If
$$\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$$
 are three vectors such that $\left[\overrightarrow{u} \overrightarrow{v} \overrightarrow{w}\right] = 1$, then
 $3\left[\overrightarrow{u} \overrightarrow{v} \overrightarrow{w}\right] - \left[\overrightarrow{v} \overrightarrow{w} \overrightarrow{u}\right] - 2\left[\overrightarrow{w} \overrightarrow{v} \overrightarrow{u}\right] =$
A. 0
B. 2
C. 3
D. 4

Answer: D

Watch Video Solution

4. If
$$\overrightarrow{r} = x \left(\overrightarrow{a} \times \overrightarrow{b} \right) + y \left(\overrightarrow{b} \times \overrightarrow{c} \right) + z \left(\overrightarrow{c} \times \overrightarrow{a} \right)$$

Such that $x + y + z \neq 0$ and $\overrightarrow{r} \cdot \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right) = x + y + z$, then $\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right] =$

A. 0

B. 1

C. - 1

D. 2

Answer: B

5. If
$$\overrightarrow{\alpha} = x \left(\overrightarrow{a} \times \overrightarrow{b} \right) + y \left(\overrightarrow{b} \times \overrightarrow{c} \right) + z \left(\overrightarrow{c} \times \overrightarrow{a} \right)$$
 and
 $\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right] = \frac{1}{8}$, then $x + y + z =$
A. $8\overrightarrow{\alpha} \cdot \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$
B. $\overrightarrow{\alpha} \cdot \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$
C. $8 \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$

D. None of these

Answer: A

6.	f $\overrightarrow{a}=2\hat{i}+3\hat{j}+\hat{k},$ $\overrightarrow{b}=\hat{i}-2\hat{j}+\hat{k}$ and $\overrightarrow{c}=-3\hat{i}+\hat{j}+2\hat{k}$, then
$\left[\frac{1}{c}\right]$	$\left[\overrightarrow{b}\overrightarrow{c}\right] =$
	A. 30
	B30
	C. 15
	D15

Answer: B

Watch Video Solution

7. Let
$$\overrightarrow{a} = \hat{i} - \hat{k}, \ \overrightarrow{b} = x\hat{i} + \hat{j} + (1 - x)\hat{k}$$
 and $\overrightarrow{c} = y\hat{i} + x\hat{j} + (1 + x - y)\hat{k}$, then $\left[\overrightarrow{a} \ \overrightarrow{b} \ \overrightarrow{c}\right]$ depends on

A. neither $x \operatorname{nor} y$

B. both x and y

C. only x

D. only y

Answer: A

8. Volume of the parallelopiped with its edges represented by the vectors

 $\hat{i}+\hat{j},\,\hat{i}+2\hat{j}$ and $\hat{i}+\hat{j}+\pi\hat{k}$, is

A. π

B. $\pi/2$

C. $\pi/3$

D. $\pi/4$

Answer: A

9. Let $\overrightarrow{PR} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\overrightarrow{SQ} = \hat{i} - 3\hat{j} - 4\hat{k}$ determine diagonals of a parallelogram PQRS. And $\overrightarrow{PT} = \hat{i} + 2\hat{j} + 3\hat{k}$ be onther vector. Then the volume of the parallelepiped determined by the vectors $\overrightarrow{PT}, \overrightarrow{PQ}$ and \overrightarrow{PS} is

A. 5

B.20

C. 10

D. 30

Answer: A

Watch Video Solution

10. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non coplanar vectors and λ is a real number, then the vectors $\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c}$, $\lambda\overrightarrow{b} + 4\overrightarrow{c}$ and $(2\lambda - 1)\overrightarrow{c}$ are non coplanar for

A. no value of λ

B. all except one value of λ

C. all except two values of λ

D. all values of λ

Answer: C

Watch Video Solution

Answer: A

12. The number of distinct real values of λ for which the vectors $\vec{a} = \lambda^3 \hat{i} + \hat{k}, \vec{b} = \hat{i} - \lambda^3 \hat{j}$ and $\vec{c} = \hat{i} + (2\lambda - \sin\lambda)\hat{j} - \lambda\hat{k}$ are coplanar is

A. 0

B. 1

C. 1

D. 3

Answer: B

Watch Video Solution

13. Let $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$, $\overrightarrow{b} = \hat{i} - \hat{j} + 2\hat{k}$ and $\overrightarrow{c} = x\hat{i} + (x - 2)\hat{j} - \hat{k}$. If the vector \overrightarrow{c} lies in the plane of \overrightarrow{a} and \overrightarrow{b} , then x is equal to:

A. -4

 $\mathsf{B.}-2$

C. 0

D. 1

Answer: B

Watch Video Solution

14. If u, v and w are non-coplanar vectors and p, q are real numbers, then

the equality [3u pv pw]-[pv w qu]-[2w qv pu]=0 holds for

A. exactly one value of (p, q)

B. exactly two values of (p, q)

C. more than two but not all values of $\left(p,q
ight)$

D. all values of (p, q)

Answer: A

15. The value of
$$\overrightarrow{a}$$
. $\left(\overrightarrow{b} + \overrightarrow{c}\right) \times \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right)$, is

A.
$$2\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$$

B. $\left[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}\right]$

C. 0

D. None of these

Answer: C

Watch Video Solution

16. The vectors

$$\overrightarrow{a} = x\hat{i} + (x+1)\hat{j} + (x+2)\hat{k},$$

 $\overrightarrow{b} = (x+3)\hat{i} + (x+4)\hat{j} + (x+5)\hat{k}$
and $\overrightarrow{c} = (x+6)\hat{i} + (x+7)\hat{j} + (x+8)\hat{k}$ are coplanar for

A. all values of x

B. x < 0 only

 $\mathsf{C.}\,x>0\,\mathsf{only}$

D. None of these

Answer: A

Watch Video Solution

17. If a,b and c are non-coplanar vectors and λ is a real number, then

$$ig[\lambda(a+b)ig|\lambda^2big|\lambda c\mid\lambda cig]=ig[a\quad a+c\quad big]$$
 fform

A. exactly two values of λ

B. exactly two values of λ

C. no value of λ

D. exacty one value of λ

Answer: C

18.	The	number	of r	eal	values	of	а	for	which	the	vectors
\hat{i} +	$2\hat{j}+$	$\hat{k}, a\hat{i}+\hat{j}$	$+ 2 \hat{k}$	and \hat{i}	$\hat{i}+2\hat{j}+$	$- a \hat{k}$	are	copla	nar is		
	A. 1										
	B. 2										
	C. 3										
	D. 0										

Answer:

Watch Video Solution

19. The number of distinct real values of λ , for which the vectors $-\lambda^2 \hat{i} + \hat{j} + \hat{k}$, $\hat{i} - \lambda^2 \hat{j} + \hat{k}$ and $\hat{i} + \hat{j} - \lambda^2 \hat{k}$ are coplanar, is

A. 0

B. 1

C. 2

D. 3

Answer: C

20. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit coplanar vectors, then $\begin{bmatrix} 2\overrightarrow{a} - 3\overrightarrow{b} & 7\overrightarrow{b} - 9\overrightarrow{c} & 12\overrightarrow{c} - 23\overrightarrow{a} \end{bmatrix}$ A. 0 B. $\frac{1}{2}$ C. 24 D. 32

Answer: A

21. If the vectors \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non -coplanar and l, m, n are distinct scalars such that

$$\left[\, l \overrightarrow{a} + m \overrightarrow{b} + n \overrightarrow{c} \quad l \overrightarrow{b} + m \overrightarrow{c} + n \overrightarrow{a} \quad l \overrightarrow{c} + m \overrightarrow{a} + n \overrightarrow{b} \,
ight] = 0$$
 then

A. lm + mn + nl = 0

 $\operatorname{B.} l+m+n=0$

C.
$$l^2 + m^2 + n^2 = 0$$

D.
$$l^3+m^3+n^3=0$$

Watch Video Solution

Answer: B

$$\mathsf{C}. \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$
$$\mathsf{D}. - \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

Watch Video Solution

Answer: B

$$\begin{array}{c} D = \begin{bmatrix} a & b & c \end{bmatrix} \\ D = 2 \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

Answer: A

24. If
$$\overrightarrow{u}, \overrightarrow{v}$$
 and \overrightarrow{w} are three non coplanar vectors then
 $\left(\overrightarrow{u} + \overrightarrow{v} - \overrightarrow{w}\right). \left(\overrightarrow{u} - \overrightarrow{v}\right) \times \left(\overrightarrow{v} - \overrightarrow{w}\right)$ equals (A) $\overrightarrow{u}. \left(\overrightarrow{v} \times \overrightarrow{w}\right)$ (B)
 $\overrightarrow{u}. \overrightarrow{w} \times \overrightarrow{v}$ (C) $2\overrightarrow{u}. \left(\overrightarrow{v} \times \overrightarrow{w}\right)$ (D) 0
A. $\overrightarrow{u}. \left(\overrightarrow{v} \times \overrightarrow{w}\right)$
B. $\overrightarrow{u}. \left(\overrightarrow{w} \times \overrightarrow{v}\right)$
C. $3\overrightarrow{u}. \left(\overrightarrow{c} \times \overrightarrow{w}\right)$
D. 0

Answer: A

Watch Video Solution

25. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are unit coplanar vectors then the scalar triple product $\left[2\overrightarrow{a} - \overrightarrow{b}, 2\overrightarrow{b} - c, \overrightarrow{2}c - \overrightarrow{a}\right]$ is equal to (A) 0 (B) 1 (C) $-\sqrt{3}$ (D) $\sqrt{3}$

A. 0

B. 1

$$C. - \sqrt{3}$$

D. $\sqrt{3}$

Answer: A

Watch Video Solution

26. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three non-zero non coplanar vectors and $\overrightarrow{p}, \overrightarrow{q}$ and \overrightarrow{r} be three vectors given by $\overrightarrow{p} = \overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}, \overrightarrow{q} = 3\overrightarrow{a} - 2\overrightarrow{b} + \overrightarrow{c}$ and $\overrightarrow{r} = \overrightarrow{a} - 4\overrightarrow{b} + 2\overrightarrow{c}$ If the volume of the parallelopiped determined by $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} is V_1 and that of the parallelopiped determined by $\overrightarrow{p}, \overrightarrow{q}$ and \overrightarrow{r} is V_2 , then $V_2: V_1 =$

A. 3:1

B.7:1

C. 11:1

D. 15:1

Answer: D

27.
$$\overrightarrow{a}, \overrightarrow{b}$$
 and \overrightarrow{c} are three non-coplanar vectors and \overrightarrow{r} . Is any arbitrary

vector.

$$\begin{bmatrix} \overrightarrow{b} \overrightarrow{c} \overrightarrow{r} \end{bmatrix} \overrightarrow{a} + \begin{bmatrix} \overrightarrow{c} \overrightarrow{a} \overrightarrow{r} \end{bmatrix} \overrightarrow{b} + \begin{bmatrix} \overrightarrow{a} \overrightarrow{b} \overrightarrow{r} \end{bmatrix} \overrightarrow{c} = \begin{bmatrix} \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \end{bmatrix} \overrightarrow{r}.$$
A. $2\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{r}$
B. $3\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{r}$
C. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$

D. None of these

Answer: C

28. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-coplanar vetors represented by non-current edges of a parallelopiped of volume 4 units, then the value of $\left(\overrightarrow{a} + \overrightarrow{b}\right)$. $\left(\overrightarrow{b} \times \overrightarrow{c}\right) + \left(\overrightarrow{b} + \overrightarrow{c}\right)$. $\left(\overrightarrow{c} \times \overrightarrow{a}\right) + \left(\overrightarrow{c} + \overrightarrow{a}\right)$. $\left(\overrightarrow{a} \times \overrightarrow{b}\right)$, is A. 12

B. 4

 $\mathsf{C.}\pm12$

D. 0

Answer: C

Watch Video Solution

29. The three concurrent edges of a parallelopiped represent the vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ such that $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = V$. Then the volume of the parallelopiped whose three concurrent edges are the three diagonals of three faces of the given parallelopiped is

A. 2V

 $\mathsf{B.}\,3V$

 $\mathsf{C}.\,V$

 $\mathsf{D.}\,6V$

Answer: A

Watch Video Solution

30. The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors $\hat{a}, \hat{b}, \hat{c}$ such that $\hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{c} = \hat{c} \cdot \hat{a} = \frac{1}{2}$. Then, the volume of the parallelopiped is

A.
$$\frac{1}{\sqrt{2}}$$

B.
$$\frac{1}{2\sqrt{2}}$$

C.
$$\frac{\sqrt{3}}{2}$$

D.
$$\frac{1}{\sqrt{3}}$$

Answer: A

31. $Let \overrightarrow{a}, \overrightarrow{b}, \text{ and } \overrightarrow{c}$ be three non-coplanar ubit vectors such the angle between every pair of them is $\frac{\pi}{3}. \quad \text{if} \quad \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} = p\overrightarrow{a} + q\overrightarrow{b} + r\overrightarrow{c}, \text{ where p,q and r are}$ scalars , then the value of $\displaystyle rac{p^2+2q^2+r^2}{q^2}$ is A. 2 **B**. 4 C. 6 D. 8

Answer: B

32. The volume of the tetrahedron whose vertices are the points $\hat{i}, \hat{i} + \hat{j}, \hat{i} + \hat{j} + \hat{k}$ and $2\hat{i} + 3\hat{j} + \lambda\hat{k}$ is 1/6 units,

Then the values of λ

A. does not exist

B. is 7

C. is -1

D. is any real value

Answer: D

33. Let G_1 , G_2 and G_3 be the centroids of the trianglular faces OBC,OCA and OAB, respectively, of a tetrahedron OABC. If V_1 denotes the volume of the tetrahedron OABC and V_2 that of the parallelepiped with OG_1 , OG_2 and OG_3 as three concurrent edges, then prove that $4V_1 = 9V_2$. A. $4V_1 = 9V_2$ B. $9V_1 = 4V_2$ C. $3V_1 = 2V_2$ D. $3V_2 = 2V_1$

Answer: A

Watch Video Solution

Answer: A

35. Let
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 be any three vectors. Then vectors
 $\overrightarrow{u} = \overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right), \overrightarrow{v} = \overrightarrow{b} \times \left(\overrightarrow{c} \times \overrightarrow{a}\right)$ and
 $\overrightarrow{w} = \overrightarrow{c} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)$ are such that they are

A. collinear

B. non-coplanar

C. coplanar

D. none of these

Answer: C

36. Prove that
$$\hat{i} \times \left(\overrightarrow{a} \times \overrightarrow{i}\right) + \hat{j} \times \left(\overrightarrow{a} \times \overrightarrow{j}\right) + \hat{k} \times \left(\overrightarrow{a} \times \overrightarrow{k}\right) = 2\overrightarrow{a}$$

A. \overrightarrow{a}	
$B. 2\overrightarrow{a}$	
C. $3\overrightarrow{a}$	
D. $\overrightarrow{0}$	

Answer: B

Watch Video Solution

37. let $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} be three unit vectors such that $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \frac{\sqrt{3}}{2} \left(\overrightarrow{b} + \overrightarrow{c}\right)$. If \overrightarrow{b} is not parallel to \overrightarrow{c} , then the angle between \overrightarrow{a} and \overrightarrow{b} is:

A.
$$\frac{3\pi}{4}$$

B. $\frac{\pi}{2}$
C. $\frac{2\pi}{3}$
D. $\frac{5\pi}{6}$

Answer: D

38. If
$$\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \overrightarrow{b} \times \left(\overrightarrow{c} \times \overrightarrow{a}\right)$$
 and $\left[\overrightarrow{,} \overrightarrow{b} \quad \overrightarrow{c}\right] \neq 0$
then $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$ is equal to
A. $\overrightarrow{0}$
B. $\overrightarrow{a} \times \overrightarrow{b}$

$$\mathsf{C}.\overrightarrow{b}\times\overrightarrow{c}$$

D.
$$\overrightarrow{c} \times \overrightarrow{a}$$

Answer: A

39. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three vectors, then

 $\left[\stackrel{
ightarrow}{a} imes \stackrel{
ightarrow}{b} \stackrel{
ightarrow}{b} imes \stackrel{
ightarrow}{c} \stackrel{
ightarrow}{c} rightarrow rightarrow}{c}
ightarrow \left[\stackrel{
ightarrow}{a} imes \stackrel{
ightarrow}{a}
ight] =$

A.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

B. $2\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$
C. $3\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$
D. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2$

Answer: D

Watch Video Solution

40. If
$$\begin{bmatrix} \overrightarrow{a} \times \overrightarrow{b} & \overrightarrow{b} \times \overrightarrow{c} & \overrightarrow{c} \times \overrightarrow{a} \end{bmatrix} = \lambda \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2$$
, then λ is equal to
A. 0
B. 1
C. 2
D. 3

Answer: B

41. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are non coplanar non null vectors such that $\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right] = 2$ then $\left\{ \left[\overrightarrow{a} \times \overrightarrow{b} \quad \overrightarrow{b} \times \overrightarrow{c} \quad \overrightarrow{c} \times \overrightarrow{a}\right] \right\}^2 =$ A.4 B.16 C.8 D. none of these

Answer: B

Watch Video Solution

42. If (a imes b) imes c = a imes (b imes c), where a, b and c are any three vactors such that $a \cdot b \neq 0, b \cdot c \neq 0$, then a and c are

A. inclined at angle $\frac{\pi}{3}$ between them B. inclined at angle of $\frac{\pi}{6}$ between them C. perpendicular

D. parallel

Answer: D

Watch Video Solution

43. \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unimodular and coplanar. A unit vector \overrightarrow{d} is perpendicualt to them, $\left(\overrightarrow{a}\times\overrightarrow{b}\right)\times\left(\overrightarrow{c}\times\overrightarrow{d}\right)=\frac{1}{6}\hat{i}-\frac{1}{3}\hat{j}+\frac{1}{3}\hat{k}$, and the angle between \overrightarrow{a} and $\overrightarrow{b}is30^{\circ}$ then \overrightarrow{c} is

$$\begin{array}{l} \mathsf{A}.\, \frac{1}{3} \Big(-2\hat{i}\, -2\hat{j}\hat{k}\Big) \\ \mathsf{B}.\pm \frac{1}{3} \Big(-\hat{i}\, -2\hat{j}\, +2\hat{k}\Big) \\ \mathsf{C}.\, \frac{1}{3} \Big(2\hat{i}\, +\hat{j}\, -\hat{k}\Big) \\ \mathsf{D}.\pm \frac{1}{3} \Big(-\hat{i}\, +2\hat{j}\, -2\hat{k}\Big) \end{array}$$

Answer: D

44. Let $\overrightarrow{x}, \overrightarrow{y}$ and \overrightarrow{z} be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$ if \overrightarrow{a} is a non-zero vector perpendicular to \overrightarrow{x} and $\overrightarrow{y} \times \overrightarrow{z}$ and \overrightarrow{b} is a non-zero vector perpendicular to \overrightarrow{y} and $\overrightarrow{z} \times \overrightarrow{x}$, then

$$A. \stackrel{\rightarrow}{b} = \left(\stackrel{\rightarrow}{b}. \stackrel{\rightarrow}{z}\right) \left(\stackrel{\rightarrow}{z} - \stackrel{\rightarrow}{x}\right)$$
$$B. \stackrel{\rightarrow}{a} = \left(\stackrel{\rightarrow}{a}. \stackrel{\rightarrow}{y}\right) \left(\stackrel{\rightarrow}{y} - \stackrel{\rightarrow}{z}\right)$$
$$C. \stackrel{\rightarrow}{a}. \stackrel{\rightarrow}{b} = -\left(\stackrel{\rightarrow}{a}. \stackrel{\rightarrow}{y}\right) \left(\stackrel{\rightarrow}{b}. \stackrel{\rightarrow}{z}\right)$$
$$D. \stackrel{\rightarrow}{a} = \left(\stackrel{\rightarrow}{a}. \stackrel{\rightarrow}{y}\right) \left(\stackrel{\rightarrow}{z} - \stackrel{\rightarrow}{y}\right)$$

Answer: A::B::C

Watch Video Solution

45. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ and $\overrightarrow{a}', \overrightarrow{b}', \overrightarrow{c}'$ form a reciprocal system of vectors

then

$$\overrightarrow{a}$$
. \overrightarrow{a} ' + \overrightarrow{b} . \overrightarrow{b} ' + \overrightarrow{c} . \overrightarrow{c} ' =

A. 0	
B. 1	
C. 2	
D. 3	

Answer: D

46. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 and $\overrightarrow{a}', \overrightarrow{b}', \overrightarrow{c}'$ form a reciprocal system of vectors
then
 $\overrightarrow{a}. \overrightarrow{a'} + \overrightarrow{b}. \overrightarrow{b'} + \overrightarrow{c}. \overrightarrow{c'} =$
A. $\overrightarrow{0}$
B. $\overrightarrow{a} \times b$
C. $\overrightarrow{b} \times \overrightarrow{c}$
D. $\overrightarrow{c} \times \overrightarrow{a}$

Answer: A

47. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} and \overrightarrow{a}' , \overrightarrow{b}' , \overrightarrow{c}' form a reciprocal system of vectors then $\begin{bmatrix} \overrightarrow{a}, & \overrightarrow{b}, & \overrightarrow{c}, \end{bmatrix} =$ A. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$ B. $\frac{1}{\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}}$ C. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2$

Answer: B

D. $\frac{-1}{\left[\begin{array}{cc} \rightarrow & \rightarrow \\ a & b & c \end{array}\right]}$

48. If $\overrightarrow{a} = -\hat{i} + \hat{j} + \hat{k}$ and $\overrightarrow{b} = 2\hat{i} + 0\hat{j} + \hat{k}$ then find vector \overrightarrow{c} satisfying the following conditions, (i) that it is coplaner with \overrightarrow{a} and \overrightarrow{b} , (ii) that it is \perp to \overrightarrow{b} and (iii) that $\overrightarrow{a} \cdot \overrightarrow{c} = 7$.

$$\begin{array}{l} \mathsf{A}.-3\hat{i}\,+5\hat{j}\,+6\hat{k}\\\\ \mathsf{B}.\,\frac{1}{2}\Big(-3\hat{i}\,+5\hat{j}\,+6\hat{k}\\\\ \mathsf{C}.\,3\hat{i}\,-5\hat{j}\,+6\hat{k}\\\\ \mathsf{D}.\,\frac{1}{2}\Big(3\hat{i}\,+5\hat{j}\,-6\hat{k}\Big)\end{array}$$

Answer: B

Watch Video Solution

49. A solution of the vector equation $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{b}$, where $\overrightarrow{a}, \overrightarrow{b}$ are two given vectors is

where λ is a parameter.

A.
$$\overrightarrow{r}=\lambda\overrightarrow{b}$$

B.
$$\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$$

C. $\overrightarrow{r} = \overrightarrow{b} + \lambda \overrightarrow{a}$
D. $\overrightarrow{r} = \lambda \overrightarrow{a}$

Answer: B

Watch Video Solution

50. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non-coplanar vectors, then a vector \overrightarrow{r} satisfying $\overrightarrow{r}, \overrightarrow{a} = \overrightarrow{r}, \overrightarrow{b} = \overrightarrow{r}, \overrightarrow{c} = 1$, is

A.
$$\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a}$$

$$B. \frac{1}{\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}} \left\{ \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{+} \overrightarrow{c} \times \overrightarrow{a} \right\}$$
$$C. \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \left\{ \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{\times} \overrightarrow{a} \right\}$$

D. none of these

Answer: B

Section I Solved Mcqs

1. Which of the following expressions are meaningful? a. \overrightarrow{u} . $(\overrightarrow{v} \times \overrightarrow{w})$ b. \overrightarrow{u} . \overrightarrow{v} . \overrightarrow{w} c. $(\overrightarrow{u} \overrightarrow{v})$. \overrightarrow{w} d. $\overrightarrow{u} \times (\overrightarrow{v} . \overrightarrow{w})$ A. \overrightarrow{u} . $(\overrightarrow{v} \times \overrightarrow{w})$ B. $(\overrightarrow{u} . \overrightarrow{v})$. \overrightarrow{w} C. $(\overrightarrow{u} . \overrightarrow{v}) \overrightarrow{w}$ D. $\overrightarrow{u} \times (\overrightarrow{v} . \overrightarrow{w})$

Answer: A::C

2. For three vectors, \overrightarrow{u} , \overrightarrow{v} and \overrightarrow{w} which of the following expressions is not equal to any of the remaining three ?
A.
$$\overrightarrow{u}$$
. $\left(\overrightarrow{v} \times \overrightarrow{w}\right)$
B. $\left(\overrightarrow{u} \times \overrightarrow{w}\right)$. \overrightarrow{u}
C. \overrightarrow{v} . $\left(\overrightarrow{u} \times \overrightarrow{w}\right)$
D. $\left(\overrightarrow{u} \times \overrightarrow{v}\right)$. \overrightarrow{w}

Answer: C

Watch Video Solution

3. If
$$\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\overrightarrow{b} = 4\hat{i} + 3\hat{j} + 4\hat{k}$ and $\overrightarrow{c} = \hat{i} + \alpha\hat{j} + \beta\hat{k}$
are linearly dependent vectors and $\left|\overrightarrow{c}\right| = \sqrt{3}$ then:

A. lpha=1, eta=-1

 $\texttt{B.}\,\alpha=1,\beta=~\pm\,1$

$$\mathsf{C}.\,\alpha=\,-\,1,\beta=\,\pm\,1$$

 ${\rm D.}\,\alpha=~\pm 1,\beta=1$

Answer: D

4. The volume of the tetrahedron whose vertices are the points with positon vectors $\hat{i} - 6\hat{j} + 10\hat{k}$, $-\hat{i} - 3\hat{j} + 7\hat{k}$, $5\hat{i} - \hat{j} + \lambda\hat{k}$ and $7\hat{i} - 4\hat{j} + 7\hat{k}$ is 11 cubic units if the value of λ is

- A. -1, 7
- B. 1, 7
- C.-7
- D. -1, -7

Answer: B

5. If a vector \overrightarrow{a} is expressed as the sum of two vectors $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$ along and perpendicular to a given vector \overrightarrow{b} then $\overrightarrow{\beta}$ is equal to

Answer: B

6. \overrightarrow{a} and \overrightarrow{b} are two given vectors. With theses vectors as adjacent sides, a parallelogram is construted. The vector which is the altitude of the parallelogram and which is perpendicular to \overrightarrow{a} is

$$A. \left\{ \frac{\left(\overrightarrow{a}, \overrightarrow{b}\right)}{\left|\overrightarrow{a}\right|^{2}} \right\} \overrightarrow{a} - \overrightarrow{b}$$

$$B. \frac{1}{\left|\overrightarrow{a}\right|^{2}} \left\{ \left(\overrightarrow{a}, \overrightarrow{b}\right) \overrightarrow{a} - \left(\overrightarrow{a}, \overrightarrow{a}\right) \overrightarrow{b} \right\}$$

$$C. \frac{\overrightarrow{a} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)}{\left|\overrightarrow{a}\right|^{2}}$$

$$D. \frac{\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{a}\right)}{\left|\overrightarrow{b}\right|^{2}}$$

Answer: D

Watch Video Solution

7. The angles of a triangle , two of whose sides are respresented by vectors $\sqrt{3}\left(\widehat{a} \times \overrightarrow{b}\right)$ and $\widehat{b} - (\widehat{a}. Vecb)\widehat{a}$ where \overrightarrow{b} is a non - zero vector and \overrightarrow{a} is a unit vector in the direction of \overrightarrow{a} . Are

A.
$$\pi/4, \pi/4, \pi/2$$

B. $\pi/4, \pi/3, \pi/12$

C. $\pi/6, \pi/3, \pi/2$

D. none of these

Answer: C

Watch Video Solution

8. The three vectors $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$, $\hat{k} + \hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume: _____

A.
$$\frac{1}{3}$$

 $\mathsf{B.4}$

C.
$$\frac{3\sqrt{3}}{4}$$

 $3\sqrt{3}$

Answer: D

9. Let $\overrightarrow{a} = 2\hat{i} + \hat{j} + \hat{k}$, and $\overrightarrow{b} = \hat{i} + \hat{j}$ if c is a vector such that $\overrightarrow{a} \cdot \overrightarrow{c} = |\overrightarrow{c}|, |\overrightarrow{c} - \overrightarrow{a}| = 2\sqrt{2}$ and the angle between $\overrightarrow{a} \times \overrightarrow{b}$ and $\overrightarrow{i} s 30^{\circ}$, then $\left|\left(\overrightarrow{a} \times \overrightarrow{b}\right)\right| \times \overrightarrow{c}$ is equal to A. 2/3

B. 3/2

C.2

D.3

Answer: B

10. Let
$$\overrightarrow{a}$$
 and \overrightarrow{b} be two non-collinear unit vectors. If
 $\overrightarrow{u} = \overrightarrow{a} - (\overrightarrow{a}, \overrightarrow{b})\overrightarrow{b}$ and $\overrightarrow{v} = \overrightarrow{a} \times \overrightarrow{b}$, then $|\overrightarrow{v}|$ is
A. $|\overrightarrow{u}| + |\overrightarrow{u}, (\overrightarrow{a} \times \overrightarrow{b})|$

B.
$$\left| \overrightarrow{u} \right| + \left| \overrightarrow{u} \cdot \overrightarrow{a} \right|$$

C. $\left| \overrightarrow{u} \right| + \left| \overrightarrow{u} \cdot \overrightarrow{b} \right|$
D. $\left| \overrightarrow{u} \right| + \overrightarrow{u} \cdot \left(\overrightarrow{a} + \overrightarrow{b} \right)$

Answer: C

Watch Video Solution

11. If the vectots $p\hat{i}+\hat{j}+\hat{k},\,\hat{i}+q\hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+r\hat{k}(p
eq q
eq r
eq 1)$ are coplanar, then the value of pqr-(p+q+r), is

A. 0

 $\mathsf{B.}-1$

 $\mathsf{C}.-2$

 $\mathsf{D.}\,2$

Answer: C

12. If $\overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{c} \times \overrightarrow{b}$ and $\overrightarrow{r} \perp \overrightarrow{a}$ then \overrightarrow{r} is equal to

Answer: A

13. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are any three vectors such that $\left(\overrightarrow{a} + \overrightarrow{b}\right). \overrightarrow{c} = \left(\overrightarrow{a} - \overrightarrow{b}\right)\overrightarrow{c} = 0$ then $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}$ is

 $\mathsf{B}.\stackrel{\rightarrow}{a}$

 $\mathsf{C}.\stackrel{\rightarrow}{b}$

D. none of these

Answer: A

Watch Video Solution

14. Let $\overrightarrow{a} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\overrightarrow{b} = \hat{i} - 2\hat{j} + 3\hat{k}$. Then, the value of λ for which the vector $\overrightarrow{c} = \lambda\hat{i} + \hat{j} + (2\lambda - 1)\hat{k}$ is parallel to the plane containing \overrightarrow{a} and \overrightarrow{b} . Is

A. 1

B.0

C. −1

D. 2

Answer: B

15. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three unit vectors such that $\overrightarrow{a}, \overrightarrow{b} = \overrightarrow{a}, \overrightarrow{c} = 0$, If the angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{\pi}{3}$ then the volume of the parallelopiped whose three coterminous edges are $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ is

A.
$$\frac{\sqrt{3}}{2}$$
 cubic units
B. $\frac{1}{2}$ cubit unit

C.1 cubic unit

D. none of these

Answer: A

Watch Video Solution

16. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non coplanar, non zero vectors then $\left(\overrightarrow{a}, \overrightarrow{a}\right)\left(\overrightarrow{b} \times \overrightarrow{c}\right) + \left(\overrightarrow{a}, \overrightarrow{b}\right)\left(\overrightarrow{c} \times \overrightarrow{a}\right) + \left(\overrightarrow{a}, \overrightarrow{c}\right)\left(\overrightarrow{a} \times \overrightarrow{b}\right)$ is

equal to

A.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{c}$$

B. $\begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix} \overrightarrow{a}$
C. $\begin{bmatrix} \overrightarrow{c} & \overrightarrow{a} & \overrightarrow{b} \end{bmatrix} \overrightarrow{b}$

D. none of these

Answer: B

Watch Video Solution

17. If the acute angle that the vector $\alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ makes with the plane of the two vectors $2\hat{i} + 3\hat{j} - \hat{k}$ and $\hat{i} - \hat{j} + 2\hat{k}$ is $\tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$ then

A. $lpha(eta+\gamma)=eta\gamma$

 $\mathsf{B}.\,\beta(\gamma+\alpha)=\gamma\alpha$

 $\mathsf{C}.\,\gamma(\alpha+\beta)=\alpha\beta$

D. $\alpha\beta=\beta\gamma+\gamma\alpha=0$

Answer: A

18. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-coplanar vectors and \overrightarrow{p} , \overrightarrow{q} , \overrightarrow{r} are their reciprocal then $\left(l\overrightarrow{a} + m\overrightarrow{b} + n\overrightarrow{c}\right)$. $\left(\overrightarrow{l}p + \overrightarrow{m}q + \overrightarrow{n}r\right)$ is equal to

A. $l^2+m^2+n^2$

 $\mathsf{B}.\,lm+mn+nl$

C. 0

D. none of these

Answer: A

Watch Video Solution

19. If $\overrightarrow{a} \overrightarrow{b}$ are non zero and non collinear vectors, then $\begin{bmatrix} \Rightarrow & \overrightarrow{b} & \overrightarrow{i} \end{bmatrix} \hat{i} + \begin{bmatrix} \Rightarrow & \overrightarrow{b} & \overrightarrow{j} \end{bmatrix} \hat{j} + \begin{bmatrix} \Rightarrow & \overrightarrow{b} & \overrightarrow{k} \end{bmatrix} \hat{k}$ is equal to A. $\overrightarrow{a} + \overrightarrow{b}$

B.
$$\overrightarrow{a} \times \overrightarrow{b}$$

C. $\overrightarrow{a} - \overrightarrow{b}$
D. $\overrightarrow{b} \times \overrightarrow{a}$

Answer: B

Watch Video Solution

20. If
$$\overrightarrow{r}$$
 is a unit vector such that
 $\overrightarrow{r} = x \left(\overrightarrow{b} \times \overrightarrow{c}\right) + y \left(\overrightarrow{c} \times \overrightarrow{a}\right) + z \left(\overrightarrow{a} \times \overrightarrow{b}\right)$, then
 $\left| \left(\overrightarrow{r} \cdot \overrightarrow{a}\right) \left(\overrightarrow{b} \times \overrightarrow{c}\right) + \left(\overrightarrow{r} \cdot \overrightarrow{b}\right) \left(\overrightarrow{c} \times \overrightarrow{a}\right) + \left(\overrightarrow{r} \cdot \overrightarrow{c}\right) \left(\overrightarrow{c} \times \overrightarrow{b}\right) \right|$ is

equal to

A.
$$\left| \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \right|$$

B. 1
C. $\left| \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \right|$
D. 0

Answer: A

21. Let a,b,c be three vectors such that [a b c]=2, if r=l(b imes c)+m(c imes a)+n(a imes b) is perpendicular to a+b+c, then the value of (l+m+n) is

A. 2

B. 1

C. 0

D. none of these

Answer: C

22. If \overrightarrow{b} is a unit vector, then $\left(\overrightarrow{a}, \overrightarrow{b}\right)\overrightarrow{b} + \overrightarrow{b} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)$ is a equal

to

A.
$$\left| \overrightarrow{a} \right|^2 \overrightarrow{b}$$

B. $\left(\overrightarrow{a} \cdot \overrightarrow{b} \right) \overrightarrow{a}$
C. \overrightarrow{a}

$$\mathsf{D}.\left(\overrightarrow{a}.\overrightarrow{b}\right)\overrightarrow{b}$$

Answer: C

23. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are any three non coplanar vectors, then $\left[\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \quad \overrightarrow{a} - \overrightarrow{c} \quad \overrightarrow{a} - \overrightarrow{b}\right]$ is equal to

A. 0

$$B. \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$
$$C. 2 \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

$$\mathsf{D.} = 3 \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

Answer: D

24. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are any three non coplanar vectors, then $\left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}\right)$. $\left(\overrightarrow{b} + \overrightarrow{c}\right) \times \left(\overrightarrow{c} + \overrightarrow{a}\right)$

B.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

C. 2 $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$
D. 3 $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$

Answer: B

25. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three having magnitude 1,1 and 2 respectively such that $\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + \overrightarrow{b} = \overrightarrow{0}$, then the acute angle between \overrightarrow{a} and \overrightarrow{c} is

A.
$$\frac{\pi}{3}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: C

26. If
$$\overrightarrow{a} = (\hat{i} + \hat{j} + \hat{k}), \overrightarrow{a}, \overrightarrow{b} = 1$$
 and $\overrightarrow{a} \times \overrightarrow{b} = \hat{j} - \hat{k}$, then \overrightarrow{b} is
(a) $\hat{i} - \hat{j} + \hat{k}$ (b) $2\hat{i} - \hat{k}$ (c) \hat{i} (d) $2\hat{i}$
A. $\hat{i} - \hat{j} + \hat{k}$

B. $2\hat{j}-\hat{k}$

C. \hat{i}

 $\mathrm{D.}\,2\hat{i}$

Answer: C

Watch Video Solution

27. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-coplanar non-zero vectors, then $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{a} \times \overrightarrow{c}\right) + \left(\overrightarrow{b} \times \overrightarrow{c}\right) \times \left(\overrightarrow{b} \times \overrightarrow{a}\right) + \left(\overrightarrow{c} \times \overrightarrow{a}\right) \times \left(\overrightarrow{c}\right)$

is equal to

A.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2 \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$$

B. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$
C. $\overrightarrow{0}$

D. none of these

Answer: B

28. If the vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 and \overrightarrow{d} are coplanar vectors, then
 $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{c} \times \overrightarrow{d}\right)$ is equal to
A. $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} + \overrightarrow{d}$
B. $\overrightarrow{0}$
C. $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{c} + \overrightarrow{d}$

D. none of these

Answer: B

29.
$$\left(\overrightarrow{a} \times \overrightarrow{b}\right)$$
. $\left(\overrightarrow{c} \times \overrightarrow{d}\right)$ is not equal to
A. \overrightarrow{a} . $\left\{\overrightarrow{b} \times \left(\overrightarrow{c} \times \overrightarrow{d}\right)\right\}$
B. $\left\{\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c}\right\}\overrightarrow{d}$
C. $\left(\overrightarrow{d} \times \overrightarrow{c}\right)$. $\left(\overrightarrow{b} \times \overrightarrow{a}\right)$

$$\mathsf{D}.\left(\overrightarrow{a}.\overrightarrow{c}\right)\left(\overrightarrow{b}.\overrightarrow{d}\right) - \left(\overrightarrow{a}.\overrightarrow{d}\right)\left(\overrightarrow{b}.\overrightarrow{c}\right)$$

Answer: B

Watch Video Solution

30. Let
$$\overrightarrow{a} = 2\hat{i} + \hat{j} + \hat{k}$$
, and $\overrightarrow{b} = \hat{i} + \hat{j}$ if c is a vector such that
 $\overrightarrow{a} \cdot \overrightarrow{c} = |\overrightarrow{c}|, |\overrightarrow{c} - \overrightarrow{a}| = 2\sqrt{2}$ and the angle between
 $\overrightarrow{a} \times \overrightarrow{b}$ and $\overrightarrow{i} s 30^{\circ}$, then $|(\overrightarrow{a} \times \overrightarrow{b})| \times \overrightarrow{c}|$ is equal to
A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. 2
D. 3

Answer: B

31. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are three non coplanar vectors and \overrightarrow{r} is any vector in space, then $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{r} \times \overrightarrow{c}\right) + \left(\overrightarrow{b} \times \overrightarrow{c}\right) \times \left(\overrightarrow{r} \times \overrightarrow{a}\right) + \left(\overrightarrow{c} \times \overrightarrow{a}\right) \times \left(\overrightarrow{r}\right)$ A. $2\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]\overrightarrow{r}$ B. $3\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]\overrightarrow{r}$ C. $\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right]\overrightarrow{r}$

D. none of these

Answer: A

32. The number of faces of a triangular pyramid or tetrahedron is _____.

A.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

B. $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\cos^{-1}\left(\frac{2}{3}\right)$

D. none of these

Answer: A

Watch Video Solution

33. The acute angle that the vector $2\hat{i} - 2\hat{j} + \hat{k}$ makes with the plane determined by the vectors $2\hat{i} + 3\hat{j} - \hat{k}$ and $\hat{i} - \hat{j} + 2\hat{k}$ is

A.
$$\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

B. $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$
C. $\tan^{-1}(\sqrt{2})$
D. $\cot^{-1}(\sqrt{3})$

Answer: B

34. If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are non-null non coplanar vectors, then $\begin{bmatrix} \overrightarrow{a} - 2\overrightarrow{b} + \overrightarrow{c} & \overrightarrow{b} - 2\overrightarrow{c} + \overrightarrow{a} & \overrightarrow{c} - 2\overrightarrow{a} + \overrightarrow{b} \end{bmatrix} =$ A. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$ B. $3\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$ C. 0D. $12\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$

Answer: C

Watch Video Solution

35. The three vectors $\hat{i} + \hat{j}$, $\hat{j} + \hat{k}$, $\hat{k} + \hat{i}$ taken two at a time form three planes, The three unit vectors drawn perpendicular to these planes form a parallelopiped of volume:

A.
$$\frac{1}{3}$$

B. 4

C.
$$\frac{3\sqrt{3}}{4}$$

D. $\frac{4}{3\sqrt{3}}$

Answer: B

Watch Video Solution

36. Let G_1 , G(2) and G_3 be the centroid of the triangular faces OBC, OCA and OAB of a tetrahedron OABC. If V_1 denotes the volume of tetrahedron OABC and V_2 that of the parallelepiped with OG_1 , OG_2 and OG_3 as three concurrent edges, then the value of $\frac{4V_1}{V_2}$ is (where O is the origin

A. $4V_1=9V_2$

B. $9V_1 = 4V_2$

 $\mathsf{C.}\, 3V_1=2V_2$

D. $3V_2=2V_1$

Answer: A

37. Let $\overrightarrow{r}, \overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} be four non -zero vectors such that $\overrightarrow{r}, \overrightarrow{a} - 0, |\overrightarrow{r} \times \overrightarrow{b}| = |\overrightarrow{r}| |\overrightarrow{b}|$ and $|\overrightarrow{r} \times \overrightarrow{c}| = |\overrightarrow{r}| |\overrightarrow{c}|$ then [a b c] is equal to A. -1

B. 0

C. 1

D. 2

Answer: B

38. Let $\overrightarrow{V} = 2\hat{i} + \hat{j} - \hat{k}$ and $\overrightarrow{W} = \hat{i} + 3\hat{k}$. if \overrightarrow{U} is a unit vector, then the maximum value of the scalar triple product $\left[\overrightarrow{U}\overrightarrow{V}\overrightarrow{W}\right]$ is

A. -1

 $\mathsf{B.}\,\sqrt{10}+\sqrt{6}$

C. $\sqrt{59}$

D. $\sqrt{60}$

Answer: C

Watch Video Solution

39. If a and b are unit vectors, then the vector defined as V = (a + b) imes (a + b) is collinear to the vector

A. $\overrightarrow{a} + \overrightarrow{b}$ B. $\overrightarrow{a} - \overrightarrow{b}$ C. $2\overrightarrow{a} + \overrightarrow{b}$

D.
$$2\overrightarrow{a} - \overrightarrow{b}$$

Answer: B

Watch Video Solution

40. If
$$\overrightarrow{\alpha} = 2\hat{i} + 3\hat{j} - \hat{k}, \overrightarrow{\beta} = -\hat{i} + 2\hat{j} - 4\hat{k}, \overrightarrow{\gamma} = \hat{i} + \hat{j} + \hat{k}$$
, then
 $\left(\overrightarrow{\alpha} \times \overrightarrow{\beta}\right). \left(\overrightarrow{\alpha} \times \overrightarrow{\gamma}\right)$ is equal to
A. -74
B. 74
C. 64
D. 60

Answer: A

41. Let $\alpha = a\hat{i} + b\hat{j} + c\hat{k}$, $\overrightarrow{\beta} = b\hat{i} + c\hat{j} + a\hat{k}$ and $\overrightarrow{\gamma} = c\hat{i} + a\hat{j} + b\hat{k}$ be three coplanar vectors with $a \neq b$ and $\overrightarrow{v} = \hat{i} + \hat{j} + \hat{k}$. Then \overrightarrow{v} is perpendicular to

A.
$$\overrightarrow{\alpha}$$

B. $\overrightarrow{\beta}$
C. $\overrightarrow{\gamma}$

D. all of these

Answer: D

42. Given
$$\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right| = 1$$
 and $\left|\overrightarrow{a} + \overrightarrow{b}\right| = \sqrt{3}$ if \overrightarrow{c} is a vector such that
 $\overrightarrow{c} - \overrightarrow{a} - 2\overrightarrow{b} = 3\left(\overrightarrow{a} \times \overrightarrow{b}\right)$ then find the value of $\overrightarrow{c} \cdot \overrightarrow{b}$.
A. $-\frac{1}{2}$
B. $\frac{1}{2}$

C.
$$\frac{3}{2}$$

D. $\frac{5}{2}$

Answer: D

43. If
$$\overrightarrow{\mu}$$
 and \overrightarrow{v} be unit vector. If \overrightarrow{v} is a vector such that $\overrightarrow{v} + (\overrightarrow{v} \times \overrightarrow{u}) = \overrightarrow{v}$, then $\overrightarrow{u} (\overrightarrow{v} \times \overrightarrow{v})$ will be equal to:
A. $1 - \overrightarrow{v} \cdot \overrightarrow{w}$
B. $1 - |\overrightarrow{w}|^2$
C. $|\overrightarrow{w}|^2 - (\overrightarrow{v} \cdot \overrightarrow{w})^2$

D. all of these

Answer: D

44. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three vectors of magnitude $\sqrt{3}, 1, 2$ such that $\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + 3\overrightarrow{b} = \overrightarrow{0}$ if θ angle between \overrightarrow{a} and \overrightarrow{c} then $\cos^2 \theta$ is equal to

A.
$$\frac{3}{4}$$

B. $\frac{1}{2}$
C. $\frac{1}{4}$

D. none of these

Answer: A

45. If
$$\overrightarrow{a} \perp \overrightarrow{b}$$
 then vector \overrightarrow{v} in terms of \overrightarrow{a} and \overrightarrow{b} satisfying the equations \overrightarrow{v} . $Veca = 0nad \overrightarrow{v}$. $Vecb = 1$ and $\left[\overrightarrow{a} \overrightarrow{a} \overrightarrow{b}\right] = 1$ is

A.
$$\frac{\overrightarrow{b}}{\left|\overrightarrow{b}\right|^2} + \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left|\overrightarrow{a} \times \overrightarrow{b}\right|^2}$$

D. none of these

Answer: A

Watch Video Solution

46. Find the value of a so that the volume of the parallelopiped formed by vectors $\hat{i} + a\hat{j} + \hat{k}$, $\hat{j} + a\hat{k}$ and $a\hat{i} + \hat{k}$ becomes minimum.

A.
$$\frac{1}{3}$$

B. 3
C. $\frac{1}{\sqrt{3}}$
D. $\sqrt{3}$

Answer: C

47. let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be three vectors having magnitudes 1, 1 and 2, respectively, if $\overrightarrow{a} \times (\overrightarrow{a} \times \overrightarrow{c}) + \overrightarrow{b} = \overrightarrow{0}$, then the acute angle between \overrightarrow{a} and \overrightarrow{c} is _____

A.
$$\frac{\pi}{4}$$

B. $\frac{\pi}{6}$
C. $\frac{\pi}{3}$

D. none of these

Answer: B

Watch Video Solution

48. If $\overrightarrow{A}, \overrightarrow{B}$ and \overrightarrow{C} are vectors such that $\left|\overrightarrow{B}\right| = \left|\overrightarrow{C}\right|$ prove that $\left|\left(\overrightarrow{A} + \overrightarrow{B}\right) \times \left(\overrightarrow{A} + \overrightarrow{C}\right)\right] \times \left(\overrightarrow{B} + \overrightarrow{C}\right) \cdot \left(\overrightarrow{B} + \overrightarrow{C}\right) = 0$

A. 1

B.-1

C. 0

D. none of these

Answer: C

Watch Video Solution

49. If the magnitude of the moment about the pont $\hat{j} + \hat{k}$ of a force $\hat{i} + \alpha \hat{j} - \hat{k}$ acting through the point $\hat{i} + \hat{j}$ is $\sqrt{8}$, then the value of α is

A. 1

 $\mathsf{B}.\,2$

C. 3

D. 4

Answer: B

50. If the volume of parallelopiped formed by the vectors a,b,c as three coterminous edges is 27 cu units, then the volume of the parallelopiped have $\alpha = a + 2b - c$, $\beta = a - b$ and $\gamma = a - b - c$ as three coterminous edges is

A. 27 cubic units

B. 9 cubic units

C. 81 cubic units

D. none of these

Answer: C

51. If
$$|\overrightarrow{a}| = 5$$
, $|\overrightarrow{b}| = 3$, $|\overrightarrow{c}| = 4$ and \overrightarrow{a} is perpendicular to \overrightarrow{b} and \overrightarrow{c} such that angle between \overrightarrow{b} and \overrightarrow{c} is $\frac{5\pi}{6}$, then the volume of the

parallelopiped having $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} as three coterminous edges is

A. 30 cubit units

B. 60 cubic units

C. 20 cubic units

D. none of these

Answer: A

Watch Video Solution

52. If the vectors
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 and \overrightarrow{d} are coplanar vectors, then $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{c} \times \overrightarrow{d}\right)$ is equal to

 $\mathsf{B}.\stackrel{\rightarrow}{a}$

 $\stackrel{\longrightarrow}{\mathsf{C. }} \vec{b}$

D. $\stackrel{\rightarrow}{0}$

Answer: D

53.

$$\left(\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \hat{i} \right) \right) \hat{i} + \left(\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \hat{j} \right) \right) \hat{j} + \left(\overrightarrow{a} \cdot \left(\overrightarrow{b} \times \hat{k} \right) \right) \hat{k} = \overrightarrow{a} \times \overrightarrow{b}$$

A. $2 \left(\overrightarrow{a} \times \overrightarrow{b} \right)$

B. $3 \left(\overrightarrow{a} \times \overrightarrow{b} \right)$

C. $\overrightarrow{a} \times \overrightarrow{b}$

D. $- \left(\overrightarrow{a} \times \overrightarrow{b} \right)$

Prove

that

Answer: C

54. The unit vector which is orhtogonal to the vector $3\hat{i} + 2\hat{j} + 6\hat{k}$ and is

coplanar with vectors $2\hat{i}+\hat{j}+\hat{k}$ and $\hat{i}-\hat{j}+\hat{k}$, is
A.
$$rac{1}{\sqrt{41}} \left(2\hat{i} - 6\hat{j} + \hat{k}
ight)$$

B. $rac{1}{\sqrt{13}} \left(2\hat{i} - 3\hat{j}
ight)$
C. $rac{1}{\sqrt{10}} \left(3\hat{j} - \hat{k}
ight)$
D. $rac{1}{\sqrt{34}} \left(4\hat{i} + 3\hat{j} - 3\hat{k}
ight)$

Answer: C

Watch Video Solution

55. Let $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} be non-zero vectors such that $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{c} = \frac{1}{3} |\overrightarrow{b}| |\overrightarrow{c}| \overrightarrow{a}|$. If θ is an acute angle between the vectors \overrightarrow{b} and \overrightarrow{c} , then $\sin \theta$ is equal to:

A.
$$\frac{2\sqrt{2}}{3}$$

B. $\frac{\sqrt{2}}{3}$
C. $\frac{2}{3}$
D. $\frac{1}{3}$

56. \overrightarrow{p} , \overrightarrow{q} and \overrightarrow{r} are three mutually prependicular vectors of the same magnitude . If vector \overrightarrow{x} satisfies the equation $\overrightarrow{p}s \times \left(\left(\overrightarrow{x} - \overrightarrow{q}\right) \times \overrightarrow{p}\right) + \overrightarrow{q} \times \left(\left(\overrightarrow{x} - \overrightarrow{r}\right) \times \overrightarrow{q}\right) + \overrightarrow{r} \times \left(\left(\overrightarrow{x} - \overrightarrow{p}\right) \times \overrightarrow{p}\right)$ is given by

A.
$$\frac{1}{2} \left(\overrightarrow{p} + \overrightarrow{q} - 2\overrightarrow{r} \right)$$

B. $\frac{1}{2} \left(\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r} \right)$
C. $\frac{1}{3} \left(\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r} \right)$
D. $\frac{1}{3} \left(2\overrightarrow{p} + \overrightarrow{q} - \overrightarrow{r} \right)$

Answer: B

57. If
$$\overrightarrow{a}$$
 and \overrightarrow{b} are vectors in space given by
 $\overrightarrow{a} = \frac{\hat{i} - 2\hat{j}}{\sqrt{5}}$ and $\overrightarrow{b} = \frac{2\hat{i} + \hat{j} + 3\hat{k}}{\sqrt{14}}$ then find the value of
 $\left(2\overrightarrow{a} + \overrightarrow{b}\right)$. $\left[\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{a} - 2\overrightarrow{b}\right)\right]$
A.2
B.3
C.4
D.5

Answer: D

Watch Video Solution

58. Two adjacent sides of a parallelogram ABCD are given by $\overrightarrow{A}B = 2\hat{i} + 10\hat{j} + 11\hat{k}and\overrightarrow{A}D = -\hat{i} + 2\hat{j} + 2\hat{k}$. The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes AD'. If AD' makes a right angle with the side AB, then the cosine of the angel α is given by a. $\frac{8}{9}$ b. $\frac{\sqrt{17}}{9}$ c. $\frac{1}{9}$ d. $\frac{4\sqrt{5}}{9}$

A.
$$\frac{8}{9}$$

B. $\frac{\sqrt{17}}{9}$
C. $\frac{1}{9}$
D. $\frac{4\sqrt{5}}{9}$

Answer: B

Watch Video Solution

59. Let $a = \hat{j} - \hat{k}$ and $b = \hat{i} - \hat{j} - \hat{k}$. Then, the vector v satisfying $a \times b + c = 0$ and $a \cdot b = 3$, is

A. $\hat{i}-\hat{j}-2\hat{k}$ B. $\hat{i}+\hat{j}-2\hat{k}$ C. $-\hat{i}+\hat{j}-2\hat{k}$ D. $2\hat{i}-\hat{j}+2\hat{k}$

Answer: C

Watch Video Solution

60. The vector(s) which is /are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$ and perpendicular to vector $\hat{i} + \hat{j} + \hat{k}$, is /are

A. $\hat{j} - \hat{k}$ and $-\hat{j} + \hat{k}$ B. $-\hat{i} + \hat{j}$ and $\hat{i} - \hat{j}$ C. $\hat{i} - \hat{j}$ and $\hat{j} - \hat{k}$ D. $-\hat{j} + \hat{k}$ and $-\hat{i} + \hat{j}$

Answer: Minimum value at $(\alpha)^{\alpha} \hat{}(x)$ + alpha^(1-(alpha)^x)` is

61.	Let	$\overrightarrow{a} = -\hat{i}$	$-\hat{k},\stackrel{ ightarrow}{b}$	$= -\hat{i}$	$\hat{i}+\hat{j}$:	and \overline{c}	$\hat{j}=i+2\hat{j}$	$+ \ 3 \hat{k}$ be	three
giv	en	vectors.	If	\overrightarrow{r}	is	а	vector	such	that
\overrightarrow{r}	$ imes \overrightarrow{b}$	$=\overrightarrow{c} imes \overrightarrow{b}$	and \overline{i}	\overrightarrow{r} . \overrightarrow{a} =	0 the	n find	the value o	of \overrightarrow{r} . \overrightarrow{b} .	
	A. 4								
	B. 8								
	C. 6								
	D. 9								

Answer: D

Watch Video Solution

62.
$$\overrightarrow{a} = \frac{1}{\sqrt{10}} \left(3\hat{i} + \hat{k} \right)$$
 and $\overrightarrow{b} = \frac{1}{7} \left(2\hat{i} + 3\hat{j} - 6\hat{k} \right)$, then the value of $\left(2\overrightarrow{a} - \overrightarrow{b} \right)$. $\left[\left(\overrightarrow{a} \times \overrightarrow{b} \right) \times \left(\overrightarrow{a} + 2\overrightarrow{b} \right) \right]$ is:

 $\mathsf{A.}-5$

 $\mathsf{B.}-3$

C. 5

D. 3

Answer: A

Watch Video Solution

63. If
$$\overrightarrow{a} = \hat{i} - 2\hat{j} + 3\hat{k}$$
, $\overrightarrow{b} = 2\hat{i} + 3\hat{j} - \hat{k}$ and $\overrightarrow{c} = r\hat{i} + \hat{j} + (2r - 1)\hat{k}$ are three vectors such that \overrightarrow{c} is parallel to the plane of \overrightarrow{a} and \overrightarrow{b} then r is equal to,

A. 1

B. 0

 $\mathsf{C.}\,2$

D. -1

Answer: B

64. If
$$\overrightarrow{a}, \overrightarrow{b}$$
 are non zero vectors, then
 $\left(\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \overrightarrow{a}\right). \left(\left(\overrightarrow{b} \times \overrightarrow{a}\right) \times \overrightarrow{b}\right)$ equals
A. $-\left(\overrightarrow{a}.\overrightarrow{b}\right) \left|\left(\overrightarrow{a} \times \overrightarrow{b}\right)\right|^{2}$
B. $\left|\overrightarrow{a} \times \overrightarrow{b}\right|^{2} \overrightarrow{a}^{2}$
C. $\left|\overrightarrow{a} \times \overrightarrow{b}\right|^{2} \overrightarrow{b}^{2}$
D. $\left(\overrightarrow{a}.\overrightarrow{b}\right) \left|\overrightarrow{a} \times \overrightarrow{b}\right|^{2}$

Answer: D

Watch Video Solution

Section Ii Assertion Reason Type

1. Statement 1: Let \overrightarrow{r} be any vector in space. Then, $\overrightarrow{r} = (\overrightarrow{r}. \hat{i})\hat{i} + (\overrightarrow{r}. \hat{j})\hat{j} + (\overrightarrow{r}. \hat{k})\hat{k}$ Statement 2: If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three non-coplanar vectors and \overrightarrow{r} is any vector in space then

$$\vec{r} = \left\{ \frac{\left[\vec{r} \quad \vec{b} \quad \vec{c}\right]}{\left[\vec{a} \quad \vec{b} \quad \vec{c}\right]} \right\} \vec{a} + \left\{ \frac{\left[\vec{r} \quad \vec{c} \quad \vec{a}\right]}{\left[\vec{a} \quad \vec{b} \quad \vec{c}\right]} \right\} \vec{b} + \left\{ \frac{\left[\vec{r} \quad \vec{a} \quad \vec{b}\right]}{\left[\vec{a} \quad \vec{b} \quad \vec{c}\right]} \right\} \vec{c}$$
A.1
B.2
C.3
D.4

Answer: A

Watch Video Solution

2. Statement 1: If \overrightarrow{a} , \overrightarrow{b} are non zero and non collinear vectors, then $\overrightarrow{a} \times \overrightarrow{b} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \hat{i} \end{bmatrix} \hat{i} + \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \hat{j} \end{bmatrix} \hat{j} + \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \hat{k} \end{bmatrix} \hat{k}$ Statement 2: For any vector \overrightarrow{r} $\overrightarrow{r} = (\overrightarrow{r} \cdot \hat{i})\hat{i} + (\overrightarrow{r} \cdot \hat{j})\hat{j} + (\overrightarrow{r} \cdot \hat{k})\hat{k}$

P		2
υ	٠	2

C. 3

D. 4

Answer: A

Watch Video Solution

3. Statement 1: Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three coterminous edges of a parallelopiped of volume 2 cubic units and \overrightarrow{r} is any vector in space then $\left| \left(\overrightarrow{r}, \overrightarrow{a} \right) \left(\overrightarrow{b} \times \overrightarrow{c} \right) + \left(\overrightarrow{r}, \overrightarrow{b} \right) \left(\overrightarrow{c} \times \overrightarrow{a} \right) + \left(\overrightarrow{c}, \overrightarrow{c} \right) \left(\overrightarrow{a} \times \overrightarrow{b} \right) = 2 |\overrightarrow{r}|$ Statement 2: Any vector in space can be written as a linear combination

of three non-coplanar vectors.

A. 1. statement-1 is true, statement 2 is a correct explanation for statement -1

B. 2. statement-1 is true, statement-2 is not correct explanation for

statement 1

C. 3. statement-1 is true, statement-2 is false

D. 4. Both statements are true

Answer: A

Watch Video Solution

4. Let
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} be any three vectors,
Statement 1: $\begin{bmatrix} \overrightarrow{a} + \overrightarrow{b} & \overrightarrow{b} + \overrightarrow{c} & \overrightarrow{c} + \overrightarrow{a} \end{bmatrix} = 2 \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$
Statement 2: $\begin{bmatrix} \overrightarrow{a} \times \overrightarrow{b} & \overrightarrow{b} \times \overrightarrow{c} & \overrightarrow{c} \times \overrightarrow{a} \end{bmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2$

5. Statement 1: Any vector in space can be uniquely written as the linear combination of three non-coplanar vectors.

Stetement 2: If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three non-coplanar vectors and \overrightarrow{r} is any vector in space then

$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{c} + \begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{r} \end{bmatrix} \overrightarrow{a} + \begin{bmatrix} \overrightarrow{c} & \overrightarrow{a} & \overrightarrow{r} \end{bmatrix} \overrightarrow{b} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} \overrightarrow{r}$$

A	١.	1
-		-

- B. 2
- C. 3
- D. 4

Answer: B

Watch Video Solution

6. Statement 1: Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three coterminous edges of a parallelopiped of volume V. Let V_1 be the volume of the parallelopiped whose three coterminous edges are the diagonals of three adjacent faces of the given parallelopiped. Then $V_1 = 2V$.

Statement 2: For any three vectors, $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$

 $ig[\overrightarrow{p} + \overrightarrow{q} \quad \overrightarrow{q} + \overrightarrow{r} \quad \overrightarrow{r} + \overrightarrow{p} \, ig] = 2ig[\overrightarrow{p} \quad \overrightarrow{q} \quad \overrightarrow{r} \, ig]$

A. 1

B. 2

C. 3

D. 4

Answer: A

Watch Video Solution

7. Statement 1: Let V_1 be the volume of a parallelopiped ABCDEF having $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ as three coterminous edges and V_2 be the volume of the parallelopiped PQRSTU having three coterminous edges as vectors whose magnitudes are equal to the areas of three adjacent faces of the parallelopiped ABCDEF. Then $V_2 = 2V_1^2$ Statement 2: For any three vectors $\overrightarrow{\alpha}, \overrightarrow{\beta}, \overrightarrow{\gamma}$

$$\left[\overrightarrow{lpha} imes \overrightarrow{eta}, \overrightarrow{eta} imes \overrightarrow{\gamma}, \overrightarrow{\gamma} imes \overrightarrow{lpha}
ight] = \left[\overrightarrow{lpha} \quad \overrightarrow{eta} \quad \overrightarrow{\gamma}
ight]^2$$

A. 1. statement -1 is true, statement -2 is a correct explanation for

statement -1

B. 2. statement-1 is true, statement-2 is not correct explanation for

statement - 1

C. 3. statement -1 is true , statement-2 is false

D. 4. statement-1 is false, statement-2 is correct

Answer: D

Watch Video Solution

8. Statement 1: If V is the volume of a parallelopiped having three coterminous edges as $\overrightarrow{a}, \overrightarrow{b}$, and \overrightarrow{c} , then the volume of the parallelopiped having three coterminous edges as

$$\overrightarrow{\alpha} = \left(\overrightarrow{a} \cdot \overrightarrow{a}\right) \overrightarrow{a} + \left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \overrightarrow{b} + \left(\overrightarrow{a} \cdot \overrightarrow{c}\right) \overrightarrow{c}$$

$$\overrightarrow{\beta} = \left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \overrightarrow{a} + \left(\overrightarrow{b} \cdot \overrightarrow{b}\right) \overrightarrow{b} + \left(\overrightarrow{b} \cdot \overrightarrow{c}\right) \overrightarrow{c}$$

$$\overrightarrow{\gamma} = \left(\overrightarrow{a} \cdot \overrightarrow{c}\right) \overrightarrow{a} + \left(\overrightarrow{b} \cdot \overrightarrow{c}\right) \overrightarrow{b} + \left(\overrightarrow{c} \cdot \overrightarrow{c}\right) \overrightarrow{c}$$
is V^3

Statement 2: For any three vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$

$$\begin{vmatrix} \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{c} \\ \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{b} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{b} & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{b} & \overrightarrow{b} & \overrightarrow{c} \\ \overrightarrow{c} & \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{c} \end{vmatrix} = \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^{3}$$

A. 1

B. 2

C. 3

D. 4

Answer: C

View Text Solution

9. Statement 1: Unit vectors orthogonal to the vector $3\hat{i} + 2\hat{j} + 6\hat{k}$ and coplanar with the vectors $2\hat{i} + \hat{j} + \hat{k}$ and $\hat{i} - \hat{j} + \hat{k}$ are $\pm \frac{1}{\sqrt{10}} (3\hat{j} - \hat{k})$. Statement 2: For any three vectors \vec{a}, \vec{b} , and \vec{c} vector $\vec{a} \times (\vec{b} \times \vec{c})$ is orthogonal to \vec{a} and lies in the plane of \vec{b} and \vec{c} .

A. 1	
B. 2	
C. 3	

D. 4

View Text Solution

10. If G_1 , G_2 , G_3 ar the centroids of the triangular faces OBC, OCA, OAB of a tetrahedron OABC. If λ be the ratio of the volume of the tetrahedron to the volume of the parallelepiped with OG_1 , OG_2 , OG_a as coterminous edges. Then the value of 2008λ must be .

- A. 1
- B. 2

C. 3

D. 4

11. Statement 1: For any three vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$

 $\left[\stackrel{
ightarrow}{a} imes \stackrel{
ightarrow}{b} \quad \stackrel{
ightarrow}{b} imes \stackrel{
ightarrow}{c} \quad \stackrel{
ightarrow}{c} imes \stackrel{
ightarrow}{a}
ight] = 0$

Statement 2: If $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$ are linear dependent vectors then they are coplanar.

- A. 1
- B. 2
- C. 3

D. 4

Answer: D

View Text Solution

12. Let the vectors $\overrightarrow{PQ}, \overrightarrow{QR}, \overrightarrow{RS}, \overrightarrow{ST}, \overrightarrow{TU}$ and \overrightarrow{UP} represent the sides of

a regular hexagon.

Statement I: $\overrightarrow{PQ} \times (\overrightarrow{RS} + \overrightarrow{ST}) \neq \overrightarrow{0}$ Statement II: $\overrightarrow{PQ} \times \overrightarrow{RS} = \overrightarrow{0}$ and $\overrightarrow{PQ} \times \overrightarrow{RS} = \overrightarrow{0}$ and $\overrightarrow{PQ} \times \overrightarrow{ST} \neq \overrightarrow{0}$ For the following question, choose the correct answer from the codes (A), (B) , (C) and (D) defined as follows:

A. 1

B. 2

C. 3

D. 4

Answer: C

1. For non-zero vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , $\left|\left(\overrightarrow{a} \times \overrightarrow{b}\right) \cdot \overrightarrow{c}\right| = \left|\overrightarrow{a}\right| \left|\overrightarrow{b}\right| \left|\overrightarrow{c}\right|$

holds if and only if

A.
$$\overrightarrow{a}$$
. $\overrightarrow{b} = \overrightarrow{b}$. $\overrightarrow{c} = \overrightarrow{a}$. $\overrightarrow{a} = 0$
B. \overrightarrow{a} . $\overrightarrow{b} = 0 = \overrightarrow{b}$. \overrightarrow{c}
C. \overrightarrow{b} . $\overrightarrow{c} = 0 = \overrightarrow{c}$. \overrightarrow{a}
D. \overrightarrow{c} . $\overrightarrow{a} = 0 = \overrightarrow{a}$. \overrightarrow{b}

Answer: A

2. Let
$$\overrightarrow{a} = \hat{i} + \hat{j} - \hat{k}$$
, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$ and \overrightarrow{c} be a unit vector perpendicular to \overrightarrow{a} and coplanar with \overrightarrow{a} and \overrightarrow{b} , then it is given by

A.
$$rac{1}{\sqrt{6}}ig(2\hat{i}-\hat{j}+\hat{j}kig)$$

B. $rac{1}{\sqrt{2}}ig(\hat{j}+\hat{k}ig)$
C. $rac{1}{\sqrt{6}}ig(\hat{i}-2\hat{j}+\hat{k}ig)$

D.
$$\frac{1}{2}(\hat{j}-\hat{k})$$

3. If \overrightarrow{a} lies in the plane of vectors \overrightarrow{b} and \overrightarrow{c} , then which of the following is correct?

$$A. \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 0$$
$$B. \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 1$$
$$C. \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 3$$
$$D. \begin{bmatrix} \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{a} \end{bmatrix} = 1$$

Answer: A

4. The value of $\begin{bmatrix} \overrightarrow{a} & -\overrightarrow{b} & \overrightarrow{b} & -\overrightarrow{c} & \overrightarrow{c} & -\overrightarrow{a} \end{bmatrix}$, where $|\overrightarrow{a}| = 1, |\overrightarrow{b}| = 5, |\overrightarrow{c}| = 3$, is A. 0 B. 1 C. 6 D. none of these

Answer: A

Watch Video Solution

5. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are three mutually perpendicular unit vectors, then prove that $\left| \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right| = \sqrt{3}$ A. ± 1 B. 0

 $\mathsf{C}.-2$

Watch Video Solution

6. If
$$\overrightarrow{r}$$
. $\overrightarrow{a} = \overrightarrow{r}$. $\overrightarrow{b} = \overrightarrow{r}$. $\overrightarrow{c} = 0$ for some non-zero vectro \overrightarrow{r} , then the value of $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$ is
A. 2
B. 3

C. 0

D. none of these

Answer: C

7. If the vectors $a\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + b\hat{j} + \hat{k}$, $\hat{i} + \hat{j} + c\hat{k}$ ($a \neq 1, b \neq 1, c \neq 1$) are coplanar then the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}$ is (A) 0 (B) 1 (C) -1 (D) 2

- $\mathsf{A.}-1$
- **B**. 0
- **C**. 1

D. none of these

Answer: C

Watch Video Solution

8. If $\hat{a}, \hat{b}, \hat{c}$ are three units vectors such that \hat{b} and \hat{c} are non-parallel and $\widehat{a} imes \left(\hat{b} imes \hat{c}\right) = 1/2\hat{b}$ then the angle between \widehat{a} and \hat{c} is

A. 30°

B. 45°

C. 60°

D. 90°

Answer: C

Watch Video Solution

9. For any three vectors
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} the vector $\left(\overrightarrow{b} \times \overrightarrow{c}\right) \times \overrightarrow{a}$ equals

$$A. \left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \overrightarrow{c} - \left(\overrightarrow{b} \cdot \overrightarrow{c}\right) \overrightarrow{a}$$
$$B. \left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \overrightarrow{c} - \left(\overrightarrow{a} \cdot \overrightarrow{c}\right) \overrightarrow{b}$$
$$C. \left(\overrightarrow{b} \cdot \overrightarrow{a}\right) \overrightarrow{c} - \left(\overrightarrow{c} \cdot \overrightarrow{a}\right) \overrightarrow{b}$$

D. none of these

Answer: B and C

10. for any three vectors,

$$\overrightarrow{a}, \overrightarrow{b}$$
 and $\overrightarrow{c}, (\overrightarrow{a} - \overrightarrow{b}), (\overrightarrow{b} - \overrightarrow{c}) \times (\overrightarrow{c} - \overrightarrow{a}) =$
A. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$
B. $2\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$
C. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^2$

D. none of these

Answer: D

11. For any vectors
$$\overrightarrow{r}$$
 the value of
 $\hat{i} \times (\overrightarrow{r} \times \hat{i}) + \hat{j} \times (\overrightarrow{r} \times \hat{j}) + \hat{k} \times (\overrightarrow{r} \times \hat{k})$, is
A. $\overrightarrow{0}$
B. $2\overrightarrow{r}$
C. $-2\overrightarrow{r}$

D. none of these

Answer: B

Watch Video Solution

12. If the vectors

$$\overrightarrow{a} = \hat{i} + a\hat{j} + a^2\hat{k}, \ \overrightarrow{b} = \hat{i} + b\hat{j} + b^2\hat{k}, \ \overrightarrow{c} = \hat{i} + c\hat{j} + c^2\hat{k}$$
 are three
non-coplanar vectors and $\begin{vmatrix} a & a^2 & 1 + a^3 \\ b & b^2 & 1 + b^3 \\ c & c^2 & 1 + c^3 \end{vmatrix} = 0$, then the value of *abc* is
A. 0
B. 1

.

C. 2

 $\mathsf{D.}-1$

Answer: D

13. Let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three noncolanar vectors and $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$ are vectors

defined by the relations $\overrightarrow{p} = \frac{\overrightarrow{b} \times \overrightarrow{c}}{\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]}, \ \overrightarrow{q} = \frac{\overrightarrow{c} \times \overrightarrow{a}}{\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]}, \ \overrightarrow{r} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]}$ then the value of the expression $\left(\overrightarrow{a} + \overrightarrow{b}\right) \cdot \overrightarrow{p} + \left(\overrightarrow{b} + \overrightarrow{c}\right) \cdot \overrightarrow{q} + \left(\overrightarrow{c} + \overrightarrow{a}\right) \cdot \overrightarrow{r}$. is equal to (A) 0 (B) 1 (C) 2 (D) 3

A. 0

B. 1

C. 2

D. 3

Answer: D

14. If
$$\overrightarrow{A}, \overrightarrow{B}$$
 and \overrightarrow{C} are three non - coplanar vectors, then
 $\frac{\overrightarrow{A}.\overrightarrow{B}\times\overrightarrow{C}}{\overrightarrow{C}\times\overrightarrow{A}.\overrightarrow{B}} + \frac{\overrightarrow{B}.\overrightarrow{A}\times\overrightarrow{C}}{\overrightarrow{C}.\overrightarrow{A}\times\overrightarrow{B}} =$ ______
A.0
B.2
C.1
D. none of these

15

Watch Video Solution

15. Let

$$\overrightarrow{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}, \quad \overrightarrow{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k} \text{ and } \quad \overrightarrow{c} = c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$$

be three non-zero vectors such that $\stackrel{\longrightarrow}{c}$ is a unit vector perpendicular to both \overrightarrow{a} and \overrightarrow{b} . If the angle between \overrightarrow{a} and $\overrightarrow{b}is\pi/6$ then the value of b_1 c_1 a_1 b_2 c_2 |is a_2 b_3 c_3 a_3

A. 0

B. 1

C.
$$\frac{1}{4} \left| \overrightarrow{a} \right|^2 \left| \overrightarrow{b} \right|^2$$

D. $\frac{3}{4} \left| \overrightarrow{a} \right|^2 \left| \overrightarrow{b} \right|^2$

Answer: C

Watch Video Solution

16. If non-zero vectors \overrightarrow{a} and \overrightarrow{b} are perpendicular to each other, then the solution of the equation $\overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{b}$ is given by

$$\begin{array}{l} \mathsf{A}.\overrightarrow{r} = x\overrightarrow{a} + \dfrac{\overrightarrow{a}\times\overrightarrow{b}}{\left|\overrightarrow{a}\right|^{2}}\\ \mathsf{B}.\overrightarrow{r} = x\overrightarrow{b} - \dfrac{\overrightarrow{a}\times\overrightarrow{b}}{\left|\overrightarrow{b}\right|^{2}}\\ \mathsf{C}.\overrightarrow{r} = x\left(\overrightarrow{a}\times\overrightarrow{b}\right)\\ \mathsf{D}.\overrightarrow{r} = x\left(\overrightarrow{b}\times\overrightarrow{a}\right)\end{array}$$

17. show that
$$(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$$
 if and only if \overrightarrow{a} and \overrightarrow{c} are collinear or $(\overrightarrow{a} \times \overrightarrow{c}) \times \overrightarrow{b} = \overrightarrow{0}$

A.
$$\overrightarrow{b} \times (\overrightarrow{c} \times \overrightarrow{a}) = \overrightarrow{0}$$

B. $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{0}$
C. $\overrightarrow{c} \times \overrightarrow{a} = \overrightarrow{a} \times \overrightarrow{b}$
D. $\overrightarrow{c} \times \overrightarrow{b} = \overrightarrow{b} \times \overrightarrow{a}$

Answer: A

18. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ and $\overrightarrow{p}, \overrightarrow{q}, \overrightarrow{r}$ are reciprocal system of vectors, then $\overrightarrow{a} \times \overrightarrow{p} + \overrightarrow{b} \times \overrightarrow{q} + \overrightarrow{c} \times \overrightarrow{r}$ equals:

A.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}$$

B. $\begin{pmatrix} \overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r} \end{pmatrix}$
C. $\overrightarrow{0}$
D. $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$

Answer: C

Watch Video Solution

19.
$$\overrightarrow{a} \times \left(\overrightarrow{a} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right)\right)$$
 equals
A. $\left(\overrightarrow{a} \cdot \overrightarrow{b}\right) \left(\overrightarrow{a} \times \overrightarrow{b}\right)$
B. $\left(\overrightarrow{a} \cdot \overrightarrow{a}\right) \left(\overrightarrow{b} \times \overrightarrow{a}\right)$
C. $\left(\overrightarrow{b} \cdot \overrightarrow{b}\right) \left(\overrightarrow{a} \times \overrightarrow{b}\right)$
D. $\left(\overrightarrow{b} \cdot \overrightarrow{b}\right) \left(\overrightarrow{b} \times \overrightarrow{a}\right)$

Answer: B

20. If $\overrightarrow{a} = \hat{i} + \hat{j}$, $\overrightarrow{b} = \hat{i} - \hat{j} + \hat{k}$ and \overrightarrow{c} is a unit vector \bot to the vector \overrightarrow{a} and coplanar with \overrightarrow{a} and \overrightarrow{b} , then a unit vector \overrightarrow{d} is perpendicular to both \overrightarrow{a} and \overrightarrow{c} is:

A.
$$rac{1}{\sqrt{6}} ig(2\hat{i} - \hat{j} + \hat{j}k ig)$$

B. $rac{1}{\sqrt{2}} ig(\hat{j} + \hat{k} ig)$
C. $rac{1}{\sqrt{2}} ig(\hat{i} + \hat{j} ig)$
D. $rac{1}{\sqrt{2}} ig(\hat{i} + \hat{k} ig)$

Answer: B

Watch Video Solution

21. If $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} are non coplanar and unit vectors such that $\overrightarrow{a} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right) = \frac{\overrightarrow{b} + \overrightarrow{c}}{\sqrt{2}}$ then the angle between *vea* and \overrightarrow{b} is (A) $\frac{3\pi}{4}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (D) π A. $3\pi/4$

B. $\pi/4$

C. $\pi / 2$

D. π

Answer: A

Watch Video Solution

22. Let a,b and c be distinct non-negative numbers. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + c\hat{k}$ lie in a plane, then c is:

A. the AM of a and b

B. the GM of a and b

C. the HM of a and b

D. equal to zero

Answer: B

23. If $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{c}$ and $\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{a}$, $showt \widehat{\overrightarrow{a}}, \overrightarrow{b}, \overrightarrow{c}$ are orthogonal

in pairs. Also show that |vecc|=|veca| and |vecb|=1`

A.
$$\left| \overrightarrow{a} \right| = 1$$
, $\overrightarrow{b} = \overrightarrow{c}$
B. $\left| \overrightarrow{c} \right| = 1$, $\left| \overrightarrow{a} \right| = 1$
C. $\left| \overrightarrow{b} \right| = 2$, $\overrightarrow{c} = 2\overrightarrow{a}$
D. $\left| \overrightarrow{b} \right| = 1$, $\left| \overrightarrow{c} \right| = \left| \overrightarrow{a} \right|$

Answer: A::D

Watch Video Solution

24. Let $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} be vectors forming right- hand triad . Let $\overrightarrow{P} = \frac{\overrightarrow{b} \times \overrightarrow{c}}{\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]}, \overrightarrow{q} \frac{\overrightarrow{c} \times \overrightarrow{a}}{\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]}$ and $\overrightarrow{r} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left[\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}\right]}Ifx \cup R^+$ then

A. 3	
B. 2	
C. 1	
D. 0	

Watch Video Solution

25.

$$\overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{a}, \overrightarrow{r} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{b}, \overrightarrow{a} \neq \overrightarrow{0}, \overrightarrow{b} \neq \overrightarrow{0}, \overrightarrow{a} \neq \lambda \overrightarrow{b}$$
 and
is not perpendicular to \overrightarrow{b} , then find \overrightarrow{r} in terms of \overrightarrow{a} and \overrightarrow{b} .

A. $\overrightarrow{a} - \overrightarrow{b}$ B. $\overrightarrow{a} + \overrightarrow{b}$ C. $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a}$ D. $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b}$

Answer: B

26. The vector \overrightarrow{a} coplanar with the vectors \hat{i} and \hat{j} perendicular to the vector $\overrightarrow{b} = 4\hat{i} - 3\hat{j} + 5\hat{k}$ such that $\left|\overrightarrow{a}\right| = \left|\overrightarrow{b}\right|$ is

A.
$$\sqrt{2} \left(3\hat{i} + 4\hat{j} \right)$$
 or $-\sqrt{2} \left(3\hat{i} + 4\hat{j} \right)$
B. $\sqrt{2} \left(4\hat{i} + 3\hat{j} \right)$ or $-\sqrt{2} \left(4\hat{i} + 3\hat{j} \right)$
C. $\sqrt{3} \left(4\hat{i} + 5\hat{j} \right)$ ro $-\sqrt{3} \left(4\hat{i} + 5\hat{j} \right)$
D. $\sqrt{3} \left(5\hat{i} + 4\hat{j} \right)$ or $-\sqrt{3} \left(5\hat{i} + 4\hat{j} \right)$

Answer: A

27. If the vectors
$$\overrightarrow{a}$$
 and \overrightarrow{b} are mutually perpendicular, then
 $\overrightarrow{a} \times \left\{ \overrightarrow{a} \times \left\{ \overrightarrow{a} \times \left\{ \overrightarrow{a} \times \overrightarrow{b} \right\} \right\} \right\}$ is equal to:
A.
$$\left| \overrightarrow{a} \right|^2 \overrightarrow{b}$$

B. $\left| \overrightarrow{a} \right|^3 \overrightarrow{b}$
C. $\left| \overrightarrow{a} \right|^4 \overrightarrow{b}$

D. none of these

Answer: C

Watch Video Solution

28. If
$$\overrightarrow{a}$$
, \overrightarrow{b} , \overrightarrow{c} are non-coplanar non-zero vectors, then
 $\left(\overrightarrow{a} \times \overrightarrow{b}\right) \times \left(\overrightarrow{a} \times \overrightarrow{c}\right) + \left(\overrightarrow{b} \times \overrightarrow{c}\right) \times \left(\overrightarrow{b} \times \overrightarrow{a}\right) + \left(\overrightarrow{c} \times \overrightarrow{a}\right) \times \left(\overrightarrow{c}\right)$

is equal to

A.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^{2}$$

B. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^{3}$
C. $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix}^{4}$

D. none of these

Answer: C

29. Let
$$\overrightarrow{a} = \hat{i} - \hat{j}$$
, $\overrightarrow{b} = \hat{j} - \hat{k}$, $\overrightarrow{c} = \hat{k} - \hat{i}$. If \hat{d} is a unit vector such that $\overrightarrow{a} \cdot \hat{d} = 0 = \left[\overrightarrow{b} \overrightarrow{c} \overrightarrow{d}\right]$ then \hat{d} equals
A. $\pm \frac{\hat{i} + \hat{j} - 2\hat{k}}{\sqrt{6}}$
B. $\pm \frac{\hat{i} + \hat{j} - \hat{k}}{\sqrt{3}}$
C. $\pm \frac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}$
D. $\pm \hat{k}$

Answer: A

then the value of $\cos ec^2A + \cos ec^2B + \cos ec^2C$, is

A. 1

B. 2

C. 3

D. none of these

Answer: B

Watch Video Solution

31. x and y are two mutually perpendicular unit vector, if the vectors $a\hat{a} + a\hat{y} + c(\hat{x} \times \hat{y})$. $x + (\hat{x} + \hat{y})$ and $c\hat{x} + c\hat{y} + b(\hat{x} + \hat{y})$, lie in a plane than c is:

A. A.M is x and y

B. G.M. of x and y

C. H.M. of x and y

D. equal to zero

Answer: B

> Watch Video Solution

32. The three concurrent edges of a parallelopiped represent the vectors $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ such that $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = V$. Then the volume of the parallelopiped whose three concurrent edges are the three diagonals of three faces of the given parallelopiped is

A. V

 $\mathsf{B.}\,2V$

 $\mathsf{C.}\,3V$

D. none of these

Answer: B

33. If $a = \hat{i} + \hat{j} + \hat{k}$, $b = \hat{i} + \hat{j}$, $c = \hat{i}$ and $(a \times b) \times c = \lambda a + \mu b$, then $\lambda + \mu$ is equal to A. 0 B. 1 C. 2

D. 3

Answer: A

Watch Video Solution

34. If
$$\overrightarrow{a} = 2\hat{i} - 3\hat{j} + 5\hat{k}$$
, $\overrightarrow{b} = 3\hat{i} - 4\hat{j} + 5\hat{k}$ and $\overrightarrow{c} = 5\hat{i} - 3\hat{j} - 2\hat{k}$,
then the volume of the parallelopiped with coterminous edges
 $\overrightarrow{a} + \overrightarrow{b}$, $\overrightarrow{b} + \overrightarrow{c}$, $\overrightarrow{c} + \overrightarrow{a}$ is

A. 2

B. 1

C. 16

D. 0

Answer: C

35. If
$$\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$$
 are linearly independent vectors, then
$$\frac{\left(\overrightarrow{a}+2\overrightarrow{b}\right) \times \left(2\overrightarrow{b}+\overrightarrow{c}\right) \cdot \left(5\overrightarrow{c}+\overrightarrow{a}\right)}{\overrightarrow{a} \cdot \left(\overrightarrow{b}\times\overrightarrow{c}\right)}$$
 is equal to

A. 10

B. 14

C. 18

D. 12

Answer: D

36. If
$$\overrightarrow{a}$$
, \overrightarrow{b} are non-collinear vectors, then
 $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \hat{i} \end{bmatrix} \hat{i} + \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \hat{j} \end{bmatrix} \hat{j} + \begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \hat{k} \end{bmatrix} \hat{k} =$
A. $\overrightarrow{a} + \overrightarrow{b}$
B. $\overrightarrow{a} \times \overrightarrow{b}$
C. $\overrightarrow{a} - \overrightarrow{b}$
D. $\overrightarrow{b} \times \overrightarrow{a}$

Answer: B

Natch Video Solution

37. If
$$\begin{bmatrix} 2\overrightarrow{a} + 4\overrightarrow{b} & \overrightarrow{c} & \overrightarrow{d} \end{bmatrix} = \lambda \begin{bmatrix} \overrightarrow{a} & \overrightarrow{c} & \overrightarrow{d} \end{bmatrix} + \mu \begin{bmatrix} \overrightarrow{b} & \overrightarrow{c} & \overrightarrow{d} \end{bmatrix}$$
, then $\lambda + \mu =$

A. 6

В. -6

C. 10

D. 8

Answer: A

Watch Video Solution

38. If the volume of the tetrahedron whose vertices are $(1, -6, 10), (-1, -3, 7), (5, -1, \lambda)$ and (7, -4, 7) is 11 cubit units then $\lambda =$ A. 2,6 B. 3,4 C. 1,7 D. 5,6

Answer: C

39.
$$\left(\overrightarrow{b} \times \overrightarrow{c}\right) \times \left(\overrightarrow{c} \times \overrightarrow{a}\right)$$

A. $\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right] \overrightarrow{c}$
B. $\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right] \overrightarrow{b}$
C. $\left[\overrightarrow{a} \quad \overrightarrow{b} \quad \overrightarrow{c}\right] \overrightarrow{a}$
D. $a \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$

) =

Answer: A

40. When a right handed rectangular Cartesian system OXYZ is rotated about the z-axis through an angle $\frac{\pi}{4}$ in the counter-clockwise, direction it is found that a vector \overrightarrow{a} has the component $2\sqrt{3}$, $3\sqrt{2}$ and 4.

A. 5, -1, 4

B. 5, $-1, 4\sqrt{2}$

C. $-1, -5, 4\sqrt{2}$

D. none of these

Answer: D

41. Prove that vectors

$$egin{aligned} \overrightarrow{u} &= (al+a_1l_1)\hat{i} + (am+a_1m_1)\hat{j} + (an+a_1n_1)\hat{k} \ \overrightarrow{v} &= (bl+b_1l_1)\hat{i} + (bm+b_1m_1)\hat{j} + (bn+b_1n_1)\hat{k} \ \overrightarrow{w} &= (wl+c_1l_1)\hat{i} + (cm+c_1m_1)\hat{j} + (cn+c_1n_1)\hat{k} \end{aligned}$$

A. form an equilteral triangle

B. are coplanar

C. are collinear

D. are mutually perpendicular

Answer: B

42. If
$$\overrightarrow{a} \times \left(\overrightarrow{a} \times \overrightarrow{b}\right) = \overrightarrow{b} \times \left(\overrightarrow{b} \times \overrightarrow{c}\right)$$
 and $\overrightarrow{a} \cdot \overrightarrow{b} \neq 0$, then $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} =$

A. 0

B. 1

C. 2

D. 3

Answer: A

43.
$$\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & a \times \overrightarrow{b} \end{bmatrix} + \left(\overrightarrow{a} & \overrightarrow{b} \right)^2 =$$

A. $\left| \overrightarrow{a} \right|^2 \left| \overrightarrow{b} \right|^2$
B. $\left| \overrightarrow{a} + \overrightarrow{b} \right|^2$

$$\mathsf{C}.\left|\overrightarrow{a}\right|^{2}+\left|\overrightarrow{b}\right|^{2}$$

D. none of these

Answer: A

Watch Video Solution

44. Let $\overrightarrow{\alpha}, \overrightarrow{\beta}$ and $\overrightarrow{\gamma}$ be the unit vectors such that $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$ are mutually perpendicular and $\overrightarrow{\gamma}$ is equally inclined to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$ at an angle θ . If $\overrightarrow{\gamma} = x\overrightarrow{\alpha} + y\overrightarrow{\beta} + z\left(\overrightarrow{\alpha} \times \overrightarrow{\beta}\right)$, then which one of the following is incorrect?

A. $z^2 = 1 - 2x^2$ B. $z^2 = 1 - 2y^2$ C. $z^2 = 1 - x^2 - y^2$ D. $x^2 + y^2 = 1$

Answer: D

45. If \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} are unit coplanar vectors, then $\begin{bmatrix} 2\overrightarrow{a} - 3\overrightarrow{b} & 7\overrightarrow{b} - 9\overrightarrow{c} & 12\overrightarrow{c} - 23\overrightarrow{a} \end{bmatrix}$ A. 0 B. 1/2

D. 32

C. 24

Answer: A

Watch Video Solution

46. If $\begin{bmatrix} \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{c} \end{bmatrix} = 3$, then the volume (in cubic units) of the parallelopiped with $2\overrightarrow{a} + \overrightarrow{b}, 2\overrightarrow{b} + \overrightarrow{c}$ and $2\overrightarrow{c} + \overrightarrow{a}$ as coterminous edges is

B. 22

C. 25

D. 27

Answer: D

Watch Video Solution

47. If V is the volume of the parallelepiped having three coterminous edges as \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , then the volume of the parallelepiped having three coterminous edges as

$$\overrightarrow{lpha} = \left(\overrightarrow{a}.\overrightarrow{a}
ight)\overrightarrow{a} + \left(\overrightarrow{a}.\overrightarrow{b}
ight)\overrightarrow{b} + \left(\overrightarrow{a}.\overrightarrow{c}
ight)\overrightarrow{c},$$
 $\overrightarrow{eta} = \left(\overrightarrow{b}.\overrightarrow{a}
ight)\overrightarrow{a} + \left(\overrightarrow{b}.\overrightarrow{b}
ight) + \left(\overrightarrow{b}.\overrightarrow{c}
ight)\overrightarrow{c}$
and $\overrightarrow{\lambda} = \left(\overrightarrow{c}.\overrightarrow{a}
ight)\overrightarrow{a} + \left(\overrightarrow{c}.\overrightarrow{b}
ight)\overrightarrow{b} + \left(\overrightarrow{c}.\overrightarrow{c}
ight)\overrightarrow{c}$ is

A. V^3

 $\mathsf{B.}\, 3V$

 $\mathsf{C}.\,V^2$

 $\mathsf{D.}\,2V$

Answer: A

Watch Video Solution

48. Unit vectors \overrightarrow{a} and \overrightarrow{b} ar perpendicular, and unit vector \overrightarrow{c} is inclined at an angle θ to both \overrightarrow{a} and \overrightarrow{b} . $If\alpha \overrightarrow{a} + \beta \overrightarrow{b} + \gamma \left(\overrightarrow{a} \times \overrightarrow{b}\right)$ then.

A.
$$lpha
eq eta$$

B. $\gamma^2 = 1 - 2lpha^2$
C. $\gamma^2 = -\cos 2 heta$
D. $eta^2 = rac{1 + \cos 2 heta}{2}$

Answer: A

49. If vectors $\overrightarrow{A}B = -3\hat{i} + 4\hat{k}and\overrightarrow{A}C = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a $\triangle ABC$, then the length of the median through Ais a. $\sqrt{14}$ b. $\sqrt{18}$ c. $\sqrt{29}$ d. $\sqrt{5}$

A. $2\sqrt{26}$

B. $4\sqrt{13}$

 $C.6\sqrt{13}$

D. none of these

Answer: D

Watch Video Solution

50. Let the position vectors of vertices A, B, C of ΔABC be respectively $\overrightarrow{a}, \overrightarrow{b}$ and \overrightarrow{c} . If \overrightarrow{r} is the position vector of the mid point of the line segment joining its orthocentre and centroid then $\left(\overrightarrow{a} - \overrightarrow{r}\right) + \left(\overrightarrow{b} - \overrightarrow{r}\right) + \left(\overrightarrow{c} - \overrightarrow{r}\right) =$

A. A. 1

B. B. 2

C. C. 3

D. D. none of these

Answer: C

Watch Video Solution

51. The position vector of a point P is $\overrightarrow{r} = x\hat{i} + y\hat{j} + z\hat{k}$ where $x, y, z \in N$ and $\overrightarrow{a} = \hat{i} + \hat{j} + \hat{k}$. If $\overrightarrow{r} \cdot \overrightarrow{a} = 10$, then the number of possible position of P is

A. 36

B.72

C. 66

D. none of these

Answer: A

52. \overrightarrow{a} and \overrightarrow{b} are two unit vectors that are mutually perpendicular. A unit vector that if equally inclined to \overrightarrow{a} , \overrightarrow{b} and $\overrightarrow{a} \times \overrightarrow{b}$ is equal to

$$A. \frac{1}{\sqrt{2}} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{b} \right)$$
$$B. \frac{1}{2} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{b} \right)$$
$$C. \frac{1}{\sqrt{3}} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{b} \right)$$
$$D. \frac{1}{3} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{b} \right)$$

Answer: C

Watch Video Solution

53. If the vectors $2a\hat{i} + b\hat{j} + c\hat{k}$, $b\hat{i} + c\hat{j} + 2a\hat{k}$ and $c\hat{i} + 2a\hat{j} + b\hat{k}$ are coplanar vectors, then the straight lines ax + by + c = 0 will always pass through the point A. (1, 2)

- B. (2, -1)
- C.(2,1)
- D. (1, -2)

Answer: C

Watch Video Solution

54. Let $\alpha = a\hat{i} + b\hat{j} + c\hat{k}$, $\overrightarrow{\beta} = b\hat{i} + c\hat{j} + a\hat{k}$ and $\overrightarrow{\gamma} = c\hat{i} + a\hat{j} + b\hat{k}$ be three coplanar vectors with $a \neq b$ and $\overrightarrow{v} = \hat{i} + \hat{j} + \hat{k}$. Then \overrightarrow{v} is perpendicular to

A. $\overrightarrow{\alpha}$

 $\mathbf{B}.\stackrel{\rightarrow}{\beta}$

 $\mathsf{C}. \stackrel{\rightarrow}{\gamma}$

D. all of these

Answer: D

55. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three mutually perpendicular vectors having same magnitude and \overrightarrow{r} is a vector satisfying $\overrightarrow{a} \times \left(\left(\overrightarrow{r} - \overrightarrow{b}\right) \times \overrightarrow{a}\right) + \overrightarrow{b} \times \left(\left(\overrightarrow{r} - \overrightarrow{c}\right) \times \overrightarrow{b}\right) + \overrightarrow{c} \times \left(\left(\overrightarrow{r} - \overrightarrow{a}\right) \times \overrightarrow{b}\right)$

then \overrightarrow{r} is equal to

A. A.
$$\frac{1}{3} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$$

B. B. $\frac{1}{2} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$
C. C. $\frac{3}{2} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$
D. D.2 $\left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$

Answer: B

56. Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be the three non-coplanar vectors and \overrightarrow{d} be a non zero vector which is perpendicular to $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ and is represented as $\overrightarrow{d} = x\left(\overrightarrow{a} \times \overrightarrow{b}\right) + y\left(\overrightarrow{b} \times \overrightarrow{c}\right) + z\left(\overrightarrow{c} \times \overrightarrow{a}\right)$. Then, A. $x^3 + y^3 + z^3 = 3xyz$ B. xy + yz + zx = 0C. x = y = zD. $x^2 + y^2 + z^2 = xy + yz + zx$

Answer: A

57. Let
$$\overrightarrow{r}$$
 be a unit vector satisfying
 $\overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{b}$, where $|\overrightarrow{a}| = \sqrt{3}$ and $|\overrightarrow{b}| = \sqrt{2}$, then
 $(a)\overrightarrow{r} = \frac{2}{3}\left(\overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b}\right)$ (b) $\overrightarrow{r} = \frac{1}{3}\left(\overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b}\right)$ (c)
 $\overrightarrow{r} = \frac{2}{3}\left(\overrightarrow{a} - \overrightarrow{a} \times \overrightarrow{b}\right)$ (d) $\overrightarrow{r} = \frac{1}{3}\left(-\overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b}\right)$

A.
$$\frac{2}{3} \left(\overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} \right)$$

B. $\frac{1}{3} \left(\overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} \right)$
C. $\frac{2}{3} \left(\overrightarrow{a} - \overrightarrow{a} \times \overrightarrow{b} \right)$
D. $\frac{1}{3} \left(-\overrightarrow{a} + \overrightarrow{a} \times \overrightarrow{b} \right)$

Answer: B

58. Let
$$\overrightarrow{a}$$
 and \overrightarrow{c} be unit vectors such that $\left|\overrightarrow{b}\right| = 4$ and $\overrightarrow{a} \times \overrightarrow{b} = 2\left(\overrightarrow{a} \times \overrightarrow{c}\right)$. The angle between \overrightarrow{a} and \overrightarrow{c} is $\cos^{-1}\left(\frac{1}{4}\right)$. If $\overrightarrow{b} - 2\overrightarrow{c} = \lambda \overrightarrow{a}$ then $\lambda =$

A. $\frac{1}{3}, \frac{1}{4}$ B. $-\frac{1}{3}, -\frac{1}{4}$ C. 3, -4

D. -3, 4

Answer: C

59. If
$$\overrightarrow{a} + 2\overrightarrow{b} + 3\overrightarrow{c} = 0$$
, then $\overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} + \overrightarrow{c} \times \overrightarrow{a} =$

A.
$$\overrightarrow{0}$$

B. \overrightarrow{a}
C. \overrightarrow{b}

D.
$$\overrightarrow{c}$$

Answer: A

60. If in triangle ABC,
$$\overrightarrow{AB} = \frac{\overrightarrow{u}}{\left|\overrightarrow{u}\right|} - \frac{\overrightarrow{v}}{\left|\overrightarrow{v}\right|} \text{ and } \overrightarrow{AC} = \frac{2\overrightarrow{u}}{\left|\overrightarrow{u}\right|}, \text{ where } \left|\overrightarrow{u}\right| \neq \left|\overrightarrow{v}\right| \quad \text{, then}$$

 $(a)1 + \cos 2A + \cos 2B + \cos 2C = 0$ (b) $\sin A = \cos C$ (c)projection of

AC on BC is equal to BC (d) projection of AB on BC is equal to AB

A. $1 + \cos 2A + \cos 2B + \cos 2C = 0$

B. $1 + \cos 2A + \cos 2B + \cos 2C = 2$

C. both a and b

D. none of these

Answer: A

Watch Video Solution

61. Let
$$A\left(2\hat{i}+3\hat{j}+5\hat{k}\right), B\left(-\hat{i}+3\hat{j}+2\hat{k}\right)$$
 and $C\left(\lambda\hat{i}+5\hat{j}+\mu\hat{k}\right)$

are vertices of a triangle and its median through A is equally inclined to the positive directions of the axes, the value of $2\lambda-\mu$ is equal to

A. 0

B. 1

C. 4

Answer: C

Watch Video Solution

62. A plane is parallel to the vectors $\hat{i} + \hat{j} + \hat{k}$ and $2\hat{k}$ and another plane is parallel to the vectors $\hat{i} + \hat{j}$ and $\hat{i} - \hat{k}$. The acute angle between the line of intersection of the two planes and the vector $\hat{i} - \hat{j} + \hat{k}$ is

A.
$$\frac{\pi}{6}$$

B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

63. If A,B,C,D are four points in space, then $\left|\overrightarrow{ABx}\overrightarrow{CD} + \overrightarrow{BC} \times \overrightarrow{AD} + \overrightarrow{CA} \times \overrightarrow{BD}\right| = k(areof \triangle ABC)wherek =$ (A) 5 (B) 4 (C) 2 (D) none of these A. 2 B. 1 C. 3 D. 4

Answer: D