© 'doubtnut

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

SCALER AND VECTOR PRODUCTS OF TWO VECTORS

Illustration

1. if \vec{a} and \vec{b} are unit vectors such that $\vec{a} \cdot \vec{b}=\cos \theta$, then the value of $|\vec{a}+\vec{b}|$, is
A. $2 \sin \theta / 2$
B. $2 \sin \theta$
C. $2 \cos \theta / 2$
D. $2 \cos \theta$

Answer: C

(D) Watch Video Solution

2. If \vec{a}, \vec{b} all are unit vector, then the greatest value of $|\vec{a}+\vec{b}|+|\vec{a}-\vec{b}|$ is
A. 2
B. 4
C. $2 \sqrt{2}$
D. $\sqrt{2}$

Answer: C

- Watch Video Solution

3. If unit vectors \vec{a} and \vec{b} are inclined at an angle 2θ such that $|\vec{a}-\vec{b}|<1$ and $0 \leq \theta \leq \pi$, then θ lies in the interval
A. $\left[0, \frac{\pi}{6}\right) \cup(5 \pi / 6, \pi]$
B. $[0, \pi]$
C. $[\pi / 6, \pi / 2]$
D. $[\pi / 2,5 \pi / 6]$

Answer: A

- Watch Video Solution

4. Let \vec{a} and \vec{b} be two unit vectors and α be the angle between them, then $\vec{a}+\vec{b}$ is a unit vector, if $\alpha=$
A. $\pi / 4$
B. $\pi / 3$
C. $2 \pi / 3$
D. $\pi / 2$

Answer: C

5. If $|\vec{a}-\vec{b}|=|\vec{a}|=|\vec{b}|=1$, then the angle between \vec{a} and \vec{b}, is
A. $\frac{\pi}{3}$
B. $\frac{3 \pi}{4}$
C. $\frac{\pi}{2}$
D. 0

Answer: A

Watch Video Solution

6. Let \vec{a} and \vec{b} are two vectors inclined at an angle of $60^{\circ}, I f|\vec{a}|=|\vec{b}|=2$, the the angle between \vec{a} and $\vec{a}+\vec{b}$ is
A. 30°
B. 60°
C. 45°
D. none of these

Answer: A

- Watch Video Solution

7. Consider a pyramid OPQRS located in the first octant ($x \geq 0, y \geq 0, z \geq 0$) with O as origin and OP and OR along the X -axis and the Y-axis, respectively. The base OPQRS of the pyramid is a square with $\mathrm{OP}=3$. The point S is directly above the mid point T of diagonal OQ such that TS=3. Then,
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. $\cos ^{-1} \frac{1}{\sqrt{3}}$
D. $\cos ^{-1} \frac{1}{3}$

Answer: C

8. If \vec{a}, \vec{b} are unit vertors such that $\vec{a}-\vec{b}$ is also a unit vector, then the angle between \vec{a} and \vec{b}, is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: B

- Watch Video Solution

9. If \vec{a}, \vec{b} are unit vectors such that
$|\vec{a}+\vec{b}|=-1$ then $|2 \vec{a}-3 \vec{b}|=$
A. 19
B. $\sqrt{19}$
C. $\sqrt{13}$
D. 4

Answer: B

- Watch Video Solution

10. If \vec{a}, \vec{b} are unit vectors such that
$|\vec{a}+\vec{b}|=1$ and $|\vec{a}-\vec{b}|=\sqrt{3}$, then $|3 \vec{a}+2 \vec{b}|={ }^{\prime}$
A. 7
B. 4
C. $\sqrt{7}$
D. $\sqrt{19}$

Answer: C

11. If \vec{a} and \vec{b} are unit vectors inclined to x-axis at angle 30° and 120° then $|\vec{a}+\vec{b}|$ equals
A. $\sqrt{2 / 3}$
B. $\sqrt{2}$
C. $\sqrt{3}$
D. 2

Answer: B

- Watch Video Solution

12. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that
$\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=1|\vec{b}|=2,|\vec{c}|=3$, then
$\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}$ is equal to
A. 1
B. 0
C. -7
D. 7

Answer: C

- Watch Video Solution

13. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors such that
$\vec{a} \perp(\vec{b}+\vec{c}), \vec{b} \perp(\vec{c}+\vec{a})$ and $\vec{c} \perp(\vec{a}+\vec{b})$, if $|\vec{a}|=1, \mid \vec{b}$
$|\vec{c}|=3$, then $|\vec{a}+\vec{b}+\vec{c}|$ is,
A. $\sqrt{6}$
B. 14
C. $\sqrt{14}$
D. none of these
14. If two out to the three vectors, $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\vec{a}+\vec{b}+\vec{c}=0$ and $2(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a})+3=0$ then the length of the third vector is
A. 3
B. 2
C. 1
D. 0

Answer: C

- Watch Video Solution

15. Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that $|\vec{a}+\vec{b}+\vec{c}|=1$ and $\vec{a} \perp \vec{b}$, if $\vec{c} \quad$ makes angles $\delta \beta$ with \vec{a}, \vec{b} respectively, then $\cos \delta+\cos \beta$ is equal to
A. 1
B. -1
C. $\frac{3}{2}$
D. 0

Answer: B

- Watch Video Solution

16. Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors such that angle between \vec{a} and $\vec{b} i s \alpha, \vec{b}$ and \vec{c} is β and \vec{c} and \vec{a} is γ. if $\mid \vec{a} .+\vec{b}+\bar{c}$, then $\cos \alpha+\cos \beta+\cos \gamma=$
A. 1
B. $-\frac{1}{2}$
C. $\frac{3}{2}$
D. $\frac{1}{2}$

- Watch Video Solution

17. Let $\vec{a}, \vec{b}, \vec{c}$ be vectors of equal magnitude such that the angle between $\quad \vec{a}$ and \vec{b} is α, \vec{b} and \vec{c} is β and \vec{c} and \vec{a} is γ
.then minimum value of $\cos \alpha+\cos \beta+\cos \gamma$ is
A. $\frac{1}{2}$
B. $-\frac{1}{2}$
C. $\frac{3}{2}$
D. $-\frac{3}{2}$

Answer: D

18. Let $\vec{a}, \vec{b}, \vec{c}$ be three vectors of equal magnitude such that the angle between each pair is $\frac{\pi}{3}$. If $|\vec{a}+\vec{b}+\vec{c}|=\sqrt{6}$, then $|\vec{a}|=$
A. 2
B. -1
C. 1
D. $-\sqrt{\frac{2}{3}}$

Answer: C

- Watch Video Solution

19. If $|\vec{a}|=3,|\vec{b}|=5$ and $|\vec{c}|=4$ and $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ then the value of $(\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c})$ is equal tio
A. 0
B. -25
C. 25
D. none of these

Answer: B

- Watch Video Solution

20. Let O be the origin and $\overrightarrow{O X}, \overrightarrow{O Y}, \overrightarrow{O Z}$ be three unit vector in the directions of the sides $\overrightarrow{Q R}, \overrightarrow{R P}, \overrightarrow{P Q}$ respectively, of a triangle PQR .
if the triangle $P Q R$ varies , then the manimum value of $\cos (P+Q)+\cos (Q+R)+\cos (R+P)$ is
A. $-\frac{5}{3}$
B. $-\frac{3}{2}$
C. $\frac{3}{2}$
D. $\frac{5}{2}$

Answer: B

21. Angle between vectors \vec{a} and \vec{b} where \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying $\vec{a}+\vec{b}+\sqrt{3} \vec{c}=\overrightarrow{0}$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: C

- Watch Video Solution

22. If $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0},|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then angle between \vec{a} and \vec{b} is: a. $\frac{\pi}{2}$ b. $\frac{\pi}{3}$ c. $\frac{\pi}{4}$ d. $\frac{\pi}{6}$
A. $\frac{\pi}{2}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{3}$

Answer: D

- Watch Video Solution

23. If \vec{a}, \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a}-\vec{b}|^{2}+|\vec{b}-\vec{c}|^{2}+|\vec{c}-\vec{a}|^{2}=9$ then find the value of $\mid 2 \vec{a}+5$
A. 0
B. 1
C. 2
D. 3

Answer: D

24. The value of a, for which the points A, B, C with position vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}-3 \hat{j}-5 \hat{k}$ and $a \hat{i}-3 \hat{j}+\hat{k}$ respectively are the vertices of a right angled triangles with $C=\frac{\pi}{2}$ are
A. 2 and 1
B. -2 and -1
C. -2 and 1
D. 2 and -1

Answer: A

- Watch Video Solution

25. If the magnitude of the projection vector of the vector $\alpha \hat{i}+\beta \hat{j} o n \sqrt{3} \hat{i}+\hat{j} i s \sqrt{3}$ and if $\alpha=2+\sqrt{3} \beta$ then possible value (s) of $|\alpha|$ is /are
A. 1,2
B. 3,4
C. 4,5
D. 3

Answer: A

- Watch Video Solution

26. The vactors $\vec{a}=3 \hat{i}-2 \hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}-2 \hat{k}$ are the adjacent sides of a parallelogram. Then, the acute angle between \vec{a} and \vec{b} is
A. $\pi / 4$
B. $\pi / 3$
C. $3 \pi / 4$
D. $2 \pi / 3$

Answer: A

27. If $e_{1}=\hat{i}+\hat{j}+\hat{k}$ and $e_{2}=\hat{i}+\hat{j}-\hat{k}$ and \vec{a} and \vec{b} are two vectors such that $e_{1}=2 \vec{a}+\vec{b}$ and $\vec{e}_{2}=\vec{a}+2 \vec{b}$, then angle between \vec{a} and \vec{b} is:
A. $\cos ^{-1}\left(\frac{7}{9}\right)$
B. $\cos ^{-1}\left(\frac{7}{11}\right)$
C. $\cos ^{-1}\left(-\frac{7}{11}\right)$
D. $\cos ^{-1}\left(\frac{6 \sqrt{2}}{11}\right)$

Answer: C

- Watch Video Solution

28. Find the least positive integral value of x for which the angle betweenn vectors $a=x \hat{i}-3 \hat{j}-\hat{k}$ and $b=2 x \hat{i}+x \hat{j}-\hat{k}$ is acute.
A. $\frac{1}{2}, 2$
B. $-2,3$
C. all $x<0$
D. $x>0$

Answer: C

- Watch Video Solution

29. The value of x for which the angle between $\vec{a}=2 x^{2} \hat{i}+4 x \hat{j}+\hat{k}$ and $\vec{b}=7 \hat{i}-2 \hat{j}+\hat{k}$ is obtuse and the angle between \vec{b} and the z -axis is acute and less then $\pi / 6$
A. $a<x<1 / 2$
B. $1 / 2<x<15$
C. $x>1 / 2$ or $x<0$
D. none of these

Answer: D

30. If \vec{a}, \vec{b} are two unit vectors such that $|\vec{a}+\vec{b}|=2 \sqrt{3}$ and $|\vec{a}-\vec{b}|=6$ then the angle between \vec{a} and \vec{b} , is
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{2}$

Answer: B

D Watch Video Solution

31. If \vec{a} is any non-zero vector, then $(\vec{a} \cdot \hat{i}) \hat{i}+(\vec{a} \cdot \hat{j}) \hat{j}+(\vec{a} \cdot \vec{k}) \hat{k}$ is equal to
A. \vec{r}
B. $2 \vec{r}$
C. $3 \vec{r}$
D. $\overrightarrow{0}$

Answer: A

- Watch Video Solution

32. For any vector $\vec{r},(\vec{r} \cdot \hat{i})^{2}+(\vec{r} \cdot \hat{j})^{2}+(\vec{r} \cdot \hat{k})^{2}$ is equal to
A. 1
B. $|\vec{r}|$
C. \vec{r}
D. $|\vec{r}|^{2}$

Answer: D

33. A vector of magnitude 4 which is equally inclined to the vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}$ and $\hat{k}+\hat{i}$, is
A. $\frac{4}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$
B. $\frac{4}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$
C. $\frac{4}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$
D. $\frac{4}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$

Answer: C

- Watch Video Solution

34. Forces of magnitudes 5 and 3 units acting in the directions $6 \hat{i}+2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{i}+6 \hat{k}$ respectively act on a particle which is displaced from the point ($2,2,-1$) to ($4,3,1$) . The work done by the forces, is
A. 148 unit
B. $\frac{148}{7}$ unit
C. 296 units
D. none of these

Answer: B

- Watch Video Solution

35. A groove is in the form of a broken line $A B C$ and the position vectors fo the three points are respectively $2 \hat{i}-3 \hat{j}+2 \hat{k}, 3 \hat{i}-\hat{k}, \hat{i}+\hat{j}+\hat{k}$, A force of magnitude $24 \sqrt{3}$ acts on a particle of unit mass kept at the point A and moves it angle the groove to the point C. If the line of action of the force is parallel to the vector $\hat{i}+2 \hat{j}+\hat{k}$ all along, the number of units of work done by the force is
A. $144 \sqrt{2}$
B. $144 \sqrt{3}$
C. $72 \sqrt{2}$
D. $72 \sqrt{3}$

Answer: C

- Watch Video Solution

36. A paticle acted on by constant forces $4 \hat{i}+\hat{j}-3 \hat{k}$ and $3 \hat{i}+\hat{j}-\hat{k}$ is displaced from the point $\hat{i}+2 \hat{j}+3 \hat{k} \rightarrow 5 \hat{i}+4 \hat{j}+\hat{k}$. Find the work done
A. 50 units
B. 20 units
C. 30 units
D. 40 units

Answer: D

- Watch Video Solution

37. If $\vec{a} \cdot \vec{b}=|\vec{a} \times \vec{b}|$, then this angle between \vec{a} and \vec{b} is,
A. 0°
B. 180°
C. 150°
D. 45°

Answer: D

D Watch Video Solution

38. If \vec{u} and \vec{v} are unit vectors and θ is the acute angle between them, then $2 \vec{u} \times 3 \vec{v}$ is a unit vector for
A. no value of θ
B. exactly on value of θ
C. exactly two values of θ
D. more than two values of θ

Answer: B

39. Let $A_{1}, A_{2}, \ldots ., A_{n}(n<2)$ be the vertices of regular polygon of n sides with its centre at he origin. Let \vec{a}_{k} be the position vector of the point $A_{k}, k=1,2, \ldots, n$
if $\left|\sum_{k=1}^{n-1}\left(\vec{a}_{k} \times \vec{a}_{k}+1\right)\right|=\left|\sum_{k=1}^{n-1}(\vec{a} k \cdot \vec{a} k+1)\right|$ then the minimum value of n is
A. 1
B. 2
C. 8
D. 9

Answer: C

- Watch Video Solution

40. Let O be the origin and $\overrightarrow{O X}, \overrightarrow{O Y}, \overrightarrow{O Z}$ be three unit vector in the directions of the sides $\overrightarrow{Q R}, \overrightarrow{R P}, \overrightarrow{P Q}$ respectively, of a triangle PQR. $|\overrightarrow{O X} \times \overrightarrow{O Y}|=$
A. $\sin (P+Q)$
B. $\sin 2 R$
C. $\sin (P+R)$
D. $\sin (Q+R)$

Answer: A

- Watch Video Solution

41. If the angle between the vectors \vec{a} and \vec{b} is $\frac{\pi}{3}$ and the area of the triangle with adjacemnt sides parallel to \vec{a} and \vec{b} is 3 , then a.b is
A. $\sqrt{3}$
B. $2 \mathrm{sqrt3}$
C. $4 \mathrm{sqrt3}{ }^{`}$
D. $\frac{\sqrt{3}}{2}$

Answer: B

- Watch Video Solution

42. If $\vec{a}=2 \hat{i}-3 \hat{j}-1 \hat{k}$ and $\vec{b}=\hat{i}+4 \hat{j}-2 \hat{k}$ then $\vec{a} \times \vec{b}$ is
A. $10 \hat{i}+2 \hat{j}+11 \hat{k}$
B. $10 \hat{i}+3 \hat{j}+11 \hat{k}$
C. $10 \hat{i}-3 \hat{j}+11 \hat{k}$
D. $10 \hat{i}-3 \hat{j}-10 \hat{k}$

Answer: B
43. For any vector \vec{a}
$|\vec{a} \times \hat{i}|^{2}+|\vec{a} \times \hat{j}|^{2}+|\vec{a} \times \hat{k}|^{2}$ is equal to
A. $|\vec{a}|^{2}$
B. $2|\vec{a}|^{2}$
C. $3|\vec{a}|^{2}$
D. $2|\vec{a}|$

Answer: B

- Watch Video Solution

44.

$$
(\vec{a} \cdot \hat{i})(\vec{a} \times \hat{i})+(\vec{a} \cdot \hat{j})(\vec{a} \times \hat{j})+(\vec{a} \cdot \hat{k})(\vec{a} \times \hat{k})=\overrightarrow{0}
$$

A. $3 \vec{a}$
B. \vec{a}
C. $\overrightarrow{0}$
D. $2 \vec{a}$

Answer: C

(Watch Video Solution

45. The number of unit vectors perpendicular to the plane of vectors
$\vec{a}=2 \hat{i}-6 \hat{j}-3 \hat{k}$ and $\vec{b}=4 \hat{i}+3 \hat{j}-\hat{k}$ is/are
A. $\frac{1}{\sqrt{26}}(4 \hat{i}=3 \hat{j}-\hat{k})$
B. $\frac{1}{7}(2 \hat{i}-6 \hat{j}-3 \hat{k})$
C. $\frac{1}{7}(3 \hat{i}+2 \hat{j}+6 \hat{k})$
D. $\frac{1}{7}(2 \hat{i}-3 \hat{j}-6 \hat{k})$

Answer: C

- Watch Video Solution

46. The number of vectors of unit length perpendicular to the vectors $\widehat{a}=\hat{i}+\hat{j}$ and $\vec{b}=\hat{j}+\hat{k}$ is
A. 1
B. 2
C. 4
D. infinite

Answer: B

- Watch Video Solution

47. A unit vector making an obtuse angle with x-axis and perpendicular to the plane containing the points $\hat{i}+2 \hat{j}+3 \hat{k}, 2 \hat{i}+3 \hat{j}+4 \hat{k}$ and $\hat{i}+5 \hat{j}+7 \hat{k}$ also makes an obtuse angle with
A. y-axis
B. z-axis
C. y and z axes
D. x and y axes

Answer: B

- Watch Video Solution

48. Let $\vec{u}=\hat{i}+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2 \hat{j}+3 \hat{k}$ If \hat{n} isa unit vector such that $\vec{u} \cdot \widehat{n}=0$ and $\vec{v} \cdot \widehat{n}=0$, then $|\vec{w} \cdot \widehat{n}|$ is equal to
A. 3
B. 0
C. 1
D. 2

Answer: A

49. If $\vec{a}=\hat{i}+\hat{j}-\hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+2 \hat{k}$ and $\vec{c}=-\hat{i}+2 \hat{j}-\hat{k}$, then a unit vector normal to the vectors $\vec{a}+\vec{b}$ and $\vec{b}-\vec{c}$, is
A. \hat{i}
B. \hat{j}
C. \hat{k}
D. none of these

Answer: A

- Watch Video Solution

50. A unit vector perpendicular to both $\hat{i}+\hat{j}$ and $\hat{j}+\hat{k}$ is
A. $\hat{i}-\hat{j}+\hat{k}$
B. $\hat{i}+\hat{j}+\hat{k}$
C. $\frac{\hat{i}+\hat{j}+\hat{k}}{\sqrt{3}}$
D. $\frac{\hat{i}-\hat{j}+\hat{k}}{\sqrt{3}}$

Answer: C

- Watch Video Solution

51. Let $\vec{a}=2 \hat{i}+\hat{j}-2 \hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$. Let \vec{c} be vector such that $|\vec{c}-\vec{a}|=3,|(\vec{a} \times \vec{b}) \times \vec{c}|=3 \quad$ and \quad the angle between
\vec{c} and $\vec{a} \times \vec{b}$ be 30° Then, $\vec{a} . V e$ is equal to
A. $\frac{25}{8}$
B. 2
C. 5
D. $\frac{1}{8}$

Answer: B

52. Let $\vec{a}, \vec{b}, \vec{c}$ be the position vectors of three vertices A, B, C of a triangle respectively. Then the area fo the triangle is
A. $\frac{1}{2}|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|$
B. $\frac{1}{2}|\vec{a} \times \vec{b}|$
C. $\frac{1}{2}|\vec{b} \times \vec{c}|$
D. $\frac{1}{2}|\vec{c} \times \vec{a}|$

Answer: A

- Watch Video Solution

53. If $\overrightarrow{A B}=\vec{b}$ and $\overrightarrow{A C}=\vec{c}$ then the length of the perpendicular from A to the line $B C$ is

$$
\begin{aligned}
& \text { A. } \frac{|\vec{b} \times \vec{c}|}{|\vec{b}+\vec{c}|} \\
& \text { B. } \frac{|\vec{b} \times \vec{c}|}{|\vec{b}-\vec{c}|}
\end{aligned}
$$

c. $\frac{|\vec{b} \times \vec{c}|}{2|\vec{b}-\vec{c}|}$
D. $\frac{|\vec{b} \times \vec{c}|}{2|\vec{b}+\vec{c}|}$

Answer: B

(Watch Video Solution

54. The perpendicular distance of the point \vec{c} from the joining \vec{a} and \vec{b} is
$|\vec{b} \times \vec{c}+\vec{c} \times \vec{a}+\vec{a} \times \vec{b}|$
A.

$$
|\vec{b}-\vec{a}|
$$

B. $\frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}{|\vec{b}-\vec{a}|}$
c. $\frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}{|\vec{a}-\vec{a}|}$
D. $\frac{1}{2} \frac{|\vec{a} \times \vec{b}+\vec{b} \times \vec{c}+\vec{c} \times \vec{a}|}{|\vec{b}-\vec{a}|}$

Answer: A

- Watch Video Solution

55. If the diagonals of a parallelogram are represented by the vectors $3 \hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}+3 \hat{j}-4 \hat{k}$, then its area in square units, is
A. $5 \sqrt{3}$
B. $6 \sqrt{3}$
C. $\sqrt{42}$
D. $2 \sqrt{42}$

Answer: C

- Watch Video Solution

56. if $\vec{a}, \vec{b}, \vec{c}$ are three vectors such that $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$ then
A. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}$
B. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
C. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{a} \times \vec{c}$
D. $\vec{b} \times \vec{a}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$

Answer: B

- Watch Video Solution

57. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be unit vectors such that $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$. Which one of the following is correct?
A. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}=\overrightarrow{0}$
B. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a} \neq \overrightarrow{0}$
c. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{a} \times \vec{c}=\overrightarrow{0}$
D. $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ are mutually perpendicular vectors.

- Watch Video Solution

58. Let $P Q R$ be a triangle . Let

$$
\vec{a}=\overline{Q R}, \vec{b}=\overline{R P} \text { and } \vec{c}=\overline{P Q} . \quad \text { if }|\vec{a}|=12,|\vec{b}|=4 \sqrt{3} \text { and } \vec{b} \cdot \vec{c}
$$

then which of the following is (are) true ?
A. $\frac{1}{2}|\vec{c}|^{2}-|\vec{a}|=12$
B. $\frac{1}{2}|\vec{c}|^{2}+|\vec{a}|=30$
c. $|\vec{a} \times \vec{b}+\vec{c} \times \vec{a}|=48 \sqrt{3}$
D. $\vec{a} \cdot \vec{b}=-72$

Answer: A::C::D

59. Let \vec{a} be a unit vector perpendicular to unit vectors \vec{b} and \vec{c} and if the angle between \vec{b} and \vec{c} is α, then $\vec{b} \times \vec{c}$ is
A. $\pm(\cos \alpha) \vec{a}$
B. $\pm(\cos e c \alpha) \vec{a}$
C. $\pm(\sin \alpha) \vec{a}$
D. none of these

Answer: C

- Watch Video Solution

60. If the vectors $\vec{c}, \vec{a}=x \hat{i}+y \hat{j}+z \hat{k}$ and $\vec{b}=\hat{j}$ are such that \vec{a}, \vec{c} and \vec{b} form a right handed system then \vec{c} is
A. $x \hat{i}-x \hat{k}$
B. $\overrightarrow{0}$
C. $y \hat{j}$
D. $-z \widehat{+} x \hat{k}$

Answer: A

- Watch Video Solution

61. The area of parallelogram whose diagonals coincide with the following pair of vectors is $5 \sqrt{3}$. The vectors are
A. $3 \hat{i}+2 \hat{i}-\hat{k}, 3 \hat{i}-\hat{j}+4 \hat{k}$
B. $\frac{3}{2} \hat{i}+\frac{1}{2} \hat{j}-\hat{k}, 2 \hat{i}-6 \hat{j}+8 \hat{k}$
C. $3 \hat{i}+\hat{j}-2 \hat{k}, \hat{i}+3 \hat{j}+4 \hat{k}$
D. none of these

Answer: B

- Watch Video Solution

$\vec{a}-2 \hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{c}=2 \hat{i}-3 \hat{j}+4 \hat{k} . A$ vector \vec{r} is
A. $-2 \hat{i}=2 \hat{j}+2 \hat{k}$
B. $-2 \hat{i}+\hat{j}+3 \hat{k}$
C. $3 \hat{i}+2 \hat{j}+4 \hat{k}$
D. $\hat{i}-5 \hat{j}+3 \hat{k}$

Answer: D

- Watch Video Solution

63. vectors \vec{a} and \vec{b} are inclined at an angle $\theta=60^{\circ}$. If $|\vec{a}|=1,|\vec{b}|=2$, then $[(\vec{a}+3 \vec{b}) \times(3 \vec{a}-\vec{b})]^{2}$ is equal to
B. 275
C. 325
D. 300

Answer: D

- Watch Video Solution

64. Let \vec{a}, \vec{b} and \vec{c} be unit vectors such that $\vec{a} \cdot \vec{b}=0=\vec{a} \cdot \vec{c}$. It the angle between \vec{b} and \vec{c} is $\frac{\pi}{6}$ then find \vec{a}.
A. $\pm 2(\vec{b} \times \vec{c})$
B. $2(\vec{b} \times \vec{c})$
C. $\pm \frac{1}{2}(\vec{b} \times \vec{c})$
D. $-\frac{1}{2}(\vec{b} \times \vec{c})$

Answer: A

65. Let $\vec{u}=u_{1} \hat{i}+u_{2} \hat{j}$ be a unit vector in my plane and $\vec{w}=\frac{1}{\sqrt{6}}(\hat{i}+\hat{j}+2 \hat{k})$. Given that there exists a vector \vec{v} " in " R_{3} " such that $|\vec{u} \times \vec{v}|=1$ and $\vec{w} \cdot(\vec{u} \times \vec{v})=1$, then
A. $\left|u_{1}\right|=\left|u_{2}\right|$
B. $\left|u_{2}\right|=2\left|u_{2}\right|$
C. $2\left|u_{1}\right|=\left|u_{2}\right|$
D. $\left|u_{1}\right|-3\left|u_{2}\right|$

Answer: A

- Watch Video Solution

66. Let $\vec{u}=u_{1} \hat{i}+u_{3} \hat{k}$ be a unit vector in xz-plane and $\vec{q}=\frac{1}{\sqrt{6}}(\hat{i}+\hat{j}+2 \hat{k})$. If there exists a vector \vec{c} in such that $|\vec{u} \times \vec{c}|=1$ and $\vec{q} \cdot(\vec{u} \times \vec{c})=1$. Then
A. $\left|u_{1}\right|=\left|u_{3}\right|$
B. $\left|u_{1}\right|=2\left|u_{3}\right|$
C. $\left|u_{1}\right|=2\left|u_{3}\right|$
D. $2\left|u_{1}\right|=\left|u_{3}\right|$

Answer: B

D Watch Video Solution

67. Let $\vec{u}=u_{1} \hat{i}+u_{2} \hat{j}+u_{3} \hat{k} \quad$ be a unit vector in R^{3} and $\vec{w}=\frac{1}{\sqrt{6}}(\hat{i}+\hat{j}+2 \hat{k})$, Given that there exists a vector \vec{v} in R^{3} such that $|\vec{u} \times \vec{v}|=1$ and $\vec{w} \cdot(\vec{u} \times \vec{v})=1$ which of the following statements is correct ?
A. There is exactly one choice for such \vec{v}
B. There are exactly two for such \vec{v}
C. There are exactly four such \vec{v}
D. There are infinitely many choices for such \vec{v}

Answer: D

- Watch Video Solution

68. IF the force represented by $3 \hat{j}+2 \hat{k}$ is acting through the point $5 \hat{i}+4 \hat{j}-3 \hat{k}$, then its moment about th point $(1,3,1)$ is
A. $14 \hat{i}-8 \hat{j}+12 \hat{k}$
B. $-14 \hat{i}+8 \hat{j}-12 \hat{k}$
C. $-6 \hat{i}-\hat{j}+9 \hat{k}$
D. $6 \hat{i}+\hat{j}-9 \hat{k}$

Answer: A

- Watch Video Solution

69. The moment of the couple formed by forces $5 \hat{i}+\hat{k}$ and $-5 \hat{i}-\hat{k}$ acting at the points ($9,-1,2$) and ($3,-2,1$) respectively is,
A. $-\hat{i}+\hat{j}+5 \hat{k}$
B. $\hat{i}-11 \hat{j}-5 \hat{k}$
C. $-\hat{i}=11 \hat{j}+5 \hat{k}$
D. $\hat{i}-\hat{j}-5 \hat{k}$

Answer: D

- Watch Video Solution

70. A force of 39 kg . wt is acting at a point $\mathrm{p}(-4,2,5)$ in the direaction $12 \hat{i}-4 \hat{j}-3 \hat{k}$. The moment of this force about a line through the origin having the direction of $2 \hat{i}-2 \hat{j}+\hat{k}$ is
A. 76 units
B. -76 units
C. $42 \hat{i}+144 \hat{j}-24 \hat{k}$
D. none of these

- Watch Video Solution

71. The moment about a line through the origin having the direction of $112 \hat{i}-4 \hat{j}-3 \hat{k}$ is
A. $\frac{760}{13}$
B. $\frac{-760}{13}$
C. $\frac{76}{13}$
D. $\frac{760}{3}$

Answer: B

- Watch Video Solution

72. The moment of the couple consisting of the force through the point $2 \hat{i}-3 \hat{j}-\hat{k}$ is
A. 5
B. $5 \sqrt{5}$
C. $\sqrt{5}$
D. 25

Answer: B

- Watch Video Solution

Section I Solved Mcqs

1. The length of the longer diagonal of the parallelogram constructed on $5 \vec{a}+2 \vec{b}$ and $\vec{a}-3 \vec{b}$, if it is given that $|\vec{a}|=2 \sqrt{2},|\vec{b}|=3$ and $\vec{a} . V e c b=\frac{\pi}{4}$ is
A. 15
B. $\sqrt{3}$
C. $\sqrt{593}$
D. $\sqrt{369}$

Answer: C

- Watch Video Solution

2. If the vectors $\vec{a}=\left(c \log _{2} x\right) \hat{i}-6 \hat{j}+3 \hat{k} \quad$ and
$\vec{b}=\left(\log _{2} x\right) \hat{i}+2 \hat{j}+\left(2 c \log _{2} x\right) \hat{k}$ make an obtuse angle for any $x=(0, \infty)$ then c belongs to
A. $(-\infty, 0)$
B. $(-\infty,-4 / 3)$
C. $(-4 / 3,0)$
D. $(-4 / 3, \infty)$

Answer: C

- Watch Video Solution

3. Let $\vec{a}, \vec{b}, \vec{c}$ represent respectively $\overrightarrow{B C}, \overrightarrow{C A}$ and $\overrightarrow{A B}$ where ABC is a triangle, Then ,
A. $\vec{a}+\vec{b}=\vec{c}$
B. $\vec{b}+\vec{c}=\vec{a}$
C. $\vec{a} \times \vec{b}=\vec{b} \times \vec{c}=\vec{c} \times \vec{a}$
D. $\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=\left[\begin{array}{lll}\vec{b} & \vec{c} & \vec{a}\end{array}\right]=\left[\begin{array}{lll}\vec{c} & \vec{a} & \vec{b}\end{array}\right] \neq 0$

Answer: C

- Watch Video Solution

4. The vector $\hat{i}+x \hat{j}+3 \hat{k}$ is rotated through an angle θ and is doubled in magnitude. It now becomes $4 \hat{i}+(4 x-2) \hat{j}+2 \hat{k}$. The values of x are
A. $-2 / 3,2$
B. $1 / 3,2$
C. 2/3,-2
D. $2,-1 / 3$

Answer: A

- Watch Video Solution

5. If \vec{a}, \vec{b} are unit vectors such that the vector $\vec{a}+3 \vec{b}$ is peependicular to $7 \vec{a}-\vec{b}$ and $\vec{a}-4 \vec{b}$ is prependicular to $7 \vec{a}-2 \vec{b}$ then the angle between \vec{a} and \vec{b} is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: C

- Watch Video Solution

6. if G is the centroid of $\triangle A B C$ such that $\overrightarrow{G B}$ and $\overrightarrow{G C}$ are inclined at on obtuse angle, then
A. $5 a^{2}>b^{2}+c^{2}$
B. $5 c^{2}>a^{2}+b^{2}$
C. $5 b^{2}>a^{2}+c^{2}$
D. none of these

Answer:

- Watch Video Solution

7. A vector of magnitude 4 which is equally inclined to the vectors $\hat{i}+\hat{j}, \hat{j}+\hat{k}$ and $\hat{k}+\hat{i}$, is
A. $\frac{4}{\sqrt{3}}(\hat{i}-\hat{j}-\hat{k})$
B. $\frac{4}{\sqrt{3}}(\hat{i}+\hat{j}-\hat{k})$
C. $\frac{4}{\sqrt{3}}(\hat{i}+\hat{j}+\hat{k})$
D. none of these

Answer: C

- Watch Video Solution

8. Unit vectors equally inclined to the vectors
$\hat{i}, \frac{1}{3}(-2 \hat{i}+\hat{j}+2 \hat{k})= \pm \frac{4}{\sqrt{3}}(4 \hat{j}+3 \hat{k})$ are
A. $\pm \frac{1}{\sqrt{51}}(\hat{i}-5 \hat{j}+5 \hat{k})$
B. $\pm \frac{1}{\sqrt{51}}(\hat{i}-5 \hat{j}-5 \hat{k})$
C. $\pm \frac{1}{\sqrt{t}} 51(\hat{i}+5 \hat{j}+5 \hat{k})$
D. none of these

Answer: A

9. If a,b,c are the $p^{\text {th }}, q^{\text {th }}$ and $r^{\text {th }}$ terms of G.P then the angle between the

$$
\vec{u}=(\log a) \hat{i}+(\log b) \hat{j}+(\log c) \hat{k} \text { and } \vec{v}-(q-r) \hat{i}+(r-p) \hat{i}+(r-x
$$

, is
A. $\frac{\pi}{3}$
B. $\frac{\pi}{6}$
C. π
D. $\frac{\pi}{2}$

Answer: D

Watch Video Solution

10. If a, b, c are the pth, qth, and rth terms of a HP, then the vectors
$\vec{u}=\frac{\hat{i}}{a}+\frac{\hat{j}}{b}+\frac{\hat{k}}{c}$ and $\vec{v}=(q-r) \hat{i}+(r-p) \hat{j}+(p-q) \hat{k}$
A. are parallel
B. are othogonal
C. satisfy $\vec{u} \cdot \vec{v}=1$
D. satisfy $|\vec{u} \times \vec{v}|=\hat{i}+\hat{j}+\hat{k}$

Answer: B

D Watch Video Solution

11. Let a, b, c denote the lengths of the sides of a triangle such that $(a-b) \vec{u}+(b-c) \vec{v}+(c-a)(\vec{u} \times \vec{v})=\overrightarrow{0}$

For any two non-collinear vectors \vec{u} and \vec{u},then the triangle is
A. right angled
B. equilateral
C. isoscels
D. obtuse angled

Answer: B

12. The vectors \vec{a}, \vec{b} and $\vec{u} \times \vec{u}$ are of the same length and taken pairwise they form equal angles. If $\vec{a}=\hat{i}+\hat{j}$ and $\vec{b}=\hat{j}+\hat{k}$ then \vec{c} is equal to
A. $\hat{i}+\hat{k}, \frac{1}{3}(-\hat{i}+4 \hat{j}-\hat{k})$
B. $\hat{i}+2 \hat{j}+3 \hat{k}, \hat{i}+\hat{j}$
C. $-\hat{i}+\hat{j}+2 \hat{k}, \hat{i}+\hat{k}$
D. $\frac{1}{3}(-\hat{i}+4 \hat{j}-\hat{k}), \hat{j}+\hat{k}$

Answer: A

- Watch Video Solution

