©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - OBJECTIVE RD SHARMA

ENGLISH

TANGENTS AND NORMALS

Illustration

1. For the curve $x=t^{2}-1, y=t^{2}-t$, the
tangent line is perpendicular to x-axis, then
$t=\left(\right.$ (i) 0 (ii) ∞ (iii) $\frac{1}{\sqrt{3}}$ (iv) $-\frac{1}{\sqrt{3}}$
A. $t=0$
B. $t=\infty$
C. $t=1 / \sqrt{3}$
D. $t=-1 / \sqrt{3}$

Answer: A
(Watch Video Solution
2. The tangent to a given cuve is perpendicualr to x-axis, if

$$
\begin{aligned}
& \text { A. } \frac{d y}{d x}=0 \\
& \text { B. } \frac{d y}{d x}=1 \\
& \text { C. } \frac{d x}{d y}=0 \\
& \text { D. } \frac{d x}{d y}=1
\end{aligned}
$$

Answer: C
3. If normal of the curve is parallel to x axis
then

$$
\begin{aligned}
& \text { A. } \frac{d y}{d x}=0 \\
& \text { B. } \frac{d y}{d x}=1 \\
& \text { C. } \frac{d x}{d y}=0 \\
& \text { D. } \frac{d x}{d y}=1
\end{aligned}
$$

Answer: C

D Watch Video Solution
4. If the tangent to the curve $x y+a x+b y=0$ at $(1,1)$ is inclined at an angle $\tan ^{-1} 2$ with x-axis, then find $a a n d b$?

$$
\begin{aligned}
& \text { A. } a=1, b=2 \\
& \text { B. } a=1, b=-2 \\
& \text { C. } a=-1, b=2 \\
& \text { D. } a=-1, b=-2
\end{aligned}
$$

Answer: B

D Watch Video Solution

5. The equation of tangent to the curve $y=b e^{-x / a}$ at the point where it crosses Y axis is
A. $(1 / 2,1 / 4)$
B. $(1 / 4,1 / 2)$
C. $(4,2)$
D. $(1,1)$

Answer: B

D Watch Video Solution
6. The point on the curve $y=12 x-x^{2}$ where
the tangent is parallel to x-axis, is
A. $(0,0)$
B. $(2,16)$
C. $(3,9)$
D. none of these

Answer: D

- Watch Video Solution

7. The slope of the tangent to the curve $x=t^{2}+3 t-8, \quad y=2 t^{2}-2 t-5 \quad$ at the
point $(2,-1)$ is
(a) $22 / 7$
(b) $6 / 7$
(c) $7 / 6$
(d) $-6 / 7$
A. $\frac{22}{7}$
B. $\frac{6}{7}$
C. -6
D. none of these

Answer: B

D Watch Video Solution

8.

For
the
curve
$x=3 \cos \theta, y=3 \sin \theta, 0 \leq \theta \leq \pi, \quad$ the
tangent is parallel to the x-axis, where $\theta=$
A. π
B. 0
C. $\frac{\pi}{3}$
D. $\frac{\pi}{2}$

Answer: D

D Watch Video Solution

9. The point on the curve $y=(x-1)(x-2)$
at which the tangent makes an angle of 135°
with the positive direction of x-axis has

coordinates

A. $(1,0)$
B. $(0,1)$
C. $(-1,0)$
D. $(0,-1)$

Answer: A

D Watch Video Solution

10. about to only mathematics
A. -1
B. $-\frac{3}{4}$
C. $-\frac{4}{3}$
D. 1

Answer: C

- Watch Video Solution

11. The points) on the curve $y^{3}+3 x^{2}=12 y$ where the tangent is vertical, is(are) ?

$$
\begin{equation*}
\left(\pm \frac{4}{\sqrt{3}},-2\right) \quad \text { (b) } \quad\left(\pm \sqrt{\frac{11}{3},} 1\right) \tag{c}
\end{equation*}
$$

$(0,0)$ (d) $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$
A. $\left(\pm \frac{4}{\sqrt{3}},-2\right)$
B. $\left(\pm \sqrt{\frac{\pi}{3}}, 1\right)$
C. $(0,0)$
D. $\left(\pm \frac{4}{\sqrt{3}}, 2\right)$

Answer: D

D Watch Video Solution

12. If the slope of the curve $y=\frac{a x}{b-x}$ at the point $(1,1)$ is 2 , then find $a \& b$
A. $a=1, b=-2$
B. $a=-1, b=2$
C. $a=1, b=2$
D. none of these

Answer: C

D Watch Video Solution

13. The slope of the tangent to the curve

$$
\left(y-x^{5}\right)^{2}=x\left(1+x^{2}\right)^{2} \text { at the point }(1,3) \text { is. }
$$

A. 4
B. 6
C. 8
D. 2

Answer: C

D Watch Video Solution

14. The tangent to the curve $y=x^{3}$ at the point $P\left(t, t^{3}\right)$ cuts the curve again at point Q .

Then, the coordinates of Q are
A. $(0,0)$
B. $\left(2 t, 4 t^{3}\right)$
C. $\left(2 t, 8 t^{3}\right)$
D. $\left(-2 t,-8 t^{3}\right)$

Answer: D

D Watch Video Solution

15. The point at which the tangent to the curve
$y=x^{2}-4 x$ is parallel to x-axis is
A. $(0,4)$
B. $(-2,4)$
C. $(2,4)$
D. $(2,-4)$

Answer: D

D Watch Video Solution

16. The curve $y-e^{x y}+x=0$ has a vertical
tangent at the point:
A. $(1,1)$

B. at no point

C. $(0,1)$
D. $(1,0)$

Answer: D

D Watch Video Solution

17. The angle between the tangents to the curve $y=x^{2}-5 x+6$ at the point $(2,0)$ and
$(3,0)$ is (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) π (d) $\frac{\pi}{4}$
A. $\pi / 3$
B. $\pi / 2$
C. $\pi / 6$
D. $\pi / 4$

Answer: B

D Watch Video Solution

18. Write the equation of the normal to the
curve $y=x+\sin x \cos x$ at $x=\frac{\pi}{2}$.
A. $x=2$
B. $x=\pi$
C. $x+\pi=0$
D. $2 x=\pi$

Answer: D

D Watch Video Solution

19. The equation of the normal to the curve $y=\sin x$ at $(0,0)$ is
A. $x=0$
B. $y=0$
C. $x+y=0$
D. $x-y=0$

Answer: C

D Watch Video Solution
20. The equation of the normal to the curve
$y=x(2-x)$ at the point $(2,0)$ is
A. $x-2 y=2$
B. $x-2 y+2=0$
C. $2 x+y=4$
D. $2 x+y-4=0$

Answer: A

D Watch Video Solution
21. If the equetion of tangent to the curve
$y^{3}=a x^{3}+\mathrm{b}$ at point $(2,3)$ is $\mathrm{y}=4 \mathrm{x}=5$, then
find the values of a and b.
A. $a=2, b=7$
B. $a=7, b=2$
C. $a=2, b=-7$
D. $a=-2, b=7$

Answer: C

- Watch Video Solution

22. The tangent to the curve $y=e^{2 x}$ at (0,1)
meets the x-axis at
A. $(0,2)$
B. $(2,0)$
C. $(-1 / 2,0)$
D. none of these

Answer: C

D Watch Video Solution

23. if tangent to curve $2 y^{3}=a x^{2}+x^{3}$ at point (a, a) cuts off intercepts α, β on co-
ordinate axes where $\alpha^{2}+\beta^{2}=61$ then the value of 'a' is equal to
A. ± 30
B. ± 5
C. ± 6
D. ± 61

Answer: A
(Watch Video Solution
24. The equation of the tangent to the curve $y=1-e^{x / 2}$ at the tangent to the curve $y=1-e^{x / 2}$ at the point of intersection with the y-axis, is
A. $x+2 y=0$
B. $2 x+y=0$
C. $x-y=2$
D. none of these

Answer: A
25. The normal to the curve
$x=a(1+\cos \theta), y=a \sin \theta$ at ' θ ' always
passes through the fixed point
A. (a, a)
B. $(a, 0)$
C. $(0, a)$
D. none of these

Answer: B
26. The area of a triangle formed by a tangent to the curve $2 x y=a^{2}$ and the coordinate axes, is
A. $2 a^{2}$
B. a^{2}
C. $3 a^{2}$
D. none of these

Answer: B

- Watch Video Solution

27. If the tangent at a point on the ellipse $\frac{x^{2}}{27}+\frac{y^{2}}{3}=1$ meets the coordinate axes at
A and B, and the origin, then the minimum area (in sq. units) of the triangle $O A B$ is:
A. 9
B. $\frac{9}{2}$
C. $9 \sqrt{3}$
D. $3 \sqrt{3}$

Answer: A

D Watch Video Solution

28. Find the equation of the normal to the
curve $\quad y=(1+x)^{y}+\sin ^{-1}\left(s \in^{2} x\right) \quad$ at $x=0$.
A. $x+y=2$
B. $x+y=1$
C. $x-y=1$
D. none of these

Answer: B

- Watch Video Solution

$$
\begin{aligned}
& \text { 29. The normal to the curve, } \\
& x^{2}+2 x y-3 y^{2}=0, a t(1,1)
\end{aligned}
$$

A. meets the curve again in the third quadrant.
B. Meets the curve again the fourth quadrant.
C. does not meet the curve again.
D. meets the curve again in the second quadrant.

Answer: B

D Watch Video Solution

30. The area bounded by the axes of reference
and the normal to $y=\log _{e} x$ at (1,0), is
A. 1 sq. unit
B. 2 sq. units
C. $\frac{1}{2}$ sq. unit
D. none of these

Answer: C

D Watch Video Solution

31.

Consider
$f(x)=\tan ^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right), c \in\left(0, \frac{\pi}{2}\right)$.
A normal to $y=(x) a t x=\frac{\pi}{6}$ also pasess through the point
A. $(0,0)$
B. $\left(0, \frac{2 \pi}{3}\right)$
C. $\left(\frac{\pi}{6}, 0\right)$
D. $\left(\frac{\pi}{4}, 0\right)$

Answer: B

D Watch Video Solution

32. Let C be a curve given by
$y=1+\sqrt{4 x-3}, x>\frac{3}{4}$. If P is a point on C
such that the tangent at P has slope $\frac{2}{3}$, then a point through which the normal at P passes, is
A. $(3,-4)$
B. $(1,7)$
C. $(4,-3)$
D. $(2,3)$

Answer: B
33. The normal to the curve
$y(x-2)(x-3)=x+6$ at the point where the curve intersects the y-axis , passes through
the point : (1) $\left(\frac{1}{2},-\frac{1}{3}\right)$ (2) $\left(\frac{1}{2}, \frac{1}{3}\right)$
$\left(-\frac{1}{2},-\frac{1}{2}\right)(4)\left(\frac{1}{2}, \frac{1}{2}\right)$
A. $\left(-\frac{1}{2},-\frac{1}{2}\right)$
B. $\left(\frac{1}{2}, \frac{1}{2}\right)$
C. $\left(\frac{1}{2},-\frac{1}{3}\right)$
D. $\left(\frac{1}{2}, \frac{1}{3}\right)$

Answer: B
34. If the curves $y=a^{x}$ and $y=e^{x}$ intersect at and angle α, then $\tan \alpha$ equals
A. $\left|\frac{\log _{e} a}{1+\log _{e} a}\right|$
B. $\left|\frac{1+\log _{e} a}{1+\log _{e} a}\right|$
C. $\left|\frac{\log _{e} a-1}{\log _{e} a+1}\right|$
D. none of these

Answer: C
35. Find the angle of intersection of curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $x^{2}+y^{2}=a b$
A. $\tan ^{-1}\left(\frac{a-b}{\sqrt{a b}}\right)$
B. $\tan ^{-1}\left(\frac{a+b}{\sqrt{a b}}\right)$
C. $\tan ^{-1}\left(\frac{a-b}{2 \sqrt{a b}}\right)$
D. none of these

Answer: A

36. Find the angle of intersection of the curves

$$
x^{3}-3 x y^{2}=a \text { and } 3 x^{2} y-y^{3}=b
$$

A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. none of these

Answer: C

37.

If
the
curves
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{c^{2}}+\frac{y^{2}}{d^{2}}=1 \quad$ intersect orthogonally, then

$$
\text { A. } a^{2}-b^{2}=c^{2}-d^{2}
$$

$$
\text { B. } a^{2}-c^{2}=b^{2}-d^{2}
$$

C. $a^{2} b^{2}=c^{2} d^{2}$

$$
\text { D. } \frac{1}{a^{2}}+\frac{1}{b^{2}}=\frac{1}{c^{2}}+\frac{1}{d^{2}}
$$

Answer: A

38. Show the condition that the curves
$a x^{2}+b y^{2}=1$ and $A x^{2}+B y^{2}=1$ should
intersect orthogonally is $\frac{1}{a}-\frac{1}{b}=\frac{1}{A}-\frac{1}{B}$.

> A. $\frac{1}{a}+\frac{1}{A}=\frac{1}{b}+\frac{1}{B}$
> B. $\frac{1}{a}-\frac{1}{A}=\frac{1}{b}-\frac{1}{B}$
C. $\frac{1}{a}+\frac{1}{b}=\frac{1}{B}-\frac{1}{A}$
D. $\frac{1}{a}+\frac{1}{b}=\frac{1}{A}+\frac{1}{B}$

Answer: B
39.
$2 x^{2}+3 y^{2}=6$ and $a x^{2}+4 y^{2}=4$ intersect orthogonally, then $\mathrm{a}=$
A. 2
B. 1
C. 3
D. none of these

Answer: A
40. The two curves $x=y^{2}, x y=a^{3}$ cut orthogonally at a point. Then a^{2} is equal to $\frac{1}{3}$
(b) 3 (c) 2 (d) $\frac{1}{2}$
A. $\frac{1}{3}$
B. 3
C. 2
D. $\frac{1}{2}$
41. For a curve $\frac{\text { (length of normal) }}{\text { (length of tangent) }}$ is equal to
A. subtangent
B. subnormal
C. slope of tangent
D. slope of normal

Answer: C
42. Fot the curve $y=f(x)$, prove that $\frac{(\text { length of normal })^{2}}{(\text { length of tangent })}=\frac{\text { sub-normal }}{\text { sub-tangent }}$.
A. (subnormal)/(subtangent)
B. (subtangent)/(subnormal)
C. (tangent)/(normal)
D. constant

Answer: A
43. At any point of a curve $\sqrt{\frac{\text { subnormal }}{\text { subtangent }}}$ is equal to
A. the abscissa of that point
B. the ordinate of that paint
C. slope of the tangent at that point
D. slope of the normal at that point

Answer: C
44. At any point of a curve (subtangent) x (subnormal) is equal to the square of the-
A. slope of the tangent at that point
B. slope of the normal at that point
C. abscissa of that point
D. ordinate of that point

Answer: D

D Watch Video Solution
45. If the tangent at P on the curve $x^{m} y^{n}=a^{m+n}$ meets the coordinate axes at A and B, then is :
A. $(\text { abscissae })^{2}$
B. $(\text { ordinate })^{2}$
C. abscissa
D. ordinate

Answer: C

D Watch Video Solution
46. Find the equations of the tangent and the normal at the point ' t ' on the curve $x=a \sin ^{3} t, y=b \cos ^{3} t$.
A. $4 C T^{2}=O N^{2}=a^{2}$
B. the length of the tangent $=\left|\frac{y}{\cos t}\right|$
C. the length of the normal $=\left|\frac{y}{\sin t}\right|$
D. all the above

Answer: C

D Watch Video Solution
47. The length of the normal to the curve
$Y=a\left(\frac{e^{-x / a}+e^{x / a}}{2}\right)$ at any point varies as the :
A. abscissa of the point
B. ordinate of the point
C. square of the abscissa of the point
D. square of the ordinate of the point

Answer: D
48. If at any point on a curve the surtangent and subnormal are equal, then the tangent is equal to
A. ordinate
B. $\sqrt{2}$ ordinate
C. $\sqrt{2(\text { ordinate })}$
D. none of these

Answer: B
49. Find the length of normal to the curve

$$
x=a(\theta+\sin \theta), y=a(1-\cos \theta) \text { at } \theta=\frac{\pi}{2} .
$$

A. 2a
B. $a \sqrt{2}$
C. $a / 2$
D. $a / \sqrt{2}$

Answer: B

1. The number of possible tangents which can be drawn to the curve $4 x^{2}-9 y^{2}=36$, which are perpendicular to the straight line

$$
5 x+2 y-10=0 \text {, is zero (b) } 1 \text { (c) } 2 \text { (d) } 4
$$

$$
\text { A. } 5(y-3)=2\left(x-\frac{\sqrt{117}}{2}\right)
$$

$$
\text { B. } 2 x-5 y+10-2 \sqrt{18}=0
$$

$$
\text { C. } 2 x-5 y-10-2 \sqrt{18}=0
$$

D. none of these

Answer: D

D Watch Video Solution

2. Let P be any point on the curve $x^{2 / 3}+y^{2 / 3}=a^{2 / 3}$. Then the length of the segment of the tangent between the coordinate axes in of length
A. 3a
B. 4 a
C. 5a
D. a

Answer: D

D Watch Video Solution

3. The distance between the origin and the tangent to the curve $y=e^{2 x}+x^{2}$ drawn at the point $x=0$ is $\left(1, \frac{1}{3}\right)$ (b) $\left(\frac{1}{3}, 1\right)$ $\left(2,-\frac{28}{3}\right)(\mathrm{d})$ none of these

$$
\text { A. } \frac{1}{\sqrt{5}}
$$

B. $\frac{2}{\sqrt{5}}$
C. $\frac{-1}{\sqrt{5}}$
D. $\frac{2}{\sqrt{3}}$

Answer: A

D Watch Video Solution

4. The point of intersection of the tangents drawn to the curve $x^{2} y=1-y$ at the points where it is meet by he cuver $x y=1-y$ is given by :
A. $(0,-1)$
B. $(1,1)$
C. $(0,1)$
D. none of these

Answer: C

D Watch Video Solution
5. The equation of the tangent to the curve
$y=(2 x-1) e^{2(1-x)}$ at the point of its
maximum, is
A. $y=-1=0$
B. $x-1=0$
C. $x+y-1=0$
D. $x-y+1=0$

Answer: A

D Watch Video Solution

6. If the sum of the squares of the intercepts
on the axes cut off by tangent to the curve
$x^{\frac{1}{3}}+y^{\frac{1}{3}}=a^{\frac{1}{3}}, a>0$ at $\left(\frac{a}{8}, \frac{a}{8}\right)$ is 2 , then $a=1$ (b) 2 (c) 4 (d) 8
A. 1
B. 2
C. 4
D. 8

Answer: C
(Watch Video Solution
7. The point on the curve $3 y=6 x-5 x^{3}$ the normal at which passes through the orgin is
A. $(1,1 / 3)$
B. $(1 / 3,1)$
C. $(2,-28 / 3)$
D. $(-1,-1 / 3)$

Answer: A
(D) Watch Video Solution
8. If the tangent at any point on the curve $x^{4}+y^{4}=c^{4}$ cuts off intercepts a and b on
the coordinate axes, the value of $a^{-\frac{4}{3}}+b^{-\frac{4}{3}}$ is

$$
\text { A. } c^{-4 / 3}
$$

B. $c^{-1 / 2}$
C. $c^{1 / 2}$
D. none of these

Answer: A
9. If the tangent at $(1,1)$ on $y^{2}=x(2-x)^{2}$ meets the curve again at P, then find coordinates of P.
A. $(4,4)$
B. $(-1,2)$
C. $(9 / 4,3 / 8)$
D. none of these

Answer: C

10. What is the angle between these two
curves $\quad x^{3}-3 x y^{2}+2=0 \quad$ and
$3 x^{2} y-y^{3}-2=0$
A. cut at right angles
B. touch each other
C. cut at an angle $\pi / 3$
D. cut at an angle $\pi / 4$

Answer: A
11. If a curve with equation of the form
$y=a x^{4}+b x^{3}+c x+d$ has zero gradient at the point $(0,1)$ and also touches the x-axis at
the point $(-1,0)$ then the value of x for which the curve has a negative gradient are
A. $x>-1$
B. $x<1$
C. $x<-1$
D. $-1 \leq x \leq 1$

- Watch Video Solution

12. In the corve $y=c e^{x / a}$, the
A. subtangent is constant
B. subnormal varies as the square of the ordinate
C. tangent at $\left(x_{1}, y_{1}\right)$ on the curve
$\left(x_{1}-a\right)$ from the origin.

D. equation of normal at the point where

the curve cuts y-axis is $c y+a x=c$

Answer: D

D Watch Video Solution

13. If m is the slope of a tangent to the curve

$$
e^{y}=1+x^{2}, \text { then (a) }|m|>1 \text { (b) } m>1 \text { (c) }
$$

$$
m \geq-1(\mathrm{~d})|m| \leq 1
$$

A. $|m|>1$
B. $m<1$
C. $|m|<1$
D. $|m| \leq 1$

Answer: D

- Watch Video Solution

14. about to only mathematics
A. on the left of $x=c$

B. on the right of $x=c$

C. at no point
D. at all point

Answer: A

D Watch Video Solution

15. If $x+y=k$ is normal to $y^{2}=12 x$, then k
is (a)3 (b) $9(c)-9(d)-3$
A. 3
B. 9
C. -9
D. -3

Answer: B

D Watch Video Solution

16. If the line $a x+b y+c=0$ is a tangent to
the curve $x y=9$, then

$$
\text { A. } a>0, b>0
$$

B. $a>0, b<0$
C. $a<0, b>0$
D. $a<0, b<0$

Answer: A::D

D Watch Video Solution

17. The lengths of tangent, subtangent, normal and subnormal for the curve $y=x^{2}+x-1$ at (1,1) are A, B, C and D respectively, then their increasing order is
A. B,D,A,C
B. B,A,C,D
C. A,B,C,D
D. B, A, D, C

Answer: D

D Watch Video Solution

18. If at each point of the curve
$y=x^{3}-a x^{2}+x+1, \quad$ the tangent is
inclined at an acute angle with the positive
direction of the x-axis, then (a) $a>0$ (b)
$a<-\sqrt{3}$
(c) $-\sqrt{3} \leq a \leq$
$\sqrt{3}$
(d)
noneofthese
A. $a>0$
B. $a \leq \sqrt{3}$
C. $|a| \leq \sqrt{3}$
D. none of these

Answer: C

- Watch Video Solution

19. If the line $y=2 x$ touches the curve $y=a x^{2}+b x+c$ at the point where $\mathrm{x}=1$ and the curve passes through the point $(-1,0)$, then

$$
\begin{aligned}
& \text { A. } a=\frac{1}{2}, b=1, c=\frac{1}{2} \\
& \text { B. } a=1, b=\frac{1}{2}, c=\frac{1}{2} \\
& \text { С. } a=\frac{1}{2}, c=\frac{1}{2}, b=1
\end{aligned}
$$

D. none of these

Answer: A

20. If the line joining the points
$(0,3)$ and $(5,-2)$ is a tangent to the curve
$y=\frac{C}{x+1}$, then the value of C is (a) 1 (b) -2
(c) 4 (d) none of these
A. 1
B. -2
C. 4
D. none of these

Answer: C
21. If $y=f(x)$ be the equation of the line touching the line $y=2 x+3$ at $x=2$, then
A. $f^{\prime}(2)=3$
B. $2 f(2)=7 f^{\prime}(2)$
C. $f(2)+f^{\prime}(2)+f^{\prime \prime}(2)=2$
D. none of these

Answer: B
22. The slope of the tangent of the curve
$y=\int_{0}^{x} \frac{d x}{1+x^{3}}$ at the point where $x=1$ is
A. $\frac{1}{2}$
B. 1
C. $\frac{1}{4}$
D. non-existent

Answer: A
23. Prove that the curve $y=e^{|x|}$ cannot have
a unique tangent line at the point $x=0$.

Find the angle between the one-sided tangents to the curve at the point $x=0$.
A. $\frac{\pi}{4}$
B. $\frac{\pi}{6}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{3}$

Answer: C
24. The curve $y=a x^{3}+b x^{2}+c x+5$ touches the x-axis at $P(-2,0)$ and cuts the y-axis at the point Q where its gradient is 3 .

Find the equation of the curve completely.
A. $a=\frac{1}{2}, b=-\frac{3}{4}, c=3$
B. $a=-\frac{1}{2}, b=-\frac{3}{4}, c=3$
C. $a=\frac{1}{2}, b=\frac{3}{4}, c=3$
D. none of these

Answer: B

- Watch Video Solution

25. If the curve $y=x^{2}+b x+c$ touches the
line $y=x$ at the point $(1,1)$, then the set of
values of x for which the curve has a negative gradient is
A. $(-\infty, 1 / 2)$
B. $(1 / 2, \infty)$
C. $(-\infty,-1 / 2)$

$$
\text { D. }(-1 / 2, \infty)
$$

Answer: A

D Watch Video Solution

26. The tangent to the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$
at any poin on it cuts the axes $O x$ and $O y$ at P
and Q respectively then $O P+O Q$ is
A. 2 a
B. a
C. $\frac{a}{2}$
D. none of these

Answer: B

D Watch Video Solution

27. The angle between the curves
$y=\sin x$ and $y=\cos x, 0<x<\frac{\pi}{2}$, is
A. $\pm \tan ^{-1} \sqrt{2}$
B. $\pm \tan ^{-1} 2 \sqrt{2}$
C. $\pm \tan ^{-1} \frac{1}{\sqrt{2}}$
D. none of these

Answer: B

D Watch Video Solution

28. If the tangent at each point of the curve
$y=\frac{2}{3} x^{3}-2 a x^{2}+2 x+5$
makes an acute angle with the positive direction of x-axis, then
A. $a \geq 1$

$$
\text { B. }-1 \leq a \leq 1
$$

C. $a \leq-1$
D. none of these

Answer: B

D Watch Video Solution

29.

Let
the
parabolas
$y=x(c-x)$ and $y=x^{2}+a x+b \quad$ touch
each other at the point $(1,0)$. Then
$a+b+c=0 \quad a+b=2 \quad b-c=1$
$a+c=-2$
A. 1
B. -1
C. 0
D. none of these

Answer: C
(Watch Video Solution
30. Let $y=f(x)$ be a parabola, having its axis
parallel to the y-axis, which is touched by the
line $y=x$ at $x=1$. Then, $2 f(0)=1-f^{\prime}(0)$
(b) $f(0)+f^{\prime}(0)+f^{0}=1 \quad f^{\prime}(1)=1$
$f^{\prime}(0)=f^{\prime}(1)$
A. $f^{\prime}(0)=f^{\prime}(1)$
B. $f^{\prime}(1)=-1$
C. $f(0)+f^{\prime}(0)+f^{\prime \prime}(0)=1$
D. $2 f(0)=1-f^{\prime}(0)$

Answer: D
31. Find the value of $n \in N$ such that the curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ touches the
straight line $\frac{x}{a}+\frac{y}{b}=2$ at the point (a, b).
A. (b, a)
B. (a, b)
C. $(1,1)$
D. $\left(\frac{1}{b}, \frac{1}{a}\right)$
32. The normal to the curve $2 x^{2}+y^{2}=12$ at the point $(2,2)$ cuts the curve again at (a)
$\left(-\frac{22}{9},-\frac{2}{9}\right)$
(b) $\left(\frac{22}{9}, \frac{2}{9}\right)$

(d) none of these

$$
\text { A. }(-22 / 9,-2 / 9)
$$

B. $(22 / 9,2 / 9)$
C. $(-2,-2)$
D. none of these

Answer: A

D Watch Video Solution

33. A tangent to the curve $y=\int_{0}^{x}|t| d t$,
which is parallel to the line $y=x$, cuts off an
intercept from the y-axis is equal to
A. 1
B. $\frac{-1}{2}, \frac{1}{2}$
C. $\frac{1}{2}, 1$
D. -1

Answer: B

D Watch Video Solution

34. The equation of the normal to the curve
$y=e^{-2|x|}$ at the point where the curve cuts
the line $x=-\frac{1}{2}$, is

$$
\text { A. } 2 e(e x+2 y)=4-e^{2}
$$

$$
\text { B. } 2 e(e x-2 y)=e^{2}-4
$$

$$
\text { C. } 2 e(e y-2 x)=e^{2}-4
$$

$$
\text { D. } 2 e(e y+2 x)=e^{2}-4
$$

Answer: A

D Watch Video Solution

35. The equation of the normal to the curve
$y=x^{-x}$ at the point of its maximum is
A. $x=e$
B. $x=e^{-1}$

$$
\begin{aligned}
& \text { C. } y=e \\
& \text { D. } y=e^{-1}
\end{aligned}
$$

Answer: B

D Watch Video Solution

36. The abscissa of a point on the curve $x y=(a+x)^{2}$, the normal which cuts off numerically equal intercepts from the coordinate axes, is (a) $-\frac{1}{\sqrt{2}}$ (b) $\sqrt{2} a$ (c) $\frac{a}{\sqrt{2}}$ (d) $-\sqrt{2} a$
A. $\frac{a}{\sqrt{2}}$
B. a
C. $\sqrt{2} a$
D. $-\frac{a}{\sqrt{2}}$

Answer: A:D

D Watch Video Solution

37. Let $f(x)=\sin x-\tan x, x \in(0, \pi / 2)$
then tangent drawn to the curve $y=f(x)$ at any point will
A. lie above the curve
B. lie below the curve
C. nothing can be said
D. be parallel to a fixed line.

Answer: A

D Watch Video Solution
38. If the tangent at a point P with parameter
t, on the curve $x=4 t^{2}+3, y=8 t^{3}-1$
$t \in R$ meets the curve again at a point Q,
then the coordinates of Q are

$$
\begin{aligned}
& \text { А. }\left(\frac{35}{9}, \pm \frac{16 \sqrt{2}}{27}-1\right) \\
& \text { В. }\left(\frac{25}{9}, \perp \frac{11}{7}\right) \\
& \text { С. }\left(\frac{35}{9}, \pm \frac{16 \sqrt{2}}{27}+1\right)
\end{aligned}
$$

D. none of these

Answer: A

D Watch Video Solution

39. If the tangent to the curve
$x y+a x+b y=0$ at $(1,1)$ is inclined at an angle $\tan ^{-1} 2$ with x-axis, then find a and b ?
A. 0
B. $\frac{1}{2}$
C. $-\frac{1}{2}$
D. none of these

Answer: B

D Watch Video Solution
40. The slope of the tangent to the curve
$y=\int_{x}^{x^{2}} \cos ^{-1} t^{2} d t$ at $x=\frac{1}{\sqrt[4]{2}}$ is
A. $\left(\frac{\sqrt[4]{8}}{2}-\frac{3}{4}\right) \pi$
B. $\left(\frac{\sqrt[4]{8}}{3}-\frac{1}{4}\right) \pi$
C. $\left(\frac{\sqrt[5]{8}}{4}-\frac{1}{3}\right) \pi$
D. none of these

Answer: B
41. The equation of the curve is $y-f(x)$. The tangents at $[1, f(1)[,[2, f(2)]$ and $[3, f(3)]$ make angles $\frac{\pi}{6}, \frac{\pi}{3}$ and $\frac{\pi}{4}$, respectively with the positive direction of x-axis. Then the value of $\quad \int_{2}^{3} f^{\prime}(x) f^{\prime \prime}(x) d x+\int_{1}^{3} f^{\prime \prime}(x) d x \quad$ is equal to

$$
\begin{aligned}
& \text { A. }-\frac{1}{\sqrt{3}} \\
& \text { B. } \frac{1}{\sqrt{3}}
\end{aligned}
$$

C. 0
D. none of these

Answer: A

- Watch Video Solution

42. Let C be the curve $y-3 x y+2=0$ If H is
the set of points on the curve C, where the tangent is horizontal and V is the set of points on the curve C , where the tangent is vertical,
then $\mathrm{H}=\ldots \quad$ and $\mathrm{V}=$
A.

$$
H=\{(x, y): y=0, x \in R\}, V=\{(1,1)\}
$$

B.

$$
\begin{aligned}
H & =\{(x, y): x=0, y \in R\}, V=\{(1,1)\} \\
\text { c. } H & =\phi, V=\{(1,1)\}
\end{aligned}
$$

D.

$$
H=\{(1,1)\}, V=\{(x, y): y=0, x \in R\}
$$

Answer: C

- Watch Video Solution

43. If $\sin \theta$ is the acute angle between the

curves

$x^{2}+y^{2}=4 x$ and $x^{2}+y^{2}=8$ at $(2,2)$,
then $\theta=$
A. 1
B. 0
C. $1 / \sqrt{2}$
D. $\sqrt{3} / 2$

Answer: C
44. If curve $x^{2}=9 a(9-y)$ and $x^{2}=a(y+1)$ intersect orthogonally then value of 'a' is
A. 3
B. 4
C. 5
D. 7

Answer: B
45. The equation of the tangent to the curve
$y=x+\frac{4}{x^{2}}$, that is parallel to the x-axis, is
(1) $y=1$ (2) $y=2$ (3) $y=3$ (4) $y=0$

$$
\begin{aligned}
& \text { A. } y=2 \\
& \text { B. } y=3 \\
& \text { C. } y=0 \\
& \text { D. } y=1
\end{aligned}
$$

- Watch Video Solution

46. The equation of the normal to the parabola, $x^{2}=8 y$ at $x=4$ is
A. $x+y=6$
B. $x+2 y=0$
C. $3-2 y=0$
D. $x+y=2$

Answer: A

D Watch Video Solution
47. The intercepts on x - axis made by tangents
to the curve, $y=\int_{0}^{x}|t| d t, x \varepsilon R$ which are parallel to the line $y=2 x$, are equal to
A. ± 1
B. ± 2
C. ± 3
D. ± 4

Answer: A

Watch Video Solution

48. The least positive vlaue of the parameter 'a' for which there exist atleast one line that is tangent to the graph of the curve $y=x^{3}-a x$, at one point and normal to the graph at another point is $\frac{p}{q}$, where p and q ar relatively prime positive integers. Find product pq.

$$
\text { A. }(-\infty,-4 / 3]
$$

$$
\text { B. }[-4 / 3, \infty)
$$

C. $[4 / 3, \infty)$
D. $(-\infty, 4 / 3]$

Answer: C

- Watch Video Solution

49. If the tangent at a point P with parameter
t, on the curve $x=4 t^{2}+3, y=8 t^{3}-1$
$t \in R$ meets the curve again at a point Q,
then the coordinates of Q are
A. $\left(t^{2}+3,-t^{3}-1\right)$
B. $\left(t^{2}+3, t^{3}-1\right)$
C. $\left(16 t^{2}+3,-64 t^{3}-1\right)$
D. $\left(4 t^{2}+3,-8 t^{3}-1\right)$.

Answer: A

- Watch Video Solution

Exercise

1. The equation of the tangents to
$2 x^{2}+3 y^{2}=36$ which are parallel to the straight line $x+2 y-10=0$, are
A. $x+2 y=0$
B. $x+2 y+\sqrt{\frac{288}{15}}=0$
C. $x+2 y+\sqrt{\frac{1}{15}}=0$
D. none of these

Answer: D

D Watch Video Solution

2. If the area of the triangle included between

the axes and any tangent to the curve $x^{n} y=a^{n}$ is constant, then find the value of n.
A. 1
B. 2
C. $3 / 2$
D. $1 / 2$

Answer: A

D Watch Video Solution
3. Show that the curves $x=y^{2}$ andxy $=k$ cut at right angles, if $8 k^{2}=1$
A. $2 k^{2}-1$
B. $4 k^{2}=1$
C. $6 k^{2}=1$
D. $8 k^{2}=1$

Answer: D

- Watch Video Solution

4. Find the euation of normal to the curve
$x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$
at any point ' θ '
A. makes a constant angle with x-axis
B. is at a constant distance from the origin
C. passes through the origin
D. satisfies all the three conditions

Answer: B
5. The equation of the tangent to the curve $x=t \cos t, y=t \sin t$ at the origin, is

$$
\text { A. } x=0
$$

B. $y=0$
C. $x+y=0$
D. $x-y=0$

Answer: B

6. The equation of the normal to the curve

$$
y^{4}=a x^{3} \text { at }(\mathrm{a}, \mathrm{a}) \text { is }
$$

A. $x+2 y=3 a$
B. $3 x-4 y+a=0$
C. $4 x+3 y=7 a$
D. $4 x-3 y=a$

Answer: C

- Watch Video Solution

7. The angle between the curves $y^{2}=4 x+4$ and $y^{2}=36(9-x)$ is?
A. 30°
B. 45°
C. 60°
D. 90°

Answer: D

- Watch Video Solution

8. The equation of the tangent to the curve $y=x^{4}$ from the point $(2,0)$, are given by

$$
\begin{aligned}
& \text { A. } y=\frac{4098}{81} \\
& \text { B. } y-1=5(x-1) \\
& \text { C. } y=\frac{4096}{81}=\frac{2048}{27}\left(x-\frac{8}{3}\right) \\
& \text { D. } y-\frac{32}{243}=\frac{80}{81}\left(x-\frac{2}{3}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

9. The point on the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$, the normal at which is parallel to the x-axis, is
A. $(0,0)$
B. $(0, a)$
C. $(a, 0)$
D. (a, a)

Answer: B

D Watch Video Solution
10. The length of the Sub tangent at $(2,2)$ to
the curve $x^{5}=2 y^{4}$ is
A. $5 / 2$
B. $8 / 5$
C. $2 / 5$
D. $5 / 8$

Answer: B
(Watch Video Solution
11. The angle between the curves
$y=\sin x$ and $y=\cos x, 0<x<\frac{\pi}{2}$, is
A. $\tan ^{-1}(2 \sqrt{2})$
B. $\tan ^{-1}(3 \sqrt{2})$
C. $\tan ^{-1}(3 \sqrt{3})$
D. $\tan ^{-1}(5 \sqrt{2})$

Answer: A

D Watch Video Solution
12. The line, which is parallel to X-axis and crosses the curve $y=\sqrt{x}$ at an angle 45°, is

$$
\begin{aligned}
& \text { A. } y=\frac{1}{4} \\
& \text { B. } y=\frac{1}{2} \\
& \text { C. } y=1 \\
& \text { D. } y=4
\end{aligned}
$$

Answer: B
13. A normal is drawn to parabola $y^{2}=4 a x$ at any point other than the vertex. If it cuts the parabola again at a point whose distance from the vertex is not less than:

$$
\begin{aligned}
& \text { A. } t_{1} t_{2}=-1 \\
& \text { B. } t_{2}=-t_{1}-\frac{2}{t_{1}} \\
& \text { C. } 2 t_{1}=t_{2}
\end{aligned}
$$

D. none of these

Answer: B

14. If the line $a x+b y+c=0$ is a normal to the curve $\quad x y=1, \quad$ then $\quad a>0, b>0$ $a>0, b<0 a\langle 0, b\rangle 0$ (d) $a<0, b<0$ none of these
A. $(a>0, b>0)$ or,$(a<0, b<0)$
B. $(a>0, b<0)$ or,$(a<0, b>0)$
C. $(b \leq 0, a \leq 0)$ or,$(a \geq 0, b \leq 0)$
D. $(a \leq 0, b \leq 0)$ or,$(a \geq 0, b \geq 0)$

- Watch Video Solution

15. Show that the line $\frac{d}{a}+\frac{y}{b}=1$ touches the curve $y=b e^{-\frac{x}{a}}$ at the point where it crosses the y-axis.
A. $(a, b / a)$
B. $(-a, b / a)$
C. $(a, a / b)$
D. none of these

- Watch Video Solution

16. Find the euation of normal to the curve
$x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$
at any point ' θ '
A. it makes a constant angle with x-axis
B. it passes through the origin
C. it is at a constant distance from the origin
D. none of these

Answer: C

D Watch Video Solution

17. The point P of the curve $y^{2}=2 x^{3}$ such that
the tangent at P is perpendicular to the line $4 x-3 y+2=0$ is given by
A. $(2,4)$
B. $(1, \sqrt{2})$
C. $(1 / 2,-1 / 2)$
D. $(1 / 8,-1 / 16)$

Answer: D

D Watch Video Solution

18. Find the equation of tangents to the curve
$y=\cos (x+y),-2 \pi \leq x \leq 2 \pi$ that are parallel to the line $x+2 y=0$.
A. $x+2 y=1$
B. $x+2 y=\frac{\pi}{2}$
C. $x+2 y=\frac{\pi}{4}$
D. none of these

Answer: B

D Watch Video Solution

19. The equation of the tangents at the origin
to the curve $y^{2}=x^{2}(1+x)$ are
A. $y= \pm x$
B. $x= \pm y$
C. $y= \pm 2 x$
D. none of these

Answer: A

D Watch Video Solution

20. The coordinates of the points on the curve
$x=a(\theta+\sin \theta), y=a(1-\cos \theta), \quad$ where
tangent is inclined an angle $\frac{\pi}{4}$ to the x-axis are- (A) $\quad(a, a) \quad$ (B) $\quad\left(a\left(\frac{\pi}{2}-1\right), a\right)$
$\left(a\left(\frac{\pi}{2}+1\right), a\right)$ (D) $\left(a, a\left(\frac{\pi}{2}+1\right)\right)$
A. (a, a)
B. $(a(\pi / 2-1), a)$

$$
\text { C. }(a(\pi / 2+1), a)
$$

$$
\text { D. }(a, a(\pi / 2+1))
$$

Answer: C

D Watch Video Solution

21. The chord joining the points where $x=p$ and $\mathrm{x}=\mathrm{q}$ on the curve $y=a x^{2}+b x+c$ is parallel to the tangent at the point on the curve whose abscissa is :
A. $\frac{1}{2}(p+q)$
B. $\frac{1}{2}(p-q)$
C. $\frac{p q}{2}$
D. none of these

Answer: A

D Watch Video Solution

22. Find the locus of point on the curve $y^{2}=4 a\left(x+a \sin \left(\frac{x}{a}\right)\right)$ where tangents are parallel to the axis of x.
A. circle
B. parabola
C. line
D. none of these

Answer: B

D Watch Video Solution

23. At what points on the curve
$y=x^{2}-4 x+5$ is the tangent perpendicular
to the line $2 y+x=7$?
A. $(3,2)$
B. (1, 2)
C. $(2,1)$
D. none of these

Answer: A

D Watch Video Solution
24. The points of contact of the tangents drawn from the origin to the curve $y=\sin x$, lie on the curve

$$
\text { A. } x^{2}-y^{2}=x y
$$

B. $x^{2}+y^{2}=x^{2} y^{2}$
C. $x^{2}-y^{2}=x^{2} y^{2}$
D. none of these

Answer: C

D Watch Video Solution

25. If the area of the triangle included between
the axes and any tangent to the curve $x^{n} y=a^{n}$ is constant, then find the value of n.
A. -1
B. -2
C. 1
D. 2

Answer: C

- Watch Video Solution

26. The tangents to the curve
$x=a(\theta-\sin \theta), y=a(1+\cos \theta) \quad$ at \quad the points $\theta=(2 k+1) \pi, k \in Z$ are parallel to :
A. $y=x$
B. $y=-x$
C. $y=0$
D. $x=0$

Answer: C

- Watch Video Solution

27. The slope of the tangent to the curve
$y=\sin ^{-1}(\sin x)$ at $x=\frac{3 \pi}{4}$ is
A. 1
B. -1
C. 0
D. non-existent

Answer: B

D Watch Video Solution
28. The slope of the tangent to the curve
$y=\cos ^{-1}(\cos x)$ at $x=-\frac{\pi}{4}$, is
A. 1
B. 0
C. 2
D. -1

Answer: D

D Watch Video Solution
29. The equation of the tangent to the curve $y=e^{-|x|}$ at the point where the curve cuts
the line $x=1$, is
A. $x+y=e$
B. $e(x+y)=1$
C. $y+e x=1$
D. none of these

Answer: D

D Watch Video Solution

30. The number of points on the curve
$y=x^{3}-2 x^{2}+x-2$ where tangents are prarllel to x-axis, is
A. 0
B. 1
C. 2
D. 3

Answer: C

D Watch Video Solution

31. The angle between the tangents to the
curve $y=x^{2}-5 x+6$ at the point $(2,0)$ and
$(3,0)$ is (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) π (d) $\frac{\pi}{4}$
A. $\pi / 3$
B. $\pi / 4$
C. $\pi / 2$
D. $\pi / 6$

Answer: C

D Watch Video Solution

32. The slope of the tangent to the curve
$y=\sqrt{9-x^{2}}$ at the point where ordinate and
abscissa are equal, is
A. 1
B. -1
C. 0
D. none of these

Answer: B

D Watch Video Solution
33. The slope of the tangent to the curve
$y=x^{2}-x$ at the point where the line $\mathrm{y}=2$
cuts the curve in the first quadrant, is
A. 2
B. 3
C. -3
D. none of these

Answer: B

D Watch Video Solution
34. The abscissa of the point on the curve $a y^{2}=x^{3}$, the normal at which cuts off equal intercepts from the coordinate axes is
A. $\frac{2 a}{9}$
B. $\frac{4 a}{9}$
C. $-\frac{4 a}{9}$
D. $-\frac{2 a}{9}$

Answer: B

D Watch Video Solution

35. The curve given by $x+y=e^{x y}$ has a tangent parallel to the y-axis at the point (a)
$(0,1)(b)(1,0)(c)(1,1)(d)$ none of these
A. $(0,1)$
B. $(1,0)$
C. $(1,1)$
D. none of these

Answer: B

D Watch Video Solution

36. The two tangents to the curve
$a x^{2}+2 h x y+b y^{2}=1, a>0$ at the points
where it crosses x-axis, are
A. parallel
B. perpendicular
C. inclined at an angle of $\pi / 4$
D. none of these

Answer: A

D Watch Video Solution
37. Let $P(2,2)$ and $Q(1 / 2,-1)$ be two points on the parabola $y^{2}=2 x$, The coordinates of the point R on the parabola
$y^{2}=2 x$ where the tangent to the curve is parallel to the chord PQ , are
A. $(2,-1)$
B. $(1 / 8,1 / 2)$
C. $(\sqrt{2}, 1)$
D. $(-\sqrt{2}, 1)$

Answer: C
(Watch Video Solution
38. Any tangent to the curve $y=2 x^{5}+4 x^{3}+7 x+9$
A. is parallel to x-axis
B. is parallel to y-axis
C. makes an acute angle with the x-axis
D. makes an obtuse angle with x-axis

Answer: C

D Watch Video Solution

39. The normal to the curve
$5 x^{5}-10 x^{3}+x-2 y+6=0$ at $\mathrm{P}(0,3)$ meets
the curve again at two points. Then the points
are :
A. $(-1,1),(1,5)$
B. $(1,-1),(-1,-5)$
C. $(-1,-5),(-1,1)$
D. $(-1,5),(1,-1)$

Answer: B
40. The lines parallel to the normal to the
curve $x y=1$ is/are $3 x+4 y+5=0$
$3 x-4 y+5=0 \quad 4 x+3 y+5=0$
$3 y-4 x+5=0$
A. $3 x+4 y+5=0$
B. $3 x-4 y+5=0$
C. $4 x+3 y+5=0$

$$
\text { D. } 3 y-4 x-5=0
$$

- Watch Video Solution

41. Let P be the point (other than the origin) of intersection of the curves
$y^{2}=4 a x$ and $a y^{2}=4 x^{3}$ such that the normals to the two curves meet x-axis at
G_{1} and G_{2} respectively. Then, $G_{1} G_{2}=$
A. 2 a
B. 4 a
C. a

D. none of these

Answer: B

D Watch Video Solution

42. If the sum of the squares of the intercepts
on the axes cut off by the tangent to the curve
$x^{1 / 3}+y^{1 / 3}=a^{1 / 3}($ with $a>0)$ at
$(a / 8, a / 8)$ is 2 , then a has the value
A. 1
B. 2
C. 4
D. 8

Answer: C

D Watch Video Solution

Chapter Test

1. The abscissa of the point on the curve
$a y^{2}=x^{3}$, the normal at which cuts off equal
intercepts from the coordinate axes, is
A. $2 a / 9$
B. $4 a / 9$
C. $-4 a / 9$
D. $-2 a / 9$

Answer: B
2. If the
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{l^{2}}-\frac{y^{2}}{m^{2}}=1 \mathrm{cut} \quad$ each other orthogonally then.....
A. $a^{2}+b^{2}=l^{2}+m^{2}$
B. $a^{2}-b^{2}=l^{2}-m^{2}$
C. $a^{2}-b^{2}=l^{2}+m^{2}$
D. $a^{2}+b^{2}=l^{2}-m^{2}$

Answer: C
3. The length of normal at any point to the curve, $y=c \cosh \left(\frac{x}{c}\right)$ is
A. $\frac{(\text { abscissa })^{2}}{c}$
B. $\frac{(\text { ordinate })^{2}}{c}$
C. abscissa
D. ordinate

Answer: B

D Watch Video Solution
4. If the sub-normal at any point on
$y=a^{1-n} x^{n}$ is of constant length, then find the value of n.
A. 1
B. $1 / 2$
C. 2
D. -2

Answer: B
5. The angle of intersection of the curves
$y=x^{2}, 6 y=7-x^{3}$ at $(1,1)$, is
A. $\pi / 4$
B. $\pi / 3$
C. $\pi / 2$
D. none of these

Answer: C

- Watch Video Solution

6. The slope of the tangent to the curve
$x=t^{2}+3 t-8, \quad y=2 t^{2}-2 t-5 \quad$ at the
point $(2,-1)$ is
(a) $22 / 7$
(b) $6 / 7$
(c) $7 / 6$
(d) $-6 / 7$
A. $22 / 7$
B. $6 / 7$
C. -6

D. none of these

Answer: B

D Watch Video Solution

7. What is the angle between these two curves
$x^{3}-3 x y^{2}+2=0$ and $3 x^{2} y-y^{3}-2=0$
A. 45°
B. 60°
C. 90°
D. 30°

Answer: C

D Watch Video Solution

8. about to only mathematics

A. $\tan ^{-1} t^{2}$
B. $\cot ^{-1} t^{2}$
C. $\tan ^{-1} t$
D. $\cot ^{-1} t$

Answer: C

Watch Video Solution
9. If $y=4 x-5$ is a tangent to the curve $y^{2}=p x^{3}+q$ at $(2,3)$, then:
A. $p=2, q=-7$
B. $p=-2, q=7$
C. $p=-2, q=-7$
D. $p=2, q=7$

Answer: A

D Watch Video Solution

10. The curve $y-e^{x y}+x=0$ has a vertical
tangent at the point:
A. $(1,1)$
B. at no point
C. $(0,1)$
D. $(1,0)$

Answer: D

D Watch Video Solution

11. The tangent to the curve given by $x=e^{t} \cos t y=e^{t} \quad \sin \mathrm{t}$ at $\mathrm{t}=\frac{\pi}{4} \quad$ makes with x-axis an angle of
A. 0
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: D

- Watch Video Solution

12. The length of the normal at t on the curve $x=a(t+\sin t), y=a(1-\cos t)$, is
A. $a \sin t$
B. $2 a \sin ^{3} \frac{t}{2} \sec \frac{t}{2}$
C. $2 a \sin \frac{t}{2} \tan \frac{t}{2}$
D. $2 a \sin \frac{t}{2}$

Answer: C

D Watch Video Solution

13. For the parabola $y^{2}=4 a x$, the ratio of
the subtangent to the abscissa, is
A. $1: 1$
B. $2: 1$
C. $x: y$
D. $x^{2}: y$

Answer: B

D Watch Video Solution

14. The length of the subtangent to the curve $\sqrt{x}+\sqrt{y}=3$ at the point $(4,1)$, is
A. 2
B. $1 / 2$
C. 3
D. 4

Answer: A

D Watch Video Solution

15. Find the euation of normal to the curve
$x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$
at any point ' θ '
A. it makes a constant angle with x-axis
B. it passes through the origin
C. it is at a constant distance from the origin

D. none of these

Answer: C

D Watch Video Solution

16. Tangents ar drawn to $y=\cos x$ from origin
then points of contact for these tangents will
always lie on :

$$
\begin{aligned}
& \text { A. } x^{2} y^{2}=y^{2}-x^{2} \\
& \text { B. } x^{2} y^{2}=x^{2}+y^{2}
\end{aligned}
$$

C. $x^{2} y^{2}=x^{2}-y^{2}$
D. none of these

Answer: C

D Watch Video Solution

17. If m denotes the slope of the normal to the
curve $y=-3 \log \left(9+x^{2}\right)$ at the point $x \neq 0$, then,
A. $m \in[-1,1]$

$$
\begin{aligned}
& \text { B. } m \in R-(-1,1) \\
& \text { C. } m \in R-[-1,1] \\
& \text { D. } m \in(-1,1)
\end{aligned}
$$

Answer: B

- Watch Video Solution

18. If m be the slope of the tangent to the
curve $e^{2 y}=1+4 x^{2}$, then
A. $m<1$
B. $|m| \leq 1$
C. $|m| \geq 1$
D. none of these

Answer: B

D Watch Video Solution

19. If the curve $y=a x^{3}+b x^{2}+c x$ is inclined at 45° to x-axis at $(0,0)$ but touches x-axis at
$(1,0)$, then
A. $a=1, b=-2, c=1$
B. $a=1, b=1, c=-2$
C. $a=-2, b=1, c=1$
D. $a=-1, b=2, c=1$

Answer: A

D Watch Video Solution
20. If the curve $y=a x^{2}+b x+c$ passes
through the point $(1,2)$ and the line $y=x$ touches it at the origin, then
A. $a=1, b=-1, c=0$

$$
\text { B. } a=1, b=1, c=0
$$

C. $a=-1, b=1, c=0$
D. none of these

Answer: B

- Watch Video Solution

21. The angle between the tangents to the
curve $y^{2}=2 a x$ at the point where $x=\frac{a}{2}$, is
A. $\pi / 6$
B. $\pi / 4$
C. $\pi / 3$
D. $\pi / 2$

Answer: D

D Watch Video Solution

22. The intercepts on x - axis made by tangents
to the curve, $y=\int_{0}^{x}|t| d t, x \varepsilon R$ which are
parallel to the line $y=2 x$, are equal to
A. $1,-1$
B. $-2,2$
C. 3
D. -3

Answer: B
23. Find the value of $n \in N$ such that the
curve $\left(\frac{x}{a}\right)^{n}+\left(\frac{y}{b}\right)^{n}=2$ touches the
straight line $\frac{x}{a}+\frac{y}{b}=2$ at the point (a, b).
A. $\mathrm{n}=2$ only
B. $n=-3$ only
C. any $n \in R$
D. none of these

Answer: C

D Watch Video Solution
24. The equation of the normal to the curve
$y=e^{-2|x|}$ at the point where the curve cuts
the line $x=1 / 2$ is

> A. $2 e(e x+2 y)=e^{2}-4$
> B. $2 e(e x-2 y)=e^{2}-4$
> C. $2 e(e y-2 x)=e^{2}-4$
D. none of these

Answer: B

D Watch Video Solution
25. The length of subtangent to the curve $x^{2}+x y+y^{2}=7$ at the point $(1,-3)$ is
A. 3
B. 5
C. 15
D. $3 / 5$

Answer: C

- Watch Video Solution

