

MATHS

BOOKS - OBJECTIVE RD SHARMA ENGLISH

THREE DIMENSIONAL COORDINATE SYSTEM

Illustration

1. In the following figure, if the coordinates of P are (a,b,c) then the coordinates of A,B and C are respectively

A.
$$(a, 0, 0), (b, 0, 0), (c, 0, 0)$$

B.
$$(a, 0, 0), (0, b, 0), (0, 0, c)$$

D.
$$(a, b, c), (b, c, a), (c, a, b)$$

Answer: A

Watch Video Solution

2. In Fig 4 the coordinates of point D are

Watch Video Solution

3. In fig. 28.7 if the coordinates of point $P \ are \ (a,b,c)$ then Write the coordinates of points A, B, C, D, E and F. Write the coordinates of the feet of the perpendiculars from the point P to the coordinate axes. Write the coordinates of the feet of the perpendicular from the point P on the coordinate planes $XY,\ YZ\ and\ ZX$. Find the perpendicular

point P fro the coordinate axes. Find the coordinates of the reflection of P are (a,b,c) . Therefore $OA=a,\ OB=b\ nd\ OC=$

distances of point P from XY, YZ and ZX –

planes. Find the perpendicular distances of the

A.
$$(a, b, 0), (0, b, c), (a, 0, c)$$

B. (a, b, 0), (b, c, 0), (a, c, 0)

C.
$$(0, b, c), (a, 0, c), (a, b, 0)$$

D.
$$(a, 0, c), (0, b, c), (a, b, 0)$$

Answer: A

4. In fig. 28.7 if the coordinates of point $P \ are \ (a,b,c)$ then Write the coordinates of points A, B, C, D, E and F. Write the coordinates of the feet of the perpendiculars from the point P to the coordinate axes. Write the coordinates of the feet of the perpendicular from the point P on the coordinate planes $XY, \ YZ \ and \ ZX$. Find the perpendicular distances of point P from XY, YZ and ZX – planes. Find the perpendicular distances of the point P fro the coordinate axes. Find the

coordinates of the reflection of P are (a, b, c).

Therefore $OA=a,\ OB=b\ nd\ OC=\ \cdot$

A. a, b, c

B. b, c, a

C. c, a, b

D. none of these

Answer: C

View Text Solution

5. In fig. 28.7 if the coordinates of point $P \ are \ (a,b,c)$ then Write the coordinates of points A, B, C, D, E and F. Write the coordinates of the feet of the perpendiculars from the point P to the coordinate axes. Write the coordinates of the feet of the perpendicular from the point P on the coordinate planes XY, YZ and ZX. Find the perpendicular distances of point P from XY, YZ and ZX – planes. Find the perpendicular distances of the point P fro the coordinate axes. Find the

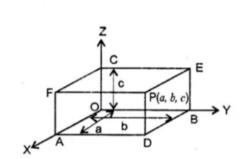
coordinates of the reflection of P are (a, b, c).

Therefore OA = a, $OB = b \, nd \, OC = \cdot$

A.
$$\sqrt{a^2+b^2},\,\sqrt{b^2+c^2},\,\sqrt{c^2+a^2}$$

B.
$$\sqrt{b^2+c^2},$$
 $\sqrt{c^2+a^2},$ $\sqrt{a^2+b^2}$

C.
$$\sqrt{c^2+a^2},\sqrt{a^2+b^2},\sqrt{b^2+c^2}$$


D. a, b, c

Answer: B

iew Text Solution

6. In the adoining figure if the coordinates of point P are $(a,\,b,\,c)$ write the coordinates of

A,B,C,D,E and F.

A.
$$(a, b, -c), (-a, b, c), (a, -b, c)$$

В.

$$(a,\,-b,\,-c),(\,-a,b,\,-c),(\,-a,\,-b,c)$$

C.

$$(-a, -b, c), (a, -b, -c), (-a, b, -c)$$

D. (a, b, 0), (0, b, c), (a, 0, c)

Answer: A

Watch Video Solution

7. Planes are drawn parallel to the coordinate planes through the point $P(x_1,y_1,\ z_1)$ and $Q(x_2,y_2,z_2)$. Find the length of the edges of the parallelopiped so formed.

A. $x_2-x_1,\,y_2-y_1,\,z_2-z_1$

B. $x_2 + x_1, y_2 + y_1, z_2 + z_1$

C. x_1x_2, y_1y_2, z_1z_2

D. none of these

Answer: A

Watch Video Solution

8. The perpendicular distance of the point (6,5,8) from y-axis is

A. 5 units

B. 6 units

C. 8 units

D. 10 units

Answer: D

Watch Video Solution

9. If the extremities of the diagonal fo a square are (1,-2,3) and (2,-3,5), then the length of the side is $\sqrt{6}$ b. $\sqrt{3}$ c. $\sqrt{5}$ d. $\sqrt{7}$

A.
$$\sqrt{6}$$

B.
$$\sqrt{3}$$

C.
$$\sqrt{5}$$

D.
$$\sqrt{7}$$

Answer: B

Watch Video Solution

10. Find the coordinates of a point equidistant from th four points

$$O(0,0,0), A(a,0,0), B(0,b,0) and C(0,0,c)$$

A.
$$(a, b, c)$$

B. (a/2, b/2, c/2)

C. (a/3, b/3, c/3)

D. (a/4, b/4, c/4)

Answer: B

Watch Video Solution

11. Determine the point in XY-plane which equidistant from three points is A(2,0,3), B(0,3,2) and C(0,0,1).

A.(2,0,8)

B.(0,3,1)

C.(3,2,0)

D.(3, 2, 1)

Answer: C

C(1, 2, 6) is

Watch Video Solution

12. The cosine of the angle of the triangle with A(1, -1, 2), B(6, 11, 2)vertices and

$$\frac{65}{65}$$

B.
$$\frac{36}{65}$$

c.
$$\frac{16}{65}$$

D.
$$\frac{13}{64}$$

Answer: B

__

13. Let
$$P(2,\,-1,4)$$
 and $Q(4,3,2)$ are two points and as point R on PQ is such that

3PQ=5QR, then the coordinates of R are

A.
$$\left(\frac{14}{5}, \frac{3}{5}, \frac{16}{5}\right)$$
B. $\left(\frac{16}{5}, \frac{7}{5}, \frac{14}{5}\right)$
C. $\left(\frac{11}{4}, \frac{1}{2}, \frac{13}{4}\right)$

D. none of these

Answer: A

Watch Video Solution

14. Let
$$A(2,\,-1,4)$$
 and $B(0,2,\,-3)$ be the points and C be a point on AB produced such

that 2AC=3AB, then the coordinates of C are

A.
$$\left(\frac{1}{2}, \frac{5}{4}, -\frac{5}{4}\right)$$

$$\mathsf{B.}\left(\,-\,\frac{1}{2},\frac{7}{4},\,-\,\frac{13}{4}\right)$$

$$\mathsf{C.}\,(6,\ -7,18)$$

D. none of these

Answer: D

Watch Video Solution

15. Find the ratio in which the line joining the points (1,2,3) and (-3,4,-5) is divided by the xy-plane . Also, find the coordinates of the point of division.

A. 3:5 internally

B. 5:3 externally

C. 3:5 externally

D. 5:3 internally

Answer: A

/atch Video Solution

16. In triangle ABC the mid point of the sides

AB, BC and AC respectively (l, 0, 0), (0, m, 0) and

(0, 0, n). Then,
$$\dfrac{AB^2+BC^2+CA^2}{l^2+m^+n^2}$$
 is equal to

A. 2

B. 4

C. 8

D. 16

Answer: C

Jatch Widen Colution

attii viutu Solution

17. Find the coordinate of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the i. yz-plane ii. zx-plane.

A.
$$\left(0, \frac{17}{2}, \frac{13}{2}\right)$$

B.
$$\left(0, -\frac{17}{2}, \frac{13}{2}\right)$$

c.
$$\left(0, \frac{17}{2}, -\frac{13}{2}\right)$$

D.
$$\left(0, -\frac{17}{2}, -\frac{13}{2}\right)$$

Answer: C

watch video Solution

18. Find the ratio in which the join the A(2,1,5) and B(3,4,3) is divided by the plane 2x+2y-2z=1. Also, find the coordinates of the point of division.

A. 7:5

B. 5:7

C. 5:3

D. 3:5

Answer: B

Watch Video Solution

19. If a vector \overrightarrow{A} makes an angles α , β and γ respectively with the x, y and z axes respectively. Then $\sin^2\alpha+\sin^2\beta+\sin^2\gamma$ is equal to

- **A.** 1
- B. 2
- C. 3

D. none of these

Answer: B

Watch Video Solution

20. If a line makes angles $lpha,\,eta,\,\gamma$ with the axes respectively tehn $\,\cos2lpha+\cos2eta+\cos2\gamma=$

-2 b. -1 c. 1 d. 2

A. 2

B. -1

C. 1

D. 2

Answer: B

Watch Video Solution

21. If a line makes angle $\frac{\pi}{3}$ and $\frac{\pi}{4}$ with x-axis and y-axis respectively, then the angle made by the line with z-axis is $\pi/2$ b. $\pi/3$ c. $\pi/4$ d. $5\pi/12$

B.
$$\frac{\pi}{3}$$

$$\operatorname{C.}\frac{\pi}{4}$$

D.
$$\frac{5\pi}{12}$$

Answer: B

Watch Video Solution

22. The direction cosines of a vector \overrightarrow{r} which is equally inclined with OX,OY and OZ are

A.
$$\pm \frac{1}{\sqrt{3}}, \ \pm \frac{1}{\sqrt{3}}, \ \pm \frac{1}{\sqrt{3}}$$

$$B.\pm \frac{1}{3}, \pm \frac{1}{3}, \pm \frac{1}{3}$$

$$\mathsf{C.} \pm \frac{1}{\sqrt{2}}, \ \pm \frac{1}{2}, \ \pm \frac{1}{2}$$

D. none of these

Answer: A

Watch Video Solution

23. A vector
$$\overrightarrow{r}$$
 is inclined at equal to $OX, OYandOZ$. If the magnitude of \overrightarrow{r} is 6 units, find \overrightarrow{r} .

A.
$$\sqrt{3}\Big(\pm \hat{i}\pm \hat{j}\pm \hat{k}\Big)$$

B.
$$2\sqrt{3}ig(\pm \hat{i}\pm \hat{j}\pm \hat{k}ig)$$

C.
$$6ig(\pm \hat{i}\pm \hat{j}\pm \hat{k}ig)$$

D. none of these

Answer: B

Watch Video Solution

24. If OA is equally inclined to OX,OY,OZ and if A is $\sqrt{3}$ units from the origin then the cordinates of A are

A.
$$(3, 3, 3)$$

B.
$$(-1, 1, -1)$$

$$\mathsf{C.}\,(\,-1,1,1)$$

D.
$$(1, 1, 1)$$

Answer: D

Watch Video Solution

25. If $\frac{1}{2}$, $\frac{1}{3}$, n are direction cosines of a line, then the value of n is

C.
$$\frac{2}{3}$$
D. $\frac{1}{6}$
Answer: A

Watch Video Solution

 $\mathsf{B.}\;\frac{23}{6}$

26. If the direction ratios of a line are proportional to (1, -3, 2) then its direction cosines are
$$\frac{1}{\sqrt{14}}$$
, $-\frac{3}{\sqrt{14}}$, $\frac{2}{\sqrt{14}}$ b.

D.
$$-\frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}, \frac{-3}{\sqrt{14}}$$

A. $\frac{1}{\sqrt{14}}, \frac{-3}{\sqrt{14}}, \frac{2}{\sqrt{14}},$

 $\text{B.}\ \frac{1}{\sqrt{14}},\,\frac{2}{\sqrt{14}},\,\frac{3}{\sqrt{14}}$

 $\mathsf{C.} - \frac{1}{\sqrt{14}}, \, \frac{3}{\sqrt{14}}, \, \frac{2}{\sqrt{14}}$

Answer: A

Watch Video Solution

27. The projections of a line segment on the coordinate axes are 12,4,3 respectively. The length and direction cosines of the line segment are

A. 13,
$$\frac{12}{13}$$
, $\frac{4}{13}$, $\frac{3}{13}$

B. 19,
$$\frac{12}{19}$$
, $\frac{4}{19}$, $\frac{3}{19}$

C. 11,
$$\frac{12}{11}$$
, $\frac{14}{11}$, $\frac{3}{11}$

D. none of these

Answer: A

Vatch Video Solution

28. If \overrightarrow{r} is a vector of magnitude 21 and has direction ratios 2, -3 and 6, then find \overrightarrow{r} .

A.
$$6\hat{i}+9\hat{j}-18\hat{k}$$

B.
$$6\hat{i}-9\hat{j}-18\hat{k}$$

C.
$$6\hat{i}-9\hat{j}+18\hat{k}$$

D. none of these

Answer: C

Watch Video Solution

29. If P(x, y, z) is a point on the line segment joining Q(2,2,4) and R(3,5,6) such that the projection of \overrightarrow{OP} on the axes are $\frac{13}{9}, \frac{19}{5}, \frac{26}{5}$ respectively, then P divides QR in the ratio:

- A. 1: 2
- B. 3:2
- C.2:3
- D. 3:1

Answer: B

/atch Video Solution

30. The direction cosines of the line passing through $P(2,3,\,-1)$ and the origin are

A.
$$\frac{2}{\sqrt{14}}$$
, $\frac{3}{\sqrt{14}}$, $\frac{1}{\sqrt{14}}$

B.
$$\frac{2}{\sqrt{14}}$$
, $-\frac{3}{\sqrt{14}}$, $\frac{1}{\sqrt{14}}$

$$\mathsf{C.} - \frac{2}{\sqrt{14}}, \ - \frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}$$

$$\text{D.} - \frac{2}{\sqrt{14}}, \; - \; \frac{3}{\sqrt{14}}, \; - \; \frac{1}{\sqrt{14}}$$

Answer: D

Watch Video Solution

31. The projection of the line segment joining the points $A(\,-1,0,3)$ and B(2,5,1) on the line whose direction ratios are proportional to 6,2,3 is

A.
$$\frac{10}{7}$$

$$\mathsf{B.}\;\frac{22}{7}$$

c.
$$\frac{18}{7}$$

D. none of these

Answer: B

atch Video Solution

32. The direction cosines of a vector \overrightarrow{r} which is equally inclined with OX,OY and OZ are

A.
$$\pm \frac{1}{\sqrt{3}}, \ \pm \frac{1}{\sqrt{3}}, \ \pm \frac{1}{\sqrt{3}}$$

$${\sf B.}\pmrac{1}{3},\ \pmrac{1}{3},\ \pmrac{1}{3}$$

$$c. \pm \frac{1}{\sqrt{2}}, \pm \frac{1}{2}, \pm \frac{1}{2}$$

D. none of these

Answer: A

33. A vector \overrightarrow{r} is inclined at equal to $OX,\,OY and OZ$. If the magnitude of \overrightarrow{r} is 6 units, find \overrightarrow{r}

Watch Video Solution

34. Find the angle between two lines whose direction ratios are proportional to 1, 1, 2 and $(\sqrt{3} - 1), (-\sqrt{3} - 1), 4$.

 $A.45^{\circ}$

 $B.30^{\circ}$

C. 60°

D. 90°

Answer: A

Watch Video Solution

35. If
$$P(0,1,2),\ Q(4,-2,1) and\ O(0,0,0)$$
 are three points then $POQ=\frac{\pi}{6}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$

A. $\frac{\pi}{6}$

B.
$$\frac{\pi}{4}$$

$$\mathsf{C.}\;\frac{\pi}{3}$$

D.
$$\frac{\pi}{2}$$

Watch Video Solution

36. If A,B,C,D are (2,3,-1),(3,5,-3),(1,2,3),(3,5,7) respectively, then the angel between AB and CD, is

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{3}$$

$$\mathsf{C.}\;\frac{\pi}{4}$$

$$\text{D.}\ \frac{\pi}{6}$$

Watch Video Solution

37. Find the angle between the lines whose direction cosines are given by the equation l+m+n=0 and $l^2+m^2-n^2=0$

A.
$$\frac{\pi}{2}$$

B.
$$\frac{\pi}{3}$$

$$\mathsf{C.}\ \frac{\pi}{4}$$

D. $\frac{\pi}{6}$

Answer: B

Watch Video Solution

 $A(2,3,5),B(\,-1,3,2)$ and $C(\lambda,5,\mu).$ If the median through A is equally inclined to the

38. ABC is a triangle in a plane with vertices

coordinate axes, then the value of $\lambda^3 + \mu^3 + 5$ is

A. 676

B. 1130

C. 1348

D. 1077

Answer: C

1. For every point $P(x,\ y,\ z)$ on the xy-plane, a.

$$x=0$$
 b. $y=0$ c. $z=0$ d. $x=y=z=0$

A. x = 0

 $\mathsf{B.}\,y=0$

 $\mathsf{C}.\,z=0$

D. none of these

Answer: C

2. For every point P(x,y,z) on the x-axis, (except the origin),

A.
$$x = 0, y = 0, y \neq 0$$

B.
$$x = 0, z = 0, y \neq 0$$

$$\mathsf{C.}\, y=0, z=0, x\neq 0$$

D. none of these

Answer: C

3. A rectangular parallelopiped is formed by planes drawn through the points (5, 7, 9) and (2, 3, 7) parallel to the coordinate planes. The length of an edge of this rectangular parallelopiped is

A. 2

B. 3

C. 4

D. all of these

Answer: D

4. A rectangular parallelepiped is formed by planes drawn through the points (2,3,5) and (5,9,7) parallel to the coordinate planes. The length of a diagonal of the parallelepiped is

B.
$$\sqrt{38}$$

$$\mathsf{C.}\ \sqrt{155}$$

D. none of these

5. The xy-plane divides the line joining the points (-1,3,4) aned (2,-5,6)

A. internally in the ratio 2:3

B. externally in the ratio 2:3

C. internally in the ratio 3:2

D. externally in the ratio 3:2

Answer: B

Watch Video Solution

6. Verify the following: (5,-1,1),(7,-4,7), (1,-6,10) and (-1,-3,4) are the vertices of a rhombus.

- A. trapezium
- B. rectangle
- C. rhombus
- D. square

Answer: C

Watch Video Solution

7. A line makes an angle of 60^{0} with each of X-axis and Y-axis. Find the acute angle made by the line with Z-axis.

A. 30°

B. 60°

C. 75°

D. 45°

Watch Video Solution

8. If the direction cosines of a line are

$$\left(\frac{1}{c},\frac{1}{c},\frac{1}{c}\right)$$
 then :

A.
$$0 < c < 1$$

B.
$$c>2$$

D.
$$c=\pm\sqrt{3}$$

Watch Video Solution

9. Find the angle between the lines whose direction cosines are given by the equation l+m+n=0 and $l^2+m^2-n^2=0$

A. 0

B. $\pi/6$

C. $\pi/4$

D. $\pi/3$

Watch Video Solution

10. If the direction ratios of two lines are given

by
$$a + b + c = 0$$
 and $2ab + 2ac - bc = 0$,

then the angle between the lines is

A.
$$\pi$$

$$\mathrm{B.}~\frac{2\pi}{3}$$

$$\mathsf{C.}\;\frac{\pi}{2}$$

D.
$$\frac{\pi}{3}$$

Answer: B

Watch Video Solution

11. The angle between a line with direction ratios <2,2,1> and a line joining the points (3,1,4) and (7,2,12) is

A.
$$\cos^{-1}\left(\frac{2}{3}\right)$$

B.
$$\cos^{-1}igg(-rac{2}{3}igg)$$

C.
$$\tan^{-1}\left(\frac{2}{3}\right)$$

D. none of these

- 12. The projection of the line joining the ponts (3,4,5) and (4,6,3) on the line joining the points (-1,2,4) and (1,0,5) is

 - A. $\frac{4}{3}$ B. $\frac{2}{3}$
 - $\mathsf{C.}\;\frac{1}{3}$

- 13. The projection of a line segment on the axis
- 2, 3, 6 respectively. Then find the length of line segment.
 - **A.** 7
 - B. 5
 - C. 1
 - D. 11

Watch Video Solution

14. A line makes the same angle θ with X-axis and Z-axis. If the angle β , which it makes with Y-axis, is such that $\sin^2(\beta)=3\sin^2\theta$, then the value of $\cos^2\theta$ is

A.
$$\frac{2}{5}$$

$$\mathsf{B.}\;\frac{1}{5}$$

$$\mathsf{C.}\ \frac{3}{5}$$

D.
$$\frac{2}{3}$$

Answer: C

Watch Video Solution

15. A line AB in three-dimensional space makes angles 45° and 120° with the positive X-axis and The positive Y-axis, respectively. If AB makes an acute $\operatorname{angle}\theta$ with the positive Z-axis, then θ equals

A. 60°

B. 75°

C. 30°

D. 45°

Answer: A

Watch Video Solution

16. The angle between the lines whose directioncosines satisfy the equations

l + m + n = 0 and $l^2 = m^2 + n^2$ is

A.
$$\pi/6$$

B.
$$\pi/2$$

$$\mathsf{C}.\,\pi/3$$

D.
$$\pi/4$$

Answer: C

Watch Video Solution

Exercise

1. If the x-coordinate of a point P on the join of Q(2,2,1) and R(5,1,-2) is 4, then find its z- coordinate.

A. 2

B. 1

C. -1

D. -2

Answer: C

2. The distance of the point P(a,b,c)` from the x-axis is

A.
$$\sqrt{b^2+c^2}$$

B.
$$\sqrt{a^2+c^2}$$

C.
$$\sqrt{a^2+b^2}$$

D.
$$\sqrt{a^2 + b^2 + c^2}$$

Answer: A

3. Ratio in which the xy-plane divides the join of (1, 2, 3) and (4, 2, 1) is a. 3:1 internally b. 3:1 externally c. 1:2 internally d. 2:1 externally

A. 3:1 internally

B. 3:1 externally

C. 1:2 internally

D. 2:1 externally

Answer: B

4. If P (3,2,-4), Q (5,4,-6) and R (9,8,-10) are collinear, then divides in the ratio a. 3:2 internally b. 3:2 externally c. 2:1 internally d. 2:1 externally

A. 3: 2 internally

B. 3:2 externally

C. 2:1 internally

D. 2:1 externally

Answer: B

5. A(3,2,0), B(5,3,2)C(-9,6,-3) are three points forming a triangle. AD, the bisector of angle BAC meets BC in D. Find the coordinates of the point D.

A. (19/8, 57/16, 17/16)

B. (-19/8, 57/16, 17/16)

C. (19/8, -57/16, 17/16)

D. none of these

Answer: A

6. A line passes through the points (6, -7, -1) and (2, -3, 1). Find the direction cosines off the line if the line makes an acute angle with the positive direction of the x-axis.

A.
$$\frac{2}{3}$$
, $-\frac{2}{3}$, $-\frac{1}{3}$

$$B. -\frac{2}{3}, \frac{2}{3}, \frac{1}{3}$$

c.
$$\frac{2}{3}$$
, $-\frac{2}{3}$, $\frac{1}{3}$

D.
$$\frac{2}{3}$$
, $\frac{2}{3}$, $\frac{1}{3}$

Watch Video Solution

7. If a line makes angles α,β,γ with the positive direction of coordinate axes, then write the value of $\sin^2\alpha+\sin^2\beta+\sin^2\gamma$.

A. 1

B. 2

C. 3

D. 4

Answer: B

Watch Video Solution

8. If P is a point in space such that OP=12 and \overrightarrow{OP} is inclied at angle of 45° and 60° with OX and OY respectively, then the position vector of P is

A.
$$6\hat{i}+t\hat{j}\pm6\sqrt{2}\hat{k}$$

B.
$$6\hat{i} + 6\sqrt{2}\hat{j} \pm 6\hat{k}$$

C.
$$6\sqrt{2}\hat{i}+6\sqrt{j}\pm6\hat{k}$$

D. none of these

Answer: C

Watch Video Solution

9. A vector $\overrightarrow{O}P$ is inclined to $OXat45^0$ and $OYat60^0$. Find the angle at which $\overrightarrow{O}P$ is inclined to OZ.

A. $75\,^\circ$

B. 60° or 120°

C. 75° or 105°

D. 255°

Answer: B

Watch Video Solution

10. vector is equal inclined with the coordinate axes. If the tip of \overrightarrow{r} is in the positive octant and $\left|\overrightarrow{r}\right|=6,\,$ then \overrightarrow{r} is:

A.
$$2\sqrt{3}ig(\hat{i}-\hat{j}+\hat{k}ig)$$

B.
$$2\sqrt{3}igg(-\hat{i}+\hat{j}+\hat{k}igg)$$

C.
$$2\sqrt{3}\Big(\hat{i}+\hat{j}-\hat{k}\Big)$$

D.
$$2\sqrt{3}ig(\hat{i}+\hat{j}+\hat{k}ig)$$

11. If
$$\overrightarrow{r}$$
 is a vector of magnitude 21 and has direction ratios 2, -3 and 6, then find \overrightarrow{r} .

A.
$$6\hat{i}-i\hat{j}+18\hat{k}$$

B.
$$6\hat{i}+9\hat{j}+18\hat{k}$$

C.
$$6\hat{i}-9\hat{j}+18\hat{k}$$

D.
$$6\hat{i}+9\hat{j}-18\hat{k}$$

Watch Video Solution

12. The direction cosines of the lines bisecting the angle between the line whose direction cosines are l_1, m_1, n_1 and l_2, m_2, n_2 and the angle between these lines is θ , are

A.
$$\dfrac{l_1+l_2}{2\sin\theta/2},\dfrac{m_1+m_2}{2\sin\theta/2},\dfrac{n_1+n_2}{2\sin\theta/2}$$
B. $\dfrac{l_1+l_2}{2\sin\theta/2},\dfrac{m_1+m_2}{2\sin\theta/2},\dfrac{n_1+n_2}{2\sin\theta/2}$

B.
$$\dfrac{l_1+l_2}{2\cos heta/2}, \dfrac{m_1+m_2}{2\cos heta/2}, \dfrac{n_1+n_2}{2\cos heta/2}$$
 l_1-l_2 m_1-m_2 n_1-n_2

C.
$$rac{l_1-l_2}{2\sin heta/2}, rac{m_1-m_2}{2\sin heta/2}, rac{n_1-n_2}{2\sin heta/2}$$
D. $rac{l_1-l_2}{2\cos heta/2}, rac{m_1-m_2}{2\cos heta/2}, rac{n_1-n_2}{2\cos heta/2}$

Answer: B

13. Find the coordinates of the foot of the perpendicular drawn from point A(1,0,3) to the join of points B(4,7,1) and C(3,5,3).

A.
$$(5/3, 7/3, 17/3)$$

B.
$$(5, 7, 17)$$

C.
$$(5/7, -7/3, 17/3)$$

D.
$$(-5/3, 7/3, -17/3)$$

Watch Video Solution

14. The projections of a line segment on the coordinate axes are 12,4,3 respectively. The

length and direction cosines of the line segment are

A.
$$\frac{12}{13}$$
, $-\frac{4}{13}$, $\frac{3}{13}$

B.
$$-\frac{12}{13}$$
, $-\frac{4}{13}$, $\frac{3}{13}$

c.
$$\frac{12}{13}$$
, $\frac{4}{13}$, $\frac{3}{13}$

D. none of these

Answer: C

15. If P(x, y, z) is a point on the line segment joining Q(2,2,4) and R(3,5,6) such that the projection of \overrightarrow{OP} on the axes are $\frac{13}{9}, \frac{19}{5}, \frac{26}{5}$

respectively, then P divides QR in the ratio:

- A. 1: 2
- B. 3:2
- C.2:3
- D.1:3

Answer: B

16. If O is the origin, OP = 3, with direction ratios

-1, 2 and -2, then find the coordinates of P.

A.
$$(-1, 2, -2)$$

B. (1, 2, 2)

C. (-19, 2/9, -2/9)

D. (3, 5, -9)

Answer: A

17. A mirror and a source of light are situated at the origin O and at a point on OX, respectively.

A ray of light from the sources strikes the mirror and is reflected. If the direction ratios of the normal to the plane are 1, -1, 1, then find the DCs of the reflected ray.

A.
$$\frac{1}{3}$$
, $\frac{2}{3}$, $\frac{2}{3}$

B. $-\frac{1}{3}$, $\frac{2}{3}$, $\frac{2}{3}$

C. $-\frac{1}{3}$, $-\frac{2}{3}$, $-\frac{2}{3}$

D.
$$-\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}$$

Watch Video Solution

18. Find the angle between any two diagonals of a cube.

A. 30°

B. 45°

C.
$$\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

D.
$$\cos^{-1}\left(\frac{1}{3}\right)$$

Watch Video Solution

19. A line makes angles \angle , β , γ and δ with the diagonals of a cube. Show that $\cos^2\alpha + \cos^2\beta + \cos^2\gamma + \cos^2\delta = 4/3$.

A. 1/3

B. 2/3

C.4/3

D.8/3

Answer: C

Watch Video Solution

20. If P(0, 1, 2), Q(4, -2, 1) and O(0, 0, 0)

are three points then $POQ = \frac{\pi}{6}$ b. $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d.

$$\frac{\pi}{2}$$

A. $\frac{\pi}{6}$

B. $\frac{\pi}{4}$

 $\mathsf{C.}\;\frac{\pi}{3}$

D. $\frac{\pi}{2}$

