©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - RESNICK AND HALLIDAY PHYSICS (HINGLISH)

WAVE - II

Sample Problem

1. A handclap on stage in an amphitheater
terraces of width $w=0.75 m$ (see figure). The sound returns to the stage as a periodic series of pulses, one from each terrace, the parade of pulses sound like a played note. Assuming that all the rays in Figure are horizontal, find the frequency at which the pulses return (that is, the frequency of the perceived note). Take the speed of sound to be $330 \mathrm{~m} / \mathrm{s}$

2. The maximum pressure amplitude Δp_{m} that the human ear can tolerate in loud sounds is about 28 Pa (which is very much less than the normal air pressure of about $10^{5} \mathrm{~Pa}$). What is the displacement amplitude s_{m} for such a sound in air of density $\rho=1.21 \mathrm{~kg} / \mathrm{m}^{3}$, at a frequency of 1000 Hz and a speed of $343 \mathrm{~m} / \mathrm{s}$?

- Watch Video Solution

3. An electric spark jumps along a straight line
of length $L=10 \mathrm{~m}$, emitting a pulse of sound
that travels radially outward from the spark.
(The spark is said to be a line source of sound.)

The power of this acoustic emission is
$P=1.6 \times 10^{4} \mathrm{~W}$. (a) What is the intensity I of
the sound when it reaches a distance $r=12 \mathrm{~m}$
from the spark? (b) At what time rate P_{A} is
sound energy intercepted by an acoustic detector of area $A_{d}=2.0 \mathrm{~cm}^{2}$?, aimed at the spark and located a distance $r=12 \mathrm{~m}$ from the spark?

- View Text Solution

4. Many veteran rockers suffer from acute
hearing damage because of the high sound levels they endured for years. Many rockers now wear special earplugs to protect their hearing during performances. If an earplug decreases the sound level of the sound waves by 20 dB , what is the ratio of the final intensity I_{f} of the waves to their initial intensity I_{i} ?
5. Weak background noises from a room set
up the fundamental standing wave in a cardboard tube of length $L=67.0 \mathrm{~cm}$ with two open ends. Assume that the speed of sound in
the air within the tube is $343 \mathrm{~m} / \mathrm{s}$. (a) What
frequency do you hear from the tube? (b) If you jam your ear against one end of the tube, what fundamental frequency do you hear from the tube?
6. A cylindrical pipe of length 28 cm closed at one end is found to be at resonance when a tuning fork of frequency 850 Hz is sounded near the open end. Find the mode of vibration of the air in the pipe value of the end correction. (take the speed of sound in air as $340 \mathrm{~m} / \mathrm{s}$)

D Watch Video Solution

7. Pipe A is open at both ends and has length
$L_{A}=0.343 \mathrm{~m}$. We want to place it near three
other pipes in which standing waves have been set up, so that the sound can set up a standing wave in pipe A. Those other three pipes are each closed at one end and have lengths $\quad L_{B}=0.500 L_{A}, L_{C}=0.250 L_{A} \quad$ and $L_{D}=2.00 \mathrm{~L}$. For each of these three pipes, which of their harmonics can excite a harmonic in pipe A ?

View Text Solution

8. An open pipe 30 cm long and a closed pipe 23 cm long both of the same diameter, are each sounding their first overtone, and these are in unison. What is the end correction of these pipes?

D Watch Video Solution

The two pipes are submerged in sea water,
arranged as shown in figure. Pipe A with length $L_{A}=1.5 m$ and one open end, contains a small sound source that sets up the standing wave with the second lowest resonant frequency of that pipe. Sound from pipe A sets up resonance in pipe B, which has both ends open. The resonance is at the second lowest resonant frequency of pipe B.

The length of the pipe B is
10. In Fig. , two point sources S_{1} and S_{2} which
are in phase and separated by distance
$D=1.5 \lambda$, emit identical sound waves of wavelength λ.
(a) What is the path length difference of the
waves from S_{1} and S_{2} at point P_{1}, which lies
on the perpendicular bisector of distance D, at
a distance greater than D from the sources ?
(That is, what is the difference in the distance
from source S_{1} to point P_{1} and the distance
from source S_{2} to P_{1} ?) What type of interference occurs at P_{1} ?
(b) What are the path length difference and type of interference at point P_{2} in fig.
(c) Figure shows a circle with a radius much greater than D , centered on the midpoint between sources S_{1} and S_{2}. What is the number of points N around this circle at which the interference is fully constructive? (That is, at how many points do the waves arrive exactly in phase?)

D View Text Solution

11. A sound source emits two sinusoidal sound
waves, both of wavelength λ, along paths A
and B as shown in figure.The sound travelling
along path B is reflected from five surfaces as
shown and then merges at point Q , producing
minimum intensity at that point.The minimum
value of d in terms of λ is:

12. When an emperor penguin returns from a search for food, how can it find its mate among the thousands of penguins huddled together for warmth in the harsh Antarctic weather? It is not by sight, because penguins all look alike, even to a penguin. The answer
lies in the way penguins vocalize. Most birds
vocalize by using only one side of their two-
sided vocal organ, called the syrinx. Emperor penguins, however, vocalize by using both
sides simultaneously. Each side sets up acoustic standing waves in the bird's throat and mouth, much like in a pipe with two open ends. Suppose that the frequency of the first harmonic produced by side A is $f_{A 1}=432 \mathrm{~Hz}$ and the frequency of the first harmonic produced by side B is $f_{B 1}=371 \mathrm{~Hz}$. What is the beat frequency between those two firstharmonic frequencies and between the two second-harmonic frequencies?

D View Text Solution
13. Bats navigate and search out prey by emitting, and then detecting reflections of,
ultrasonic waves, which are sound waves with
frequencies greater than can be heard by a human. Suppose a bat emits ultrasound at
frequency $f_{b e}=82.52 \mathrm{kHz}$ while flying with velocity $\vec{v}_{b}=(9.00 m / s) \hat{i}$ as it chases a moth that flies with velocity
$\vec{v}_{m}=(8.00 m / s) \hat{i}$. What frequency does the moth detect? What frequency $f_{m d}$ does the bat detect in the returning echo from the moth?
14. An engine is continuously emitting sound of frequency 1.2 kHz moving uniformly along a straight track. A stationary listener is situated off the track at a perpendicular distance of $\mathrm{I}=$ 350 m . The velocity of engine is equal to 50 m / s and the velocity of sound is $350 \mathrm{~m} / \mathrm{s}$. Find the frequency of sound received by the listener at the moment when the engine gets closest to him.

Watch Video Solution

Checkpoints

1. When the oscillating air element is moving
rightward through the point of zero displacement, is the pressure in the element at its equilibrium value. Just beginning to increase or just beginning to decrease ?
2. The figure indicates three small patches 1,2 ,
and 3 that lie on the surfaces of two imaginary
spheres, the spheres are centered on an isotropic point source S of sound. The rates at which energy is transmitted through the three patches by the sound waves are equal. Rank the patches according to (a) the intensity of the sound on them and (b) their area, greatest
first.

(Watch Video Solution
3. Pipe A, with length L, and pipe B, with
length 21 , both have two open ends. Which
harmonic of pipe B has the same frequency as the fundamental of pipe A?

D Watch Video Solution

4. The figure indicates the directions of motion of a sound source and a detector for six situations in stationary air. For each
situation, is the detected frequency greater
than or less than the emitted frequency, or
can not we tell without more information
about the actual speeds?

Source	Detector		Source	Detector
$(\mathrm{a}) \longrightarrow$	- 0 speed	(d)	\leftarrow	\longleftarrow
(b) \leftarrow	- 0 speed	(e)	\longrightarrow	-
$(\mathrm{c}) \longrightarrow$	\longrightarrow	(f)	\leftarrow	\longrightarrow

(Watch Video Solution

Problems

1. Diagnostic ultrasound of frequency 3.80 MHz
is used to examine tumors in soft tissue. (a)

What is the wavelength in air of such a sound
wave? (b) If the speed of sound in tissue is
$1500 \mathrm{~m} / \mathrm{s}$, what is the wavelength of this wave in tissue?

- Watch Video Solution

2. What is the intensity at radial distances (a)
2.50 m and (b) 6.00 m from an isotropic point source of sound that emits energy at the rate
12.0 W, assuming no energy absorption by the surrounding air?
3. When you "crack" a knuckle, you suddenly widen the knuckle cavity, allowing more volume for the synovial fluid inside it and causing a gas bubble suddenly to appear in the fluid. The sudden production of the bubble, called "cavitation, "produces a sound pulse - the cracking sound. Assume that the sound is transmitted uniformly in all directions and that it fully passes from the knuckle interior to the outside. If the pulse has a sound level of 50 dB at your ear, estimate
the rate at which energy is produced by the cavitation.

D View Text Solution

4. A tuning fork of unknown frequency makes
4.00 beats per second with a standard fork of
frequency 384 Hz . The beat frequency decreases when a small piece of wax is put on a prong of the first fork. What is the frequency of this fork?
5. A sound wave of frequency 280 Hz has an intensity of $1.00 W / m 2$? What is the amplitude of the air oscillations caused by this wave?

D Watch Video Solution

6. Two identical piano wires have a
fundamental frequency of 600 Hz when kept
under the same tension. What fractional
increase in the tension of one wire will lead to
the occurrence of 8.0 beats/s when both wires oscillate simultaneously?

D Watch Video Solution

7. A sound source A and a reflecting surface B move directly toward each other. Relative to
the air, the speed of source A is $20.0 \mathrm{~m} / \mathrm{s}$, the
speed of surface B is $80.0 \mathrm{~m} / \mathrm{s}$, and the speed of sound is $329 \mathrm{~m} / \mathrm{s}$. The source emits waves at
frequency 2000 Hz as measured in the source
frame. In the reflector frame, what are the (a)
frequency and (b) wavelength of the arriving sound waves? In the source frame, what are the (c) frequency and (d) wavelength of the sound waves reflected back to the source?

D View Text Solution

8. A whistle of frequency 540 Hz moves in a circle of radius 60.0 cm at an angular speed of
$20.0 \mathrm{rad} / \mathrm{s}$. What are the (a) lowest and (b)
highest frequencies heard by a listener a long
distance away, at rest with respect to the center of the circle?

D Watch Video Solution

9. The shock wave off the cockpit of the FA 18 has an angle of about 60°. The airplane was traveling at about $1350 \mathrm{~km} / \mathrm{h}$ when the photograph was taken. Approximately what was the speed of sound at the air plane's altitude?
10. A bat is flitting about in a cave, navigating via ultrasonic bleeps. Assume that the sound emission frequency of the bat is 39.000 Hz .

During one fast swoop directly toward a flat wall surface, the bat is moving at 0.020 times
the speed of sound in air. What frequency does the bat hear reflected off the wall?

D Watch Video Solution

11. The source of a sound wave has a power of $3.00 \mu W$. If it is a point source, (a) what is the intensity 4.20 m away and (b) what is the sound level in decibels at that distance?

D Watch Video Solution

12. A sound source sends a sinusoidal sound
wave of angular frequency $3000 \mathrm{rad} / \mathrm{s}$ and amplitude 10.0 nm through a tube of air. The internal radius of the tube is 2.00 cm . (a) What
is the average rate at which energy (the sum of the kinetic and potential energies) is transported to the opposite end of the tube?
(b) If, simultaneously, an identical wave travels
along an adjacent, identical tube, what is the total average rate at which energy is transported to the opposite ends of the two tubes by the waves? If, instead, those two waves are sent along the same tube simultaneously, what is the total average rate at which they transport energy when their phase difference is (c) 0 , (d) $0.40 \pi \mathrm{rad}$, and (e) π rad?

- View Text Solution

13. Two atmospheric sound sources A and B emit isotropically at constant power. The sound levels β of their emissions are plotted in Fig. versus the radial distance r from the sources. The vertical axis scale is set by $\beta_{1}=85.0 \mathrm{~dB}$ and $\beta_{2}=65.0 \mathrm{~dB}$. What are (a)
the ratio of the larger power to the smaller power and (b) the sound level difference at $r=$

23 m ?

D View Text Solution

14. A jet plane passes over you at a height of 4800 m and a speed of Mach 1.5. (a) Find the

Mach cone angle (the sound speed is $331 \mathrm{~m} / \mathrm{s}$).
(b) How long after the jet passes directly overhead does the shock wave reach you?

D View Text Solution

15. Organ pipe A, with both ends open, has a
fundamental frequency of 425 Hz . The fifth
harmonic of organ pipe B, with one end open,
has the same frequency as the second harmonic of pipe A. How long are (a) pipe A and (b) pipe B?
16. A certain sound source is increased in sound level by 40.0 dB . By what multiple is (a)
its intensity increased and (b) its pressure amplitude increased?

D Watch Video Solution

17. Figure shows four tubes with lengths 1.0 m or 2.0 m , with one or two open ends as drawn.

The fifth harmonic is set up in each tube, and some of the sound that escapes from them is
detected by detector D, which moves directly
away from the tubes. In terms of the speed of
sound v , what speed must the detector have such that the detected frequency of the sound
from (a) tube 1, (b) tube 2, (c) tube 3, and (d) tube 4 is equal to the tube's fundamental frequency?

18. A point source emits 30.0 W of sound isotropically. A small microphone intercepts the sound in an area of 0.750 cm ?, 180 m from the source. Calculate (a) the sound intensity there and (b) the power intercepted by the microphone

D View Text Solution

19. A plane flies at 2.00 times the speed of
sound. Its sonic boom reaches a man on the ground 35.4 s after the plane passes directly
overhead. What is the altitude of the plane?

Assume the speed of sound to be $330 \mathrm{~m} / \mathrm{s}$.

D View Text Solution

20. A point source emits sound waves isotropically. The intensity of the waves 6.00 m from the source is $4.50 \times 10^{-4} W / m^{2}$. Assuming that the energy of the waves is conserved, find the power of the source.

D Watch Video Solution

21. A tube 1.0 m long is closed at one end. A stretched wire is placed near the open end.

The wire is 0.3 m long and a mass of 0.01 kg . It is held fixed at both ends and vibrates in its
fundamental mode. It sets the air column in
the tube into vibration at its fundamental frequency by resonance. Find
(a) the frequency of oscillation of the air column and
(b) the tension in the wire.

Speed of sound in air $=330 m / s$.

D Watch Video Solution

22. Earthquakes generate sound waves inside

Earth. Unlike a gas, Earth can experience both
transverse (S) and longitudinal (P) sound
waves. Typically, the speed of S waves is about
$4.5 \mathrm{~km} / \mathrm{s}$, and that of P waves $8.0 \mathrm{~km} / \mathrm{s}$. A seismograph records P and S waves from an earthquake. The first P waves arrive 3.5 min before the first S waves. If the waves travel in a straight line, how far away did the earthquake occur?

D Watch Video Solution

23. Pipe A, which is 1.80 m long and open at both ends, oscillates at its third lowest
harmonic frequency. It is filled with air for which the speed of sound is $343 \mathrm{~m} / \mathrm{s}$. Pipe B, which is closed at one end, oscillates at its second lowest harmonic frequency. This frequency of B happens to match the frequency of A. An x axis extends along the interior of B, with $x=0$ at the closed end. (a)

How many nodes are along that axis? What are the (b) smallest and (c) second smallest
value of x locating those nodes? (d) What is the fundamental frequency of B ?

D View Text Solution

24. (a) Find the speed of waves on a violin string of mass 860 mg and length 22.0 cm if the fundamental frequency is 920 Hz . (b) What is the tension in the string? For the fundamental, what is the wavelength of (c) the waves on the string and (d) the sound waves emitted by the string?
25. Figure shows the output from a pressure monitor mounted at a point along the path taken by a sound wave of a single frequency traveling at $343 \mathrm{~m} / \mathrm{s}$ through air with a uniform density of $1.21 \mathrm{~kg} / \mathrm{m}^{3}$. The vertical axis scale is set by $\Delta p=5.0 m P a$. If the displacement function of the wave is $s(. x, t)=$ $s_{m} \cos (k x-\omega t)$, what are (a) $s_{m}(\mathrm{~b}) \mathrm{k}$, and
ω ? The air is then cooled so that its density is
$1.35 \mathrm{~kg} / \mathrm{m}$ and the speed of a sound wave
through it is $320 \mathrm{~m} / \mathrm{s}$. The sound source again
emits the sound wave at the same frequency
and same pressure amplitude. What now are
$(\mathrm{d}) s_{m},(c) k$, and $(f) \omega ?$

D View Text Solution
26. A violin string 15.0 cm long and fixed at both ends oscillates in its $\mathrm{N}=1$ mode. The speed of waves on the string is $280 \mathrm{~m} / \mathrm{s}$, and the speed of sound in air is $318 \mathrm{~m} / \mathrm{s}$. What are the (a) frequency and (b) wavelength of the emitted sound wave?

D Watch Video Solution

27. Figure shows four isotropic point sources of sound that are uniformly spaced on an x
axis. The sources emit sound at the same wavelength λ and same amplitudes s_{m} and they emit in phase. A point P is shown on the x axis. Assume that as the sound waves travel to P, the decrease in their amplitude is negligible.

What multiple of s_{m} is the amplitude of the net wave at P if distance d in the figure is $(a) \lambda / 4(b) \lambda / 2$ and $(c) \lambda$?

D Watch Video Solution

28. The water level in a vertical glass tube 1.00

m long can be adjusted to any position in the
tube. A tuning fork vibrating at 900 Hz is held just over the open top end of the tube, to set up a standing wave of sound in the air-filled top portion of the tube. (That airfilled top portion acts as a tube with one end closed and the other end open.) (a) For how many different positions of the water level will sound from the fork set up resonance in the tube's air-filled portion? What are the (b) least
and (c) second least water heights in the tube for resonance to occur?

D View Text Solution

29. In Fig., a French submarine and a U.S.
submarine move toward each other during maneuvers in motionless water in the North

Atlantic. The French sub moves at the speed v_{v}
$=48.00 \mathrm{~km} / \mathrm{h}$, and the U.S. sub at $v_{U S}=72.00$
km / h. The French sub sends out a sonar signal
(sound wave in water) at $1.560 \times 10^{3} \mathrm{~Hz}$.

Sonar waves travel at $5470 \mathrm{~km} / \mathrm{h}$. (a) What is
the signal's frequency as detected by the U.S.
sub? (b) What frequency is detected by the

French sub in the signal reflected back to it by
the U.S. sub?

D View Text Solution

30. Two sounds differ in sound level by 3.00 dB . What is the ratio of the greater intensity to the smaller intensity?

- Watch Video Solution

31. The A string of a violin is a little too tightly stretched. Beats at 4.50 per second are heard when the string is sounded together with a tuning fork that is oscillating accurately at concert A (440 Hz). What is the period of the violin string oscillation?
32. A man strikes one end of a thin rod with a
hammer. The speed of sound in the rod is 15
times the speed of sound in air. A woman, at the other end with her ear close to the rod, hears the sound of the blow twice with a 60 ms interval between, one sound comes through the rod and the other comes through
the air alongside the rod. If the speed of sound in air is $343 \mathrm{~m} / \mathrm{s}$, what is the length of the rod?
33. A 2000 Hz siren and a civil defense official are both at rest with respect to the ground.

What frequency does the official hear if the wind is blowing at $15 \mathrm{~m} / \mathrm{s}$ (a) from source to official and (b) from official to source?

D Watch Video Solution

34. One of the harmonic frequencies of tube A with two open ends is 400 Hz . The next-
highest harmonic frequency is 480 Hz . (a)

What harmonic frequency is next highest after the harmonic frequency 160 Hz ? (b) What is the number of this next-highest harmonic?

One of the harmonic frequencies of tube B with only one open end is 1080 Hz . The nexthighest harmonic frequency is 1320 Hz . (c)

What harmonic frequency is next highest after the harmonic frequency 600 Hz ? (d) What is the number of this next-highest harmonic?

- View Text Solution

35. A violin string 30.0 cm long with linear density $0.650 \mathrm{~g} / \mathrm{m}$ is placed near a loudspeaker that is fed by an audio oscillator of variable frequency. It is found that the string is set into oscillation only at the frequencies 1040 and

1560 Hz as the frequency of the oscillator is varied over the range $600-1600 \mathrm{~Hz}$. What is the tension in the string?

Watch Video Solution

36. A stationary motion detector sends sound
waves of frequency 3.00 MHz toward a truck
approaching at a speed of $61.0 \mathrm{~m} / \mathrm{s}$. What is
the frequency of the waves reflected back to
the detector?

D Watch Video Solution

37. A stone is dropped into a well. The splash is heard 3.35 s later. What is the depth of the well?
38. Two trains are traveling toward each other at $35.7 \mathrm{~m} / \mathrm{s}$ relative to the ground. One train is blowing a whistle at 850 Hz . (a) What frequency is heard on the other train in still air? (b) What frequency is heard on the other train if the wind is blowing at $35.7 \mathrm{~m} / \mathrm{s}$ toward the whistle and away from the listener? (c)

What frequency is heard if the wind direction is reversed?
39. You have five tuning forks that oscillate at close but different resonant frequencies. What are the (a) maximum and (b) minimum number of different beat frequencies you can produce by sounding the forks two at a time, depending on how the resonant frequencies differ?

D Watch Video Solution

40. Figure shows two point sources S_{1} and S_{2}
that emit sound of wavelength $\lambda=3.00 \mathrm{~m}$. The
emissions are isotropic and in phase, and the separation between the sources is $\mathrm{d}=16.0 \mathrm{~m}$.

At any point P on the x axis, the wave from S_{1}
and the wave from S_{2} interfere. When P is very
far away ($x \approx 0$), what are (a) the phase difference between the arriving waves from S_{1}
and S_{2} and (b) the type of interference they produce? Now move point P along the x axis toward S_{1}. (c) Does the phase difference between the waves increase or decrease? At
what distance x do the waves have a phase difference of (d) $0.50 \lambda,(e) 1.00 \lambda$, and (f) 1.50λ ?

41. An ambulance with a siren emitting a whine at 1620 Hz overtakes and passes a cyclist pedaling a bike at $2.44 \mathrm{~m} / \mathrm{s}$. After being passed, the cyclist hears a frequency of 1590 Hz. How fast is the ambulance moving?

D Watch Video Solution

42. When the door of the Chapel of the Mausoleum in Hamilton, Scotland, is slammed shut, the last echo heard by someone
standing just inside the door reportedly comes 15 s later. (a) If that echo were due to a single reflection off a wall opposite the door, how far from the door is the wall? (b) If, instead, the wall is 32.0 m away, how many reflections (back and forth) occur?

D View Text Solution

43. A stationary detector measures the frequency of a sound source that first moves at constant velocity directly toward the
detector and then (after passing the detector)
directly away from it. The emitted frequency is
f. During the approach the detected frequency
is $f^{\prime}{ }_{a p p}$ and during the recession it is $f_{r e c}^{\prime}$ If
$\left(f_{\text {app }}-f_{\text {rec }}^{\prime}\right) / f=0.200$, what is the ratio
v / v of the speed of the source to the speed of

sound?

D View Text Solution

44. Figure shows two isotropic point sources of sound, S_{1} and S_{2} The sources emit waves in
phase at wavelength 0.50 m , they are separated by $D=2.20 \mathrm{~m}$. If we move a sound detector along a large circle centered at the midpoint between the sources, at how many points do waves arrive at the detector (a) exactly in phase and (b) exactly out of phase?

D Watch Video Solution

45. Approximately a third of people with normal hearing have ears that continuously emit a low-intensity sound outward through
the ear canal. A person with such spontaneous otoacoustic emission is rarely aware of the sound, except perhaps in a noise-free environment, but occasionally the emission is loud enough to be heard by someone else nearby. In one observation, the sound wave had a frequency of 1200 Hz and a pressure amplitude of $2.50 \times 10^{-3} \mathrm{~Pa}$. What were (a)
the displacement amplitude and (b) the intensity of the wave emitted by the ear?

D View Text Solution

46. Two loud speakers are located 3.35 m apart on an outdoor stage. A listener is 175 m from one and 19.5 m from the other. During the sound check, a signal generator drives the two speakers in phase with the same amplitude and frequency. The transmitted frequency is swept through the audible range (20 Hz to 20
$\mathrm{kHz})$. (a) What is the lowest frequency $f_{\min .1}$
that gives minimum signal (destructive interference) at the listener's location? By what number must $f_{\text {min. } 1}$ be multiplied to get
(b) the second lowest frequency $f_{\text {min. } 2}$ that gives minimum signal and (c) the third lowest frequency $f_{\min .3}$ that gives minimum signal?
(d) What is the lowest frequency $f_{\max .1}$ that gives maximum signal (constructive interference) at the listener's location? By what number must $f_{\text {max. } 1}$ be multiplied to get
(e) the second lowest frequency $f_{\text {max. } 2}$ that
gives maximum signal and (f) the third lowest frequency $f_{\text {max } .3}$ that gives maximum signal?

D View Text Solution

47. In Fig. , two speakers separated by distance
$d_{1}=2.00 \mathrm{~m}$ are in phase. Assume the amplitudes of the sound waves from the
speakers are approximately the same at the
listener's ear at distance $d_{2}=4.00 \mathrm{~m}$ directly in
front of one speaker. Consider the full audible
range for normal hearing, 20 Hz to 20 kHz . (a)

What is the lowest frequency $f_{\min .1}$ that gives minimum signal (destructive interference) at the listener's ear? By what number must $f_{\min .1}$ be multiplied to get (b) the second lowest frequency $f_{\min .2}$ that gives signal and (c) the third lowest frequency $f_{\min .3}$ that givesr minimum signal? (d) What is the lowest
frequency $f_{\text {max. } 1}$ that gives maximum signal (constructive interference) at the listener's
ear? By what number must $f_{\text {max.1 }}$ be multiplied to get (e) the second lowest
frequency $f_{\text {max. } 2}$ that gives maximum signal and (f) the third lowest frequency $f_{\text {max. }}$ that
gives maximum signal?

D View Text Solution

48. In Fig., sound waves A and B, both of wavelength λ, are initially in phase and traveling rightward, as indicated by the two
rays. Wave A is reflected from four surfaces
but ends up traveling in its original direction.

Wave B ends in that direction after reflecting
from two surfaces. Let distance L in the figure
be expressed as a multiple q of $\lambda: L=q \lambda$.

What are the (a) smallest and (b) third smallest values of q that put A and B exactly out of phase with each other after the

reflections?

D View Text Solution

49. A girl is sitting near the open window of a train that is moving at a velocity of $10.00 \mathrm{~m} / \mathrm{s}$ to the east. The girl's uncle stands near the tracks and watches the train move away. The
locomotive whistle emits sound at frequency
520.0 Hz. The air is still. (a) What frequency does the uncle hear? (b) What frequency does the girl hear? A wind begins to blow from the east at $10.00 \mathrm{~m} / \mathrm{s}$. (c) What frequency does the uncle now hear? (d) What frequency does the girl now hear?

D View Text Solution

50. In Fig., S is a small loud speaker driven by an audio oscillator with a frequency that is
varied from 1000 Hz to 2000 Hz , and D is a
cylindrical pipe with two open ends and a
length of 48.9 cm . The speed of sound in the air-filled pipe is $344 \mathrm{~m} / \mathrm{s}$. (a) At how many frequencies does the sound from the loudspeaker set up resonance in the pipe?

What are the (b) lowest and (c) second lowest
frequencies at which resonance occurs?

D View Text Solution
51. The pressure in a traveling sound wave is
given by the equation
$\left.\Delta p=(2.00 P a) \sin \pi\left(0.900 m^{-1}\right) x-\left(450 s^{-1}\right) t\right]$
Find the (a) pressure amplitude, (b) frequency,
(c) wave length, and (d) speed of the wave.

- Watch Video Solution

52. A well with vertical sides and water at the
bottom resonates at 7 Hz and at no other
lower frequency. The air in the well has density
$1.10 \mathrm{kgm}^{-3}$ and bulk modulus of water is $1.33 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. How deep is the well ?
53. A column of soldiers, marching at 100 paces per minute, keep in step with the beat of a drummer at the head of the column. The soldiers in the rear end of the column are
striding forward with the left foot when the drummer is advancing with the right foot.

What is the approximate length of the column?
54. From two sources, sound waves of frequency 270 Hz are emitted in phase in the positive direction of an x axis. At a detector that is on the axis and 5.00 m from one source and 4.00 m from the other source, what is the phase difference between the waves (a) in radians and (b) as a multiple of the wavelength?

View Text Solution

55. Suppose that the sound level of a conversation is initially at an angry 75 dB and then drops to a soothing 55 dB . Assuming that the frequency of the sound is 500 Hz , determine the (a) initial and (b) final sound intensities and the (c) initial and (d) final sound wave amplitudes.
56. A sound wave in a fluid medium is reflected
at a barrier so that a standing wave is formed.

The distance between nodes is 4.9 cm , and the speed of propagation is $1250 \mathrm{~m} / \mathrm{s}$. Find the frequency of the sound wave.

D Watch Video Solution

57. A train approachign a railway crossing at a speed of $120 \mathrm{kmh}^{-1}$ sounds a short whistle at frequency 640 Hz when it is 300 m away from
the crossing. The speed of sound in air is
$340 \mathrm{~ms}^{-1}$. What will be the frequency heard by
a person standing on a road perpendicular to
the track through the crossing at a distance of
400 m from the crossing ?

D Watch Video Solution

58. (a) A source of sound S and a detector D
are placed at some distance from one another.

A big cardboard is placed near the detector and perpendicular to the line $S D$ as shown in
figure. It is gradually moved away and it is
found that the intensity changes from a maximum to a minimum as the board is moved through a distance of 20 cm . Find the frequency of the sound emitted. Velocity of sound in are is $336 m / s$.

(b) A source emitting sound of frequency 180 Hz is placed in front of a wall at a distance of $2 m$ from it. A detector is also placed in front of the wall at the same distance from it.
find the minimum distance between the source and the detector for which the detector detects a maximum of sound. Speed of sound in air $=360 \mathrm{~m} / \mathrm{s}$.

- Watch Video Solution

59. Figure shows a source of sound moving along the X -axis at a speed of $22 m s^{-1}$ continuously emitting a sound of frequency
2.0 kHz which travels in air at a speed of $330 \in s^{-1}$. A listener Q stands on the Y -axis at
a distance of 330 m from the origin. At $\mathrm{t}=0$, the source crosses the origin P. (a) When does
the sound emitted from the source at P reach
the listener Q 9 (b) What will be the frequency
heard by the listener at. this instant 9 (c)

Where will the source be at this instant ?

Practice Questions Single Correct Choice Type

1. A bell is ringing inside of a sealed glass jar
that is connected to a vacuum pump. Initially,
the jar is filled with air, What does one hear as
the air is slowly removed from the jar by the pump?
A. The sound intensity from the bell
gradually decreases
B. The frequency of the sound from the bell
gradually increases.
C. The frequency of the sound from the bell
gradually decreases. (
D. The speed of the sound from the bell gradually increases.

Answer: A

D Watch Video Solution
2. Take the speed of sound to be $340 \mathrm{~m} / \mathrm{s}$. A
thunder clap is heard about 3 s after the
lightning is seen. The source of both light and sound is
A. moving overhead faster than the speed of sound.
B. emitting a much higher frequency than
is heard.
C. emitting a much lower frequency than is
heard
D. about 1000 m away
3. Two closed organ pipe A and B have the same length. A is wider than B. They resonate in the fundamental mode at frequencies
V_{A} and V_{B} respectively, then
A. $n_{A}=n_{B}$
B. $n_{A}>n_{B}$
C. $n_{A}<n_{B}$

D. Either (b) or (c) depending on the ratio

 of their diameters.
Answer: C

D Watch Video Solution

4. A car moving at $35 \mathrm{~m} / \mathrm{s}$ approaches a stationary whistle that emits a 220 Hz sound.

The speed of sound is $343 \mathrm{~m} / \mathrm{s}$. What is the speed of the sound relative to the driver of the car?
A. $300 \mathrm{~m} / \mathrm{s}$
B. $340 \mathrm{~m} / \mathrm{s}$
C. $378 \mathrm{~m} / \mathrm{s}$
D. $305 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

5. The speed of sound in fresh water at $20^{\circ} \mathrm{C}$ is $1482 \mathrm{~m} / \mathrm{s}$. At what temperature is the speed of sound in helium gas the same as that of
fresh water at $20^{\circ} \mathrm{C}$? Helium is considered a monatomic ideal gas ($\lambda=1.67$ and atomic mass $=4.003 \mathrm{u}$).
A. 313 K
B. 442 K
C. 633 K
D. 377 K

Answer: C

- Watch Video Solution

6. Ethanol has a density of $659 \mathrm{~kg} / \mathrm{m}^{3}$. If the speed of sound in ethanol is $1162 \mathrm{~m} / \mathrm{s}$, what is its adiabatic bulk modulus?
A. $1.7 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
B. $7.7 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
C. $2.2 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$
D. $8.9 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}$

Answer: D

7. A fire whistle emits a tone of 170 Hz . Take the

 speed of sound in air to be $340 \mathrm{~m} / \mathrm{s}$. The wavelength of this sound is aboutA. 0.5 m
B. 1.0 m
C. 2.0 m
D. 3.0 m

Answer: C

8. An aircraft carrier has a speed of $13.0 \mathrm{~m} / \mathrm{s}$
relative to the water. A jet is catapulted from
the deck and has a speed of $67.0 \mathrm{~m} / \mathrm{s}$ relative to the water. The engines produce a $1550-\mathrm{Hz}$ whine, and the speed of sound is $343 \mathrm{~m} / \mathrm{s}$.

What is the frequency of the sound heard by
the crew on the ship?
A. 1200 Hz
B. 1450 Hz
C. 1180 Hz

D. 1350 Hz

Answer: D

D Watch Video Solution

9. Two golf carts have horns that emit sound
with a frequency of 390 Hz . The golf carts are
traveling toward one another. each traveling
with a speed of $9.0 \mathrm{~m} / \mathrm{s}$ with respect to the ground. What frequency do the drivers of the
carts hear? The speed of sound at the golf course is $343 \mathrm{~m} / \mathrm{s}$.
A. 390 HZ
B. 400 Hz
C. 410 Hz
D. 420 Hz

Answer: C
(Watch Video Solution
10. At a distance of 5.0 m from a point sound source, the sound intensity level is 110 dB . At what distance is the intensity level 95 dB ?
A. 5.0 m
B. 14 m
C. 7.1 m
D. 28 m

Answer: D

D Watch Video Solution
11. When we clap our hands, the sound produced is best described by Here p denotes
the change in pressure from the equilibrium
value
A. $p=p_{0} \sin (k x-\omega t)$
B. $p=p_{0} \sin k x \cos \omega t$
C. $p=p_{0} \cos k x \sin \omega t$
D. $p=\sigma p_{0} \sin \left(k_{n} x-\omega_{n} t\right)$

Answer: D

12. The sound level at a point P is 14 dB below
the sound level at a point 1.0 m from a point
source. The distance from the source to point P is
A. 4.0 m
B. 20.2 m
C. 2.0 m
D. 5.0 m

Answer: D

D View Text Solution

13. Two pianos each sound the same note simultaneously, but they are both out of tune.

On a day when the speed of sound is $343 \mathrm{~m} / \mathrm{s}$,
piano A produces a wavelength of 0.769 m ,
while piano B produces a wavelength of 0.776
m. How much time separates successive beats?
A. 1.4 s
B. 0.76 s
C. 0.25 s
D. 0.07 s

Answer: C

D Watch Video Solution

14. A railway engine whistling at a constant frequency moves with a constant speed. It goes past a stationary observer standing beside the railway track. The frequency (n) of
the sound heard by the observer is plotted
agains time (t). Which of the following best represents the resulting curve?

Answer: D

D Watch Video Solution

15. How far must one stand from a 5 mW point
sound source if the intensity is at the hearing
threshold? Assume the sound waves travel to
the listener without being disturbed.
A. 500 m
B. 20 km
C. 2 km

D. 1 km

Answer: B

D View Text Solution

16. A vibrating tuning fork is held over a water column with one end closed and the other open. As the water level is allowed to fall, a loud sound is heard for water levels separated
by 17 cm . If the speed of sound in air is 340 m / s, the frequency of the tuning fork is:
A. 500 Hz

B. 1000 Hz

C. 2000 Hz
D. 5780 Hz

Answer: B

D Watch Video Solution

17. Two identical tuning forks vibrate at 256 Hz .

One of them is then loaded with a drop of wax,
after which 6 beats per second are heard. The period of the loaded tuning fork is
A. 0.006 s
B. 0.005 s
C. 0.004 s
D. 0.003 s

Answer: C

D Watch Video Solution

18. A pebble is dropped in a lake, and it produces ripples with a frequency of 0.25 Hz .

When should a second pebble be dropped at the same place to produce destructive interference?
A. 0.50 s after the first
B. 1.0 s after the first
C. 2.0 s after the first
D. 0.75 s after the first

Answer: C

- Watch Video Solution

19. A tube, open at only one end, is cut into
two shorter (non equal) lengths. The piece
that is open at both ends has a fundamental frequency of 425 Hz , while the piece open only at one end has a fundamental frequency of 675 Hz . What is the fundamental frequency of the original tube?
A. 127 Hz
B. 162 Hz
C. 209 Hz
D. 148 Hz

Answer: B

- Watch Video Solution

20. A stationary source generates 5.0 Hz water waves whose speed is $2.0 \mathrm{~m} / \mathrm{s}$. A boat is approaching the source at $10 \mathrm{~m} / \mathrm{s}$. The frequency of these waves, as observed by a person in the boat, is
A. 25 Hz
B. 15 Hz
C. 20 Hz
D. 30 Hz

Answer: D

D Watch Video Solution

21. When two waves with same frequency and constant phase differenc interfere,
A. there is a gain of energy.
B. there is a loss of energy.
C. the energy is redistributed and the distribution changes with time.
D. the energy is redistributed and the distribution remains constant in time.

Answer: D

D Watch Video Solution

22. A rocket in a fireworks display explodes
high in the air. The sound spreads out uniformly in all directions. The intensity of the sound is $2.0 \times 10 \mathrm{~W} / \mathrm{m}^{2}$ at a distance of 120 m from the explosion. Find the distance from the source at which the intensity is $0.80 \times 10^{-6} W / m^{2}$.
A. 690 m
B. 220 m
C. 110 m

D. 190 m

Answer: D

D View Text Solution

23. A source emits sound with a frequency of

1000 Hz . It is moving at $20 \mathrm{~m} / \mathrm{s}$ toward a
stationary reflecting wall. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$ an observer at rest directly behind the source hears a beat frequency of
B. 86 Hz
C. 97 Hz
D. 118 Hz

Answer: D

- Watch Video Solution

24. Pipe A is 0.50 m long and open at both ends. Pipe B is open at one end and closed at the other end. Determine the length of pipe B
A. 0.25 m
B. 0.75 m
C. 0.50 m
D. 1.0 m

Answer: A
(Watch Video Solution
25. A piano wire has a length of 81 cm and a
mass of 2.0 g . If its fundamental frequency is
to be 394 Hz , it tension must be
A. 0.32 N
B. 63 N
C. 130 N
D. 250 N

Answer: B

D Watch Video Solution
26. An organ pipe is open at both ends. It is producing sound at its third harmonic, the frequency of which is 262 Hz . The speed of sound is $343 \mathrm{~m} / \mathrm{s}$. What is the length of the pipe?
A. 1.96 m
B. 1.31 m
C. 1.85 m
D. 0.926 m

- Watch Video Solution

27. The security alarm on a parked car goes off and produces a frequency of 960 Hz . The speed of sound is $343 \mathrm{~m} / \mathrm{s}$. As you drive toward this parked car, pass it, and drive away, you observe the frequency to change by 95 Hz . At what speed are you driving?
A. $9.2 \mathrm{~m} / \mathrm{s}$
B. $17 \mathrm{~m} / \mathrm{s}$
C. $12 \mathrm{~m} / \mathrm{s}$

D. $25 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

28. A bird is flying directly toward a stationary
bird-watcher and emits a frequency of 1250 Hz .

The bird-watcher, however, hears a frequency of 1290 Hz . What is the speed of the bird, expressed as a percentage of the speed of sound?
A. 0.02
B. 0.0097
C. 0.031
D. 0.014

Answer: C

D Watch Video Solution

29. Two timpani (tunable drums) are played at
the same time. One is correctly tuned so that
when it is struck, sound is produced that has a
wavelength of 2.20 m . The second produces sound with a wavelength of 2.08 m . If the speed of sound is $343 \mathrm{~m} / \mathrm{s}$, what beat frequency is heard?
A. 7 beats/s
B. 9 beats/s
C. 11 beats/s
D. 13 beats/s

Answer: B
30. Two identical tuning forks vibrate at 587

Hz. After a small piece of clay is placed on one of them, eight beats per second are heard.

What is the period of the tuning fork that holds the clay?
A. $1.67 \times 10^{-3} s$
B. $1.70 \times 10^{-3} s$
C. $1.73 \times 10^{-3} s$
D. $1.76 \times 10^{-3} s$

Answer: C

D Watch Video Solution

31. Four standing wave segments, or loops, are observed on a string fixed at both ends as it vibrates at a frequency of 140 Hz . What is the fundamental frequency of the string?
A. 23 Hz
B. 28 Hz
C. 35 Hz

D. 47 Hz

Answer: C

D Watch Video Solution

32. A 4.00-m long string, clamped at both ends, vibrates at $2.00 \times 10^{2} \mathrm{~Hz}$. If the string resonates in six segments, what is the speed of transverse waves on the string?
A. $100 \mathrm{~m} / \mathrm{s}$
B. $133 \mathrm{~m} / \mathrm{s}$
C. $267 \mathrm{~m} / \mathrm{s}$
D. $328 \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

33. A string of length 1 m and mass 5 g is fixed at both ends. The tension in the string is 12.5
N. The string is set into vibration using an external vibrator of frequency 100 Hz . The
separation between successive nodes on the
string (in m) is \qquad
A. 270 N
B. 410 N
C. 550 N
D. 680 N

Answer: A
(Watch Video Solution
34. A bat emits a sound whose frequency is 91
kHz . The speed of sound in air at $20.0^{\circ} \mathrm{C}$ is
$343 \mathrm{~m} / \mathrm{s}$. However, the air temperature is $35^{\circ} \mathrm{C}$
, so the speed of sound is not $343 \mathrm{~m} / \mathrm{s}$. Find the wavelength of the sound.

$$
\begin{aligned}
& \text { A. } 5.0 \times 10^{-2} s \\
& \text { B. } 3.9 \times 10^{-3} s \\
& \text { C. } 1.1 \times 10^{-2} s \\
& \text { D. } 5.5 \times 10^{-3} s
\end{aligned}
$$

- View Text Solution

35. As the drawing shows, one microphone is
located at the origin, and a second microphone is located on the $+y$ axis. The microphones are separated by a distance of D
$=1.50 \mathrm{~m}$. A source of sound is located on the
$+x$ axis, its distances from microphones 1 and 2 being L_{1} and L_{2} respectively. The speed of sound is $343 \mathrm{~m} / \mathrm{s}$. The sound reaches microphone 1 first, and then, 1.46 ms later, it reaches microphone 2. Find the distances L_{1}
and L_{2}.

	L_{1}	L_{2}
(a)	1.00 m	1.80 m
(b)	1.25 m	1.95 m
(c)	1.50 m	2.12 m
(d)	2.00 m	2.50 m

- View Text Solution

Practice Questions More Than One Correct

 Choice Type1. Coherent sources are characterized by the same
A. phase and phase velocity.
B. wavelength, amplitude, and phase
velocity
C. wavelength, amplitude, and frequency.
D. wavelength and phase

Answer: B::C

2. When the open organ pipe resonates in its fundamental mode then at the centre of the pipe
A. the gas molecules undergo vibrations of maximum amplitude.
B. the gas molecules are at rest
C. the pressure of the gas is constant.
D. the pressure of the gas undergo

Answer: B::D

D Watch Video Solution

3. A listener is at rest with respect to the source of sound. A wind starts blowing along
the line joining the source and the observer.

Which of the following quantities do not change?
(i) Frequency
(ii) Velocity of sound
(iii) Wavelength
(iv) Time period
A. Frequency
B. Velocity of sound
C. Wavelength

D. Time period

Answer: A::D
(Watch Video Solution
4. To raise the pitch of a stringed musical instrument the player can
A. loosen the string
B. tighten the string.
C. shorten the string
D. lengthen the string.

Answer: B::C
5. A sound wave passes from a medium A to a medium B. The velocity of sound B is greater than that in A. Assume that there is no absorption or reflection at the boundary. As the wave moves across the boundary
A. the frequency of sound will not change
B. the wavelength will increase
C. the wavelength will decrease
D. the intensity of sound will not change

Answer: A::B::
6. Two idential straight wires are stretched so
as to produce 6 beats per second when vibrating simultaneously. On changing the tension slightly in one of them, the beat frequency remains unchanged. Denoting by T_{1} , T_{2} the higher and the lower initial tension in the strings, then it could be said that while making the above changes in tension,
A. T_{2} was decreased
B. T_{2} was increased .
C. T_{1} was increased .
D. T_{1} was decreased .

Answer: B::D

D Watch Video Solution

Practice Questions Linked Comprehension

1. The diagram shows the various positions of a child in motion on a swing. Somewhere in
front of the child a stationary whistle is blowing.

At which position(s) will the child hear the highest frequency for the sound from the whistle?
A. At both A and D.
B. At C when moving toward B
C. At B when moving toward A.

D. At C when moving toward D

Answer: D

D Watch Video Solution

2. The diagram shows the various positions of
a child in motion on a swing. Somewhere in
front of the child a stationary whistle is blowing.

At which position(s) will the child hear the lowest frequency for the sound from the whistle?
A. At both A and D.
B. At C when moving toward B
C. At B when moving toward A
D. At C when moving toward D.

Answer: B

- Watch Video Solution

3. The diagram shows the various positions of
a child in motion on a swing. Somewhere in
front of the child a stationary whistle is blowing.

At which position(s) will the child hear the
same frequency as that heard by a stationary observer standing next to the whistle?
A. At both A and D.
B. At C when moving toward B
C. At B when moving toward A
D. At C when moving toward D

Answer: A

D Watch Video Solution

4. The car in the figure is moving to the left at $35 \mathrm{~m} / \mathrm{s}$. The car's horn continuously emits a $2.20 \times 10^{2} \mathrm{~Hz}$ sound. The figure also shows the first two regions of compression of the emitted sound waves. The speed of sound is $343 \mathrm{~m} / \mathrm{s}$.

How far does the car move in one period of the sound emitted from the horn?

A. 0.08 m

B. 0.16 m
C. 8 m
D. 16 m

Answer: B

D Watch Video Solution

5. The car in the figure is moving to the left at
$35 \mathrm{~m} / \mathrm{s}$. The car's horn continuously emits a
$2.20 \times 10^{2} \mathrm{~Hz}$ sound. The figure also shows
the first two regions of compression of the emitted sound waves. The speed of sound is $343 \mathrm{~m} / \mathrm{s}$.

Second emitted compression
First emitted compression

How far has the initial compression traveled when the second compression is emitted?
A. 0.77 m
B. 7.7 m
C. 1.56 m
D. 15.5 m

Answer: C

D Watch Video Solution

6. The car in the figure is moving to the left at
$35 \mathrm{~m} / \mathrm{s}$. The car's horn continuously emits a
$2.20 \times 10^{2} \mathrm{~Hz}$ sound. The figure also shows
the first two regions of compression of the emitted sound waves. The speed of sound is $343 \mathrm{~m} / \mathrm{s}$.

Second emitted compression
First emitted compression

What is the wavelength of the sound in the direction of motion of the car?
A. 1.40 m
B. 1.70 m
C. 1.56 m
D. 1.93 m

- Watch Video Solution

7. The car in the figure is moving to the left at $35 \mathrm{~m} / \mathrm{s}$. The car's horn continuously emits a $2.20 \times 10^{2} \mathrm{~Hz}$ sound. The figure also shows the first two regions of compression of the emitted sound waves. The speed of sound is $343 \mathrm{~m} / \mathrm{s}$.

Second emitted compression
First emitted compression

What is the frequency heard by a stationary

observer standing in front of the car?

A. 9.7 Hz
B. 245 Hz
C. 176 Hz
D. 219 Hz

Answer: B
(Watch Video Solution
8. Two loudspeakers are located 3 m apart on
the stage of an auditorium. A listener at point
P is seated 29.0 m from one speaker and 25.0
m from the other. A signal generator drives
the speakers in phase with the same
amplitude and frequency. The wave amplitude
at P due to each speaker alone is A. The
frequency is then varied between 20 Hz and
300 Hz . The speed of sound is $343 \mathrm{~m} / \mathrm{s}$.

At what frequency or frequencies will the
listener at P hear a maximum intensity?
A. 170 Hz only
B. $57 \mathrm{~Hz}, 113 \mathrm{~Hz}, 170 \mathrm{~Hz}, 227 \mathrm{~Hz}$, and 284 Hz
C. 113 Hz and 226 Hz
D. $86 \mathrm{~Hz}, 170 \mathrm{~Hz}, 257 \mathrm{~Hz}$

Answer: D

D View Text Solution

9. Two loudspeakers are located 3 m apart on the stage of an auditorium. A listener at point P is seated 29.0 m from one speaker and 25.0
m from the other. A signal generator drives
the speakers in phase with the same amplitude and frequency. The wave amplitude at P due to each speaker alone is A. The frequency is then varied between 20 Hz and 300 Hz . The speed of sound is $343 \mathrm{~m} / \mathrm{s}$.

Determine the value of the maximum amplitude in terms of A.
A. 2.0A
B. 3.0 A
C. 2.5 A

D. 4.0 A

Answer: A

D View Text Solution

10. Vibrations with frequency $6.00 \times 10^{2} \mathrm{~Hz}$ are established on a 1.33 m length of string that is clamed at both ends. The speed of waves on the string is $4.0 \times 10^{2} \mathrm{~m} / \mathrm{s}$

How many antinodes are contained in the resulting standing wave pattern?
A. 2
B. 4
C. 3
D. 5

Answer: B

D Watch Video Solution

11. Vibrations with frequency $6.00 \times 10^{2} \mathrm{~Hz}$ are established on a 1.33 m length of string that is
clamed at both ends. The speed of waves on
the string is $4.0 \times 10^{2} \mathrm{~m} / \mathrm{s}$

How far from either end of the string does the
first node occur?
A. 0.17 m
B. 0.49 m
C. 0.33 m
D. 0.66 m

Answer: C

D Watch Video Solution

1. A source of sound of frequency 1000 Hz moves to the right with a speed of $32 \mathrm{~m} / \mathrm{s}$ relative to the ground. To its right is a reflecting surface moving to the left with a speed of $64 \mathrm{~m} / \mathrm{s}$ relative to the ground. Take speed of sound in air to be $332 \mathrm{~m} / \mathrm{s}$.

Column I	Column II
(a) Wavelength of sound emitted in air by	(p) 1320
source in the right side of source (in mm)	
(b) Number of waves arriving per second at the (q) 364 reflecting surface (r) 332 (c) Speed of reflected wave (in m / s) (s) 200	

2. there is a table having 3 columns and 4 rows. Based on the table, there are 3 questions. Each question has 4 options (a), (b),
(c) and (d), ONLY ONE of these four options is correct.

Doppler's effect

Column I	Colamn II
(I) Sound waves propagate in the form of spherical wavefronts	(i) the distance between two successive circles is equal to wavelength λ
(II)No change in wavelength received by either observer X or Y (ii) sound waves propagate in the form of spherical wavefronts (IV) Change in wavelength received by either observer X or Y	(iv) waves are represented by non- concentric circles
(iii) waves are represented by concentric	
circles	

What happens when the observer and source

are stationary?

A. (1) (i) (J)
B. (III) (ii) (K)
C. (II) (ii) (L)
D. (I) (iii) (J)

Answer: A

- View Text Solution

3. there is a table having 3 columns and 4 rows. Based on the table, there are 3 questions. Each question has 4 options (a), (b), (c) and (d), ONLY ONE of these four options is correct.

Doppler's effect

Column I	Column II		
(I) Sound waves propagate in the form of spherical wavefronts	(i) the distance between two successive circles is equal to wavelength λ		
(III) No change in wavelength received			
by either observer X or Y		\quad	(ii) sound waves propagate in the form of
:---			
spherical wavefronts	(I)		

What happens when the source is moving but observer is at rest?
A. (I) (ii) (M)
B. (III) (iv) (L)
C. (II) (ii) (K)
D. (II) (iv) (M)

Answer: B

D View Text Solution

4. there is a table having 3 columns and 4 rows. Based on the table, there are 3 questions. Each question has 4 options (a), (b),

(c) and (d), ONLY ONE of these four options is

correct.

Doppler's effect

Column I

Column II
(I) Sound waves propagate in the form
of spherical wavefronts

(i) the distance between two successive
circles is equal to wavelength λ

(II) No change in wavelength received
by either observer X or Y

(ii) sound waves propagate in the form of
spherical wavefronts

(IV) Cource at three different positions
(iii) waves are represented by concentric
circles

What happens when the source is at rest, but

observer is moving?

A. (III) (i) (L)
B. (IV) (i) (J)
C. (III) (iv) (J)

D. (II) (iii) (M)

Answer: D

- View Text Solution

Practice Questions Integer Type

1. Two tuning forks when sounded together give 8 beats per second. When tuning fork A is
sounded with air column of length 37.5 cm
closed at one end, resonance occurs in its
fundamental mode. Tuning fork B gives resonance with air column of length 38.5 cm and is closed at one end in its fundamental mode. Find the frequencies of tuning forks.

D Watch Video Solution

2. The speed of a sound in a container of hydrogen at 201 K is $1220 \mathrm{~m} / \mathrm{s}$. What would be the speed of sound if the temperature were raised to 405 K ? Assume that hydrogen behaves like an ideal gas.
3. A hunter is standing on fiat ground between two vertical cliffs that are directly opposite one another. He is closer to one cliff than to
the other. He fires a gun and, after a while, hears three echoes. The second echo arrives
1.6 S after the first, and the third echo arrives
1.1 s after the second. Assuming that the speed of sound is $343 \mathrm{~m} / \mathrm{s}$ and that there are no reflections of sound from the ground, find the distance between the cliffs.

- Watch Video Solution

4. Two submarines are underwater and approaching each other head-on. Sub A has a speed of $12 \mathrm{~m} / \mathrm{s}$ and sub B has a speed of 8 m / s. Sub A sends out a $1550-\mathrm{Hz}$ sonar wave that travels at a speed of $1522 \mathrm{~m} / \mathrm{s}$. What is the frequency detected by sub B ?
5. A tube is open only at one end. A certain
harmonic produced by the tube has a
frequency of 450 Hz . The next higher harmonic has a frequency of 750 Hz . The speed of sound in air is $343 \mathrm{~m} / \mathrm{s}$. What is the integer n that describes the harmonic whose frequency is 450 Hz ?
