# © 'doubtnut 

## CHEMISTRY

## VMC MODULES ENGLISH

## p-BLOCK ELEMENTS-1

## Level 0

1. White fumes appear around the bottle of anhydrous aluminium chloride. Give reason.
2. Boron is unable to form $B F_{6}^{3-}$ ions due to

## ( Watch Video Solution

3. $\left[S i F_{6}\right]^{2-}$ is known where as $\left[S i C l_{6}\right]^{2-}$ not. Reason is
A. Steric crowdng
B. Unavailablity of d orbitals
C. Both $a$ and $b$
D. None

## Answer:

4. Diamond is covalent, yet it has high melting point. Why ?

## - Watch Video Solution

5. What are silicones?

## - Watch Video Solution

6. Why does boron triflouride behave as a Lewis acid ?

## - Watch Video Solution

7. Is boric acid a protic acid ? Explain.
8. Explain what happens when boric acid is heated.

## (D) Watch Video Solution

9. The shapes and hybridisation of $B F_{3}$ and $B H_{4}^{-}$ respectively are

## - Watch Video Solution

10. Write reactions to justify amphoteric nature of aluminium.
11. Write the resonance structures of $\mathrm{CO}_{3}^{2-}$ and $\mathrm{HCO}_{3}^{-}$.

## - Watch Video Solution

12. What is the state of hybridisation of carbon in (a) $\mathrm{CO}_{3}^{2-}$
(b) diamond (c) graphite?

## - Watch Video Solution

13. Suggest reasons why the $\mathrm{B}-\mathrm{F}$ bond lengths in $B F_{3}$ (130 $\mathrm{pm})$ and $B F_{4}^{-}$(143 pm) differ.
14. If $\mathrm{B}-\mathrm{Cl}$ bond has a dipole moment, explain why $B C l_{3}$ molecule has zero dipole moment.

## ( Watch Video Solution

15. Write the chemical formula of the following substances:

Borax

## D Watch Video Solution

16. Write the chemical formula of the following substances:

Metaboric acid
17. Write the chemical formula of the following substances: Boric acid

## - Watch Video Solution

18. Write the chemical formula of the following substances:

Sodium metaborate

## - Watch Video Solution

19. Write the chemical formula of the following substances:

Inorganic benzene
A. B4H6N2
B. B3H6N3
C. B3H4N2
D. B4H3N6

## Answer:

## - Watch Video Solution

20. Write the chemical formula of the following substances: inorganic graphite

## ( Watch Video Solution

21. How would you explain the lower atomic radius of Ga as compared to Al ?
22. Explain, why does boron not form $B^{3+}$ ions.

## ( Watch Video Solution

23. Given three reasons for anomalous behaviour of carbon.

## - Watch Video Solution

24. What do you mean by catenation? Name the group 14 element which has the maximum tendency towards catenation?
25. Suggest a reason as to why CO is poisonous.

## - Watch Video Solution

26. Rationalise the given statements and give chemical reactions : • Lead(II) chloride reacts with $C l_{2}$ to give $P b C l_{4}$.

- Lead(IV) chloride is highly unstable towards heat. - Lead is known not to form an iodide, $\mathrm{PbI}_{4}$.


## - Watch Video Solution

27. What happens when Borax is heated strongly.

## - Watch Video Solution

28. What happens when Boric acid is added to water

## ( Watch Video Solution

29. What happens when Aluminium is treated with dilute NaOH .

## (D) Watch Video Solution

30. What happens when $B F_{3}$ is reacted with ammonia?

- Watch Video Solution

31. Write balanced equations for:
(i) $\mathrm{BF} \mathrm{F}_{3}+\mathrm{LiH} \rightarrow$
(ii) $\mathrm{B}_{2} \mathrm{H}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
(iii) $\mathrm{NaH}+\mathrm{B}_{2} \mathrm{H}_{6} \rightarrow$
(iv) $\mathrm{H}_{3} \mathrm{BO}_{3} \xrightarrow{\Delta}$
(v) $\mathrm{Al}+\mathrm{NaOH} \rightarrow$
(vi) $\mathrm{B}_{2} \mathrm{H}_{6}+\mathrm{NH}_{3} \rightarrow$

## D Watch Video Solution

32. Write balanced equations for: $\mathrm{B}_{2} \mathrm{H}_{6}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
33. Write balanced equations for: $\mathrm{NaH}+\mathrm{B}_{2} \mathrm{H}_{6} \rightarrow$

## - Watch Video Solution

34. Write balanced equations for: $\mathrm{H}_{3} \mathrm{BO}_{3} \xrightarrow{\Delta}$

## - Watch Video Solution

35. Write balanced equations for: $\mathrm{Al}+\mathrm{NaOH} \rightarrow$

## - Watch Video Solution

36. Write balanced equations for: $B_{2} H_{6}+\mathrm{NH}_{3} \rightarrow$
37. How is excessive content of $\mathrm{CO}_{2}$ responsible for global warming ?

## - Watch Video Solution

38. Explain why :

Conc. nitric acid can be stored in aluminium containers.

## - Watch Video Solution

39. Give reasons

A mixture of dilute NaOH and aluminium pieces is used to open drain.

## - Watch Video Solution

40. Give reasons

Graphite is used as lubricant.

## (D) Watch Video Solution

## 41. Give reasons

Diamond is used as an abrasive.

## (D) Watch Video Solution

42. Give reasons

Aluminium alloys are used to make aircraft body.
43. Give reasons

Aluminium utensils should not be kept in water overnight.

## - Watch Video Solution

44. Give reasons for the following: Aluminium is used in transmission wires.

## - Watch Video Solution

Level 1

1. Boron cannot from which one of the following anions?
A. $B F_{6}^{3-}$
B. $\mathrm{BH}_{4}^{-}$
C. $\mathrm{B}(\mathrm{OH})_{4}^{-}$
D. $\mathrm{BO}_{2}^{-}$

## Answer:

## ( Watch Video Solution

2. Carbon cannot be used in the reduction of $A 1_{2} O_{3}$ because:
A. it is expensive
B. The enthalpy of formation of $\mathrm{CO}_{2}$ is more than that of $\mathrm{Al}_{2} \mathrm{O}_{3}$
C. Pure carbon is not easily available
D. The enthalpy of formation of $\mathrm{Al}_{2} \mathrm{O}_{3}$ is too high

## Answer:

## ( Watch Video Solution

3. Inorganic benzene is
A. $B_{3} H_{3} N_{3}$
B. $\mathrm{BH}_{3} \mathrm{NH}_{3}$
C. $B_{3} H_{6} N_{3}$
D. $H_{3} B_{3} H_{6}$

## Answer:

## - Watch Video Solution

4. Which is a correct statement about diborane structure? .
A. 1. All HBH bond angles are equal
B. 2. All bond lengths are equal
C. 3.It has two three-centre-two electron bonds
D. 4.All hydrogen and boron atoms are in one plane

## Answer:

5. Which one of the following is the correct statement?
A. 1.Boric acid is a protic acid
B. 2.Beryllium exhibits coordination number of six
C. 3.Chlorides of both beryllium and aluminium have bridged chloride structures in solid phase
D. 4. $B_{2} H_{6} .2 N H_{3}$ is known as inorganic benzene

## Answer:

## - Watch Video Solution

6. Boron halides are
A. 1.proton donor compounds
B. 2.covalent compounds
C. 3.electron deficient compounds
D. 4.ionic compounds

## Answer:

## ( Watch Video Solution

7. An element $X$ occurs in short period having configuration $n s^{2} n p^{1}$. The formula and nature of its oxide is:
A. $\mathrm{XO}_{3}$, basic
B. $\mathrm{X}_{2} \mathrm{O}_{3}$, basic
C. $X_{2} O_{3}$ acidic
D. $\mathrm{XO}_{2}$, acidic

## Answer:

## - Watch Video Solution

8. The structure of diborane $\left(B_{2} H_{6}\right)$ contains :
A. Four $2 c-2 e^{-}$bonds and four $3 c-2 e^{-}$bonds
B. Two $2 c-2 e^{-}$bonds and two $3 c-2 e^{-}$bonds
C. Two $2 c-2 e^{-}$bonds and four $3 c-2 e^{-}$bonds
D. Four $2 c-2 e^{-}$bonds and two $3 c-2 e^{-}$bonds

## Answer:

9. $\mathrm{BCl}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow X$

The products fored in the above reaction are
A. $\mathrm{B}_{2} \mathrm{O}_{3}+\mathrm{HOCl}$
B. $\mathrm{H}_{3} \mathrm{BO}_{3}+\mathrm{HCl}$
C. $\mathrm{B}_{2} \mathrm{H}_{6}+\mathrm{HCl}$
D. No reaction

## Answer:

## - Watch Video Solution

10. Aluminium chloride exists as a dimer, $A l_{2} C l_{6}$ in solid state as well as in solution of non-polar solvents such as
benzene. When dissolved in water, it gives :
A. $A l^{3+}+3 C l^{-}$
B. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-}$
C. $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}+3 \mathrm{HCl}$
D. $\mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{HCl}$

## Answer:

## ( Watch Video Solution

11. $A l_{4} C_{3}$ is a ionic carbide, named as:
A. Acetylide
B. Methanide
C. Allylide
D. Alloy

## Answer:

## D Watch Video Solution

12. बोरिक ऐसिड अम्ल है, क्योंकि
A. $H_{3} B O_{3}$ molecules are loosely chemically bonded and hence soft
B. Its low density makes it fluffy
C. It can be powdered to a very small grain size
D. It is chemically inert with the plywood

## ( Watch Video Solution

13. Heating an aqueous solution of aluminium chloride to dryness will give
A. $\mathrm{Al}(\mathrm{OH}) \mathrm{Cl}_{2}$
B. $A l_{2} O_{3}$
C. $A l_{2} C l_{6}$
D. $A l C l_{3}$

## Answer:

14. The correct order of Lewis acidic strength of boron trihalides :
A. $B F_{3}<\mathrm{BCl}_{3}<\mathrm{BBr}_{3}<B I_{3}$
B. $\mathrm{BI}_{3}<\mathrm{BBr}_{3}<\mathrm{BCl}_{3}<\mathrm{BF}_{3}$
C. $\mathrm{BBr}_{3}<\mathrm{BCl}_{3}<B F_{3}<B I_{3}$
D. $\mathrm{BF}_{3}<\mathrm{BBr}_{3} \mathrm{lBCl}_{3}<\mathrm{BI}_{3}$

Answer:

- Watch Video Solution

15. In diborane, the two $H-B-H$ angles are nearly
A. $60^{\circ}, 120^{\circ}$
B. $95^{\circ}, 120^{\circ}$
C. $95^{\circ}, 150^{\circ}$
D. $120^{\circ}, 180^{\circ}$

## Answer:

## - Watch Video Solution

16. In group $13, \mathrm{Tl}$ (thalium) shows +1 oxidation state while other members show +3 oxidation state, why ?
A. Presence of lone electron in Tl
B. Inert pair effect
C. Large ionic radius of Tl ion
D. None of these

## - Watch Video Solution

17. Correct order of bond angles in the given compounds
is/are

A. $\gamma>\gamma^{\prime}$
B. $\gamma<\gamma^{\prime}$
C. $\gamma=\gamma^{\prime}$
D. Can't be predicted

## ( Watch Video Solution

18. The correct order of increasing atomic radii, is :
A. $B<A l<G a$
B. $G a<A l<B$
C. $A l<B<G a$
D. $B<G a<A l$

## Answer:

19. Which type of silicate is shown in the given figure ?

A. Orthosilicate
B. Pyrosilicate
C. Sheet silicate
D. None of these

Answer:
20. Buckminister-fullerene is a variety of:
A. Boron
B. Carbon
C. Sulphur
D. Phosphorous

## Answer:

## - Watch Video Solution

21. The basic structural unit in silicates is
A. $\mathrm{SiO}_{2}$
B. $\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right]^{2-}$
C. $\mathrm{SiO}_{4}^{4-}$
D. $\left[S i_{2} O_{5}\right]^{2-}$

## Answer:

## - Watch Video Solution

22. On strong heating lead nitrate gives:
A. $\mathrm{PbO}+\mathrm{NO}+\mathrm{O}_{2}$
B. $\mathrm{PbO}+\mathrm{NO}_{2}+\mathrm{O}_{2}$
C. $\mathrm{Pb}+\mathrm{NO}_{2}$
```
D. \(\mathrm{PbO}+\mathrm{N}_{2}\)
```


## Answer:

## - Watch Video Solution

23. Among the following substituted silanes, the one which will give rise to cross linkes silicons polymer on hydrolysis is
A. $R_{4} S i$
B. $R S i C l_{3}$
C. $R_{2} S i C l_{2}$
D. $R_{3} R i C l$

## (D) Watch Video Solution

$$
\begin{aligned}
& \text { 24. } \begin{array}{l}
\text { Identify } \quad \text { B } \\
\mathrm{H}_{4} \mathrm{SiO}_{4} \xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{1000^{\circ} \mathrm{C}}
\end{array} A \xrightarrow[?]{\text { Carbon }} B+\mathrm{CO}
\end{aligned}
$$

A. Corundum
B. Quartz
C. Silica
D. Carborundum

Answer:
25. In silica $\left(\mathrm{SiO}_{2}\right)$ each silicon is bonded to :
A. Two oxygen atoms
B. Four oxygen atoms
C. One silicon and two oxygen atoms
D. One silicon and four oxygen atoms

## Answer:

## - Watch Video Solution

26. The incorrect statements among the following is/are :
I. Fullerene is molecular solid
II. Lead prefers to form tetravalent compounds
III. The three $C-O$ bonds are not equal in the carbonate
ion
IV. Both $B_{2}$ and $C_{2}$ are paramagnetic
A. I,III and IV
B. I and IV
C. II, III and IV
D. I and III

## Answer:

## - Watch Video Solution

27. The stability of dihalides of $\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}$ and Pb increases
steadily in the sequence
A. $G e X_{2}<S i X_{2}<\operatorname{Sn} X_{2}<\mathrm{PbX}_{2}$
B. $S i X_{2}<G e X_{2}<P b X_{2}<\operatorname{Sn} X_{2}$
C. $\operatorname{Si} X_{2}<G e X_{2}<S n X_{2}<P b X_{2}$
D. $S i X_{2}<G e X_{2}<P b X_{2}<\operatorname{Sn} X_{2}$

## Answer:

## - Watch Video Solution

28. In $\mathrm{SiF}_{6}^{2-}$ and $\mathrm{SiCl}_{6}^{2-}$, which one is known and why ?
A. $S i F_{6}^{2-}$ because of small size of F
B. $S i F_{6}^{2-}$ because of large size of $F$
C. $\mathrm{SiCl}_{6}^{2-}$ because of small size of Cl
D. $\mathrm{SiCl}_{6}^{2-}$ because of large size of Cl

## ( Watch Video Solution

29. Graphite is used as a lubricant in machinery.
A. Is a non-crystalline substance
B. Is an allotropic form of diamond
C. Has molecules of variable molecular masses like polymers
D. Has carbon atoms arranged in large plates of rings of strongly bound carbon atoms with weak interpolate bonds

## (D) Watch Video Solution

30. Water glass is :
A. 1.Glass made of water
B. 2.Sodium silicate
C. 3.Calcium formate
D. 4.Pyrex glass

## Answer:

31. Monosilane on coming in contact with air burns with a luminous flame producing vortex rings. These rings are of
A. $\mathrm{SiO}_{2}$
B. SiO
C. $S i$
D. $\mathrm{H}_{2} \mathrm{SiO}_{3}$

## Answer:

## - Watch Video Solution

32. Which one of the following statements about the zeolite is false?
A. They are used as cation exchangers
B. They have open structure which enables them to take up small molecules
C. Zeolites are aluminosilicates having three dimensional network
D. Some of the $\mathrm{SiO}_{4}^{4-}$ units ar replaced by $\mathrm{AlO}_{4}^{5-}$ and concentrated ions in zeolites

## Answer:

## - Watch Video Solution

33. A metal, $M$ from chaloride in its +2 and +4 oxidation states . Which of the following statement about thes

## chalorides is correct?

A. $M C l_{2}$ is more easily hydrolysed than $M C l_{4}$
B. $M C l_{2}$ is more soluble in the anhydrous ethanol than
$M C l_{4}$
C. $M C l_{2}$ is more ionic than $M C l_{4}$
D. all of the above

## Answer:

## D Watch Video Solution

34. Buckminster fullerene :
A. is covalent network solid
B. has only $s p^{2}$ hybridised carbon atoms
C. is non aromatic
D. is thermodynamically most stable form of carbon

## Answer:

## D Watch Video Solution

35. Addition of $\mathrm{SnCl}_{2}$ to $\mathrm{HgCl}_{2}$ gives precipitate:
A. White turning to red
B. White turning to grey
C. Black turning to white
D. None of the above

## (D) Watch Video Solution

36. Name the type of the structure of silicate in which one oxygen atom of $\left[\mathrm{SiO}_{4}\right]^{4-}$ is shared ?
A. Pyrosilicate
B. Sheet silicate
C. Linear chain silicate
D. Three dimensional silicate

## Answer:

37. If a trivalent atom replaces a few silicon atoms in three dimensional network of silicon dioxide, what would be the type of charge on overall structure?
A. There are double bonds between silicon and oxygen atoms
B. Silicon atom is bonded to two oxygen atoms
C. Each silicon atom is surrounded by two oxygen atoms
and each oxygen atom is bonded to two silicon atoms
D. Each silicon atom is surrounded by four oxygen atom and each oxygen atom is bonded to two silicon atoms
38. Cetenation i.e., linking of similar atoms depends on size and electronic configuration of atoms. The tendency of catenation in group 14 elements follows the order

$$
\text { A. } C \gg S i>G e=S n>P b
$$

B. $C \ll S i<G e=S n<P b$
C. $C \gg S i<G e<S n<P b$
D. $C \gg S i=G e=S n>P b$

Answer:
39. On controlled hydrolysis and condensation, $\mathrm{R}_{3} \mathrm{SiCl}$ yields
A. $R_{3} \mathrm{Si}-\mathrm{O}-\mathrm{SiR}_{3}$
B. ( $\left.-R_{3} S i-O-S i R_{3}-\right)_{n}$
C. $\mathrm{R}_{3} \mathrm{SiOH}$



## Answer:

## - Watch Video Solution

40. When tin is treated with concentrated nitric acid
A. It is converted into stannous nitrate
B. It is converted into stannic nitrate
C. It is converted into metastannic acid
D. It becomes passive

## Answer:

## ( Watch Video Solution

41. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}$ underboes hydrolysis but $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CCl}_{2}$ does not why?
A. Low lying d-orbitals are present in Si but not in C
B. Only 3 p orbitals are involved in C
C. Silicon is more acidic

# D. Si-Cl bond is more polar than $C-C l$ bond 

## Answer:

## - Watch Video Solution

42. Which one shows most pronounced inert pair effect ?
A. Si
B. Sn
C. Pb
D. C

Answer:
43. Which of the following is the electron deficient molecule
A. LiH
B. $B_{2} H_{6}$
C. $\mathrm{LiBH}_{4}$
D. $B_{3} N_{3} H_{6}$

## Answer:

## - Watch Video Solution

44. Which of the following organo-silicon compound on hydrolysis will give cyclic silicone?
A. $R_{3} \mathrm{SiCl}$
B. $\mathrm{RSiCl}_{3}$
C. $\mathrm{SiCl}_{4}$
D. $R_{2} \mathrm{SiCl}_{2}$

## Answer:

## - Watch Video Solution

45. Bond energy is highest for :
A. $S n-S n$
B. $C-C$
C. $S i-S i$
D. $G e-G e$

## Answer:

## - Watch Video Solution

46. Which amongst the following is also called as a sesqui oxide :
A. $B_{2} O_{3}$
B. $A l_{2} O_{3}$
C. $\mathrm{Ga}_{2} \mathrm{O}_{3}$
D. all
47. Which of the following species does not exist?
A. $\left[B F_{6}\right]^{3-}$
B. $\left[A l F_{6}\right]^{3-}$
C. $\left[G a F_{6}\right]^{3-}$
D. $\left[\mathrm{InF}_{6}\right]^{3-}$

## Answer:

## - Watch Video Solution

48. Dative bonds are not present in :
A. $A l_{2} C l_{6}$
B. $B F_{3}$
C. Borazole
D. $B_{2} H_{6}$

## Answer:

## - Watch Video Solution

49. All the products formed in the oxidation of $\mathrm{NaBH}_{4}$ by
$I_{2}$ are
A. $\mathrm{B}_{2} \mathrm{H}_{6}$ and NaI
B. $B_{2} H_{6}, H_{2}$ and NaI
C. $B I_{3}$ and NaH
D. $\mathrm{NaBI}_{4}$ and Hi

## Answer:

## - Watch Video Solution

50. Select correct statement about $\mathrm{H}_{3} \mathrm{BO}_{3}$
A. It has triangular $\mathrm{BO}_{3}(3-)$ units
B. In solid states, molecules are hydrogen bonded
C. Both the above statements 1 and 2 are correct
D. None of the statement is correct

## Answer:

51. Orthoboric acid behaves as weak monobasic acid giving $H^{+}$and
A. $\mathrm{H}_{2} \mathrm{BO}_{3}^{-}$
B. $\mathrm{BO}_{3}^{3-}$
C. $\left[B(O H)_{4}\right]^{-}$
D. $\mathrm{BO}_{2}^{-}$

## Answer:

## ( Watch Video Solution

52. $B C l_{3}$ does not exist as dimer but $B H_{3}$ exist as dimer $\left(B_{2} H_{6}\right)$ because :-
A. Cl is more electropositive than H
B. There is $p \pi-p \pi$ back bond in $B C l_{3}$ but $B H_{3}$ does not contain such multiple bonding.
C. Large sized chlorine atoms do not fit in between small
sized boron atoms where as small sized hydrogen atoms get fitted in between boron atoms
D. None of these

Answer:

## D Watch Video Solution

53. With a given anion the correct stability order of tetra haloborates is:
A. $B C l_{4}^{-} B B r_{4} 4^{-}>B l_{4}^{-}$
B. $\mathrm{Bl}_{4}^{-}>\mathrm{BBr}_{4}^{-}>\mathrm{BCl}_{4}^{-}$
C. $B C_{4}^{-}=\mathrm{BBr}_{4}^{-}>\mathrm{Bl}_{4}^{-}$
D. $B C l_{4}^{-}=B B r_{4}^{-}=B l_{4}^{-}$

## Answer:

## - Watch Video Solution

54. $\mathrm{BCl}_{3}+\mathrm{LiAlH}_{4} \rightarrow \mathrm{~A}+\mathrm{LiCl}+\mathrm{AlCl}_{3}$
$A+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{B}+\mathrm{H}_{2}$
$B \xrightarrow{\text { Red heat }} C$. In this reaction sequence $A, B$ and $C$ compounds respectively are :
A. $B_{2} H_{5}, B_{2} O_{3}, B$
B. $B_{2} H_{6}, H_{3} \mathrm{BO}_{3}, B_{2} O_{3}$
C. $B_{2} H_{6}, H_{3} B O_{3}, B$
D. $\mathrm{HBCl}_{4}, \mathrm{H}_{3} \mathrm{BO}_{3}, \mathrm{~B}_{2} \mathrm{O}_{3}$

## Answer:

## - Watch Video Solution

55. Which is not correct in case of Be and Al ?
A. Both are rendered passive by conc. $\mathrm{HNO}_{3}$
B. Carbides of both give methane on hydrolysis
C. Both give hydroxides which are basic
D. Both give covalent chlorides

## (D) Watch Video Solution

56. Give reasons

Graphite is used as lubricant.
A. The slippery nature
B. Its giant structure
C. High refractive index
D. High IP value of carbon

## Answer:

57. $\mathrm{SiF}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow A \xrightarrow{1000^{\circ} \mathrm{C}} B \xrightarrow{\mathrm{Na}_{2} \mathrm{CO}_{3}} C$ Identify B \& C ?
A. $\mathrm{H}_{4} \mathrm{SiO}_{4}, \mathrm{Na}_{2} \mathrm{SiO}_{3}$
B. $\mathrm{SiO}_{2}, \mathrm{SiC}$
C. $\mathrm{SiO}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}$
D. $\mathrm{SiO}_{2}, \mathrm{Na}_{2} \mathrm{SiO}_{3}$

## Answer:

## Watch Video Solution

58. Decreasing order of "P" orbital Character in the following
a) $\mathrm{SiO}_{2}, \mathrm{CO}_{2}$, c) Graphite
A. $a>b>c$
B. $b>a>c$
C. $b>c>a$
D. $a>c>b$

## Answer:

## - Watch Video Solution

59. Silicon has a strong tendency to form polymers like silicones. The chain length of silicone polymer can be controlled by adding
A. $M e S i C l u$
B. $M e_{2} S i C l_{2}$
C. $\mathrm{Me}_{3} \mathrm{SiCl}$
D. $\mathrm{Me}_{4} \mathrm{Si}$

## Answer:

## - Watch Video Solution

60. Which of the following salt undergoes hydrolysis?
A. $B C l_{3}$
B. $\mathrm{CoCl}_{3}$
C. $\mathrm{SiCl}_{4}$
D. All of these
61. Which is correct regarding $\mathrm{CO}_{2}$.
A. Involves in photosynthesis
B. Cause green house effect
C. Dry ice is used as refrigerant for ice cream \& frozen food
D. All of these

## Answer:

62. Hydrolysis of $\mathrm{SiCl}_{4}$ gives compound 'X' and HCl on heating to $1000^{\circ} C$ ' X ' loses water and forms ' Y '. Identify ' X ' and ' $Y$ ' respectively.
A. $\mathrm{SiO}_{2}$ and Si
B. $\mathrm{H}_{4} \mathrm{SiO}_{4}$ and $\mathrm{SiO}_{2}$
C. $\mathrm{SiO}_{2}$ and SiC
D. $\mathrm{H}_{4} \mathrm{SiO}_{4}$ and SiC

## Answer:

## - Watch Video Solution

63. The correct statement with respect to CO is
A. It combines with $\mathrm{H}_{2} \mathrm{O}$ to give carbonic acid
B. It reacts with haemoglobin in RBC
C. It is a powerful oxidizing agent
D. It is used to prepare aerated drinks

## Answer:

## - Watch Video Solution

64. The correct order for boiling point of IV group hydrides respectively:
A. $\mathrm{CH}_{4}<\mathrm{SiH}_{4}<\mathrm{GeH}_{4}<\mathrm{SnH}_{4}$
B. $\mathrm{CH}_{4}>\mathrm{SiH}_{4}<\mathrm{GeH}_{4}<\mathrm{SnH}_{4}$
C. $\mathrm{SnH}_{4}<\mathrm{GeH}_{4}<\mathrm{SiH}_{4}<\mathrm{CH}_{4}$

$$
\text { D. } \mathrm{CH}_{4}<\mathrm{SiH}_{4}>G e H_{4}>\mathrm{SnH}_{4}
$$

## Answer:

## - Watch Video Solution

65. Shape of $\dot{C} H_{3}$ is
A. Linear
B. Pyramidal
C. Tetrahedral
D. Trigonal planar

Answer:
66. The tetravalent elements $A$ and $B$ form dioxides both react with NaOH to form similar salts
$\angle O A O$ is $180^{\circ}$ and $\angle O B O$ is $109^{\circ} 28^{\prime}$. Both are acidic in nature $A$ and $B$ are respectively
A. Ge and Si
B. S and Si
C. C and Si
D. Si and C

## Answer:

67. Which of the following compounds is formed by addition of mineral acid to an aqueous solution of borax?
A. Boron oxide
B. Orthoboric acid
C. Metaboric acid
D. Pyroboric acid

## Answer:

## - Watch Video Solution

68. Which of the following is not an ionic tri halide :
A. $A l F_{3}$
B. $B F_{3}$
C. $I n F_{3}$
D. $G a F_{3}$

## Answer:

## D Watch Video Solution

69. Alumina is insoluble in water because:
A. It is covalent compound
B. It has a high lattice energy and low heat of hydration
C. It has low lattice energy and high heat of hydration
D. It is a network solid

## - Watch Video Solution

70. When oxalic acid is heated with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ it produces
A. $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{SO}_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{CO}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{SO}_{2}, \mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{O}$

## Answer:

71. Which of the following sublimes on heating ?
A. $\mathrm{Al}_{2} \mathrm{O}_{3}$
B. $\mathrm{Al}(\mathrm{OH})_{3}$
C. $\left(\mathrm{AlH}_{3}\right)_{n}$
D. $\left(A l C l_{3}\right)_{n}$

## Answer:

## ( Watch Video Solution

72. In sheet silicate number of oxygen atoms involved in sharing are
A. 2
B. 3
C. 4
D. 0

## Answer:

## ( Watch Video Solution

73. Silicones repel water due to:
A. the presence of alkyl group pointed towards surface
B. strong $S i-O-S i$ bonds
C. low surface area
D. high vander Waal's forces

## (D) Watch Video Solution

74. $(\mathrm{COOH})_{2} \xrightarrow{\text { heat }} x\left(\right.$ gas' $\left.^{\prime}\right)+\mathrm{Y}($ gas $)+\mathrm{Z}($ gas $)$
$Y$ and $Z$ both are polar and neutral, $X$ is non polar and acidic. $Z$ gas is condensed and formed liquid having $p h=7$
. The hybridization state of $X, Y$ and $Z$ are respectively
A. $s p, s p^{2}, s p^{3}$
B. $s p^{2}, s p^{2}, s p^{2}$
C. $s p, s p, s p^{3}$
D. $s p^{2}, s p, s p^{3}$

## Watch Video Solution

75. The corrrect order of $\mathrm{C}-\mathrm{O}$ bond length among $\mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}$ is
A. $\mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}, \mathrm{CO}$
B. $\mathrm{CO}_{2}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}$
c. $\mathrm{CO}, \mathrm{CO}_{3}^{2-}, \mathrm{CO}_{2}$
D. $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{CO}_{3}^{2-}$

## Answer:

## - Watch Video Solution

1. In the following reaction
$B(O H)_{3}+H_{2} O \rightarrow\left[B(O H)_{4}\right]+H^{+}:$
A. $B(O H)_{3}$ is a Lewis acid
B. $B(O H)_{3}$ is amphoteric
C. $\mathrm{B}(\mathrm{OH})_{3}$ is a Lewis base
D. None is correct

Answer:

## ( Watch Video Solution

2. In the following statements, select the correct statement(s) :
A. $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ has pyramidal structure
B. $N\left(\mathrm{SiH}_{3}\right)_{3}$ shows planar arrangement
C. Both are correct
D. None is correct

## Answer:

## - Watch Video Solution

3. The dipole moments of the given molecules are such that
A. $\mathrm{BF}_{3}>\mathrm{NF}_{3}>\mathrm{NH}_{3}$
B. $\mathrm{NF}_{3}>\mathrm{BF}_{3}>\mathrm{NH}_{3}$
C. $\mathrm{NH}_{3}>\mathrm{NF}_{3}>\mathrm{BF}_{3}$
```
D. \(\mathrm{NH}_{3}>B \mathrm{~F}_{3}>\mathrm{NF}_{3}\)
```


## Answer:

## - Watch Video Solution

4. Boron carbide is used :
A. In nuclear reactor to absorb neutrons
B. As an abrasive
C. Both are correct
D. None is correct

Answer:
5. Aqueous solution of borax reacts with two mol of acids.

This is because of :
A. formation of 2 mol of $\mathrm{B}(\mathrm{OH})_{3}$ only
B. formation of 2 mol of $\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-}$only
C. formation of 1 mol each of $\mathrm{B}(\mathrm{OH})_{3}$ and $\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-}$
D. formation fo 2 mol of $\left[B(O H)_{4}\right]^{-}$

## Answer:

## ( Watch Video Solution

6. While testing $\mathrm{BO}_{3}^{3-}$ thre is green edged flamed on heating the ssalt with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{CH}_{3} \mathrm{OH}$. Green

## colour is of

A. $\left(\mathrm{CH}_{3}\right)_{3} B$
B. $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{~B}$
C. $B_{2} O_{3}$
D. $\mathrm{H}_{3} \mathrm{BO}_{3}$

## Answer:

## ( Watch Video Solution

7. The gaseous product(s) expected at room temperature by reaction of sodium borohydride and boron trifluoride under anhydrous conditions is/are:
A. $H_{2}$
B. $\mathrm{B}_{2} \mathrm{H}_{3}$ and $\mathrm{H}_{2}$
C. $B_{2} H_{6}$
D. $\mathrm{BH}_{2} \mathrm{~F}$ and $\mathrm{H}_{2}$

## Answer:

## ( Watch Video Solution

8. Choose the correct sequence for the geometry of the given molecules Borazon, Borazole, $B_{3} O_{6}^{3-}$, trimer of FCN.
['P' stands for planer and 'NP' standes for non-planer]
A. NP,NP,NP
B. P,P,NP
C. NP,NP,P
D. NP,P,P

## Answer:

## - Watch Video Solution

9. Borax is uded as a cleaning agent because on dissolving in water, it gives
A. Alkaline solution
B. Acidic solution
C. Bleaching solution
D. Basic solution

## - Watch Video Solution

10. From $B_{2} H_{6}$, all the following can be prepared except
A. $B_{2} O_{3}$
B. $H_{3} B O_{3}$
C. $\mathrm{B}_{2}\left(\mathrm{CH}_{3}\right)_{6}$
D. $\mathrm{NaBH}_{4}$

## Answer:

11. Borax is converted into crystalline boron by the following steps :

Borex $\xrightarrow{x} H_{2} \mathrm{BO}_{3} \xrightarrow{\Delta} B_{2} O_{3} \xrightarrow[\Delta]{Y} B$
$X$ and $Y$ are respectively :
A. $\mathrm{HCl}, \mathrm{Mg}$
B. $\mathrm{HCl}, \mathrm{C}$
C. C,Al
D. $\mathrm{HCl}, \mathrm{Al}$

## Answer:

## D Watch Video Solution

12. $B_{2} H_{6}$ on reaction with methanol does not form
A. $\mathrm{H}_{3} \mathrm{BO}_{3}$
B. $\mathrm{B}\left(\mathrm{CH}_{3}\right)_{3}$
C. $B(O M e)_{3}$
D. $\mathrm{BH}_{2}\left(\mathrm{CH}_{3}\right)_{2}$

## Answer:

## - Watch Video Solution

13. Which of the following is a true statement ?
A. Boranes are easily hydrolysed
B. $\mathrm{LiAHlH} H_{4}$ reduces $B C l_{3}$ to borane
C. $\mathrm{BH}_{3}$ is Lewis acid

## D. All the B-O distances on borax are equal

## Answer:

## - Watch Video Solution

14. Which of the following is sparingly soluble in cold water and fairly soluble in hot water?
A. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
B. $\mathrm{PbCl}_{2}$
C. $\mathrm{PbSO}_{4}$
D. $\mathrm{PbCrO}_{4}$

## 15. Match the column:

| Column I |  | Column II |  |
| :---: | :---: | :---: | :---: |
| (A) | B orax $\xrightarrow{\Delta}$ | (p) | $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$ |
| (B) | $\mathrm{B}_{2} \mathrm{H}_{6}+\mathrm{H}_{2} \mathrm{O} \longrightarrow$ | (q) | $\mathrm{B}_{2} \mathrm{H}_{6}$ |
| (C) | $\underset{\mathrm{B}_{2} \mathrm{H}_{6}}{ }+\underset{\text { excess }}{\mathrm{NH}_{3}} \xrightarrow{\Delta}$ | (r) | $\mathrm{H}_{3} \mathrm{BO}_{3}$ |
| (D) | $\mathrm{BCl}_{3}+\mathrm{LiA}_{\text {IH }}^{4} 4 \longrightarrow$ | (s) | $\mathrm{NaBO} 2+\mathrm{B}_{2} \mathrm{O}_{3}$ |

## ( Watch Video Solution

## 16. Match the column:

| Column I |  | Column II |  |
| :--- | :--- | :--- | :--- |
| (A) | Inorganic benzene | (p) | $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ |
| (B) | Jeweller's borax | (q) | $\mathrm{B}_{2} \mathrm{H}_{6}$ |
| (C) | Borax | (r) | $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ |
| (D) | Diborane | (s) | Mordent |
|  |  | (t) | $\mathrm{B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}$ |

17. Borax is actually made of two tetrahedra and two
triangular units joined together and should be written as
$\mathrm{Na}_{2}\left[\mathrm{~B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right] .8 \mathrm{H}_{2} \mathrm{O}$.
Consider the following statements about borax :

A : Each boron atom has four $B-O$ bonds.

B : Each boron atom has three $B-O$ bonds.

C : Two boron atoms have four $B-O$ bonds while other two have three $B-O$ bonds.

D : Each boron atom has one-OH group.

Select correct statement (s) :
A. I,II
B. II,III
C. III,IV
D. I,III

## ( Watch Video Solution

18. Borax is actually made of two tetrahedra and two
triangular units joined together and should be written as
$\mathrm{Na}_{2}\left[\mathrm{~B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$.
Select the correct statement (s) :
A. Borax is used as a buffer
B. 1 M borax solution reacts with equal volumes of 2 M

HCl solution
C. Titration of borax can be made using methyl orange as the indicator
D. Coloured bead obtained in borax bead test contains metaborate

## Answer:

## - Watch Video Solution

19. The reason for small radius of Ga compared to Al is
A. Poor screening effect of $d$ and $f$ orbitals
B. Increase in nuclear charge
C. Presence of higher orbitals
D. Higher atomic number

## - Watch Video Solution

20. Which of the following statements are correct. Answer on the basis of figure :

A. The two bridged hydrogen atoms and the two boron atoms lie in one plane
B. Out of six $B-H$ bonds, two bonds can be described in terms of 3-centre 2-electron bonds
C. Out of six $B-H$ bonds, four $B-H$ bonds can be described in terms of 3 -centre 2 -electron bonds
D. The four terminal $B-H$ bonds are 2-centre 2electron regular bonds

## Answer:

## Watch Video Solution

21. One can obtain a silica garden if :
A. Crystals of coloured cations are added to a strong solution of sodium silicate
B. Sodium silicate solution is treated with a base
C. $\mathrm{SiF}_{4}$ is hydrolysed
D. Silicon salts are grown in a garden

## Answer:

## - Watch Video Solution

22. Silicon carbide is used as
A. abrasive
B. dehydrating agent
C. solvent
D. catalyst
23. A student prepared a sample of silicon chloride by passing chlorine over heated silicon and collecting the condensed silicon chloride in a small specimen tube. He analysed the chloride in a small specimen tube. He analysed the chloride by dissolving a known mass of it in water, and titrating the solution with standard silver nitrate solution. The formula of the silicon chloride as obtained by this method was $\mathrm{SiCl}_{2.6}$ as against a 'true' formula of $\mathrm{SiCl}_{4}$.

Which of the following possible errors could have resulted in this wrong formula?
A. The excess silicon chloride obtained is dissolved in chlorine
B. The "standard" silver nitrate solution was less

## concentrated than was stated on the label

C. More silicon chloride than the student supposed was actually used owing to inaccurate weighing
D. The small specimen tube was not dry

## Answer:

## - Watch Video Solution

24. Assertion (A) : Silicones are water repelling in nature

Reason (R) : Silicones are organosilicon polymers, which have ( $-R_{2} \mathrm{SiO}-$ ) as repeating unit.
A. Statement-1 is True, Statement-2 is True and

Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True and

Statement-2 is NOT a correct explanation for

## Statement-1

C. Statement- 1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

Answer:

D Watch Video Solution
25. The linear shape of $\mathrm{CO}_{2}$ is due to
A. tetravalency of carbon
B. sp hybridisation of carbon
C. $p \pi-p \pi$ bonding between carbon and oxygen
D. catenation property of carbon

## Answer:

## ( Watch Video Solution

26. $M e_{3} S i C l$ is used during polymerisation or organo
silicones because
A. The chain length of the organo silicon polymers can be controlled by adding $\mathrm{Me} e_{3} \mathrm{SiCl}$
B. $\mathrm{Me} e_{3} \mathrm{SiCl}$ blocks the end terminals of silicone polymer
C. $M e_{3} S i C l$ improves the quality and yield of the polymer
D. $\mathrm{Me}_{3} \mathrm{SiCl}$ acts as a catalyst during polymerization

## Answer:

## - Watch Video Solution

27. Which of the following statements are correct :
A. Fullerenes have dangling bonds
B. Fullerenes are cage-like molecules
C. Graphite is thermodynamically most stable allotrope

of carbon

D. Graphite is slippery and therefore used as a dry lubricant in machines

## Answer:

## - Watch Video Solution

28. Identify the correct resonance structures of carbon dioxide from the one given below:
A. $O-C \equiv O$
B. $O=C=O$
C. $\stackrel{2-}{C}=\stackrel{2+}{O}=O$

$$
\text { D. . }{ }^{-} O-C \equiv O^{+}
$$

## Answer:

## - Watch Video Solution

29. Silicon dissolves in excess of HF due to formation of
A. $S i F_{4}$
B. $S i H_{4}$
C. $H_{2} S i F_{6}$
D. $\mathrm{Si}(\mathrm{OH})_{4}$

Answer:
30. The incorrect statement regarding below reaction is :

A. Al shows amphoteric character
B. Gas 'P' and 'Q' are different
C. Both $X$ and $Y$ are water soluble
D. Gas Q is inflammable

## Answer:

31. The plague $O R$ tin pest or tin disease refers to .
A. conversion of stannous to stannic
B. conversion of white tin to grey tin
C. emission of sound while bending a tin rod
D. atmospheric oxidation of tin

## Answer:

## - Watch Video Solution

32. $\quad H_{2} C_{2} O_{4} \xrightarrow{\triangle} \operatorname{gas}(A)+\operatorname{gas}(B)+\operatorname{liquid}(C) . \quad \operatorname{Gas}(\mathrm{A})$
burns with a blue flame and is oxidised to gas(B).
$\operatorname{Gas}(A)+C l_{2} \rightarrow D \rightarrow \xrightarrow{N H_{3}, \Delta} E$
$\mathrm{A}, \mathrm{B}, \mathrm{C}$ and E are

A. $\mathrm{CO}_{2}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCONH}_{2}$<br>B. $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{COCl}_{2}, \mathrm{HCONH}_{2}$<br>C. $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{2} \mathrm{CONH}_{2}$<br>D. $\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{COCl}_{2}$

## Answer:

## - Watch Video Solution

33. Amphilbole silicate structure has 'x' number of corner shared per tetrahedron. The value of x is :
B. $2 \frac{1}{4}$
C. 3
D. 4

Answer:

## D Watch Video Solution

34. The silicate ion in the mineral kinoite is a chain of three $\mathrm{SiO}_{4}^{4-}$ tetrahedral that share corners with adjacent tetrahedral. The mineral also contains $\mathrm{Ca}^{2+}$ ions, $\mathrm{Cu}^{2+}$ ions and water molecules in 1:1:1 ratio. The mineral is represented as
A. $\mathrm{CaCuSi} \mathrm{S}_{3} \mathrm{O}_{10} \cdot \mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{CaCuSi} 3_{3} \mathrm{O}_{10} .2 \mathrm{H}_{2} \mathrm{O}$
C. $\mathrm{Ca}_{2} \mathrm{Cu}_{2} \mathrm{Si}_{3} \mathrm{O}_{10} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
D. None of these

## Answer:

## - Watch Video Solution

35. $\quad \mathrm{BX} \mathrm{X}_{3}+\mathrm{NH}_{3} \xrightarrow{\text { B.T. }} \mathrm{BX}_{3} \cdot \mathrm{NH}_{3}+$ Heat of adduct formation $(\Delta H)$

The numberical value of $\Delta H$ is found to be maximum for:
A. $B F_{3}$
B. $\mathrm{BCl}_{3}$
C. $B B r_{3}$
D. $B I_{3}$

## Answer:

## - Watch Video Solution

36. Statement-1: $\mathrm{Al}(\mathrm{OH})_{3}$ is amphoteric in nature.

Statement-2: It cannot be used as an antacid.
A. Statement-1 is True, Statement-2 is True and

Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True and

Statement-2 is NOT a correct explanation for

Statement-1
C. Statement-1 is True, Statement-2 is False

## D. Statement-1 is False, Statement-2 is True

## Answer:

## - Watch Video Solution

37. Assertion : Among $\mathrm{SiCl}_{4}$ and $C l_{4}$ only $\mathrm{SiCl}_{4}$ reacts
with water.

Reason : $\mathrm{SiCl}_{4}$ is ionic and $C C l_{4}$ is covalent.
A. Statement-1 is True, Statement-2 is True and

Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True and

Statement-2 is NOT a correct explanation for
C. Statement- 1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

## Answer:

## D Watch Video Solution

38. Statement I: $\mathrm{Pb}^{4+}$ compounds are stronger oxidizing agents than $S n^{4+}$ compounds.

Statement II:The higher oxidation states for the group 14 elements are more stable for the heavier members of the group due to 'inert pair effect'.
A. Statement-1 is True, Statement-2 is True and Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for

## Statement-1

C. Statement- 1 is True, Statement- 2 is False
D. Statement-1 is False, Statement-2 is True

## Answer:

## - Watch Video Solution

39. Consider of following reactions
$\mathrm{CHF}_{3} \xrightarrow{\mathrm{~K}_{a}} \mathrm{CF}_{3}^{-}+\mathrm{H}^{+}$
$\mathrm{CHCl}_{3}^{-} \xrightarrow{\mathrm{K}_{a}^{+}} \mathrm{CCl}_{3}^{-}+\mathrm{H}^{+}$

Then regarding given reactions which of the following statement(s) is /are correct:
A. $K_{a}>K_{a}\left({ }^{\prime}\right)$
B. $\mathrm{CHF}_{3}$ acts as a stronger bronsted acid than $\mathrm{CHCl}_{3}$
C. $\mathrm{CCl}_{3}^{-}$is more stable than $\mathrm{CF}_{3}{ }^{-}$
D. $\mathrm{CCl}_{3}^{-}$is weaker Lewis base than $\mathrm{CF}_{3}^{-}$

## Answer:

## - Watch Video Solution

40. Choose the correct order of C-C bond length in the given compounds:
A. Acetylene It ethylene It graphite It benzene It ethane
B. Acetylene It ethylene It benzene It graphite It ethane
C. Acetylene It graphite It ethylene It benzene It ethane
D. Acetylene It benzene It graphite It ethylene It ethane

## Answer:

## - Watch Video Solution

41. The correct order of thermal stability of silicon tetrahalides is
A. $S i F_{4}<S i C l_{4}<S i B r_{4}<S i I_{4}$
B. $S i F_{4}>S i C l_{4}>S i B r_{4}>S i I_{4}$
C. $\mathrm{SiF}_{4} \gg \mathrm{SiCl}_{4}<\mathrm{SiBr}_{4}<\mathrm{SiI}_{4}$
D. $\mathrm{SiF}_{4}<\mathrm{SiCl}_{4}<\mathrm{SiBr}_{4} \gg \mathrm{SiI}_{4}$

## - Watch Video Solution

42. Which of the following statements is true ?
A. Dimethyl ether is a better Lewis base than disilyl
ether $\left(\mathrm{SiH}_{3}-\mathrm{O}-\mathrm{SiH}_{3}\right)$
B. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{O}-\mathrm{H}$ is less acidic than
$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}-\mathrm{O}-\mathrm{H}$
C. Both the statements (A) and (B) are true
D. Both the statements (A) and (B) are false

## Answer:

43. Which of the following process is/are assciated with change of hybridisation of the underlined compounds?
A. $B_{2} H_{6}$ is dissolved in THF
B. $\mathrm{Al}(\mathrm{OH})_{3}$ precipitate dissolved in NaOH
C. $S i F_{4}$ vapour is passed through liquid HF
D. Hydrolysis of $\mathrm{SiCl}_{4}$

## Answer:

## - Watch Video Solution

44. Which of the following is/are correct statement?
A. Zeolites are often used as ion exchange material
B. $\mathrm{SiO}_{2}$ is a linear molecule
C. $C_{12} O_{9}$ is known but $C_{3} O_{2}$ is not
D. Producer gas is less efficient fuel in terms of calorific
value than water gas

## Answer:

## - Watch Video Solution

45. Which of the following statements is/are correct
A. The are $p \pi-d \pi$ bonding is $\left(\mathrm{SiH}_{3}\right)_{3} N$
B. $\pi$ - bond pair of $e^{-}$of each ends are perpendicular to

## each other in $\mathrm{CO}_{2}$

C. $\pi$ - bond pair of $e^{-}$of each ends are perpendicular to each other in $\mathrm{C}_{3} \mathrm{O}_{2}$
D. Carbon is mixture of carbondioxide and $\mathrm{O}_{2}$

## Answer:

## - Watch Video Solution

46. Choose the incorrect statement (s) from the following
A. the anhydride of malonic acid is $\mathrm{C}_{3} \mathrm{O}_{2}$
B. there are two sigma and one pi bond in $C a C_{2}$ moleucle
C. SiC is called carborundum
D. Trisilylamine is pyramidal

## Answer:

## - Watch Video Solution

47. $\mathrm{SiO}_{2}$ reacts with
A. $\mathrm{Na}_{2} \mathrm{CO}_{3}$
B. $C / \Delta$
C. HF
D. $\mathrm{XeF}_{2}$

## Answer:

## ( Watch Video Solution


48.

The compound E is
A. CO
B. $\mathrm{CO}_{2}$
C. $\mathrm{C}_{3} \mathrm{O}_{2}$

## D. Oxide of metal

## Answer:

## - Watch Video Solution


49.

The correct statement about $F$ is
A. it has $3 \sigma$ and $2 \pi$ bond
B. it has $3 \sigma$ bond and one $\pi$ bond
C. it has angular shape
D. it is $H_{2}$ gas

## Answer:

## - Watch Video Solution


50.

The compound H is :
A. $\mathrm{CO}_{2}$
B. $C O$
C. $C a O$

## D. $\mathrm{Ca}(\mathrm{OH})_{2}$

## Answer:

## - Watch Video Solution

51. total number of molecule which hydrolysed at room temperature and hybridization of central atom is $s p^{3} d$ in transition state:
$C C l_{4}, S i C l_{4}, N C l_{3}, P C l_{3}, A s C l_{3}, S F_{6}, P_{4} O_{6}, P_{4} O_{10}, S e F_{6}$

## ( Watch Video Solution

52. The difference between total number of lone pairs and total number of $\sigma$-bonds in $\left[\mathrm{B}_{3} \mathrm{O}_{3}(\mathrm{OH})_{6}\right]^{3-}$ molecular ion

## - Watch Video Solution

53. Borazine is converted into a disubstituted product $B_{3} N_{3} H_{4} X_{2}$. Number of isomers would be:

## D Watch Video Solution

54. Consider the structure of $A l_{2} M e_{6}$ compound and find the value of $\frac{x-y}{z}$ where $x=$ maximum number of atoms that can lie in place having terminal $(A l-M e)$ bonds
$y=$ total number of $3 c-2 e^{-}$bonds
$z=$ total number of atoms that are $s p^{3}$ hydrized.
55. Find the value of $x$ in the tremolite abestos:
$C a_{2} M g_{x}\left(\mathrm{Si}_{4} \mathrm{O}_{11}\right)_{2}(\mathrm{OH})_{2}$

## D Watch Video Solution

56. Consider the following silicates
(a) $\operatorname{BaTi}\left(\mathrm{Si}_{2} \mathrm{O}_{9}\right)$
(b) $\mathrm{ZnCa} a_{2} \mathrm{Si}_{2} \mathrm{O}_{7}$

Then calculate $\mathrm{X}+\mathrm{Y}$, where X and Y are total number of monovalent and divalent oxygen atoms in both silicates respectively.
57. Consider $A l_{2}(\mathrm{OH})_{6}$ compound and calculate the vale of $(X+Y):=Z$

Where $\mathrm{X}=$ Total number of $\left(2 c-2 e^{-}\right)$bond.
Where $Y=$ Total number of $\left(3 c-2 e^{-}\right)$bond.
Where $\mathrm{Z}=$ Total number of $\left(3 c-4 d^{-}\right)$bond.

## - Watch Video Solution

58. Number of hydroxyl groups present in $H_{4} P_{2} O_{6}$ are :
A. 2
B. 4
C. 6
D. 3

## ( Watch Video Solution

59. Write down the electronic configuration of: ItBrgt (i)
$C r^{3+}$
(ii) $P m^{3+}$
(iii) $C u^{+}$
(iv) $C e^{4+}$
$C o^{2+}$
(vi) $L u^{2+}$
(vii) $M n^{2+}$
(viii) $T h^{4+}$
60. Consider the following species: $\left(C_{3} H_{5}\right)_{3} A l$

Find out total number of species which can act as Lewis acid.
(D) Watch Video Solution
61. Consider the following species:
(i) $\mathrm{CH}_{3}^{+}$
(ii) $\left(C_{3} H_{5}\right)_{3} A l$
(iii) HCHO
(iv) $\mathrm{CH}_{4}$
(v) $\left(C_{2} H_{5}\right)_{3} N$
(vl) $T i C l_{4}$
(vii) $\mathrm{CO}_{2}$
(viii) $S i C l 4$
(ix) $B F_{3}$
the find out total number of species which can act as Lewis acid.

## - Watch Video Solution

62. Consider the following species:
(i) $\mathrm{CH}_{3}^{+}$
(ii) $\left(C_{3} H_{5}\right)_{3} A l$
(iii) HCHO
(iv) $\mathrm{CH}_{4}$
(v) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$
(vl) $\mathrm{TiCl}_{4}$
(vii) $\mathrm{CO}_{2}$
(viii) $\mathrm{SiCl}_{4}$
(ix) $B F_{3}$
the find out total number of species which can act as Lewis acid.

## - Watch Video Solution

63. Consider the following species and find out total number of species which are polar and can act as Lewis acid $\mathrm{CCl}_{4}, \mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{AlCl}_{3}, \mathrm{HCHO}, \mathrm{SO}_{3}, \mathrm{SiCl}_{4}, \mathrm{BCl}_{3}, \mathrm{CF}_{4}$

## - Watch Video Solution

64. Consider the following species:
(i) $\mathrm{CH}_{3}^{+}$
(ii) $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{3} \mathrm{Al}$
(iii) HCHO
(iv) $\mathrm{CH}_{4}$
(v) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$
(vl) $\mathrm{TiCl}_{4}$
(vii) $\mathrm{CO}_{2}$
(viii) $\mathrm{SiCl}_{4}$
(ix) $B F_{3}$
the find out total number of species which can act as Lewis acid.

## - Watch Video Solution

65. Consider the following species:
(i) $\mathrm{CH}_{3}^{+}$
(ii) $\left(C_{3} H_{5}\right)_{3} A l$
(iii) HCHO
(iv) $\mathrm{CH}_{4}$
(v) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$
(vl) $\mathrm{TiCl}_{4}$
(vii) $\mathrm{CO}_{2}$
(viii) $\mathrm{SiCl}_{4}$
(ix) $B F_{3}$
the find out total number of species which can act as Lewis acid.
(D) Watch Video Solution
66. Consider the following species:
(i) $\mathrm{CH}_{3}^{+}$
(ii) $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{3} \mathrm{Al}$
(iii) HCHO
(iv) $\mathrm{CH}_{4}$
(v) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$
(vl) $\mathrm{TiCl}_{4}$
(vii) $\mathrm{CO}_{2}$
(viii) $\mathrm{SiCl}_{4}$
(ix) $B F_{3}$
the find out total number of species which can act as Lewis acid.

## - Watch Video Solution

67. Consider the following species:
(i) $\mathrm{CH}_{3}^{+}$
(ii) $\left(\mathrm{C}_{3} \mathrm{H}_{5}\right)_{3} \mathrm{Al}$
(iii) HCHO
(iv) $\mathrm{CH}_{4}$
(v) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$
(vl) $\mathrm{TiCl}_{4}$
(vii) $\mathrm{CO}_{2}$
(viii) $\mathrm{SiCl}_{4}$
(ix) $B F_{3}$
the find out total number of species which can act as Lewis acid.

## - Watch Video Solution

68. Consider the following species:
$\mathrm{CF}_{4}, \mathrm{GeH}_{4}, \mathrm{BCl}_{3}, \mathrm{AlBr}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{PH}_{3}, \mathrm{PCl}_{5}, \mathrm{CO}_{2}, \mathrm{CH}_{4}$ and calculate value of $(x-y)^{2}$ :

Where, x : Total number of species which can act as only lewis acid.
y: total number of species which can act as lewis acid as well as lewis base.

## - Watch Video Solution

69. In the given reaction the value of $x$ is $\qquad$
$\mathrm{B}+x \mathrm{HNO}_{3} \rightarrow \mathrm{H}_{3} \mathrm{BO}_{3}+x \mathrm{NO}_{2}$

## - Watch Video Solution

70. In borazine, the number of delocalized electrons are $\qquad$ .
71. The number of bridge chlorine in $A l_{2} C l_{6}$ is $\qquad$
A. 2
B. 4
C. 6
D. 3

Answer:

- Watch Video Solution

72. In borax number of $s p^{2}$ hybridised atoms are
A. 2
B. 3
C. 4
D. 1

Answer:
( Watch Video Solution
73. One mole aluminium carbide reacts with water to given moles of methane.
A. 2
B. 3
C. 1
D. 4

## - Watch Video Solution

## Jee Main Archive

1. Alum helps in purifying water by
A. forming Si complex with clay particles
B. sulphate part which combines with the dirt and removes it
C. coagulating the mud particles
D. making mud water soluble
2. Glass is a:
A. micro-crystalline solid
B. super-cooled liquid
C. gel
D. polymeric mixture

Answer:
(D) Watch Video Solution
3. Graphite is a soft solid lubricant extremely difficult to melt. The reason for this anomalous behaviour is that graphite
A. is a non-crystalline substance
B. is an allotropic form of diamond
C. has molecules of variable molecular masses like polymers
D. has carbon atoms arranged in large plates of rings of strongly bound carbon atoms with weak interplate bonds
4. The soldiers of Napoleon army while at Alps during freezing winter suffered a serious problem with regard to the tin buttons of their uniform. White metallic tin buttons get converted to grey poweder. This transformation is relate to
A. an interaction with nitrogen of the air at very low temperatures
B. a change in the crystalline structure of tin
C. a change in the partial pressure of oxygen in the air
D. an interaction with water vapour contained in the humid air

## - Watch Video Solution

5. Aluminium chloride exists as dimer, $A l_{2} C l_{6}$ in solid state as well as in solution of non-polar solvents such as benzene. When dissolved in water, it gives :
A. $A l^{3+}+3 C l^{-}$
B. $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-}$
C. $\left[\mathrm{Al}(\mathrm{OH})_{6}\right]^{3-}+3 \mathrm{HCl}$
D. $\mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{HCl}$

## Answer:

6. The states of hybridisation of boron and oxygen atoms in boric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ are respecitivelty :
A. $s p^{2}$ and $s p^{2}$
B. $s p^{2}$ and $s p^{3}$
C. $s p^{3}$ and $s p^{2}$
D. $s p^{3}$ and $s p^{3}$

## Answer:

7. Heating an aqueous solution of aluminium chloride to dryness will give :
A. $A l C l_{3}$
B. $A l_{2} C l_{6}$
C. $A l_{2} O_{3}$
D. $\mathrm{Al}(\mathrm{OH}) \mathrm{Cl}_{2}$

Answer:

- Watch Video Solution

8. The number and type of bonds between two carbon atoms in calcium carbide are
A. one sigma, one pi
B. one sigma, two pi
C. two sigma, one pi
D. two sigma, two pi

## Answer:

## - Watch Video Solution

9. The structure of diborane $\left(B_{2} H_{6}\right)$ contains :
A. foru $2 \mathrm{c}-2 \mathrm{e}$ bond and two $3 \mathrm{c}-2 \mathrm{e}$ bonds
B. Two $2 c-2 e^{-}$bonds and two $3 c-2 e^{-}$bonds
C. Two $2 c-2 e^{-}$bonds and four $3 c-2 e^{-}$bonds

## D. Four $2 c-2 e^{-}$bonds and two $3 c-2 e^{-}$bonds

## Answer:

## - Watch Video Solution

10. in silicon dioxide :
A. each silicon atom is surrounded by four oxygen atoms and each oxygen atom is bounded to two silicon atoms
B. each silicon atom is surrounded by two oxygen atoms
and each oxygen atom is bounded to two silicon atoms
C. silicon atom is bonded to two oxygen atoms
D. there are double bonds between silicon and oxygen atoms

## Answer:

11. Which of the following oxides is amphoteric in character
?
A. CaO
B. $\mathrm{CO}_{2}$
C. $\mathrm{SiO}_{2}$ and SiC
D. $\mathrm{SnO}_{2}$

## - Watch Video Solution

12. The stability of dihalides of $\mathrm{Si}, \mathrm{Ge}, \mathrm{Sn}$ and Pb increases steadily in the sequence
A. $\mathrm{Pb} X_{2} \ll \operatorname{Sn} X_{2} \ll G e X_{2} \ll \operatorname{SiX}_{2}$
B. $G e X_{2} \ll \operatorname{Si} X_{2} \ll \operatorname{Sn} X_{2} \ll \mathrm{~Pb} X_{2}$
C. $S i X_{2} \ll G e X_{2} \ll P b X_{2} \ll \operatorname{Sn} X_{2}$
D. $\operatorname{Si} X_{2} \ll G e X_{2} \ll \operatorname{Sn} X_{2} \ll \mathrm{PbX}_{2}$

## Answer:

13. Among the following substituted silanes the one which will give rise to cross linked silicone polymer on hydrolysis is :
A. $R_{3} \mathrm{SiCl}$
B. $R_{4} S i$
C. $\mathrm{RSiCl}_{3}$
D. $R_{2} \mathrm{SiCl}_{2}$

## Answer:

## - Watch Video Solution

14. Which of the following is the correct statement ?
A. $B_{2} H_{6}, 2 \mathrm{NH}_{3}$ is known as inorganic benzene.
B. Boric acid is a protonic acid.
C. Beryllium exhibits coordination number of six.
D. Chlorides of both beryllium and aluminium have bridged chloride structures in solid phase.

## Answer:

## - Watch Video Solution

15. The bond dissociation energy of $B-F$ in $B F_{3}$ is 646 kJ $\mathrm{mol}^{-1}$ whereas that of C-F in $C F_{4}$ is $515 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The correct reason for higher B-F bond dissociation energy as compared to that of C-F bond is
A. smaller size of B-atom compared to that of C-atom
B. stronger $\sigma$ bond between B and F in $B F_{3}$ as compared to that between C and F in $C F_{4}$
C. significant $p \pi-p \pi$ interaction between B and F in
$B F_{3}$ whereas there is no possibility of such interaction between C and F in $C F_{4}$
D. lower degree of $p \pi-p \pi$ interaction between B and F in $B F_{3}$ than that between C and F in $C F_{4}$.

## Answer:

## - Watch Video Solution

16. Boron cannot form which one of the following anions ?
A. $B F_{6}^{3-}$
B. $B H_{4}^{-}$
C. $B(O H)_{4}^{-}$
D. $\mathrm{BO}_{2}^{-}$

## Answer:

## ( Watch Video Solution

17. Which of the following exists as covalent crystals in the solid state?
A. Phosphate
B. lodine
C. Silicone

## D. Sulphur

## Answer:

## ( Watch Video Solution

18. Match the items in Column-I with its main use listed in

Column-II :

| Column-I |  | Column-II |  |
| :---: | :--- | :---: | :--- |
| (I) | Silica geI | (p) | Transistor |
| (II) | Silicon | (q) | Ion-exchanger |
| (III) | Silicone | (r) | Drying agent |
| (IV) | Silicate | (s) | Sealant |

A. (I)-(r), (II)-(p), (III)-(s), (IV)-(q)
B. (I)-(s), (II)-(p), (III)-(q), (IV)-®
C. (I)-(q), (II)-(s), (III)-(p), (IV)-®
D. (I)-(q), (II)-(p), (III)-(s), (IV)-®

## Answer:

## - Watch Video Solution

19. Assertion : Among the carbon allotropes, diamond is an insulater, wherea, graphite is a good conductor of electricity.

Reason : Hybridization of carbon in diamond and graphite are $s p^{3}$ and $s p^{2}$, respectively.
A. Both assertion and reason are correct, and the reason is the correct explanation for the assertion.
B. Both assertion and reason are correct, but the reason is not the correct explanation for the assertion.
C. Assertion is incorrect statement, but the reason is correct.
D. Both assertion and reason are incorrect.

## Answer:

## - Watch Video Solution

20. The number of 2 -centre-2-electron and 3-centre-2-
electron bonds in $B_{2} H_{6}$, respectively, are
A. 2 and 1
B. 4 and 2
C. 2 and 2
D. 2 and 4

## Answer:

## - Watch Video Solution

21. Aluminium is usually found in +3 oxidation state. In contrast, thallium exists in +1 and +3 oxidation states. This is due to:
A. diagonal relationship
B. lanthanoid contraction
C. inert pair effect
D. lattice effect

## (D) Watch Video Solution

22. The chloride that CANNOt get hydrolysed is :
A. $S n C l_{4}$
B. $\mathrm{CCl}_{4}$
C. $\mathrm{SiCl}_{4}$
D. $\mathrm{PbCl}_{4}$

## Answer:

23. The element that does NOT show catenation is :
A. Si
B. Pb
C. Sn
D. Ge

## Answer:

## D Watch Video Solution

24. $p \pi-p \pi$ multiple bond is seen in
A. Si
B. conversion of white tin to grey tin
C. gel
D. Sn

## Answer:

## - Watch Video Solution

25. The relative satbility of +1 oxidation state of group 13
elements follow the order:
A. Tl It In It Ga It Al
B. Al It Ga It Tl It In
C. Ga It Al It In It Tl
D. Al It Ga It In It Tl

## - Watch Video Solution

26. Correct statements among a to d regarding silicones are :
(a) They are polymers with hydrophobic character.
(b) They are biocompatible.
( c ) In general, they have high thermal stability and low dielectric strenght.
(d) Usually, they are resistant to oxidation and used as greases.
A. They are polymers with hydrophobic character(a), (b),
(c) and (d)
B. They are biocompatible(a), (b) and (d) only
C. (a) and (b) only
D. (a), (b) and (c) only

## Answer:

( Watch Video Solution
27. The order of catenation power is
A. $C>S n>S \approx G e$
B. $G e>S n>S i>C$
C. $S i>S n>C>G e$
D. $C>S i>G e \approx S n$

## - Watch Video Solution

28. $C_{60}$ an allotrope of carbon contains
A. 12 hexagons and 20 pentagons
B. 16 hexagons and 16 pentagons
C. 20 hexagons and 12 pentagons
D. 18 hexagons and 14 pentagons

## Answer:

29. $\mathrm{B}_{2} \mathrm{H}_{6}$ reacts with $\mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ respectively to form?
A. $\mathrm{HBO}_{2}$ and $\mathrm{H}_{3} \mathrm{BO}_{3}$
B. $\mathrm{B}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{3} \mathrm{BO}_{3}$
C. $B_{2} O_{3}$ and $\left[\mathrm{BH}_{4}\right]^{-}$
D. $\mathrm{H}_{3} \mathrm{BO}_{3}$ and $\mathrm{B}_{2} \mathrm{O}_{3}$

## Answer:

D Watch Video Solution
30. The $\mathrm{C}-\mathrm{C}$ bond length is maximum in :
(a) $C_{60}$
(b)diamond
(c) $C_{70}$
(d)All of these
A. $C_{60}$
B. graphite
C. $C_{70}$
D. diamond

## Answer:

## - Watch Video Solution

31. No. Of pentagons in $C_{60}$ and Triangles in white Phosphorus are:
A. 12 and 4
B. 20 and 3
C. 12 and 3
D. 20 and 4

## Answer:

## - Watch Video Solution

32. The correct statements among I to III regarding group

13 element oxides are,
(I) Boron trioxide is acidic.
(II) Oxides of aluminium and gallium are amphoteric.
(III) Oxides of indium and thallium are basic.
A. (I), (II) and (III)
B. (I) and (II) only
C. (II) and (III) only
D. (I) and (III) only

Answer:
( Watch Video Solution
33. The amorphous form of silica is
A. tridymite
B. kieselguhr
C. cristobalite
D. quartz

## ( Watch Video Solution

34. The reaction of $H_{3} N_{3} B_{3} C l_{3}(A)$ with $\mathrm{LiBH}_{4}$ in tetrahydrofuran gives inorganic benzene (B). Further, the reaction of (A) with (C) leads of $H_{3} N_{3} B_{3}(M e)_{3}$.

Compounds (B) and (C) respectively, are :
A. Borazine and MeMgBr
B. Diborane and MeMgBr
C. Borazine and MeBr
D. Boron nitride and MeBr

## Watch Video Solution

## Jee Advanced Archive

1. Carbon acts as an abrasive and also as a lubricant, explain.

## - Watch Video Solution

2. Moderate electrical conductivity is shown by
A. silica
B. graphite
C. diamond

## D. None of the above

## Answer:

## - Watch Video Solution

3. Give reason for the following in one or two sentences :
"Solid carbon dioxide is known as dry ice."

## (D) Watch Video Solution

4. Carbon tetrachloride burns in air when lighted ti give phosgene.

## 5. Give reasons

Graphite is used as lubricant.

## ( Watch Video Solution

6. Graphite is used as a lubricant in machinery.

## (D) Watch Video Solution

7. All the $A l-C l$ bonds in $A l_{2} C l_{6}$ are equivalent.

## ( Watch Video Solution

8. Each entry in column $X$ is in some way related to the entries in column and $Z$. Match the appropriate entries.

| columns $Y$ and $Z$. Match the appropriate entries. |  |  |
| :--- | :--- | :--- |
| $\boldsymbol{X}$ | $\boldsymbol{Y}$ | $\boldsymbol{Z}$ |
| Yeast | Fermentation | Ethanol |
| Mica | Graphite | Abrasive |
| Superphosphate | Crystalline cubic | Insulator |
| Carbon fibres | Layer structure | Fertiliser |
| Rock salt | Diamond structure | Reinforced <br> plastics |
| Carborundum | Bone ash | Preservative |

## - Watch Video Solution

9. Write the balanced equation for the preparation of crystalline silicon from $\mathrm{SiCl}_{4}$.
10. The hydrolysis of alkyl substituted chlorosilanes gives

## D Watch Video Solution

11. The tendency for catenation is much higher for $C$ than for $S i$.

## - Watch Video Solution

12. The basic nature of the hydroxides of group 13 decreases progressively down the group.(T/F)
13. Diamond is

D Watch Video Solution
14. One recently discovered allotrope of carbon (e.g. $C_{60}$ ) is commonly known as $\qquad$

## ( Watch Video Solution

15. The hydrolysis of trialkylchlorosilane , $R_{3} S i C l$, yields
16. Which of the following oxides is neutral ?
A. CO
B. $\mathrm{SnO} \mathrm{O}_{2}$
C. ZnO
D. $\mathrm{SiO}_{2}$

## Answer:

## ( Watch Video Solution

17. Which of the following halides is least stable and has doubtful existence?
A. $\mathrm{CCl}_{4}$
B. $G e I_{4}$
C. $\mathrm{SnI}_{4}$
D. $\mathrm{PbI}_{4}$

## Answer:

## ( Watch Video Solution

18. Aluminium sulphide gives a foul odour when it becomes damp. Write a balanced chemical equation for the reaction.

## ( Watch Video Solution

19. Anhydrous $A l C l_{3}$ is covalent from the data given below, perdict whether it would remain covalent or between ionic
in aqueous solution
$I E_{1}$ of $\mathrm{Al}=5140 \mathrm{kJmol}^{-1}$
$\Delta_{\mathrm{hyd}} H^{\ominus}\left(A l^{3+}\right)=-4665 \mathrm{kJol}^{-1}$
$\Delta_{\mathrm{hyd}} H^{\ominus}\left(C l^{\ominus}\right)=-380 \mathrm{kJmol}^{-1}$

## - Watch Video Solution

20. A liquid which is permanently supercooled is frequently called a ........... .

## - Watch Video Solution

21. Statement-1 : $\mathrm{Al}(\mathrm{OH})_{3}$ is amphoteric in nature.

Statement-2 : It cannot be used as an antacid.
A. Statement-1 is True, Statement-2 is True and

Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True and

Statement-2 is NOT a correct explanation for

## Statement-1

C. Statement-1 is True, Statement-2 is False
D. Statement-1 is False, Statement-2 is True

## Answer:

## D Watch Video Solution

22. Draw the structure of a cyclic silicate, $\left(\mathrm{Si}_{3} \mathrm{O}_{9}\right)^{6-}$ with proper labelling.

## Watch Video Solution

23. In compounds of type $E C I_{3}$, where $E=B P$, As or $B$, the angles $C I-E-C I$ for different $E$ are in the order
A. B It $\mathrm{P}=\mathrm{As}=\mathrm{Bi}$
B. B gt P gt As gt Bi
C. $B$ gt $P=A s=B i$
D. B It P It As It Bi

## Answer:

24. Assertion : Among $\mathrm{SiCl}_{4}$ and $\mathrm{CCl}_{4}$ only $\mathrm{SiCl}_{4}$ reacts with water.

Reason : $\mathrm{SiCl}_{4}$ is ionic and $C C l_{4}$ is covalent.
A. Statement-1 is True, Statement-2 is True and

Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True and

Statement-2 is NOT a correct explanation for

Statement-1
C. Statement-1 is True, Statement-2 is False
D. Statement- 1 is False, Statement- 2 is True
25. Compound X on reduction with $\mathrm{LiAlH}_{4}$ gives a hydride Y containing $21.72 \%$ hydrogen and other products. The compound Y reacts with air expolosively resulting in boron trioxide. What are X and Y respectively ?

## D Watch Video Solution

26. How is boron obtained from borax ? Give chemical equations with reaction conditions.

## - Watch Video Solution

27. Write the structure of $B_{2} H_{6}$ and its reaction with HCl (excess).

## - Watch Video Solution

28. The correct order of acidic strength of the following is
A. $\mathrm{CaO}<\mathrm{CuO}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CO}_{2}$
B. $\mathrm{H}_{2} \mathrm{O}<\mathrm{CuO}<\mathrm{CaO}<\mathrm{CO}_{2}$
C. $\mathrm{CaO}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CuO}<\mathrm{CO}_{2}$
D. $\mathrm{H}_{2} \mathrm{O}<\mathrm{CO}_{2}<\mathrm{CaO}<\mathrm{CuO}$

## Answer:

29. $\mathrm{Me}_{2} \mathrm{SiCl}_{2}$ on hydrolysis will produce
A. $(\mathrm{Me})_{2} \mathrm{Si}(\mathrm{OH})_{2}$
B. $(M e)_{2} S i=O$
C. $\left[-O-(M e)_{2} S i-\right]_{n}$
D. $M e_{2} \operatorname{SiCl}(O H)$

## Answer:

- Watch Video Solution

30. Aluminium trifluoride is insoluble in anhydrous HF but dissolves on addition of NaF. Aluminium trifluoride
precipitates out of the resulting solution when gaseous
$B F_{3}$ is bubbled through. Give reasons.

## - Watch Video Solution

31. Name the type of the structure of silicate in which one oxygen atom of $\left[\mathrm{SiO}_{4}\right]^{4-}$ is shared ?
A. pyrosilicate
B. sheet silicate
C. linear chain silicate
D. three-dimensional silicate

## Answer:

32. Starting from $\mathrm{SiCl}_{4}$ prepare the following in steps not exceeding the number give in parantheses ( give reaction only )
a. Silicon (1)
b. Linear silicone containing methyl groups only (4)
c. $\mathrm{Na}_{2} \mathrm{SiO}_{3}(3)$.

## - Watch Video Solution

33. Match the following :

| Column-I |  | Column-II |  |
| :---: | :---: | :---: | :---: |
| (A) | $\mathrm{Bi}^{3+} \longrightarrow \mathrm{BiO}^{+}{ }^{+}$ | (p) | Heat |
| (B) | $\left.\left[\mathrm{AlO}_{2}\right]^{-} \longrightarrow \mathrm{AlOH}\right)_{3}$ | (q) | Hydrolysis |
| (C) | $\mathrm{SiO}_{4}^{4-} \longrightarrow \mathrm{Si}_{2} \mathrm{O}{ }_{7}^{6-}$ | (r) | Acidification |
| (D) | $\left.\left.\left(\mathrm{B}_{4} \mathrm{O}_{7}^{2-}\right) \longrightarrow \mathbb{B O H}\right)_{3}\right]$ | (s) | Dilution by water |

34. 

$B(O H)_{3}+\mathrm{NaOH} \square \square \square N a B O_{2}+N a\left[B(O H)_{4}\right]+H_{2} O$
How can this reaction is made to proceed in forward direction?
A. Addition of cis 1, 2-diol
B. Addition of borax
C. Addition of trans 1, 2-diol
D. Addition of $\mathrm{Na}_{2} \mathrm{HPO}_{4}$

## Answer:

35. Assertion : Boron forms only covalent compounds.,

Reason : Boron has very small size.
A. Statement-1 is True, Statement-2 is True and

Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1
C. Statement- 1 is True, Statement- 2 is False
D. Statement-1 is False, Statement-2 is True

## Answer:

36. Statement I In water, orthoboric acid behaves as a weak monobasic acid.

Statement II In water, orthoboric acid acts as a proton donor.
A. Statement-1 is True, Statement-2 is True and

Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1
C. Statement- 1 is True, Statement- 2 is False
D. Statement-1 is False, Statement-2 is True

## Answer:

37. $\mathrm{H}_{3} \mathrm{BO}_{3}$ is :
A. monobasic and weak Lewis acid
B. monobasic and weak Bronsted acid
C. monobasic and strong Lewis acid
D. tribasic and weak Bronsted acidq

## Answer:

## - Watch Video Solution

38. Statement I: $\mathrm{Pb}^{4+}$ compounds are stronger oxidizing agents than $S n^{4+}$ compounds.

Statement II:The higher oxidation states for the group 14 elements are more stable for the heavier members of the group due to 'inert pair effect'.
A. Statement-1 is True, Statement-2 is True and

Statement-2 is a correct explanation for Statement-1
B. Statement-1 is True, Statement-2 is True and

Statement-2 is NOT a correct explanation for

## Statement-1

C. Statement- 1 is True, Statement- 2 is False
D. Statement-1 is False, Statement-2 is True

## Answer:

39. In the reaction.
$2 X+B_{2} h_{6} \rightarrow\left[B H_{2}\left(X_{2}\right)\right]^{+}\left[B H_{4}\right]^{-}$
$X$ cannot be
A. $\mathrm{NH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{NH}_{2}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$
D. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}$

## Answer:

- Watch Video Solution

40. The value of $n$ in the molecular formula $B e_{n} A l_{2} S i_{6} O_{18}$
41. With respect to graphite and diamond, which of the statements given below are correct?
(1) Graphite is harder than diamond.
(2) Graphite has higher electrical conductivity than diamond.
(3) Graphite has higher thermal conductivity than diamond.
(4)Graphite has higher $C-C$ bond order than diamond.
A. Graphite is harder than diamond
B. Graphite has higher electrical conductivity than diamond
C. Graphite has higher thermal conductivity than diamondq
D. Graphite has higher $C-C$ bond order than diamond

## Answer:

## - Watch Video Solution

42. The correct statement (s) for orthoboric acid is/are
A. It behaves as a weak acid in water due to self ionization
B. Acidity of its aqueous solution increases upon addition of ethylene glycol
C. It has a three-dimensional structure due to hydrogen bonding
D. It is a weak electrolyte in water

## Answer:

## - Watch Video Solution

43. Three moles of $B_{2} H_{6}$ are completely reacted with methanol. The number of moles of boron containing product formed is.
44. Under hydrolytic conditions, the compounds used for preparation of linear polymer and for chain termination, respectively, are
A. $\mathrm{CH}_{3} \mathrm{SiCl}_{3}$ and $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$
B. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SiCl}_{2}$ and $\mathrm{CH}_{3} \mathrm{SiCl}_{3}$
D. $\mathrm{SiCl}_{4}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$

## Answer:

## - Watch Video Solution

45. The correct order of atomic radii in group 13 elements is
A. Al It Ga It In It Tl
B. Ga It Al It In It Tl
C. Al It In It Ga It Tl
D. Al It Ga It Tl It In

## Answer:

## - Watch Video Solution

46. The crystalline form of borax has
A. tetranuclear $\left.\left[\mathrm{B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4}\right)\right]^{2-}$ unit
B. all boron atoms in the same plane
C. equal number of $s p^{2}$ and $s p^{3}$ hybridized boron atoms

## D. one terminal hydroxide per boron atom

## Answer:

## - Watch Video Solution

47. Among the following, correct statement is :
A. $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$ has the three - centre two-electron bonds in its dimeric structure
B. $B H_{3}$ has the three-centre two-electron bonds in its dimeric structure
C. $\mathrm{AlCl}_{3}$ has the three-centre two-electron bonds in its dimeric structure
D. The Lewis acidity of $B C l_{3}$ is greater than that of

## $\mathrm{AlCl}_{3}$

## Answer:

## - Watch Video Solution

48. A tin chloride $Q$ undergoes the following reaction (not balanced) $\mathrm{Q}+\mathrm{Cl}-\mathrm{XQ}+\mathrm{Me} 3 \mathrm{~N} \rightarrow \mathrm{Y} \mathrm{Q}+\mathrm{CuCl} 2 \rightarrow \mathrm{Z}+\mathrm{CuCl} \mathrm{X}$ is monoanion having pyramidal geometry. Both $Y$ and $Z$ are neutral compounds. Choose the correct options(s)
A. The central atom in $Z$ has one lone pair of electrons
B. The oxidation state of the central atom in $Z$ is +2
C. The central atom in X is $s p^{3}$ hybridized

## D. There is a coordinate bond $Y$

## Answer:

- Watch Video Solution

