©゙" doubtnut

India's Number 1 Education App

CHEMISTRY

VMC MODULES ENGLISH

STATES OF MATTER

Fundamental

1. Helium gas at 300 K is shifted from a vessel
of $250 \mathrm{~cm}^{3}$ to a vessel of 1 L capacity. The pressure of gas will
A. become double
B. becomes four times
C. decrease to half of the original value
D. decrease to one-fourth of the original
value

Answer: D

D Watch Video Solution

2. The correct representation of Charle's law is

given in

Answer: C
3. Which of the following does not show the relationship between Boyle's law and Charles' law?

$$
\begin{aligned}
& \text { A. } \frac{P_{1}}{P_{2}} \\
& \text { B. } P V=K \\
& \text { C. } \frac{P_{2}}{P_{1}}=\frac{V_{1}}{V_{2}} \\
& \text { D. } \frac{V_{2}}{V_{1}}=\frac{P_{1}}{P_{2}} \times \frac{T_{2}}{T_{1}}
\end{aligned}
$$

4. A cylinder is filled with a gaseous mixture containing equal masses of $C O$ and N_{2}. The partial pressure ratio is:
A. $P_{N_{2}}=P_{C O}$
B. $P_{C O}=0.875 P_{N_{2}}$
C. $P_{C O}=2 P_{N_{2}}$
D. $P_{C O}=0.5 P_{N_{2}}$
5. Which of the following gases will have the highest $R M S$ velocity at $25^{\circ} C$?
A. Oxygen
B. Carbon dioxide
C. Sulphur dioxide
D. Carbon monoxide

Answer: D
6. The value of van der Waals constant a is the maximum for
A. chlorine
B. hydrogen
C. nitrogen
D. helium

Answer: A
7. Which of the following is correct decreasing order of r.ms. velocity at same temperature for $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{CO}_{2}$ and O_{2}

$$
\text { A. } O_{2}>C O_{2}>N_{2}>H_{2}
$$

$$
\text { B. } H_{2}>N_{2}>O_{2}>C O_{2}
$$

C. $H_{2}>N_{2}>C O_{2}>O_{2}$

$$
\text { D. } N_{2}>\mathrm{CO}_{2}>\mathrm{H}_{2}>\mathrm{O}_{2}
$$

Answer: B
8. The kinetic energy of one mole of any gas depends upon
A. pressure of the gas
B. nature of the gas
C. volume of the gas
D. absolute temperature of the gas

Answer: D
9. The ratio of most probable velocity, average
velocity and root mran square velocity is
A. $\sqrt{2}: \sqrt{\frac{8}{\pi}}: \sqrt{3}$
B. $1: \sqrt{2}: \sqrt{3}$
C. $\sqrt{2}: \sqrt{3}: \sqrt{8}$
D. $1: \sqrt{8 \pi}: \sqrt{3}$

Answer: A

D Watch Video Solution
10. Collision frequency (Z) of a gas at a particular pressure
A. decreases with the rise in temperature
B. increases with the rise in temperature
C. decreases initially and thereafter
increases
D. unpredictable

Answer: B

D Watch Video Solution

11. The critical temperature of a substance is

A. the temperature above which the substance decomposes
B. the temperature above which a
substance can exist only as a gas
C. melting point of the substance
D. boiling point of the substance

Answer: B
12. Dalton's law of partial pressure will not apply to which of the following mixture of gases
A. H_{2} and SO_{2}
B. H_{2} and Cl_{2}
C. H_{2} and CO_{2}
D. CO_{2} and Cl_{2}

Answer: B
13. The value of van der Waals constant a for
the gases $\mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{NH}_{3}$, and CH_{4} are 1.360, 1.390, 4.170 , and $2.253 L^{2}$ atmmol $^{-2}$,
respectively. The gas which can most easily be
liquefied is
A. O_{2}
B. N_{2}
C. NH_{3}
D. CH_{4}

Answer: C

D Watch Video Solution

14. Kinetic energy and pressure of a gas of unit volume are related as:
A. $P=\frac{2}{3} E$
B. $P=\frac{3}{2} E$
C. $P=\frac{1}{2} E$
D. $P=2 E$

Answer: A

- Watch Video Solution

15. For the given ideal gas equation
$P V=n R T$, answer the following questions:
An ideal gas will have maximum density when
A. $P=0.5 \mathrm{~atm}, T=600 \mathrm{~K}$
B. $\mathrm{P}=2$ atm, $\mathrm{T}=150 \mathrm{~K}$
C. $\mathrm{P}=1 \mathrm{~atm}, \mathrm{~T}=300 \mathrm{~K}$
D. $\mathrm{P}=1.0 \mathrm{~atm}, \mathrm{~T}=500 \mathrm{~K}$

Answer: B

D Watch Video Solution

16. If pressure becomes double at the same absolute temperature on $2 \mathrm{LCO}_{2}$, then the volume of CO_{2} becomes
A. 2 L
B. 4 L
C. 5 L
D. 1 L

Answer: D

D Watch Video Solution

17. If $20 \mathrm{~cm}^{3}$ gas at 1 atm is expanded to $50 \mathrm{~cm}^{3}$
at constant T, then what is the final pressure
A. $20 \times \frac{1}{50}$
B. $50 X X \frac{1}{20}$
C. $1 X X \frac{1}{20} X X 50$
D. None of these

D Watch Video Solution

18. A 10 g of a gas at atmospheric pressure is
cooled from $273^{\circ} C$ to $0^{\circ} C$ eeping the volume
constant, its pressure would become
A. $1 / 2$ atm
B. $1 / 273$ atm
C. 2 atm
D. 273 atm

D Watch Video Solution

19. Pure hydrogen sulphide is stored in a tan
of 100 litre capacity at $20^{\circ} \mathrm{C}$ and 2 atm
pressure. The mass of the gas will be
A. 34 g
B. 340 g
C. 282.4 g
D. 28.24 g

Answer: C

- Watch Video Solution

20. How many moles of He gas occupy 22.4
litres at $30^{\circ} \mathrm{C}$ and one atmospheric pressure
A. 0.9
B. 1.11
C. 0.11
D. 1

Answer: A

D Watch Video Solution

21. Volume of 0.5 mole of a gas at 1 atm.
pressure and $273^{\circ} \mathrm{C}$ is
A. 22.4 litres
B. 11.2 litres
C. 44.8 litres
D. 5.6 litres

Answer: A

- Watch Video Solution

22. Pressure of a mixture of 4 g of O_{2} and 2 g of H_{2} confined in a bulb of 1 litre at $0^{\circ} C$ is
A. 25.215 atm
B. 31.205 atm
C. 45.215 atm
D. 15.210 atm

Answer: A

- Watch Video Solution

23. At S.T.P., the density of nitrogen monoxide is
A. $3.0 g L^{-1}$
B. $30 g L^{-1}$
C. $1.3 g L^{-1}$
D. $2.68 g L^{-1}$

Answer: C

D Watch Video Solution

24. A gaseous mixture contains 56 g of $N_{2}, 44$
$\mathrm{g} \mathrm{CO}_{2}$ and 16 g of CH_{4} The total pressure of
the mixture is 720 mm Hg . The partial pressure of CH_{4} is
A. 180 mm
B. 360 mm
C. 540 mm

D. 720 mm

Answer: A

D Watch Video Solution

25. Equal weights of ethane and hydrogen are mixed in an empty container at $25^{\circ} \mathrm{C}$. The fraction of the total pressure exerted by hydrogen is :
A. $1: 2$
B. 1:1
C. $1: 16$
D. $15: 16$

Answer: D

- Watch Video Solution

26. A gas diffuses at a rate which is twice that of another gas B. The ratio of molecular weights of A to B is
A. 1
B. 0.75
C. 0.5
D. 0.25

Answer: D

D Watch Video Solution
27. The kinetic energy for 14 g of nitrogen gas
at $127^{\circ} \mathrm{C}$ is nearly (mol. Mass of nitrogen $=28$
and gas constant $=8.31 \mathrm{~J} / \mathrm{mol} \mathrm{K}$)
A. 1.0 J
B. 4.15 J
C. 2493 J
D. 3.3 J

Answer: C

D Watch Video Solution

28. The densities of two gases are in the ratio

of $1: 16$. The ratio of their rates of diffusion is
A. 16: 1
B. $4: 1$
C. 1:4
D. 1:16

Answer: B

D Watch Video Solution
29. The average kinetic energy of an ideal gas per molecule in SI unit at $25^{\circ} C$ will be:
A. $6.17 \times 10^{-21} k J$
B. $6.17 \times 10^{-21} J$
C. $6.17 \times 10^{-20} J$
D. $7.16 \times 10^{-20} J$

Answer: B

D Watch Video Solution

30. At certain temperature, the r.m.s. velocity
for CH_{4} gas molecules is $100 \mathrm{~m} / \mathrm{sec}$. This
velocity for SO_{2} gas molecules at same

temperature will be

A. $400 \mathrm{~m} / \mathrm{sec}$
B. $200 \mathrm{~m} / \mathrm{sec}$
C. $50 \mathrm{~m} / \mathrm{sec}$
D. $25 \mathrm{~m} / \mathrm{sec}$

Answer: C
(Watch Video Solution
31. The temperature of 20 litres of nitrogen
was increased from 100 K to 300 K at a
constant pressure. Change in volume will be
A. 80 litre
B. 60 litre
C. 40 litre
D. 20 litre

Answer: C

D Watch Video Solution
32. 10 g of a gas at NTP occupies a volume of 2
litres. At what temperature will the volume be double, pressure and amount of the gas remaining same?
A. 273 K
B. 546 K
C. $-273^{\circ} C$
D. $546^{\circ} \mathrm{C}$

Answer: B
33. If 1 litre of N 2 at $27^{\circ} \mathrm{C}$ and 760 mm Hg contains N molecules, 4 litres of O_{2} under the same conditions of temperature and pressure, shall contain
A. N molecules
B. 2 N molecules
C. $\frac{N}{4}$ molecules
D. 4 N molecules

Answer: D

D Watch Video Solution

34. Two gases A and B, having the mole ratio
of $3: 5$ in a container, exert a pressure of 8
atm. If A is removed, what would be the pressure due to B only, temperature remaining constant?
A. 1 atm
B. 2 atm

C. 4 atm

D. 5 atm

Answer: D

D Watch Video Solution

35. If 1 litre of a gas A at 600 mm and 0.5 litre of gas B at 800 mm are taken in a 2-litre bulb, the resulting pressure is

A. 1500 mm

B. 1000 mm

C. 200 mm
D. 500 mm

Answer: D

D Watch Video Solution

36. Two grams of dihydrogen diffuse from a container in 10 minutes. How many gram of dioxygen would diffuse through the same

conditions?

A. 0.5 g
B. 4 g
C. 6 g
D. 8 g

Answer: D
(Watch Video Solution
37. The root mean square speed of gas molecules at a temperature $27 K$ and pressure 1.5 bar is $1 \times 10^{4} \mathrm{~cm} / \mathrm{sec}$ If both temperature and pressure are raised three times calculate the new rms speed of gas molecules.

> A. $9 \times 10^{4} \mathrm{~cm} / \mathrm{s}^{2}$
> B. $3 \times 10^{4} \mathrm{~cm} / \mathrm{s}$
> C. $\sqrt{3} \times 10^{4} \mathrm{~cm} / \mathrm{s}$
> D. $1 \times 10^{4} \mathrm{~cm} / \mathrm{s}$

Answer: C
A. $P_{\text {ideal }}>P_{\text {real }}$
B. $V_{\text {ideal }}=V_{\text {real }}$
C. $P_{\text {ideal }}<P_{\text {real }}$
D. $V_{\text {ideal }}<V_{\text {real }}$

Answer: A and D
39. A 10 litre gas is inserted into a car tyre at 4 atm and $27^{\circ} \mathrm{C}$. The temperature of tyre increase to $57^{\circ} \mathrm{C}$ during driving. What would be the pressure of gas during driving?
A. 3.1 atm
B. 4.4 atm
C. 300 mmHg
D. 2270 mmHg

D Watch Video Solution

40. A gas will approach ideal behaviour at
A. Low temperature and low pressure
B. High temperature and low presssure
C. High temperature and high pressure
D. Critical temperature

- Watch Video Solution

41. The temperature at which a real gas obeys
the ideal gas laws over a wide range of pressure is called
A. Critical temperature
B. Boyle's temperature
C. Inversion temperature
D. Reduced temperature
42. At very high pressure, the van der Waals equation reduces to

$$
\begin{aligned}
& \text { A. } P V=R T-\frac{a}{V} \\
& \text { B. } P V=R T \\
& \text { C. } P V=R T+P b \\
& \text { D. } P V=\frac{a R T}{V_{2}}
\end{aligned}
$$

Answer: C
43. According to Charles' law, at constant pressure, 100 ml of a given mass of a gas with $10^{\circ} C$ rise in temperature will become ($\frac{1}{273}=$ $0.00366)$
A. 100.0366 ml
B. 99.9634 ml
C. 103.66 ml
D. 100.366 ml

Answer: C

D Watch Video Solution

44. The root mean square velocity of hydrogen at S.T.P.is
A. $1.8 \times 10^{5} \mathrm{~cm} \mathrm{sec}^{-1}$
B. $3.6 \times 10^{5} \mathrm{~cm} \mathrm{sec}^{-1}$
C. $1.8 \times 10^{10} \mathrm{~cm} \mathrm{sec}^{-1}$
D. $1.8 \times 10^{8} \mathrm{~cm} \mathrm{sec}^{-1}$

Answer: A

D Watch Video Solution

45. Cooling takes place when real gas expands
adiabatically at
A. Inversion temperature $=\frac{2 a}{R b}$
B. Boyle's temperature $=\frac{a}{R b}$
C. Critical temperature $=\frac{8 a}{27 R b}$
D. None of the above

Answer: A

- Watch Video Solution

46. To which of the following mixture Dalton's
law of partial pressure is not applicable?
A. H_{2} and He
B. NH_{3} and HCl
C. O_{2} and H_{2}
D. N_{2} and O_{2}

Answer: B

D Watch Video Solution

47. 0.24 g of a volatile gas, upon vaporisation gives 45 mL vapour at NTP. What will be the
vapour density of the substance? (Density of
$\left.H_{2}=0.089\right)$
A. 95.39
B. 5.993
C. 95.93
D. 59.73

Answer: D

D Watch Video Solution

48. 50 mL of hydrogen diffuses out through a
small hole from a vessel in 20 minutes, time needed for 40 mL of oxygen to diffuse out is:
1) $12 \min 2) 64 \min 3) 8 \min 4) 32 \min$
A. 12 min
B. 64 min
C. 8 min
D. 32 min

Answer: B

D Watch Video Solution

49. 50 mL of a gas A diffuse through a membrane in the same time as for the diffusion of 40 mL of a gas B under identical pressure temperature conditions. If the
molecular weight of $A=64$ that of B would be

A. 100
B. 250
C. 200
D. 80

Answer: A
(Watch Video Solution
50. The rms speed at NTP of a gas can be calculated from the expression:
A. $\sqrt{\frac{3 P}{d}}$
B. $\sqrt{\frac{3 P V}{M}}$
C. $\sqrt{\frac{3 R T}{M}}$
D. all of the above

Answer: D

1. As the temperature is raised from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$, the average kinetic energy of neon atoms changes by a factor of which of the following?
A. $\frac{1}{2}$
B. 2
C. $\frac{313}{293}$
D. $\sqrt{\left(\frac{313}{293}\right)}$

D Watch Video Solution

2. If both gases (O_{2} and He) have same temperature so rate of diffusion of O_{2} will be
A. Four times of He
B. Two times of He
C. 0.35 times of He
D. eighth times of He

Answer: C

- Watch Video Solution

3. Which of the following volume-temperature
($V-I$) plots represents the behaviour of 1mole of an ideal gas at the atmospheric pressure?
A.
B.
C.

Answer: C

D Watch Video Solution

4. At $100^{\circ} C$ and 1 atm, if the density of the liquid water is $1.0 \mathrm{gcm}^{-3}$ and that of water vapour is $0.00006 \mathrm{gcm}^{-3}$, then the volume occupied by water molecule in 1 L steam at this temperature is:
A. $6 \mathrm{~cm}^{3}$
B. $60 \mathrm{~cm}^{3}$
C. $0.6 \mathrm{~cm}^{3}$
D. $0.06 \mathrm{~cm}^{3}$

Answer: C

- Watch Video Solution

5. The RMS velocity of hydrogen is $\sqrt{7}$ times
the RMS velocity of nitrogen. If T is the temperature of the gas

$$
\begin{aligned}
& \text { A. } T\left(H_{2}\right)=T\left(N_{2}\right) \\
& \text { B. } T\left(H_{2}\right)>T\left(N_{2}\right) \\
& \text { C. } T\left(H_{2}\right)<T\left(N_{2}\right) \\
& \text { D. } T\left(H_{2}\right)=\sqrt{7} T\left(N_{2}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

6. The compressibility of a gas is less than unity at STP. Therefore,
A. $V_{m}>22.4 L$
B. $V_{m}<22.4 L$
C. $V_{m}=22.4 L$
D. $V_{m}=44.8 L$

Answer: B

D Watch Video Solution

7. At $25^{\circ} \mathrm{C}$ and 730 mm pressure, 380 mL of dry oxygen was collected.If the temperature is

at 760 mm pressure?

A. 365 mL
B. 449 mL
C. 569 mL
D. 621 mL

Answer: A
(Watch Video Solution
8. The volume of 2.89 g of carbon monoxide at
$27^{\circ} \mathrm{C}$ and 0.821 atm pressure is
A. 0.03 L
B. 3L
C. 0.3 L
D. 1.5 L

Answer: B

D Watch Video Solution
9. The critical temperature of water is higher than that of O_{2} because the $\mathrm{H}_{2} \mathrm{O}$ molecule has.
A. fewer electrons than O_{2}
B. two covalent bonds
C. V-shape
D. dipole moment

Answer: D

10. An ideal gas obeying kinetic gas equation can be liquefied if :
A. can be liquefied if its temperature is more than critical temperature
B. can be liquefied at any value of T and P
C. can not be liquefied under any value of T

and P

D. can be liquefied if its pressure is more than critical pressure

Answer: C

D Watch Video Solution

11. Which is the false statement among the

following:

A. Liquids diffuse slowly than gases
B. During evaporation of liquids, heating is always caused
C. Vapour pressure of a liquid increases
with rise in temperature

D. Viscosity of liquid decreases with rise in

temperature

Answer: B

D Watch Video Solution

12. The ratio between the root mean square velocity of H_{2} at 50 K and that of O_{2} at 800 K is:
A. 4
B. 2
C. 1
D. $1 / 4$

Answer: C

- Watch Video Solution

13. The increasing order of effusion among the gases $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{NH}_{3}$ and CO_{2} is
A. $\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{O}_{2}$
B. $\mathrm{H}_{2}, \mathrm{NH}_{3}, \mathrm{O}_{2}, \mathrm{CO}_{2}$
C. $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{NH}_{3}, \mathrm{CO}_{2}$
D. $\mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{NH}_{3}, \mathrm{H}_{2}$

Answer: D

D Watch Video Solution

14. 50 mL of hydrogen diffuses out through a small hole from a vessel in 20 minutes, time
needed for 40 mL of oxygen to diffuse out is:
1) $12 \min 2) 64 \min 3) 8 \min 4) 32 \min$
A. 12 min
B. 64 min
C. 8 min
D. 32 min

Answer: B
15. Two separate bulbs contain ideal gases A and B. The density of gas A is twice that of gas
B. The molecular mass of A is half that of gas
B. The two gases are at the same temperature.

The ratio of the pressure of A to that of gas B is:
A. 2
B. $1 / 2$
C. 4
D. $1 / 4$

Answer: C

D Watch Video Solution

16. 3.2 g of oxygen (At. wt. $=16$) and 0.2 g of
hydrogen (At. wt. $=1$) are placed in a $1.12 L$
flask at $0^{\circ} C$. The total pressure of the gas mixture will be
A. 1 atm
B. 4 atm
C. 3 atm
D. 2 atm

Answer: B

- Watch Video Solution

17. One litre of a gas weighs 2 g at 300 K and 1 atm pressure. If the pressure is made 0.75 atm, at which of the following temperature will one
litre of the same gas weigh 1 gram : 1) 450K 2)

600K 3) 800K 4)900K
A. 450 K

B. 600 K

C. 800 K

D. 900 K

Answer: A

D Watch Video Solution

18. A real gas most closely approaches the behaviour of an ideal gas at:
A. 1.5 atm and 200 K

B. 1.0 atm and 273 K

C. 0.5 atm and 500K
D. 15 atm and 500 K

Answer: C

D Watch Video Solution

19. A bottle of dry ammonica and a bottle of dry hydrogen choride conncted through a
long fube are opened simulaneously at both
ends. The while ammonium chloride ring first

formed will be

A. at the centre of the tube
B. near the hydrogen chloride tube
C. near the ammonia tube
D. throughout the length of the tube

Answer: B

- Watch Video Solution

20. When an ideal gas undergoes unrestrained expansion, no cooling occurs because the molecules:
A. Are above the inversion temperature
B. Exert no attractive forces on each other
C. Do work equal to the loss in kinetic
energy
D. Collide without loss of energy

Answer: B
21. Positive deviation from ideal behaviour takes place because of :
A. Molecular interaction between atoms
and PV/nRT gt 1
B. Molecular interaction between atoms
and PV/nRT It1
C. Finite size of atoms and $\mathrm{PV} / \mathrm{nRTgt1}$
D. Finite size of atoms and PV/nRT It 1

Answer: C

D Watch Video Solution

22. The values of critical pressure (Pc) and
critical temperature (Tc) for $\mathrm{O}_{2}, \mathrm{Cl}_{2}, \mathrm{H}_{2}$ and

He are given below. The gas which has smallest
value of Vander Waal's constant b'is
A. O_{2}
B. Cl_{2}
C. H_{2}
D. He

Answer: D

D Watch Video Solution

23. Carbon dioxide and helium are kept in a container at partial pressure of $P_{\mathrm{CO}_{2}}$ and P_{He}
at temperature T. A small aperture is made in
the wall of the container. It is observed that
both the gases effuse at the same rate. Ratio of $P_{\mathrm{CO}_{2}}: P_{\mathrm{He}}$ in the container is
A. $1: 3: 33$
B. 2:1
C. $3.33: 1$
D. 1:2

Answer: C
(Watch Video Solution
24. Identify the incorrect statement among the following?
A. Van der Waal's constant 'a' is a measure
of intermolecular force of attraction
between the molecules.
B. Intermolecular force of attraction
increases with the increase in pressure
C. Van der Waal's constant 'a' becomes
negligible at high pressure.

D. None of these

Answer: D

D Watch Video Solution

25. A vessel having certain amount of oxygen
at certain pressure and temperature develops
a very small hole and 4 g of oxygen effuses
out. How much hydrogen would have effused
out of the same vessel had it been taken at
the same pressure and temperature.
A. 1 g
B. 16g
C. 0.25 g
D. 64 g

Answer: A

D Watch Video Solution
26. In which of the following two cases more number of grams of gas molecule will hit a unit area in unit time?
(I) H_{2} at 1 atm and 50 K
(II) O_{2} at 2atm and 200 K
A. Hydrogen
B. Oxygen
C. Same in both the cases
D. Information is incomplete, hence, it can
not be predicted.

Answer: B
27. One litre of a mixture of CO and CO_{2} is passed through red-hot charcoal. The volume now becomes 1.6 litre. Find the composition of the mixture by volume.
A. 0.35
B. 0.4
C. 0.5
D. 0.6

Answer: D
28. A balloon filled with ethyne is pricked with
a sharp point and quickly dropped in a tank of
H_{2} gas under identical conditions. After a while the balloon will have
A. shrunk
B. enlarged
C. completely collapsed
D. remains unchanged in size

- Watch Video Solution

29. On a certain day the vapour pressure is 14 mm of Hg for water vapour in air at $20^{\circ} \mathrm{C}$.

The saturated vapour pressure is 17.5 mm . How many moles of water vapour per litre of air would be required to saturate air at this temperature ?
A. 9.41×10^{-4}
B. 9.14×10^{-4}
C. 1.914×10^{-4}

D. 4.19×10^{-4}

Answer: C

D Watch Video Solution

30. Two closed vessels of equal volume containing air at pressure P_{1} and temperature
T_{1} are connected to each other through a narrow tube. If the temperature in one of the
vessels is now maintained at T_{1} and that in
the other at T_{2}, what will be the pressure in
the vessels?

$$
\begin{aligned}
& \text { A. } \frac{2 P_{1} T_{2}}{T_{1}+T_{2}} \\
& \text { B. } \frac{2 P_{1}}{T_{1}+T_{2}} \\
& \text { C. } \frac{2 P_{1} T_{2}}{T_{1}+T_{2}}
\end{aligned}
$$

D. none of these

Answer: C
(Watch Video Solution
31. A box of 1 L capacity is divided into two
equal compartments by a thin partition which
are filled with $2 \mathrm{~g} \mathrm{H}_{2}$ and $16 \mathrm{gCH} H_{4}$ respectively.
The pressure in each compartment is reorded as P atm. The total pressure when partition is removed will be:
A. P
B. 2 P
C. $\mathrm{P} / 2$
D. $\mathrm{P} / 4$

Answer: A

D Watch Video Solution

32. What fraction of air is expelled out if a flask containing V litre gas is heated from $27^{\circ} \mathrm{C}$ to $327^{\circ} C$?
A. 0.25
B. 0.5
C. 0.75
D. 0.1

Answer: B

D Watch Video Solution

33. A balloon of volume 200 litre having ideal gas at 1 atm pressure and at $27^{\circ} \mathrm{C}$, when rises
to a height where atmospheric pressure is 380
mm Hg and temperature is $-3^{\circ} \mathrm{C}$, balloon
will
A. Contract
B. Expand

C. No change in volume of balloon

D. Initially expand and then contract

Answer: B

D Watch Video Solution

34. 4 moles CO, 5 moles N_{2} and 2 mole $C_{2} H_{4}$ are placed in a 5 litre vessel at $27^{\circ} \mathrm{C}$. The ratio of kinetic energy per molecule of
$\mathrm{CO}_{2}, \mathrm{He}$ and NH_{3} is
А. $4: 5: 2$
B. 5:5:4
C. 2:4:5
D. 1:1:1

Answer: D

D Watch Video Solution

35. 20 ml CO was mixed with 50 ml of oxygen and the mixture was exploded. On cooling, the
resulting mixture was shaken with KOH . Find the final gaseous volume
A. 20 ml
B. 30 ml
C. 40 ml
D. 10 ml

Answer: C
(Watch Video Solution
36. The compressibility factor for H_{2} and He is

usually

A. gt1
B. $=1$
C. It1
D. Either of these

Answer: A

D Watch Video Solution
37. The average kinetic energy of an ideal gas per molecule in SI unit at $25^{\circ} \mathrm{C}$ will be:

A. $6.17 \times 10^{-21} J$
B. $6.17 \times 10^{-22} J$
C. $6.17 \times 10^{-20} J$
D. $7.16 \times 10^{-20} J$

Answer: A

D Watch Video Solution
38. The rms velocity of CO_{2} at temperature T (in Kelvin) is $\mathrm{xcm} s^{-1}$. At what temperature
(in Kelvin) would the $r m s$ velocity of nitrous oxide be $4 x \mathrm{cms}^{-1}$?
A. 16 T
B. 2 T
C. 4 T
D. 32 T

Answer: A
39. The temperature of an ideal gas is increased from $27^{\circ} C$ to $927^{\circ} C$. The rms speed of its molecules becomes.
A. double the initial value
B. half of the initial value
C. four times the initial value
D. ten times the initial value

Answer: B
40. The ratio of Boyle's temperature and critical temperature for a gas is

$$
\begin{aligned}
& \text { A. } \frac{8}{27} \\
& \text { B. } \frac{27}{8} \\
& \text { C. } \frac{1}{2} \\
& \text { D. } \frac{2}{1}
\end{aligned}
$$

Answer: B
41. 1 mole of sample of O_{2} and 3 mole sample of H_{2} are mixed isothermally in a 125.3 litre container at $125^{\circ} C$ the total pressure of gaseous mixture will be
A. 2.50 bar
B. 9.8 bar
C. 1.056 bar
D. 4.038 bar

- Watch Video Solution

42. Two vessels of capacities 3 litres and 4
litres are separately filled with a gas. The pressure are respectively 202 KPa and 101 KPa .

The two vessels are connected. The gas pressure now, at constant temperature, will be
A. 151.5 KPa
B. 144 KPa
C. 303 KPa

D. 175 KPa

Answer: B

D Watch Video Solution

43. A mixture of methane and ethane in a
molar ratio of $x: y$ has an average molecular mass of 20 u . The mean molar mass when they are mixed in the molar ratio of $y: x$ will be -
A. 22
B. 24
C. 20.8
D. 19

Answer: B

D Watch Video Solution
44. What percent of a sample of nitrogen must be allowed to escape if its temperature, pressure and volume are to be chaged from
$220^{\circ} C, 3$ atm and 1.65 litre to $110^{\circ} \mathrm{C}$ atm and 1.00 litre respectively ?
A. 0.414
B. 0.0818
C. 0.0414
D. 0.818

Answer: D
(Watch Video Solution
45. Assume that for every increase in height of

1 m , pressure increases by 10 mm Hg . Initially, an experimental air balloon of maximum 200 L capacity has 150 L air at 1 atm at sea-level. At what height, the balloon is expected to burst ?
A. 18 m above sea level
B. 19 m above sea level
C. 10 m above sea level
D. 20 m above sea level
46. At low pressure vander Waal's equation for 3 moles of a real gas will have its simplified
form

$$
\begin{aligned}
& \text { A. } \frac{P V}{R T-\frac{3 a}{V}}=3 \\
& \text { B. } \frac{P V}{R T+R b}=3 \\
& \text { C. } \frac{P V}{R T+3 P b}=1 \\
& \text { D. } \frac{P V}{R T-\frac{9}{V}}=3
\end{aligned}
$$

Answer: A

D Watch Video Solution

47. 16 g of oxygen and 3 g of hydrogen are mixed and kept at 760 mm of Hg pressure and $0^{\circ} C$. The total volume occupied by the mixture will be nearly \qquad .
A. 22.4 I
B. 33.6 I
C. 448 I
D. 44.8 l

Answer: D

- Watch Video Solution

48. Let the most probable velocity of hydrogen
molecules at a temperature $t^{\circ} C$ is V_{0}.

Suppose all the molecules dissociates into atoms when temperature is raised to
$(2 t+273) .{ }^{\circ} C$ then the new rms velocity is

$$
\text { A. } \sqrt{2 / 3} V_{0}
$$

B. $\sqrt{3(2+273 / t) V_{0}}$
C. $2 \sqrt{3} V_{0}$
D. $\sqrt{6} V_{0}$

Answer: D

D Watch Video Solution

49. 0.2 g of a gas X occupies a volume of 0.44 L at some pressure and temperature. Under identical conditions of P and $\mathrm{T}, 0.1 \mathrm{~g}$ of CO_{2} gas occupies 0.32 L. Gas X can be
A. O_{2}
B. SO_{2}
C. NO
D. $C_{4} H_{10}$

Answer: B

D Watch Video Solution

50. An ideal gas molecule is present at $27^{\circ} C$.

By how many degree centigrade its
temperature should be raised so that its
$U_{r m s}, U_{m p}$ and $U_{a v}$ all may double
A. $900^{\circ} C$
B. $108^{\circ} C$
C. $927^{\circ} \mathrm{C}$
D. $81^{\circ} C$

Answer: A
(D) Watch Video Solution

1. The density of a gaseous mixture of He and N_{2} is found to be $\frac{10}{22.4} g / 1$ at STP. The percentage composition of He and N_{2} in this mixture respectively will be
A. $75 \%, 25 \%$
B. $25 \%, 75 \%$
C. $30 \%, 70 \%$
D. $40 \%, 60 \%$

- Watch Video Solution

2. Select the correct statement(s).

I Kinetic energy is zero at $0^{\circ} \mathrm{C}$
II.RMS velocity of O_{2} at $27^{\circ} \mathrm{C}$ is $=$
$\sqrt{\frac{3 \times 8.314 \times 300}{32}} m^{-1}$
III. Distribution of molecules is very small when
$u \rightarrow 0$ or $u \rightarrow \infty$
The correct choice is:
A. I, II
B. II, III
C. III
D. I, III

Answer: B

- Watch Video Solution

3. 10 " mL of " a gaseous hydrocarbon is exploded with 100 " mL of " oxygen. The residual gas on cooling is found to measure 95 mL , of which 20 mL is absorbed by caustic soda and the remaining by alkaline pyrogallol.

The formula of the hydrocarbon is
(a). CH_{4}.
(b). $C_{2} H_{6}$
(c). $C_{2} H_{4}$
(d). $\mathrm{C}_{2} \mathrm{H}_{2}$
A. CH_{4}
B. $C_{2} H_{4}$
C. $C_{2} H_{6}$
D. $\mathrm{C}_{2} \mathrm{H}_{2}$

Answer: D
4. 100 ml of a mixture of methane and acetylene was exploded with excess of oxygen.

After cooling to room temperature the resulting gas mixture was passed through

KOH when a reduction of 135 ml in volume was
noted. The composition of the hydrocarbon mixture by volume at the same temperature and pressure will be
A. $65 \% \mathrm{CH}_{4}, 35 \% \mathrm{C}_{2} \mathrm{H}_{2}$

B. $35 \% \mathrm{CH}_{4}, 65 \% \mathrm{C}_{2} \mathrm{H}_{2}$
 C. $25 \% \mathrm{CH}_{4}, 75 \% \mathrm{C}_{2} \mathrm{H}_{2}$
 D. $85 \% \mathrm{CH}_{4}, 15 \% \mathrm{C}_{2} \mathrm{H}_{2}$

Answer: A

D Watch Video Solution

5. A sample of coal gas contains 50% hydrogen, 30% methane, 14% CO and 6%
$C_{2} H_{4} 100 \mathrm{ml}$ of this coal gas is mixed with 150 ml of oxygen and the mixture is exploded.

What will be the composition of the resulting gas when it is to room temperature ?
A. $52.81 \% O_{2} \& 47.19 \% \mathrm{CO}_{2}$
B. $47.33 \% \mathrm{O}_{2} \& 52.67 \% \mathrm{CO}_{2}$
C. $41.67 \% \mathrm{O}_{2} \& 58.33 \% \mathrm{CO}_{2}$
D. $33.87 \% \mathrm{O}_{2} \& 66.13 \% \mathrm{CO}_{2}$

Answer: C

D Watch Video Solution

6. A mixture of 15 ml of $\mathrm{CO} \& \mathrm{CO}_{2}$ is mixed
with V ml (excess) of oxygen and electrically
sparked. The volume after explosion was found to be $(\mathrm{V}+12) \mathrm{ml}$. What would be the residual
volume if 25 ml of the original mixture is exposed to an alkali?
A. 7 ml
B. 12 ml
C. 10 ml
D. 9 ml

Answer: C

D Watch Video Solution

7. 40 ml of gaseous mixture of CO and ethyne
is mixed with 100 ml of O_{2} and burnt. The
volume of gases after combustion is 105 ml .

The composition of the original mixture is
A. $25 \mathrm{ml} \mathrm{CO}, 15 \mathrm{ml}$ ethyne
B. $15 \mathrm{ml} \mathrm{CO}, 25 \mathrm{ml}$ ethyne
C. $10 \mathrm{ml} \mathrm{CO}, 30 \mathrm{ml}$ ethyne

D. $20 \mathrm{ml} \mathrm{CO}, 20 \mathrm{ml}$ ethyne

Answer: A

D Watch Video Solution

8. If the pressure of N_{2} / H_{2} mixture in a closed vessel is 100 atmospheres and 20% of the mixture reacts then the pressure at the same temperature would be .
A. Same as original

B. 110 atm

C. 90 atm
D. 80 atm

Answer: C

D Watch Video Solution

9. A vessel has N_{2} gas and water vapours at a total pressure of 1 atm . The partial pressure of water vapours is 0.3 atm . The contents of this
vessel are transferred to another vessel having
one-third of the capacity of original volume, completely at the same temperature the total pressure of this system in the new vessel is
A. 3 atm
B. 1 atm
C. 3.33 atm
D. 2.4 atm

Answer: D

D Watch Video Solution
10. At room temperature mercury has a density of $13.6 \mathrm{~g} / \mathrm{cc}$ while liquid bromoform
$\left(\mathrm{CHBr}_{3}\right)$ has a density of 3.02 g cc . How high
a column of bromoform will be supported by a pressure that supports a column of mercury 200 mm high?
A. 98.67 cm
B. 40.99 cm
C. 90.07 cm
D. 100 cm

Answer: C

D Watch Video Solution

11. Two flasks X and Y have capacity $I L$ and $2 L$ respectively and cach of them contains 1 mole of a gas. The temperatures of the flasks are so adjusted that average speed of molecules in X
is A twice as those in Y . The pressure in flask X
would be:
A. Same as that of Y

B. 4 times that of Y

C. Twice that of Y
D. 8 times that of Y

Answer: D

D Watch Video Solution

12. The root mean square velocity of one mole of a monoatomic gas having molar mass M is
$V_{r . m . s}$. The relation between the average kinetic energy (E) of the gas and $V_{r . m . s}$ is:
A. $U_{r m s}=\sqrt{\frac{3 E}{2 M}}$
B. $U_{r m s}=\sqrt{\frac{2 E}{3 M}}$
C. $U_{r m s}=\sqrt{\frac{2 E}{M}}$
D. $U_{r m s}=\left(\frac{E}{3 M}\right)$

Answer: C

- Watch Video Solution

13. A 2.24 L cylinder of oxygen at 1 atm and 273
K is found to develop a leakage. When the
leakage was plugged the pressure dropped to

570 mm of Hg . The number of moles of gas
that escaped will be :
A. 0.025
B. 0.05
C. 0.075
D. 0.09

Answer: A
(Watch Video Solution
14. 2 L of $S O_{2}$ gas at 760 mm Hg are transferred to 10 L flask containing oxygen at a particular temperature, the partial pressure of SO_{2} in the flask is
A. 63.33 mmHg
B. 152 mmHg
C. 760 mmHg
D. 1330 mmHg

Answer: B
15. A football bladder contains equimolar proportions of H_{2} and O_{2}. The composition by mass of the mixture effusing out of punctured football is in the ration $\left(\mathrm{H}_{2}: \mathrm{O}_{2}\right)$
A. $1: 4$
B. $2 \sqrt{2}: 1$
C. $1: 2 \sqrt{2}$
D. $4: 1$

D Watch Video Solution

16. In an auto engine having no pollution control device 5% of the fuel $\left(C_{8} H_{18}\right)$ is left unburnt. Molar ratio under same P and T of

CO and $\mathrm{C}_{8} \mathrm{H}_{18}$ emitted in exhaust gas is.
A. 100
B. 152
C. 50
D. 5

Answer: B

D Watch Video Solution

17. Distribution of molecules with velocity is represented by the curve as shown, velocity at
point A is :

A. $\sqrt{\frac{3 R T}{M}}$
B. $\sqrt{\frac{2 R T}{M}}$
C. $\sqrt{\frac{8 R T}{\pi M}}$
D. $\sqrt{\frac{R T}{M}}$

Answer: B
18. Rate of effusion of LPG (a mixture of n butane and propane) is 1.25 times that of SO_{3}.

Hence, mole fraction of n-butane in LPG is
A. 0.75
B. 0.25
C. 0.5
D. 0.67
19. 100 mL of O_{2} gas diffuse in 10 s .100 mL of gas.X diffuses in t sec, Gas X and ktime t can be
A. $H_{2}, 2.5 \mathrm{sec}$
B. $S O_{2}, 16 \mathrm{sec}$
C. $C O, 10 \mathrm{sec}$
D. $H e, 4 \mathrm{sec}$

- Watch Video Solution

20. A mixture of $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$ occupied a certain volume at 80 mm Hg . The mixture was completely burnt to CO_{2} and $\mathrm{H}_{2} \mathrm{O}(l)$. When the pressure of CO_{2} was found to be 230 mm Hg at the same temperature and volume, the mole fraction of $C_{3} H_{8}$ in the mixture is:
A. 0.2
B. 0.8
C. 0.25
D. 0.75

Answer: A

D Watch Video Solution

21. Compressibility factor for H_{2} behaving as real gas is
A. 1
B. $\left(1-\frac{a}{R T V}\right)$
C. $\left(1+\frac{p b}{R T}\right)$
D. $\frac{R T V}{(1-a)}$

Answer: C

D Watch Video Solution

22. A 10.0 cm column of air is trapped by a column of Hg 4.00 cm long in capillary tube of
uniform bore when the tube is held horizontally in a room at 1 atm. Length of the air column when the tube is held vertically
with the open end up is

A. 9.50 cm
B. 10.52 cm
C. 3.53 cm
D. 4.61 cm

Answer: A

- Watch Video Solution

23. At STP, a container has 1 mole of Ar, 2 moles
of $C O(2), 3$ moles of O_{2} and 4 moles of N_{2}.
Without changing the total pressure if one mole of O_{2} is removed, the partial pressure of $O_{2}:$
A. changes by 26%
B. is halved
C. is unchanged
D. changes by 33%

- Watch Video Solution

24. Two glass bulbs A and B at same temperature are connected by a very small tube having a stop-cock. Bulb A has a volume of $100 \mathrm{~cm}^{3}$ and contained the gas while bulb B is empty. On opening the stop-cock, the pressure fell down to 20%. The volume of the bulb B is :
A. $75 \mathrm{~cm}^{\wedge} 3^{`}$
B. $125 \mathrm{~cm}^{3}$
C. $66.6 \mathrm{~cm}^{3}$
D. $250 \mathrm{~cm}^{3}$

Answer: C

- Watch Video Solution

25. At a temperature T, K, the pressure of
4.0 gm argon in a bulb is P. The bulb is put in
a bath having temperature higher by $50 K$
than the first one 0.8 of argon gas had to be
removed to maintain original pressure. The temperature T is
A. 510 K
B. 200 K
C. 100K
D. 73 K

Answer: B
(Watch Video Solution
26. Gaseous benzene reacts with hydrogen gas
in the presence of nickel catalyst to give gaseous cyclohexane. A mixture of benzene vapour and hydrogen had a pressure of 60 mm Hg in vessel. After all benzene converted to cyclohexane, the pressure of the gas was 30 mm Hg in the same volume and at the same temperature. What fraction (by mole) of the original mixture was benzene?
A. $1 / 3$
B. $1 / 4$
C. $1 / 5$
D. $1 / 6$

Answer: D

D Watch Video Solution

27. A glass bulb is connected to an open-limb manometer. The level of mercury on both limbs was same. The bulb was heated to $57^{\circ} \mathrm{C}$. If the room temperature and atmospheric pressure are $27^{\circ} \mathrm{C}$ and 750 mmHg , the
difference of levels in the two limbs now will be
A. 2.5 cm
B. 5 cm
C. 7.5 cm
D. 10 cm

Answer: C
(Watch Video Solution
28. For two gases, A and B with molecular weights M_{A} and M_{B}. It is observed that at a certain temperature. T, the mean velocity of A is equal to the root mean square velocity of B.
thus the mean velocity of A can be made equal to the mean velocity of B, if:
A. A is at temperature T_{1} and B at T_{2} and

$$
T_{1}>T_{2}
$$

B. A is lowered to a temperature T_{1} and

$$
T_{1}<T_{2}
$$

C. Both A \& B are raised to a higher temperature
D. Both A \& B are placed at a lower temperature

Answer: B

- Watch Video Solution

29. Certain volume of a gas exerts on its walls some pressure at a particular temperature. It has been found that by reducing the volume
of the gas to half of its original value the pressure become twice that of the initial value at constant temperature . this happens because
A. Mass of the gas increases with pressure
B. Speed of the gas molecules decreases
C. More number of gas molecules strike the
surface per second
D. Gas molecules attract each other

Watch Video Solution

30. If X_{m}, X_{p} and X_{v} represent mole fraction, pressure fraction and volume fraction respectively then:
A. $X_{m}=X_{p}=X_{v}$
B. $X_{m}=\frac{1}{X_{p}}=\frac{1}{X_{v}}$
C. $X_{m}=X_{p}=\frac{1}{X_{v}}$
D. $\frac{1}{X_{m}}=\frac{1}{X_{p}}=X_{v}$

Answer: A

- Watch Video Solution

31. The root mean square speed of the molecules of a diatomic gas is v. When the temperature is doubled, the molecules dissociate into two atoms. The new root mean square speed of the atom is
A. $\sqrt{2} v$
B. v
C. $2 v$

D. $4 v$

Answer: C

D Watch Video Solution

32. At $27^{\circ} C$, hydrogen is leaked through a tiny
hole into a vessel for 20 min . Another unknown gas at the same T and P as that of
H_{2}, is leaked through the same hole for 20
min. After the effusion of the gases the mixture exerts a pressure of 6 atm. The
hydrogen content of the mixture is 0.7 mole. If
the volume of the container is 3 litre, what is molecular weight of unknown gas ?
(Use: $R=0.821 \mathrm{~L}$ atm K ${ }^{-1} \mathrm{~mole}^{-1}$)
A. 1088
B. 10.88
C. 108.8
D. 10880

Answer: A

33. 10 " mL of " a gaseous organic compound containing C, H and O only was mixed with 100
" mL of " O_{2} and exploded under condition which allowed the $\mathrm{H}_{2} \mathrm{O}$ formed to condense.

The volume of the gas after explosion was 90 mL . On treatment with KOH solution, a further contraction of 20 mL in volume was observed.

The vapour density of the compound is 23 . All
volume measurements were made under the same condition.
Q.The volume of CO_{2} is
A. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
B. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$
C. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$
D. $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$

Answer: B

D Watch Video Solution

34. Five millilitires of a gas (A) containing only

C and H was mixed with an excess of oxygen
$(30 \mathrm{ml})$ and the mixture was exploded by
means of an electric spaek. After the explosion,
the remaining volume of the mixed gasses was

25 ml . On adding a concentrated solution of
KOH , the volume further diminished to 15 ml .

The residual gas being pure oxyges.
$\begin{aligned} & \text { (aas }(\mathrm{A})+\operatorname{Gas}(\mathrm{A}) \xrightarrow{h v} \mathrm{~B} \xrightarrow{\mathrm{Cl}_{2}+h v} \mathrm{C} \xrightarrow[\substack{\text { Acidic } \\ \mathrm{KMnO}_{4}}]{\text { aq. } \mathrm{KOH}} \mathrm{D} \\ & \mathrm{F} \stackrel{\substack{\mathrm{CH}_{2} \mathrm{~N}_{2}}}{\stackrel{\mathrm{CH}_{2}}{\longleftrightarrow}} \mathrm{E}\end{aligned}$

Compopund (F) is:
A. $C_{2} H_{6}$
B. $C_{2} H_{6}$
C. $C_{2} H_{4}$

D. $\mathrm{C}_{2} \mathrm{H}_{2}$

Answer: C

D Watch Video Solution

35. One mole of nitrogen gas at 0.8 atm takes

38 s to diffuse through a pinhole, whereas one
mole of an unknown compound of xenon with
fluorine at 1.6 atm takes 57 s to diffuse through
the same hole. Calculate the molecular formula of the compound.
A. $X e F_{6}$
B. $X e F_{2}$
C. XeF_{4}
D. Any of these is possible

Answer: A

- Watch Video Solution

36. The average velocity of gas molecules is
$400 \mathrm{~m} / \mathrm{sec}$ calculate its rms velocity at the
same temperature.
A. $434.1 m s^{-1}$
B. $368.5 m s^{-1}$
C. $489.9 m s^{-1}$
D. $43.41 m s^{-1}$

Answer: A

D Watch Video Solution

37. A graph is plotted between $P V_{m}$ along Y axis and P along X -axis, where V_{m} is the molar
volume of a real gas. Find the intercept along

Y -axis.

A. $(R T)^{-1}$
B. $R T$
C. $(R T)^{2}$
D. 1

Answer: B
(Watch Video Solution
38. 1.0 litre of N_{2} and $7 / 8$ litre of O_{2} at the same temperature and pressure were mixed together. What is the relation between the masses of the two gases in the mixture?
A. 1
B. 0.5
C. 2
D. 4

Answer: A
39. The volumes of two vessels at same temperature are in the ratio of $2: 3$. One vessel
contains H_{2} and other N_{2} at 600 mm and 900 mm respectively. The final pressure when they are connected together is : (Assume that
N_{2} and H_{2} react to form NH_{3})
A. 620 mm
B. 760 mm
C. 780 mm

D. 800 mm

Answer: A

D Watch Video Solution

40. An evacuated glass vessel weighs 50 gm
when empty, 148.0 gm filled with a liquid of density $0.98 \mathrm{gm} \mathrm{ml}^{-1}$ and 50.5 gm when filled with an ideal gas at 760 mm of Hg at 300 K . What is the molecular weight of the gas ?
B. 110
C. 122
D. 90

Answer: C

D Watch Video Solution

41. A spherical ballon of 21 cm diameter is to be filled with H_{2} at NTP from a cylinder containing the gas at 20 atm at $27^{\circ} \mathrm{C}$.If the
cylinder can hold 2.80 L of water, calculate the number of ballons that can be filled up .
A. 2
B. 4
C. 8
D. 10

Answer: D
(Watch Video Solution
42. At $30^{\circ} \mathrm{C}$ and 720 mm of Hg , the density of a gas is $1.5 \mathrm{~g} / \mathrm{lt}$. Calculate molecular mass of the gas. Also find the number of molecules in 1 cc of the gas at the same temperature.
A. 2.29×10^{19}
B. 3.32×10^{18}
C. 5.66×10^{18}
D. 8.49×10^{19}

Answer: A
43. Density of dry air containing only N_{2} and O_{2} is $1.15 \frac{g}{L}$ at 740 mm of Hg and 300 K . What is \% composition of N_{2} by mass in the air?

> A. $82.5 \% N_{2} \& 17.5 \% O_{2}$
> B. $62.5 \% N_{2} \& 37.5 \% O_{2}$
> C. $42.5 \% N_{2} \& 57.5 \% O_{2}$
> D. $22.5 \% N_{2} \& 77.5 \% O_{2}$

Answer: A

- Watch Video Solution

44. A gas bulb of $1 L$ capacity contains
2.0×10^{11} molecules of nitrogen exerting a pressure of $7.57 \times 10^{3} \mathrm{Nm}^{-2}$. Calculate the root mean square (rms) speed and the temperature of the gas molecules. If the ratio of the most probable speed to the root mean square is 0.82 , calculate the most probable speed for these molecules at this temperature.
A. $232.88 \mathrm{~m} / \mathrm{sec}$
B. $809.12 \mathrm{~m} / \mathrm{sec}$
C. $444.18 \mathrm{~m} / \mathrm{sec}$
D. $494.22 \mathrm{~m} / \mathrm{sec}$

Answer: D

D Watch Video Solution

45. 8.4 " mL of " gaseous hydrocarbon A was burnt with 50 " mL of " O_{2} in a eudiometer tube. The volume of the products after cooling
to room temperature was 37.4 mL . When
reacted with NaOH , the volume contracted to
3.8 mL . What is the molecular formula of A .
A. $C_{4} H_{6}$
B. $\mathrm{C}_{2} \mathrm{H}_{2}$
C. $C_{2} H_{8}$
D. $C_{5} H_{10}$

Answer: A

D Watch Video Solution

1. Pressure remaining the constant, the volume of a given mass of an ideal gas increases for every degree centigrade rise in temperature by definite fraction of its volume at:
A. $0^{\circ} C$
B. its critical temperature
C. absolute zero
D. its Boyle temperature

Answer: A

D Watch Video Solution

2. In a closed flask of $5 \mathrm{~L}, 1.0 \mathrm{~g}$ of H_{2} is heated
from 300 to 600 K . Which statement is not correct?
A. Pressure of the gas increases
B. The rate of collision increases
C. The number of moles of gas increases
D. The energy of gaseous molecules increases

Answer: C

D Watch Video Solution

3. A vessel having certain amount of oxygen at certain pressure and temperature develops a
very small hole and 4 g of oxygen effuses out.

How much hydrogen would have effused out
of the same vessel had it been taken at the same pressure and temperature.
A. 1 g
B. 16 g
C. 0.25 g
D. 64 g

Answer: A
(Watch Video Solution
4. In which of the following two cases more number of grams of gas molecule will hit a unit area in unit time?
(I) H_{2} at 1 atm and 50K
(II) O_{2} at 2 atm and 200 K
A. Hydrogen
B. Oxygen
C. Same in both the cases
D. Information is incomplete, hence, it can
not be predicted.

D Watch Video Solution

5. An ideal gas cannot be liquefied because
A. its critical temperature is always above
$0^{\circ} C$
B. its molecules are relatively smaller in
size
C. it solidifies before becoming a liquid

D.forces operative between its molecules

 are negligible
Answer: D

- Watch Video Solution

6. A closed flask contains water in all its three
states solid, liquid and vapour at $0^{\circ} \mathrm{C}$. In this
situation, the average kinetic energy of water molecules will be
A. the greatest in allthe three states
B. the greatest in vapour state
C. the greatest in the liquid state
D. the greatest in the solid state

Answer: B

D Watch Video Solution

7. What is the temperature at which oxygen molecules have the same r.m.s. velocity as the hydrogen molecules at $27^{\circ} \mathrm{C}$ -
A. 19.3×10^{4}
B. 17.8×10^{4}
C. 24.93×10^{9}
D. 17.8×10^{8}

Answer: B

D Watch Video Solution

8. The volume-temperature graphs of a given mass of an ideal gas at constant pressure are shown below. What is the correct order of
pressure?

A. $P_{3}>P_{2}>P_{1}$
B. $P_{1}>P_{2}>P_{3}$
C. $P_{2}>P_{3}>P_{1}$
D. $P_{2}>P_{1}>P_{3}$

Answer: A

- Watch Video Solution

9. The most probable velocity of a gas molecule at 298 K is $300 \mathrm{~m} / \mathrm{s}$. Its rms velocity, in m / s) is
A. 420
B. 245
C. 402
D. 367

Answer: D

10. A cylinder of 5 L capacity, filled with air at

NTP is connected with another evacuated cylinder of 30 L capacity. The resultant air pressure in both the cylinders will be
A. 10.8 cm of Hg
B. 14.9 cm of Hg
C. 21.8 cm of Hg
D. 38.8 cm of Hg

Answer: A
11. Under what conditions will a pure sample of
an idela gas not only exhibit a pressure of 1
atm but also a concentration of $1 \mathrm{~mol} L^{-1}$?
$\left(R=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{deg}^{-1}\right)$
A. At STP
B. When $V=22.4$ litres
C. When $T=12 \mathrm{~K}$
D. Impossible under any conditions

Answer: C

- Watch Video Solution

12. If a gas expands at contant temperature, it indicates that :
A. kinetic energy of molecules decreases
B. pressure of the gas increases
C. kinetic energy of molecules remains the
same

D. number of the molecules of gas

 increases
Answer: C

D Watch Video Solution

13. The temperature of a gas is raised from
$27^{\circ} C$ to $927^{\circ} C$ The root mean square speed
of the gas
A. remains same
B. gets $\sqrt{\frac{927}{27}}$ times
C. gets halved
D. gets doubled

Answer: D

D Watch Video Solution

14. At what temperature, the rate of effusion of N_{2} would be 1.625 times than the rate of $S O_{2}$ at $500^{\circ} C$?
A. 373°
B. 620°
C. $110^{\circ} \mathrm{C}$
D. 173°

Answer: B

D Watch Video Solution

15. By the ideal gas law, the pressure of 0.60 mole NH_{3} gas in a 3.00 L vessel at $25^{\circ} \mathrm{C}$ is
A. 48.9 atm
B. 4.89 atm
C. 0.489 atm
D. 489 atm

Answer: B

D Watch Video Solution
16. Average K.E. of $C O_{2}$ at $27^{\circ} \mathrm{C}$ is E. the average kinetic energy of N_{2} at the same temperature will be
A. E
B. 22 E
C. $\mathrm{E} / 22$
D. $E / \sqrt{2}$

Answer: A

D Watch Video Solution
17. At $25^{\circ} \mathrm{C}$ and 730 mm pressure, 380 mL of dry oxygen was collected.If the temperature is

at 760 mm pressure?

A. 569 mL
B. 365 mL
C. 265 mL
D. 621 mL

Answer: B
(Watch Video Solution
18. Volume occupied by one molecule of water
(density $=1 \mathrm{~g} \mathrm{~cm}{ }^{-3}$)

> A. $3.0 \times 10^{-23} \mathrm{~cm}^{3}$
> B. $5.5 \times 10^{-23} \mathrm{~cm}^{3}$
> C. $9.0 \times 10^{-23} \mathrm{~cm}^{3}$
> D. $6.023 \times 10^{-23} \mathrm{~cm}^{3}$

Answer: D
(Watch Video Solution
19. At identical temperature and pressure the rate of diffusion of hydrogen gas is $3 \sqrt{3}$ times
that of a hydrocarbon having molecular formula $C_{n} H_{2 n-n}$ What is the value of n ?.
A. 1
B. 4
C. 3
D. 8

Answer: B

20. In the temperature changes from $27^{\circ} \mathrm{C}$ to

 $127^{\circ} C$, the relative percentage change in RMS velocity isA. 1.56
B. 2.56
C. 15.6
D. 82.4

Answer: C

21. If a gas expands at contant temperature, it indicates that :
A. kinetic energy of molecules remains the
same
B. number of the molecules of gas
increases
C. kinetic energy of molecules decreases
D. pressure of the gas increases

Answer: A

D Watch Video Solution

22. Given: rms velocity of hydrogen at 300 K is
$1.9 \times 10^{3} \mathrm{~m} / \mathrm{s}$. The rms velocity of oxygen at

1200K will be
A. $7.6 \times 10^{3} \mathrm{~m} / \mathrm{s}$
B. $3.8 \times 10^{3} \mathrm{~m} / \mathrm{s}$
C. $0.95 \times 10^{3} \mathrm{~m} / \mathrm{s}$
D. $0.475 \times 10^{3} \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

23. At what temperature, the r.m.s. velocity of a gas measured at $50^{\circ} \mathrm{C}$ will become double ?
A. 626 K
B. 1019 K
C. $200^{\circ} \mathrm{C}$
D. $1019^{\circ} \mathrm{C}$

Answer: D

D Watch Video Solution

24. The density of a gas a is twice that of gas B.

Molecular mass of A is half of the molecular of
B. The ratio of the partial pressures of A and B
is :
A. $1 / 4$
B. $1 / 2$
C. $4 / 1$
D. $2 / 1$

Answer: C

D Watch Video Solution

25. The compressibility factor for an ideal gas

is
A. 1
B. less than 1
C. greater than 1

D. ∞

Answer: A

D Watch Video Solution

26. In van der Waals' equation of state, the
constant ' b ' is a measure of
A. intermolecular repulsions
B. intermolecular attraction
C. volume occupied by the molecules

D. intermolecular collisions per unit volume

Answer: C

D Watch Video Solution

27. Vander Waals' equation of state is obeyed
by real gases. For n moles of a real gas, the expression will be

$$
\begin{aligned}
& \text { А. }\left(\frac{p}{n}+\frac{n a}{V^{2}}\right)\left(\frac{V}{n-b}\right)=R T \\
& \text { В. }\left(p+\frac{a n^{2}}{V^{2}}\right)(v-n b)=n R T
\end{aligned}
$$

C. $\left(p+\frac{n a}{V^{2}}\right)(n V-b)=n R T$
D. $\left(p+\frac{n a}{V^{2}}\right)(n V+b)=n R T$

Answer: B

D Watch Video Solution

28. The energy absorbed by each molecule $\left(A_{2}\right)$ of a substance is $4.4 \times 10^{-19} \mathrm{~J}$ and bond energy per molecule is $4.0 \times 10^{-19} \mathrm{~J}$. The kinetic energy of the molecule per atom will be
A. $2.2 \times 10^{-19} J$
B. $2.0 \times 10^{-19} J$
C. $4.0 \times 10^{-20} J$
D. $2.0 \times 10^{-20} J$

Answer: A

D Watch Video Solution
29. In which one of the following, does the given amount of chlorine exert the least
pressure in a vessel of capacity $1 \mathrm{~d} \mathrm{~m}^{3}$ at 273 K
?
A. 0.0355 g
B. 0.071 g
C. 6.023×10^{21} molecules
D. 0.02 mol

Answer: A
(Watch Video Solution
30. For one mole of an ideal gas, increasing the temperature from $10^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$
A. increases the average kinetic energy by
two times
B. increases the rms velocity of $\sqrt{2}$ times
C. increases the rms velocity by two times
D. increases both the average kinetic
energy and rms velocity, but not significantly

Answer: D

D Watch Video Solution

31. Calculate the temperature at which 28 g of
N_{2} will occupy a volume of 10.0 litres at 2.46 atmospheres.
A. 299.6K
B. $0^{\circ} C$
C. 273 K
D. $10^{\circ} \mathrm{C}$

Answer: A

D Watch Video Solution

32. If p, V, M, T and R are pressure, volume, molar mass, temperature and gas constant respectively, then for and ideal gas, the density is given by
A. $\frac{R T}{p M}$
B. $\frac{p}{R T}$
C. $\frac{M}{V}$
D. $\frac{p M}{\mid}(R T)$

Answer: B

D Watch Video Solution

33. The pressure exerted by 6.0 g of methane gas in a $0.03 m^{3}$ vessel at $129 .{ }^{\circ} C$ is
(Atomic masses : $\mathrm{C}=12.01, \mathrm{H}=1.01$ and $R=8.314 J K^{-1} \mathrm{~mol}^{-1}$)
A. 215216 Pa
B. 13409 Pa
C. 41648 Pa
D. 31684 Pa

Answer: A

D Watch Video Solution

34. A bubble of air is underwater at temperature $15 .{ }^{\circ} C$ and pressure 1.5 bar. If the bubble rises to the surface where the temperature is $25 .{ }^{\circ} C$ and the pressure is 1.0
bar, what will happen to the volume of the bubble?
A. Volume will become greater by a factor of 1.6
B. Volume will become greater by a factor of 1.1
C. Volume will become smaller by a factor of 0.70
D. Volume will become greater by a factor of 2.5

Answer: B

- Watch Video Solution

35. Which of the following expression is true regarding gas laws? (w=weight, M=molecular mass)

$$
\begin{aligned}
& \text { A. } \frac{T_{1}}{T_{2}}=\frac{M_{1} w_{2}}{M_{2} w_{1}} \\
& \text { B. } \frac{T_{1}}{T_{2}}=\frac{M_{2} w_{1}}{M_{1} w_{2}} \\
& \text { C. } \frac{T_{1}}{T_{2}}=\frac{M_{1} w_{1}}{M_{2} w_{2}} \\
& \text { D. } \frac{T_{2}}{T_{1}}=\frac{M_{1} w_{1}}{M_{2} w_{2}}
\end{aligned}
$$

D Watch Video Solution

36. Two gases A and B having the same volume diffuse through a porous partition in 20 and

10s respectively. The molecular mass of A is 49
u. Molecualr mass of B will be
A. 50.00 u
B. 12.25 u
C. 6.50 u

D. 25.00 u

Answer: D

D Watch Video Solution

37. The mixture of three gases X, Y and Z is enclosed in a closed vessel at constant temperature. Molecular weight of X is the highest and that oly is the Icast, When equilibrium is established the
A. Gas Z will be at the top of the vessel
B. Gas Y will be at the top of the vessel
C. Gas X will be at the bottom and Z will be at the top
D. Gases wil form homogeneous mixture

Answer: D

D Watch Video Solution

38. A bubble of gas released at the bottom of
a lake increases to four times its original
volume when it reaches the surface. Assuming
that atmospheric pressure is equivalent to the
pressure exerted by a column of water 10 m
high, what is the depth of the lake?
A. 80 m
B. 90 m
C. 40 m
D. 70 m

Answer: D

D Watch Video Solution
39. Equal weight of CH_{4} and H_{2} are mixed in
a container at $25^{\circ} \mathrm{C}$. Fraction of total pressure exerted by methane is
A. $1 / 2$
B. $1 / 3$
C. $1 / 9$
D. $8 / 9$

Answer: C

- Watch Video Solution

40. A gaseous mixture was prepared by taking equal moles of CO and N_{2}. If the total pressure of the mixture was found 1 atmosphere, the partial pressure of the nitrogen $\left(N_{2}\right)$ in the mixture is
A. 1 atm
B. 0.5 atm
C. 0.8 atm
D. 0.9 atm
41. By what factor does the average velocity of a gaseous molecule increase when the temperature (in Kelvin) is doubled ?
A. 1.4
B. 2
C. 2.8
D. 4
42. By what factor does the average velocity of a gaseous molecule increase when the temperature (in Kelvin) is doubled ?
A. 2
B. 2.8
C. 4
D. 1.4

- Watch Video Solution

43. 50 mL of each gas A and of gas B takes 150 and 200 s respectively for effusing through a pin hole under the similar conditions. If molecular mass of gas B is 36 , the molecular mass of gas A will be
A. 96
B. 128
C. 32
D. 64

Answer: D

D Watch Video Solution

44. 50 mL of each gas A and of gas B takes 150
and 200 s respectively for effusing through a
pin hole under the similar conditions. If molecular mass of gas B is 36 , the molecular mass of gas A will be
A. 96
B. 128
C. 32
D. 64

Answer: B

D Watch Video Solution

45. What is the density of N_{2} gas at 227° and 5.00 atm pressure ? $(R \quad=0.0821$ atm $K^{-1} \mathrm{~mol}^{-1}$)
A. $1.40 \mathrm{~g} / \mathrm{mL}$
B. $2.81 \mathrm{~g} / \mathrm{mL}$
C. $3.41 \mathrm{~g} / \mathrm{mL}$
D. $0.29 g / m L$

Answer: D

D Watch Video Solution

46. Maximum deviation from ideal gas is
A. $N H_{3}(g)$
B. $H_{2}(g)$
C. $N_{2}(g)$
D. $\mathrm{CH}_{4}(g)$

Answer: A

D Watch Video Solution
47. A gas at 350 K and 15 bar has molar volume

20 percent smaller than that for an ideal gas
under the same conditions. The correct option
above the gas and its compressibility factor (Z)
is :
A. Zgt1 and attractive forces are dominant
B. Zgt1 and repulsive forces are dominant
C. Zlt1 and attractive forces are dominant

D. Zlt1 and repulsive forces are dominant

Answer: C

D Watch Video Solution
48. A gas such as carbon monoxide would be most likely to obey the ideal gas law at
A. high temperature and high pressures
B. low temperatures and low pressures
C. high temperatures and low pressures
D. low temperatures and high pressure

Answer: C

D Watch Video Solution

49. A mixture of gases contains H_{2} and O_{2} gases in the ratio $1: 4(w / w)$. What is the molar ratio of the gases in the mixture?
A. $4: 1$
B. $16: 1$
C. 2:1
D. 1: 4

Answer: A
50. Equal moles of hydrogen and oxygen gases are placed in a container with a pin-hole through which both can escape. What fraction of the oxygen escapes in the time required for one-half of the hydrogen to escape ?
A. $1 / 4$
B. $3 / 8$
C. $1 / 2$
D. $1 / 8$

Answer: D

- Watch Video Solution

