©゙doubtnut

India's Number 1 Education App

MATHS

VMC MODULES ENGLISH

DIFFERENTIAL EQUATIONS

Level 1

1. Solve $\sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=0$

- Watch Video Solution

2. Solve the following differential equation.
$\frac{d y}{d x}=e^{x+y}$

- Watch Video Solution

3. Solve the following differential equations.
$\frac{d y}{d x}+y \tan x=\cos ^{3} x$

Watch Video Solution

4. Solve the following differential equations.
$\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$ if $y=1$ for $x=0$

- Watch Video Solution

5. Solve the following differential equations.
$\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}$

Watch Video Solution
6. Solve the following differential equations. $e^{\frac{d y}{d x}}=x+1$ if $y=3$ for $x=0$.
7. Solve the following differential equations.
$\frac{d y}{d x}=\frac{x+y+1}{x+y-1}$

- Watch Video Solution

8. Solve the following differential equations.
$2(x-3 y+1) \frac{d y}{d x}=(4 x-2 y+1)$

- Watch Video Solution

9. Solve the following differential equations.
$\frac{d y}{d x}=(4 x+y+1)^{2}$

- Watch Video Solution

10. Solve the following differential equations.
$(x+y)^{2} \frac{d y}{d x}=a^{2}$

- Watch Video Solution

11. Solve the following differential equations.

$$
\frac{d y}{d x}=\sin (x+y)+\cos (x+y)
$$

- Watch Video Solution

12. Solve the differential equation $\frac{d y}{d x}+1=e^{x+y}$

Watch Video Solution

13. Solve the following differential equations.
$y d x+(2 \sqrt{x y}-x) d y=0$
14. Solve the following differential equations.
$x \frac{d y}{d x}+y=x^{3}$

Watch Video Solution
15. Solve the following differential equations.
$\frac{d y}{d x}=\frac{2 x-y+1}{x+2 y-3}$

(D) Watch Video Solution

16. Solve the following differential equations.
$\frac{d x}{x+y}=\frac{d y}{x-y}$

- Watch Video Solution

17. Solve the following differential equations.
$(2 x-y+4) d y+(4 x-2 y+5) d x=0$

Watch Video Solution

18. Solve the following differential equations.
$\frac{d y}{d x}=\frac{2 x+2 y-2}{x+y-5}$

- Watch Video Solution

19. Solve the following differential equations.
$\frac{d y}{d x}=-\frac{12 x+5 y-9}{5 x+2 y-4}$

- Watch Video Solution

20. Solve the following differential equations.
$\frac{d y}{d x}=\frac{1-3 x-3 y}{1+x+y}$
21. Solve the following differential equations.
$d y / d x+y \tan x=\sin x$

- Watch Video Solution

22. Solve the following differential equations.
$x^{2}(d y / d x)=y^{2}(1+x)$

- Watch Video Solution

23. Solve the following differential equations.
$\left(2 x-10 y^{2}\right) d y+y d x=0, y \neq 0$

- Watch Video Solution

24. Solve the following differential equations.
$(x+y-1)(d y / d x)=1$

- Watch Video Solution

25. IF of the following differential equations.
$\left(1-x^{2}\right)(d y / d x)+2 x y=x\left(1-x^{2}\right)^{1 / 2}$

- Watch Video Solution

26. Solve the following differential equations.
$d y / d x+y / x=y^{3}$

- Watch Video Solution

27. Solve the following differential equations.

$$
\frac{d y}{d x}+\frac{x y}{1-x^{2}}=x \sqrt{y}
$$

28. Solve the following differential equations.
$x(d y / d x)+y=y^{2}$

- Watch Video Solution

29. The differential equation of the curve $\frac{x}{c-1}+\frac{y}{c+1}=1$ is (a) [Math Processing Error] (cc)
$(e e)(f f)\left((g g)(h h)(i i) \frac{(j j) d y}{k k}((l l) d x)(m m)(\cap)+1(o o)\right)((p p)(q q) y-x$
(fff) (ggg)
$(h h h)(i i i)\left((j j j)(k k k)(l l l) \frac{(m m m) d y}{n n n}((o o o) d x)(p p p)(q q q)+1(r r r)\right)((s s$ $=2(b b b b) \frac{(c c c c) d y}{d d d d}((e e e e) d x)(f f f f)(g g g g)(h h h h)$
(iiii)
A. $\left(\frac{d y}{d x}-1\right)\left(y+x \frac{d y}{d x}\right)=2 \frac{d y}{d x}$
B. $\left(\frac{d y}{d x}+1\right)\left(y-x \frac{d y}{d x}\right)=\frac{d y}{d x}$
C. $\left(\frac{d y}{d x}+1\right)\left(y-x \frac{d y}{d x}\right)=2 \frac{d y}{d x}$
D. none of these

Answer: C

- Watch Video Solution

30. The differential equation of the family of curves represented by
$y^{3}=c x+c^{3}+c^{2}-1$, where c is an arbitrary constant is of :
A. Order 1, degree 1
B. order 2, degree 1
C. order 1, degree 3
D. order 2, degree2

Answer: c

- Watch Video Solution

31. Form the differential equation for the curve: $y=A x^{2}+B x$, where a and b are arbitrary constant.

- Watch Video Solution

32. The differential equation of family of curves of $y^{2}=4 a(x+a)$ is

- Watch Video Solution

33. The differential equation of family of curves of $y^{2}=4 a(x+a)$ is

- Watch Video Solution

34. Obtain the differential equation of the curve $y=a_{1} e^{x}+a_{2} e^{-x} w h e r e, a_{1}, a_{2}$ being arbitrary constant.

- Watch Video Solution

35. The order and degree of the differential equation, of which $x y=c e^{x}+b e^{-x}+x^{2}$ is a solution, is:
A. 1, 3
B. 2,1
C. 3,2
D. none of these

Answer: B

- Watch Video Solution

36. The degree of the differential equation of all tangent lines to the parabola $y^{2}=4 a x$ is
A. 1
B. 2
C. 3
D. none of these

Answer: B

- Watch Video Solution

37. $\int e^{4 x-5} d x$

- Watch Video Solution

38. The general solution of the differential equation $[2 \sqrt{x y}-x] d y+y d x=0$ is (Here $\mathrm{x}, y>0)$
A. $\log +\sqrt{\frac{y}{x}=c}$
B. $\log -\sqrt{\frac{x}{y}}=C$
C. $\log y+\sqrt{\frac{x}{y}}=C$
D. none of these

- Watch Video Solution

39. The solution of the differential equation $x^{3} \frac{d y}{d x}=y^{3}+y^{2} \sqrt{y^{2}-x^{2}}$ is :
A. $y+\sqrt{y^{2}-x^{2}}=c x y$
B. $y-\sqrt{y^{2}-x^{2}}=c x y$
C. $y \sqrt{y^{2}-x^{2}}=c x+y$
D. $x \sqrt{y^{2}-x^{2}}=c x+y$

Answer: A

- Watch Video Solution

40. If $\left(y^{3}-2 x^{2} y\right) d x+\left(2 x y^{2}-x^{3}\right) d y=0$, then the value of $x y \sqrt{y^{2}-x^{2}}$, is
A. $\frac{x}{y} \sqrt{x^{2}-y^{2}}=C$
B. $x y \sqrt{x^{2}-y^{2}}=C$
C. $x y \sqrt{y^{2}-x^{2}}=C$
D. $\frac{x}{y} \sqrt{x^{2}+y^{2}}=C$

Answer: C

- Watch Video Solution

41. The general solution of $\frac{d y}{d x}+y \tan x=\sec x$ is

- Watch Video Solution

42. For the differential equation whose solution is $(x-h)^{2}+(y-k)^{2}=a^{2}$ (a is a constant), its (a) order is $2(\mathrm{~b})$ order is 3 (c) degree is 2 (d) degree is 3
A. $\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{a}=a^{2} \frac{d^{2} y}{d x^{2}}$
B. $\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{2}=a^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
C. $\left\{1+\left(\frac{d y}{d x}\right)\right\}^{2}=a^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}$
D. none of these

Answer: B

- Watch Video Solution

43. Integrating factor of $\frac{d y}{d x}+\frac{y}{x}=x^{7}-8,(x>0)$ is:
A. x
B. $\log x$
C. $-x$
D. e^{x}

Answer: A

- Watch Video Solution

44. solution of $(x+y-1) d x+(2 x+2 y-3) d y=0$ is:
A. $y+x+\log (x+y-2)=c$
B. $y+2 x+\log (x+y-2)=c$
C. $2 y+x+\log (x+y-2)=C$
D. $2 y+2 x+\log (x+y-2)=C$

Answer: C

- Watch Video Solution

45. The solution of $y^{\prime}=2+2 x+2 y^{2}+2 x y^{2}, y(0)=0$ is:
A. $y^{2} \exp .\left(x+\frac{x^{2}}{2}\right)-1$
B. $y^{2}=1+c \exp \left(x+\frac{x^{2}}{2}\right)$
C. $y=\tan \left(c+x+x^{2}\right)$
D. $y=\tan \left(2 x+x^{2}\right)$

Answer: D

- Watch Video Solution

46. The solution of $\frac{d y}{d x}-y=1, y(0)=1$ is given by
A. $-\exp .(x)$
B. $-\exp \cdot(-x)$
C. -1
D. $2 \exp .(x)-1$

Answer: D

- Watch Video Solution

47. Integral curve satisfying $y^{\prime}=\frac{x^{2}+y^{2}}{x^{2}-y^{2}}$ and $y^{\prime}(1) \neq 1$ has the slope at the point $(1,0)$ of the curve equal to:
A. $-\frac{5}{3}$
B. -1
C. 1
D. $\frac{5}{3}$

Answer: C

- Watch Video Solution

48. The differential equation of the family of curves $y=e^{x}(A \cos x+B \sin x)$, where A and B are arbitrary constants is (a) $(b)(c)(d) \frac{(e)(f) d^{(g) 2(h)}(i) y}{j}\left((k) d(l) x^{(m) 2(n)}(o)\right)(p)(q)-2(r) \frac{(s) d y}{t}((u)$,
(y) (z) [Math Processing Error] (xx) (yy) [Math Processing Error] (eeee) (ffff) [Math Processing Error] (ddddd)
A. $\frac{d^{2} y}{d x^{2}}=2 \frac{d y}{d x}-y$
B. $\frac{d^{2} y}{d x^{2}}=2 \frac{d y}{d x}-2 y$
C. $\frac{d^{2} y}{d x^{2}}=2 \frac{d y}{d x}-y$
D. $\frac{d^{2} y}{d x^{2}}=2 \frac{d y}{d x}+y$

Answer: B

- Watch Video Solution

49. The general solution of a differential equation is $y=a e^{b x+c}$ where are arbitrary constants. The order the differential equation is :
A. 3
B. 2
C. 1
D. none of these

Answer: B

- Watch Video Solution

50. The order of the differential equation whose general solution is given by $y=\left(C_{1}+C_{2}\right) \cos \left(x+C_{3}\right)-C_{4} e^{x+4_{5}}$, where $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$, are arbitrary constants, is (a) 5 (b) 4 (c) 3 (d) 2
A. 5
B. 4
C. 3
D. 2

Answer: C

- Watch Video Solution

51. The differential equation of the family of curves $y=e^{x}(A \cos x+B \sin x)$, where A and B are arbitrary constants is (a) $(b)(c)(d) \frac{(e)(f) d^{(g) 2(h)}(i) y}{j}\left((k) d(l) x^{(m) 2(n)}(o)\right)(p)(q)-2(r) \frac{(s) d y}{t}((u)$
(y) (z) [Math Processing Error] (xx) (yy) [Math Processing Error] (eeee) (ffff)
[Math Processing Error] (ddddd)
A. $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=0$
B. $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$
C. $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-2 y=0$
D. none of these

Answer: B

- Watch Video Solution

52. If the solution of the differential equation $\frac{d y}{d x}=\frac{a x+4}{2 y+f}$ represents a circle, then the value of a is:
A. 2
B. -2
C. 3
D. -3
53. The differential equation of rectangular hyperbolas whose axes are asymptotes of the hyperbola $x^{2}-y^{2}=a^{2}$, is :
A. $y \frac{d y}{d x}=x$
B. $x \frac{d y}{d x}=-y$
C. $x \frac{d y}{d x}=y$
D. $x d y+y d x=3$

Answer: B

- Watch Video Solution

54. The integrating factor of the differential equation $\frac{d y}{d x}\left(x(\log)_{e} x\right)+y=2(\log)_{e} x \quad$ is given by (a) $\quad(b) x(c) \quad$ (d) (b)
$(e)(f)(g) e^{(h) x(i)}(j)(k)$ (I) (c) $(m)(n)(o)((p) \log)_{q} e(r)(s) x(t) \quad$ (u) (d) [Math Processing Error] (ii)
A. $\log (\log x)$
B. e^{x}
C. $\log x$
D. x

Answer: C

- Watch Video Solution

55. Find the differential equation of all the ellipses whose center is at origin and axis are co-ordinate axis.
A. $x y y_{2}-x y_{1}^{2}+y y_{1}=0$
B. $y_{2}+x y_{1}^{2}-y y_{1}=0$
C. $x y y_{2}+x y_{1}^{2}+y y_{1}=0$
D. none of these
56. A particular solution of $\log (d y / d x)=3 x+5 y, y(0)=0$ is:
A. $e^{x}+3 e^{-4 y}=4$
B. $4 e^{3 x}-3 e^{-4 y}=3$
C. $3 e^{3 x}+4 e^{4 y}=7$
D. none of these

Answer: D

Watch Video Solution

57. The solution $(x+y+2) d y=d x$ is :
A. $x+y+2=C e^{y}$
B. $x+y+4=c c y$
C. $\log (x+y+2)=C y$
D. none of these

Answer: A::D

- Watch Video Solution

58. The degree of the differential equation $Y_{2}^{3 / 2}-Y_{1}^{1 / 2}-4=0$ is :
A. 6
B. 3
C. 2
D. 4

Answer: A

- Watch Video Solution

59. The equation of the curve passing through $(3,9)$ which satisfies $d y / d x=x+1 / x^{2}$ is :
A. $6 x y=3 x^{2}-6 x+29$
B. $6 x y=3 x^{2}-29 x+6$
C. $6 y=3 x^{2}+29-6 x$
D. none of these

Answer: C

- Watch Video Solution

60. The solution of $(3 x+3 y-4) d y+(x+y) d x=0$ is given by:
A. $(x+y)+b g|x-y|-4 \mid=C$
B. $3 x 3 y-4 \log |x-4|=C$
C. $\frac{3}{2}(x+y)+b g|x+y-2| x=c$
D. None of these

Answer: D

- Watch Video Solution

61. The differential equation of all parabolas having their axes of symmetry coincident with the axes of x, is
A. $Y Y_{1}+y_{1}^{2}=0$
B. $Y Y_{2}+Y_{1}^{2}=0$
C. Both a and B
D. none of these

Answer: B

- Watch Video Solution

62. The solution of $\frac{d y}{d x}+\frac{x}{1-x^{2}} y=x \sqrt{y}$, is given by
A. $3 \sqrt{y}=\left(1-x^{2}\right)+C\left(1-x^{2}\right)^{1 / 4}$
B. $3 \sqrt{y}=-\left(1-x^{2}\right)+c\left(1-x^{2}\right)$
C. $3 \sqrt{y}=\left(1-x^{2}\right)+\left(1-x^{2}\right)$
D. none of these

Answer: B

- Watch Video Solution

63. A continuously differentiable function $\phi(x) \in(0, \pi / 2)$ satisfying $y^{\prime}=1+y^{2}, y(0)=0$, is
A. $Y=\tan x$
B. $y=x(x-\pi)$
C. $y=(x-\pi)\left(1-e^{x}\right)$
D. not possible
64. The integrating factor of differential equation $\cos x \frac{d y}{d x}+y \sin x=1$ is
A. $Y \sec x \tan x=c$
B. $y \sec x=\tan x+c$
C. $Y \tan x=\sec x+c$
D. $y \tan x=\sec x \tan x+c$

Answer: B

- Watch Video Solution

65. The equation of the curve whose slope is given by $\frac{d y}{d x}=\frac{2 y}{x} ; x>0, y>0$ and which passes through the point $(1,1)$ is
A. $x^{2}=Y$
B. $x=y^{2}$
C. $x=2 y$
D. $y=2 x$

Answer: A

- Watch Video Solution

66. IF $y^{\prime}=\frac{y}{x}(\log y-\log x+1)$, then the solution of the equation is :
A. $\frac{\log (x)}{y}=c y$
B. $\frac{\log (y)}{x}=c y$
C. $\frac{\log (x)}{y}=c x$
D. $\frac{\log (y)}{x}=c x$

Answer: C::D

67. The solution of $\left(x^{2}+x y\right) d y=\left(x^{2}+y^{2}\right) d x$ is
A. $\log x=\log (x-y)+\frac{y}{x}+C$
B. $\log x=2 \log (x-y)+\frac{y}{x}+C$
C. $\log x=\log (x-y)+\frac{x}{y}+C$
D. none of these

Answer: B

- Watch Video Solution

68. The solution $x^{2} \frac{d y}{d x}=x^{2}+x y+y^{2}$ is :
A. $\tan ^{-1} \frac{y}{x}=b g y+C$
B. $\tan ^{-1} \frac{x}{y}=\log x+C$
C. $\tan ^{-1} \frac{x}{y}=\log +C$
D. $\tan ^{-1} \frac{y}{x}=\log x+C$

Answer: D

- Watch Video Solution

69. The differential equation which represents the family of curves $y=e^{C x}$ is $y_{1}=C^{2} y$ b. $x y_{1}-$ In $y=0$ c. x In $y=y y_{1}$ d. y In $y=x y_{1}$
A. $y=c y$
B. $x y^{\prime}-\log y=0$
C. $x \log y=Y Y^{\prime}$
D. $Y \log =x y$

Answer: D

- Watch Video Solution

70. Integrating factor of the differential equation
$(x . \log x) \frac{d y}{d x}+y=2 \log x$ is
A. e^{x}
B. $\log x$
C. $\log (\log x)$
D. x

Answer: B

- Watch Video Solution

71. Solution of differential equation $d y-\sin x \sin y d x=0$ is
A. $e^{\cos x} \cdot \tan \frac{y}{2}=C$
B. $e^{\cos x} \cdot \tan Y=C$
C. $\cos x, \tan Y=C$
D. $\cos x, \sin y=C$

Answer: A

72. If m and n are order and degree of the differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{5}+\frac{4\left(\frac{d^{2} y}{d x^{2}}\right)^{3}}{\frac{d^{3} y}{d x^{3}}}+\frac{d^{3} y}{d x^{3}}=x^{2}-1$
A. $m=3, n=3$
B. $m=3, n=2$
C. $m=2, n=5$
D. $m=3, n=1$

Answer: B

- Watch Video Solution

73. The solution of the differential equation $2 x \frac{d y}{d x}-y=3$ represents
(a) circles b.straight lines c. ellipses d. parabolas
A. straight line
B. circle
C. parabola
D. ellipse

Answer: C

- Watch Video Solution

74. Find the differential equation of the family of curves, $x=A \cos n t+B \sin n t$, where A and B are arbitrary constants.
A. $\frac{d^{2} y}{d x^{2}}-\alpha^{2} Y=0$
B. $\frac{d^{2} y}{d x^{2}}+\alpha^{2} Y=0$
C. $\frac{d^{2} y}{d x^{2}}+\alpha Y=0$
D. $\left(\frac{d^{2} y}{d x^{2}}\right)-\alpha Y=0$

Answer: B

75. Solution of the differential equation $(x-y)^{2}\left(\frac{d y}{d x}\right)=a^{2}$ is
A. $Y=\frac{1}{2} \log \left|\frac{x-y-1}{x-y-1}\right|+C$
B. $Y=\frac{1}{2} \log \left|\frac{x+y-1}{x+y+1}\right|+C$
C. both a and B
D. none of these

Answer: A

- Watch Video Solution

76. The solution of $(x+\log y) d y+y d x=0$ when $\mathrm{y}(0)=1$ is:
A. $y(x-1)+y \log y=0$
B. $y(x-1+y \log Y)+1=0$
C. $x y+y \log y-y+1=0$
D. none of these

- Watch Video Solution

77. If $x(t)$ is a solution of $\frac{(1+t) d y}{d x}-t y=1$ and $y(0)=-1$ then $y(1)$ is (a) $(b)(c)-(d) \frac{1}{e} 2(f)(g)(h)$ (i) (b) $(j)(k) e+(l) \frac{1}{m} 2(n)(o)(p)$ (q) (c) $(d)(e) e-(f) \frac{1}{g} 2(h)(i)(j)(\mathrm{k})(\mathrm{d})(l)(m)(n) \frac{1}{o} 2(p)(q)(r)(\mathrm{s})$
A. $-\frac{1}{2}$
B. $e+\frac{1}{2}$
C. $e-\frac{1}{2}$
D. $\frac{1}{2}$

Answer: A

78. The order and degree of the differential equation of the family of ellipse having the same foci, are respectively
A. 1,1
B. 2,1
C. 2,2
D. 1,2

Answer: D

- Watch Video Solution

79. The equation of the curve through the point $(1,1)$ and whose slope is
$\frac{2 a y}{x(y-a)}$ is
A. $y^{a} \cdot x^{2 a}=e^{y-1}$
B. $y^{2} \cdot x^{2 x}=e^{y}$
C. $y^{2 a} x^{a}=e^{y-1}$
D. none of these

Answer: A

- Watch Video Solution

80. The solution of the differential equation $\frac{\left(x+2 y^{3}\right) d y}{d x}=y$ is
A. $x=y^{2}\left(c+y^{2}\right)$
B. $x=y\left(c-y^{2}\right)$
C. $x=3 y(c-y)^{2}$
D. $x=y\left(c+y^{2}\right)$

Answer: D

- Watch Video Solution

81. A curve passes through $\left(1, \frac{\pi}{4}\right)$ and at (x, y) its slope is $\frac{\sin 2 y}{x+\tan y}$.

Find the equation to the curve.
A. $x=\tan y$
B. $y=\tan x$
C. $x=2 \tan Y$
D. $y=2 \tan x$

Answer: A

- Watch Video Solution

82. $y \frac{d y}{d x} \sin x=\cos x\left(\sin x-\frac{y^{2}}{2}\right) ;$ where at $x=\frac{\pi}{2}$,
A. $y^{2}=\sin x$
B. $y^{2}=2 \sin x$
C. $x^{2}=\sin Y$
D. $x^{2}=2 \sin Y$

Answer: A

- Watch Video Solution

83. The differential equation for the family of curve $x^{2}+y^{2}-2 a y=0$, where a is an arbitrary constant, is
$(b)(c) 2\left((d)(e)(f) x^{(g) 2(h)}(i)-(j) y^{(k) 2(l)}(m)(n)\right)(o) y^{(p))^{\prime}(q)}(r)=x y($
(t)
(u)
$(v)(w) 2\left((x)(y)(z) x^{(a a) 2(b b)}(c c)+(d d) y^{(e e) 2(f f)}(g g)(h h)\right)(i i) y^{(j j)^{\prime}(k k)}$ (nn) (oo) [Math Processing Error] (hhh)
$(j j j)(k k k)\left((l l l)(m m m)(\bigcap) x^{(o o o) 2(p p p)}(q q q)+(r r r) y^{(s s s) 2(t t t)}(u u u)\right.$ (bbbb)
A. $\left(x^{2}-y^{2}\right) Y^{\prime}=2 x y$
B. $2\left(x^{2}+y^{2}\right) Y^{\prime}=x y$
C. $2\left(x^{2}-y^{2}\right) Y^{\prime}=x y$
D. $\left(x^{2}+y^{2}\right) Y^{\prime}=2 x y$

Answer: A

- Watch Video Solution

84. Find the particular solution of $\cos y d x+\left(1+2 e^{-x}\right) \sin y d y=0$ when $x=0, y=\frac{\pi}{4}$
A. If both assertion and reason are CORRECT and the reason is CORRECT explanation of the assertion.
B. If both assertion and reason are CORRECT and the reason in INCORRECT explanation of the assertion.
C. If assertion is CORRECT and the reason in INCORRECT
D. If assertion in INCORRECT and the reason is CORRECT.

Answer: C

- Watch Video Solution

85. Assertion: Integrating factor of $\frac{d y}{d x}+y=x^{2}$ is e^{x}

Reason: Integrating factor of $\frac{d y}{d x}+P(x) y=Q(x)$ is $e^{\int p(x) d x}$
A. If both assertion and reason are CORRECT and the reason is CORRECT explanation of the assertion.
B. If both assertion and reason are CORRECT and the reason in INCORRECT explanation of the assertion.
C. If assertion is CORRECT and the reason in INCORRECT
D. If assertion in INCORRECT and the reason is CORRECT.

Answer: A

- Watch Video Solution

86. Assertion: The general solution of $\frac{d y}{d x}+y=1$ is $y e^{x}=e^{X}+C$

Reason: The number of arbitrary constant in the general solution of the differential equation is equal to the order of D.E.
87. Find the equation of the curve in which the subnormal varies as the square of the ordinate.

- Watch Video Solution

88. Find the equation of the curve passing through (2,1) which has constant sub-tangent.

- Watch Video Solution

89. Find the curve for which the length of normal is equal to the radius vector.

- Watch Video Solution

90. The family of curves, the subtangent at any point of which is the arithmetic mean of the coordinates of the point of tangency, is given by

- Watch Video Solution

91. The equation of the family of curves which intersect the hyperbola $x y=2$ orthogonally is
A. $y=\frac{x^{3}}{6}+C$
B. $y=\frac{x^{2}}{4}+C$
c. $Y=-\frac{x^{3}}{6}+C$
D. $y=-\frac{x^{2}}{4}+C$

Answer: A

- Watch Video Solution

92. The general solution of the differential equation $\frac{d y}{d x}=y \tan x-y^{2} \sec x$ is
A. $\tan x=(C+\sec x) y$
B. $\sec y=(c+\tan y) x$
C. $\sec x=(c+\tan x) y$
D. none of these

Answer: C

- Watch Video Solution

93. about to only mathematics
A. $10 \log 2$ years
B. $20 \log 2$ years
C. $30 \log 2$ years
D. none of these

Answer: B

- Watch Video Solution

94. The solution of the $\frac{d y}{d x}=\frac{x y+y}{x y+x}$ is :

(Watch Video Solution

95. The equation of the curve satisfying the differential equation $y_{2}\left(x^{2}+1\right)=2 x y_{1}$ passing through the point $(0,1)$ and having slope of tangent at $\mathrm{x}=0$ and 3 where $\left(y_{2}\right.$ and y_{1} represents 2 nd and 1 st order derivative), then
A. $y=x^{2}+3 x+2$
B. $y=x^{2}+3 x+1$
C. $y=x^{3}+3 x+1$
D. none of these

Answer: C

- Watch Video Solution

96. The solution of the differential equation $\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0$ is
(a) $(b)(c) y=2(d)$ (e) (b) $(f)(g) y=2 x(h)$ (i) (c) $(d)(e) y=2 x-4(f)$
(g) (d) $(h)(i) y=2(j) x^{(k) 2(l)}(m)-4(n)(\mathrm{o})$
A. $y=2$
B. $4 y=x^{2}$
C. $y=2 x-4$
D. $y=2 x^{2}-4$

Answer: B::C

97. Solution of $y d x-x d y=x^{2} y d x$ is:
A. $y e^{x^{2}}=c x^{2}$
B. $y e^{-x^{2}}=c x^{2}$
C. $y^{2} e^{x^{2}}=c x^{2}$
D. $y^{2} e^{-x^{2}}=c x^{2}$

Answer: C

- Watch Video Solution

98. For solving $\frac{d y}{d x}=4 x+y+1$, suitable substitution is

$$
\begin{aligned}
& \text { А. } Y=v x \\
& \text { В. } Y=4 x+v \\
& \text { С. } y=4 x \\
& \text { D. } Y+4 x+1=V
\end{aligned}
$$

- Watch Video Solution

99. The equation of the curve satisfying the differential equation $Y_{2}\left(x^{2}+1\right)=4 x y_{1}$, passing through the point $(0,-4)$ and having slope of tangent at $x=0$ as 4 is:
А. $y=4\left(\frac{x^{5}}{5}+x+\frac{2 x^{3}}{3}-1\right)$
В. $y=4\left(\frac{x^{5}}{5}-x+\frac{3 x^{3}}{3}-1\right)$
C. $y=4\left(\frac{x^{5}}{5}+x+\frac{2 x^{3}}{3}+1\right)$
D. none of these

Answer: A

- Watch Video Solution

100. The solution of $\frac{x^{2} d y}{d x}-x y=1+\frac{\cos y}{x} \quad$ is
$(b)(c) \tan \left((d)(e)(f) \frac{y}{g}((h) 2 x)(i)(j)(k)\right)=c-(l) \frac{1}{m}\left((n) 2(o) x^{(p) 2(q)}(r)\right.$
(v) (w) [Math Processing Error] (ii) (jj)
$(k k)(l l) \cos \left((m m)(\cap)(\infty) \frac{y}{p p} x(q q)(r r)(s s)\right)=1+(t t) \frac{c}{u u} x(\vee)(w w)($
(yy) (d) [Math Processing Error] (rrr)
A. $\cos \frac{y}{x}=1+\frac{c}{x}$
B. $x^{2}=\left(c+x^{2}\right) \tan \frac{y}{x}$
C. $\tan \frac{y}{2 x}=C-\frac{1}{2 x^{2}}$
D. $\tan \frac{y}{x}=c+\frac{1}{x}$

Answer: C

- Watch Video Solution

101. The equation of the curve which passes through the point ($2 a, a$) and for which the sum of the Cartesian sub tangent and the abscissa is equal to the constant a , is:
A. $y(x-a)=a^{2}$
B. $y(x+a)=a^{2}$
C. $x(y-a)=a^{2}$
D. $x(y+a)=a^{2}$

Answer: A

- Watch Video Solution

102. The solution of the differential equation

$$
\begin{array}{ll}
\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0 & \text { is (A) } x e^{2 \tan ^{-1} y}=e^{\tan ^{-1} y}+k \\
(x-2)=k e^{-\tan ^{-1} y} & \text { (C) } \quad 2 x e^{\tan ^{-1} y}=e^{2 \tan ^{-1} y}+k \\
x e^{\tan ^{-1} y}=\tan ^{-1} y+k &
\end{array}
$$

A. $(x-2)=K e^{\tan ^{-1}} y$
B. $2 X e^{\tan ^{-1}} y=\tan ^{-1} y+K$
C. $X e \tan ^{-1} Y=\tan ^{-1} y+K$
D. $X e^{2} \tan ^{-1} y=\tan ^{-1} y+K$

Answer: B

- Watch Video Solution

103. The orthogonal trajectories to the family of curve $y=c x^{K}$ are given by :
A. $x^{2}+c y^{2}=$ constant
B. $x^{2}+k y^{2}=$ constant
C. $k x^{2}+y^{2}=$ costant
D. $x^{2}-k y^{2}=$ constant

Answer: B

- Watch Video Solution

1. The equation of curves which intersect the hyperbola $x y=4$ at an angle $\frac{\pi}{2}$ is

- Watch Video Solution

2. Solve:
$x d y+y d x=\frac{x d y-y d x}{x^{2}+y^{2}}$

- Watch Video Solution

3. Solve the differential equation : $\frac{d y}{d x}=\frac{x+y+1}{x+y-1}$

- Watch Video Solution

4. The degree of the differential equation satisfying the relation $\sqrt{1+x^{2}}+\sqrt{1+y^{2}}=\lambda\left(x \sqrt{1+y^{2}}-y \sqrt{1+x^{2}}\right)$ is
A. 1
B. 2
C. 3
D. none of these

Answer: A

- Watch Video Solution

5. The equation of the curve passing through the origin and satisfying the differential equation $\left(\frac{d y}{d x}\right)^{2}=(x-y)^{2}$, is
A. $e^{2 x}(1-x+y)=1+x-y$
B. $e^{2 x}(1+x-y)=1-x+y$
C. $e^{2 x}(1-x+y)=1+x+y$
D. $e^{2} x(1+x+y)=1-x+y$

Watch Video Solution

6. A ray of light coming from origin after reflectiion at the point $P(x, y)$ of any curve becomes parallel to x-axis, the , equation of the curve may be
A. $y^{2}=x$
B. $y^{2}=2 x+1$
C. $y^{2}=4 x$
D. $y^{2}=4 x+1$

Answer: B

- Watch Video Solution

7. Solution of the equation $x d y-\left[y+x y^{3}(1+\log x)\right] d x=0$ is :
A. $-\frac{x^{2}}{y^{2}}=\frac{2 x^{3}}{3}\left(\frac{2}{3}\right)+C$
B. $\frac{x^{2}}{y^{2}}=\frac{2 x^{3}}{3}\left(\frac{2}{3}+\log x\right)+C$
C. $=\frac{x^{2}}{y^{2}}=\frac{x^{3}}{3}\left(\frac{2}{3}+\log x\right)+c$
D. none of these

Answer: A

- Watch Video Solution

8. The solution of the differential equation $\left(x y^{4}+y\right) d x-x d y=0$, is
A. $4 x^{4} y^{3}+3 x^{3}=c y^{3}$
B. $3 x^{3} y^{4}+4 x^{3}=c y^{3}$
C. $3 x^{4} y^{3}+4 x^{3}=c y^{3}$
D. none of these

Answer: C

9. A particle of mass m moves on positive x-axis under the influence of force acting towards the origin given by $-k x^{2} \hat{i}$. If the particle starts from rest at $x=a$, the speed it will attain when it crosses the origin is
A. $k \sqrt{a}$
B. k
C. $k \sqrt{3 a}$
D. $\frac{1}{k} \sqrt{a}$

Answer: C

- Watch Video Solution

10. Given a function ' g ' which has a derivative $g^{\prime}(x)$ for every real x and satisfies $g^{\prime}(0)=2$ and $g(x+y)=e^{y} g(x)+e^{y} g(y)$ for all x and y then:

Find $g(x)$.
A. $\mathrm{g}(\mathrm{x})$ is increasing for all $x \in[-1, \infty)$
B. range of $g(x)$ is $\left[-\frac{2}{e}, \infty\right)$
C. $g^{\prime \prime}(x)>0 \forall x$
D. $\lim _{x \rightarrow 0} \frac{g(x)}{x}=1$

Answer: A: B

- Watch Video Solution

11. If the general solution of the differential equation $y^{\prime}=\frac{y}{x}+\phi\left(\frac{x}{y}\right)$, for some function ϕ is given by $y \ln |c x|=x$, where c is an arbitray constant, then $\phi\left(\frac{x}{y}\right)$ is equal to (here $y^{\prime}=\frac{d y}{d x}$)
A. $-\frac{x^{2}}{y^{2}}$
B. $\frac{y^{2}}{x^{2}}$
C. $\frac{x^{2}}{y^{2}}$
D. $-\frac{y^{2}}{x^{2}}$
12. The solutions of $y=x\left(\frac{d y}{d x}+\left(\frac{d y}{d x}\right)^{3}\right)$ are given by (where $p=\frac{d y}{d x}$ and k is constant)
A. the constant function $y=0$
B. $y=p^{-3} e^{P^{2} / 2}\left(P+P^{3}\right)$
C. $y=\left(k p^{-3} e^{1 / 2 p^{2}}\left(P+P^{3}\right)\right.$
D. $Y e^{-1 / 2}=P^{2}+1$

Answer: A: B::D

- Watch Video Solution

13. for any differential function $y=F \quad(x)$: the value of $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3} \cdot \frac{d^{2} x}{d y^{2}}$
A. 1
B. 2
C. 0
D. 4

Answer: C

- Watch Video Solution

14. $f(x)=\sin x+\int_{-\pi / 2}^{\pi / 2}(\sin x+t \cos x) f(t) d t$ The range of $f(x)$ is
A. $+\frac{\sqrt{5}}{3}$
B. $-\left(\frac{\sqrt{5}}{3}\right)$
C. 0
D. 1

Answer: A

15. IF $x \frac{d y}{d x}+y=x \cdot \frac{f(x . y)}{f^{\prime}(x . y)}$ then $\mathrm{f}(\mathrm{x} \cdot \mathrm{y})$ is equal to (K being an arbitary constant)
A. $K e^{x^{2} / 2}$
B. $K e^{y^{2} / 2}$
C. $K e^{x y / 2}$
D. none of these

Answer: A

- Watch Video Solution

16.

Let

$$
\frac{d}{d x} F(x)=\left(\frac{e^{\sin x}}{x}\right), x>0 .
$$

$\int_{1}^{4} \frac{3}{x} e^{\sin x \wedge} 3 d x=F(k)-F(1)$, then one of the possible values of k, is: 15 (b) 16 (c) 63 (d) 64
A. 16
B. 63
C. 64
D. 15

Answer: C

D Watch Video Solution

17. The solution of the differential equation
$x d x+y d y+\frac{x d y-y d x}{x^{2}+y^{2}}=0$, is
A. $y=x \tan \left(\frac{c+x^{2}+y^{2}}{2}\right)$
B. $x=y \tan \left(\frac{x+x^{2}+y^{2}}{2}\right)$
C. $y=x \tan \left(\frac{c-x^{2}-y^{2}}{2}\right)$
D. none of these

Answer: C

18. The solution of $\frac{d y}{d x}=\frac{x^{2}+y^{2}+1}{2 x y}$ satisfying $y(1)=0$ is given by
A. a hyperbola
B. a circle
C. $y^{2}=(1+x)-10$
D. None
A. a hyperbola
B. a circle
C. $y^{2}=(1+x)-10$
D. None

Answer: A

- Watch Video Solution

19. IF $\mathrm{x} \cos (y / x)(y d x+x d y)=y \sin (y / x)(x d y-y d x) \mathrm{y}(1)=2 \pi$ then the value of $4 \frac{y(4)}{\pi} \cos \left(\frac{y(4)}{4}\right)$ is :
A. 1
B. 2
C. 3
D. none of these

Answer: B

- Watch Video Solution

20. If $f(x)$ and $g(x)$ are two solutions of the differential equation a $\frac{d^{2} y}{d x^{2}}+x^{2} \frac{d y}{d x}+y=e^{x}$, then $f(x)-g(x)$ is the solution of
A. $a^{2} \frac{d^{2} y}{d x^{2}}+x^{2} \frac{d y}{d x}+y=e^{X}$
B. $a^{2} \frac{d^{2} y}{d x^{2}}+y=0$
C. $a \frac{d^{2} y}{d x^{2}}+x^{2} \frac{d y}{d x}+y=0$
D. $a \frac{d^{2} y}{d x^{2}}+y=0$

Answer: C

- Watch Video Solution

21. The solution of the differential equation

$$
\frac{d y}{d x}=e^{x-y}\left(e^{x}-e^{y}\right) \text { is }
$$

A. $e^{y}=e^{x}-1+C e^{-e^{x}}$
B. $e^{x}=e^{y}-1+C e^{-e^{x}}$
C. $e^{x}=e^{y}-1+C e^{-e y}$
D. none of these

Answer: A

- Watch Video Solution

22. Solve $\frac{d x}{d y}+\frac{x}{y}=\sin y$

- Watch Video Solution

23. Solve: $y^{4} d x+2 x y^{3} d y=\frac{y d x-x d y}{x^{3} y^{3}}$

- Watch Video Solution

24. A normal is drawn at a point $P(x, y)$ of a curve. It meets the x -axis and the y-axis in point A AND B, respectively, such that $\frac{1}{O A}+\frac{1}{O B}=1$, where O is the origin. Find the equation of such a curve passing through (5. 4)

- Watch Video Solution

25. If $\int_{a}^{x} t y(t) d t=x^{2}+y(x)$, then find $y(x)$
26. The solution of differential equation $x y^{\prime}=x\left(\frac{y^{2}}{x^{2}}+\frac{f\left(\frac{y^{2}}{x^{2}}\right)}{f^{\prime}\left(\frac{y^{2}}{x^{2}}\right)}\right)$ is
(a)
$(b)(c) f\left((d)(e)(f) \frac{(g)(h) y^{(i) 2(j)}(k)}{l}\left((m)(n) x^{(o) 2(p)}(q)\right)(r)(s)(t)\right)=c($
(z)
(b)
[Math
Processing Error]
(ggg)
(c)
$(d)(e)(f) x^{(g) 2(h)}(i) f\left((j)(k)(l) \frac{(m)(n) y^{(o) 2(p)}(q)}{r}\left((s)(t) x^{(u) 2(v)}(w)\right)\right.$
(bb) (d) [Math Processing Error] (bbb)
A. $f\left(y^{2} / x^{2}\right)=c x^{2}$
B. $x^{2} f\left(y^{2} / x^{2}\right)=c^{2} y^{2}$
C. $x^{2} f\left(y^{2} / x^{2}\right)=C$
D. $f\left(y^{2} / x^{2}\right)=c y / x$

Answer: A

$(y+x \sqrt{x y}(x+y)) d x+(y \sqrt{x y}(x+y)-x d y=0 \quad$ is \quad (a) $\quad[M a t h$
Processing Error]
(gg)
$(h h)(i i)(j j) \frac{(k k)(l l) x^{(m m) 2(n n)}(o o)+(p p) y^{(q q) 2(r r)}(s s)}{t t} 2(u u)(\vee)+2(\imath$
(III) (mmm)
$(n n n)(\infty o)(p p p) \frac{(q q q)(r r r) x^{(s s s) 2(t t t)}(u u u)+(v v v) y^{(w w w) 2(x x x)}(y y y)}{z z z} 2(c$
$+2(c c c c)(d d d d) \cot ^{(e e e e)(f f f f)-1(g g g g)}(h h h h) \sqrt{(i i i i)(j j j j)(k k k k) \frac{x}{l l l l} y(}$
(rrrr) (d) None of these
A. $f\left(y^{2} / x^{2}\right)=c x^{2}$
B. $x^{2} f\left(y^{2} / x^{2}\right)=c^{2} y^{2}$
C. $x^{2} f\left(y^{2} / x^{2}\right)=C$
D. $f\left(y^{2} / x^{2}\right)=c y / x$

Answer: B

- Watch Video Solution

28. A function

$$
y=f(x)
$$

$(x+1) f^{\prime}(x)-2\left(x^{2}+x\right) f(x)=\frac{e^{x^{2}}}{x+1}, A a x>-1 . \quad$ If $\quad f(0)=5$, then $f(x)$ is
A. $\left(\frac{3 x+5}{x+1}\right) e^{x^{2}}$
B. $\left(\frac{6 x+5}{x+1}\right) e^{x^{2}}$
C. $\left(\frac{6 x+5}{(x+1)^{2}}\right) e^{x^{2}}$
D. $\left(\frac{5-6 x}{x+1}\right) e^{x^{2}}$

Answer: B

- Watch Video Solution

29. The solution of the differential equation $\frac{d y}{d x}+\frac{y}{x}=\cos x$ is:

- Watch Video Solution

30. The solution of the differential equation
$2 x^{2} y \frac{d y}{d x}=\tan \left(x^{2} y^{2}\right)-2 x y^{2}$ given $y(1)=\sqrt{\frac{\pi}{2}}$ is :
A. $\sin x^{2} Y^{2}=e^{x-1}$
B. $\sin \left(x^{2} y^{2}\right)=x$
C. $\cos x^{2} Y^{2}+x=0$
D. $\sin \left(x^{2} y^{2}\right)=e e^{x}$

Answer: D

D Watch Video Solution

31. The solution of differential equation
$\left(2 y+x y^{3}\right)+\left(x+x^{2} y^{2}\right)=0$ is
A. $x^{2}+\frac{x^{3} y^{3}}{3}$
B. $x y^{2}+\frac{x^{3} y^{3}}{3}=C$
C. $x^{2} Y+\frac{x^{4} Y^{4}}{4}=C$
D. none of these

Answer: A

- Watch Video Solution

32. The solution of $y e^{-\frac{x}{y}} d x-\left(x e^{\left(-\frac{x}{y}\right)}+y^{3}\right) d y=0 \quad$ is (a)
$(b)(c)(d) e^{(e)(f)-(g) \frac{x}{h} y(i)(j)(k)}(l)+(m) y^{(n) 2(o)}(p)=C(q) \quad(\mathrm{r})$
[Math Processing Error] (ee)
$(d)(e) 2(f) e^{(g)(h)-(i) \frac{x}{j} y(k)(l)(m)}(n)+(o) y^{(p) 2(q)}(r)=C(s)$
[Math Processing Error] (kk)
A. $e^{-x / y}+Y^{2}=C$
B. $x e^{-x / y}+Y=0$
C. $2 e^{-x / y}+y^{2}=c$
D. $e^{-x / y}+2 y^{2}=c$

Answer: C

33. The curve satisfying the equation $\frac{d y}{d x}=\frac{y\left(x+y^{3}\right)}{x\left(y^{3}-x\right)}$ and passing through the point $(4,-2)$ is (a) $(b)(c)(d) y^{(e) 2(f)}(g)=-2 x(h)$ (i)
(b) $(j)(k) y=-2 x(l)(\mathrm{m})$
(c) $(d)(e)(f) y^{(g) 3(h)}(i)=-2 x(j)$

None of these
A. $y^{2}=-2 x$
B. $y=-2 x$
C. $y^{3}=-2 x$
D. $Y^{3}=-2 x$

Answer: C

- Watch Video Solution

34. The solution of the differential equation
$\left\{1+x \sqrt{x^{2}+y^{2}}\right\} d x+\left\{\left(x^{2}+y^{2}\right)-1\right\} y d y=0$ is equal to
A. $x^{2}+\frac{y^{2}}{2}+\frac{1}{3}+\frac{1}{3}\left(x^{2}+y^{2}\right)^{3 / 2}=C$
B. $x-\frac{y^{3}}{3}+\frac{1}{2}\left(x^{2}+y^{2}\right)^{1 / 2}=C$
C. $x-\frac{y^{2}}{2}+\frac{1}{3}\left(x^{2}+y^{2}\right)^{3 / 2}=C$
D. none of these

Answer: C

- Watch Video Solution

35. Tangent to a curve intersect y-axis at a point P. A line perpendicular to this tangent through P passes through point (1,0). The differential equation of the curves is
A. $y \frac{d y}{d x}-x\left(\frac{d y}{d x}\right)^{2}=1$
B. $\frac{x d^{2}}{d x^{2}}+\left(\frac{d y}{(d x)^{2}}\right)=0$
C. $y \frac{d x}{d y+x=0}$
D. none of these

D Watch Video Solution

36. The curve in the first quadrant for which the normal at any point (x, y) and the line joining the origin to that point form an isosceles triangle with the x-axis as base is (a) an ellipse (b) a rectangular hyperbola (c) a circle (d) None of these
A. an ellipse
B. a reatangular hyperbola
C. a circle
D. none of these

Answer: B

37. The family of curves represented by $\frac{d y}{d x}=\frac{x^{2}+x+1}{y^{2}+y+1}$ and $\frac{d y}{d x}+\frac{y^{2}+y+1}{x^{2}+x+1}=0$
A. touch each other ${ }^{`}$
B. are orthogonal
C. are one and the same
D. none of

Answer: B

- Watch Video Solution

38. A normal at $P(x, y)$ on a curve meets the x -axis at Q and N is the foot of the ordinate at P. If $N Q=x \frac{1+y^{2}}{1+x^{2}}$, then the equation of curve given that is passes through the point $(3,1)$ is
A. $x^{2}-y^{2}=8$
B. $x^{2}+2 y^{2}=11$
C. $x^{2}-5 y^{2}=4$
D. none of these

Answer: C

- Watch Video Solution

39. The normal to a curve at $P(x, y)$ meet the x -axis at G. If the distance of G from the origin is twice the abscissa of P, then the curve is a (a) parabola (b) circle (c) hyperbola (d) ellipse
A. parabola
B. circle
C. hyperbola
D. ellipse

Answer: C

Numerical Value Type For Jee Main

1. If $\mathrm{y}=\mathrm{y}(\mathrm{x}) \frac{2_{\cos x}}{y+1}\left(\frac{d y}{d x}\right)=-\sin x, y(0)=1$ then $y\left(\frac{\pi}{2}\right)$ equal \qquad .

- Watch Video Solution

2. A curve is such that the intercept of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point $(1,2)$. If the ordinate of the point on the curve is $\frac{1}{3}$ then the value of abscissa is :

- Watch Video Solution

3. A partical moves in a straight line with a velocity given by $\frac{d x}{d t}=x+1$ (x is the distance described). The time taken by a particle to traverse a distance of 99 metres, is
4. Find the order and degree of the following differential equation: $\frac{d^{2} y}{d x^{2}}=\left[y+\left(\frac{d y}{d x}\right)^{6}\right]^{\frac{1}{4}}$

- Watch Video Solution

5. The curve satisfying the equation $\frac{d y}{d x}=\frac{y\left(x+y^{3}\right)}{x\left(y^{3}-x\right)}$ and passing through the point $(4,-2)$ is (a) $(b)(c)(d) y^{(e) 2(f)}(g)=-2 x(h)$ (i)
(b) $(j)(k) y=-2 x(l)(\mathrm{m})$
(c) $(d)(e)(f) y^{(g) 3(h)}$
$(i)=-2 x(j)$
(k) (d)

None of these

- Watch Video Solution

6. By elimating the constant in the following equation $x^{2}-y^{2}=C\left(x^{2}+y^{2}\right)^{2}$ its differeential equation is $Y^{\prime} \frac{x\left(\lambda y^{2}-x^{2}\right)}{y\left(\lambda x^{2}-Y^{2}\right)}$, then the value of λ is
7. Find the equation of the curve passing through the origin if the middle point of the segment of its normal from any point of the curve to the x axis lies on the parabola $2 y^{2}=x$.

- Watch Video Solution

8. If the solution of differential equation $\frac{d y}{d x}=1+x+y^{2}+x y^{2}$ where $\mathrm{Y}(0)=0$ is $Y=\tan \left(x+\frac{x^{2}}{a}\right)$, then a is \qquad

- Watch Video Solution

9. If K is constant such that $x y+k=e^{\frac{(x-1)^{2}}{2}}$ satisfies the differential equation $x \cdot \frac{d y}{d x}=\left(\left(x^{2}-x-1\right) y+(x-1)\right.$ and $y(1)=0$ then find the value of K.
10. The curve whose equation satisfies $x \frac{d y}{d x}-4 y-x^{2} \sqrt{y}=0=0$ passes through $\left(1,(1 n 4)^{2}\right)$ the find the value of $\frac{y(2)}{(1 n 32)^{2}}$

D Watch Video Solution

11. IF the solution of differential equation $\frac{d y}{d x}=\frac{x-y}{x+y}$ is $(x+y)^{2}=C+a x^{2}$ then a is \qquad

(Watch Video Solution

Jee Main Archive

1. If $y=y(x)$ and $\frac{2+\sin x}{y+1}\left(\frac{d y}{d x}\right)=-\cos x, y(0)=1, \quad$ then $y\left(\frac{\pi}{2}\right)=$
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $-\frac{1}{3}$
D. 1

Answer: A

- Watch Video Solution

2. The solution of the differential equation $\left(\frac{d y}{d x}\right)^{2}-x \frac{d y}{d x}+y=0$ is
(a) $(b)(c) y=2(d)$ (e) (b) $(f)(g) y=2 x(h)$ (i) (c) $(d)(e) y=2 x-4(f)$
(g) (d) $(h)(i) y=2(j) x^{(k) 2(l)}(m)-4(n)$ (o)
A. $y=2$
B. $y=2 x$
C. $y=2 x-4$
D. $y=2 x^{2}-4$

Answer: C

3. The order of the differential equation whose general solution is given by $y=\left(C_{1}+C_{2}\right) \cos \left(x+C_{3}\right)-C_{4} e^{x+45}$, where $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}$, are arbitrary constants, is (a) 5 (b) 4 (c) 3 (d) 2
A. 5
B. 4
C. 3
D. 2

Answer: C

- Watch Video Solution

4. Let $y(x)$ be the solution the differential equation $(x \log x) \frac{d y}{d x}+y=2 x \log x,(x \geq 1)$. Then $\mathrm{y} €$ is equal to A. e
B. 0
C. 2
D. 2 e

Answer: C

- Watch Video Solution

5. If $x d y=y(d x+y d y), y(1)=1$ and $Y(x)>0$. Then, $\mathrm{y}(-3)$ is epual to
A. 3
B. 2
C. 1
D. 0

Answer: A

6. If $x(t)$ is a solution of $\frac{(1+t) d y}{d x}-t y=1$ and $y(0)=-1$ then $y(1)$ is (a) $(b)(c)-(d) \frac{1}{e} 2(f)(g)(h)$ (i) (b) $(j)(k) e+(l) \frac{1}{m} 2(n)(o)(p)$ (q) (c) $(d)(e) e-(f) \frac{1}{g} 2(h)(i)(j)(\mathrm{k})(\mathrm{d})(l)(m)(n) \frac{1}{o} 2(p)(q)(r)(\mathrm{s})$
A. $-\frac{1}{2}$
B. $e+\frac{1}{2}$
C. $e-\frac{1}{2}$
D. $\frac{1}{2}$

Answer: A

- Watch Video Solution

7. Let the population of rabbits surviving at a time t be governed by the differential equation $\frac{d p(t)}{d t}=\frac{1}{2} p(t)-200$. If $p(0)=100$, then $\mathrm{p}(\mathrm{t})$ equals (1) $400-300 e^{t / 2}$ (2) $300-200 e^{-t / 2}$ (3) $600-500 e^{t / 2}$ $40-300 e^{-t / 2}$
A. $400-300 e^{\frac{t}{2}}$
B. $300-200 e^{\frac{t}{2}}$
C. $600-500 e^{\frac{t}{2}}$
D. $400-300 e^{-\frac{t}{2}}$

Answer: A

- Watch Video Solution

8. At present, a firm is manufacturing 2000 items. It is estimated that the rate of change of production P w.r.t. additional number of workers x is given by $\frac{d P}{d x}=100-12 \sqrt{x}$. If the firm employs 25 more workers, then the new level of production of items is (1) 3000 (2) 3500 (3) 4500 (4) 2500
A. 2500
B. 3000
C. 3500
D. 4500

- Watch Video Solution

9. Let $y=g(x)$ be the solution of the differential equation $\frac{\sin (d y)}{d x}+y \cos x=4 x, x \in(0, \pi)$ If $\mathrm{y}(\mathrm{pi} / 2)=0$, then $\mathrm{y}(\mathrm{pi} / 6)^{\prime}$ is equal to
A. $-\frac{4}{9} \pi^{2}$
B. $\frac{4}{9 \sqrt{3}} \pi^{2}$
C. $\frac{-8}{9 \sqrt{3}} \pi^{2}$
D. $-\frac{8}{9} \pi^{2}$

Answer: D

- Watch Video Solution

10. Let p (x) be a polynomial with real coefficient and $p(x)=x^{2}+2 x+1$. Find $\mathrm{P}(1)$.

Watch Video Solution

11. If $\mathrm{y}=\mathrm{y}(\mathrm{x})$ is the solution of the differential equation, $x \frac{d y}{d x}+2 y=x^{2}$ satisfying $\mathrm{y}(1)=1$, then $y\left(\frac{1}{2}\right)$ is equal to
A. $\frac{7}{64}$
B. $\frac{13}{16}$
C. $\frac{1}{4}$
D. $\frac{49}{16}$

Answer: D

- Watch Video Solution

12. Let $f:[0,1] \rightarrow R$ be such that $f(x y)=f(x) \times f(y)$ for all x , $y \in[0,1]$ and $f(0) \neq 0$. if ' $y=y(x)$ satisfues the differential equation, $\frac{d y}{d x}=f(x)$ with $y(0)=1$, then $y\left(\frac{1}{4}\right)+y\left(\frac{3}{4}\right)$ is
A. 5
B. 4
C. 2
D. 3

Answer: D

- Watch Video Solution

13.

A. $\frac{1}{3}$
B. $\frac{1}{3}+e^{6}$
C. $-\frac{4}{3}$
D. $\frac{1}{3}+e^{3}$

Answer: B

- Watch Video Solution

14. Let f be differentiable function such that
$f^{\prime}(x)=7-\frac{3}{4} \frac{f(x)}{x},(x>0)$ and $f(1) \neq 4$ Then $\lim _{x \rightarrow 0^{+}} x f\left(\frac{1}{x}\right)$
A. exists and equals $4 / 7$
B. exists and equals 0
C. exist and equals 4
D. does not exist

Answer: C

D Watch Video Solution

15. The curve amongst the family of curves, represented by the differential equation $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$ which passes through $(1,1)$ is
A. a circle with centre on the y - axis
B. an ellipse with major axis along the y-axis
C. a circle with centre on the x - axis
D. A hy perbola with transverse axis along the x-axis

Answer: C

D Watch Video Solution

16. The solution of the differential equation $\frac{d y}{d x}=(x-y)^{2}, \quad$ when $y(1)=1$, is
A. $-\log \left|\frac{1+X-y}{1-x+y}\right|=x+y=2$
B. $\log _{e}\left|\frac{2-y}{2-x}\right|=2(y-1)$
C. $-\log _{e}\left|\frac{1-x+y}{1+x-y}\right|=2(x-1)$
D. $\log _{e}\left|\frac{2-x}{2-y}\right|=x-y$

Answer: C

- Watch Video Solution

17. If $y(x)$ is the solution of the differential equation $\frac{d y}{d x}+\left(\frac{2 x+1}{x}\right) y=e^{-2 x}, x>0$, where $y(1)=\frac{1}{2} e^{-2}$, then
A. $y(x)$ is decreasing in $\left(\frac{1}{2}, 1\right)$
B. $y(x)$ is decreasing in $(0,1)$
C. $y\left(b g_{e} 2\right)=\frac{\log _{e} 2}{4}$
D. $\left.y\left(b g_{e} 2\right)\right)=\log _{e} 4$

Answer: A

- Watch Video Solution

18. If a curve passes through the point $(1,-2)$ and has slope of the tangent at any point (x, y) on it as $\frac{x^{2}-2 y}{x}$, then the curve also passes through the point
A. $(-1,2)$
B. $(\sqrt{3}, 0)$
C. $(3,0)$
D. $(-\sqrt{2}, 1)$

Answer: B

- Watch Video Solution

19. Let $y=y(x)$ be the solution of the differential equation $x \frac{d y}{d x}+y=x \log _{e} x,(x>1)$. If $2 y(2)=\log _{e} 4-1$, then $y(e)$ is equal to
A. $\frac{e}{4}$
B. $-\frac{e^{2}}{2}$
C. $\frac{e^{2}}{4}$
D. $-\frac{e}{2}$

- Watch Video Solution

20. Let $y=y(x)$ be the solution of the differential equation, $\left(x^{2}+1\right)^{2} \frac{d y}{d x}+2 x\left(x^{2}+1\right) y=1$ such that $y(0)=0 \left\lvert\, \mathrm{ff} \sqrt{a} y(1)=\frac{\pi}{32}\right.$ then the value of 'a' is $\frac{1}{2 \alpha}$. The value of is \qquad .
A. $\frac{1}{4}$
B. $\frac{1}{16}$
C. $\frac{1}{2}$
D. 1

Answer: B

- Watch Video Solution

21. Given that the slope of the tangent to a curve $y=f(x)$ at any point (x, y) is $\frac{2 y}{x^{2}}$. If the curve passes through the centre of the circle $x^{2}+y^{2}-2 x-2 y=0$, then its equation is :
A. $x \log _{e}|y|=2(x-1)$
B. $x^{2} \log _{e}|y|=-2(x-1)$
C. $x b g_{e}|y|=x-1$
D. $x \log _{e}|y|=-2(x-1)$

Answer: A

- Watch Video Solution

22. If $\cos x \frac{d y}{d x}-y \sin \mathrm{x}=6 \mathrm{x},\left(0<x<\frac{\pi}{2}\right)$ and $y\left(\frac{\pi}{3}\right)=0$ and $y\left(\frac{\pi}{6}\right)$ is equal to :
A. $-\frac{\pi^{2}}{4 \sqrt{3}}$
B. $-\frac{\pi^{2}}{2}$
C. $-\frac{\pi^{2}}{2 \sqrt{3}}$
D. $\frac{\pi^{2}}{2 \sqrt{3}}$

Answer: C

- Watch Video Solution

23. The solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2}(X \neq 0)$ with $y(1)=1$, is :
A. $y=\frac{4}{5} x^{3}+\frac{1}{5 x^{2}}$
B. $y=\frac{x^{3}}{5}+\frac{1}{5 x^{2}}$
C. $y=\frac{x^{2}}{4}+\frac{3}{4 x^{2}}$
D. $y=\frac{3}{4} x^{2}+\frac{1}{4 x^{2}}$

Answer: C

- Watch Video Solution

24. Let $\mathrm{y}=\mathrm{y}(\mathrm{x})$ be the solution of the differential equation, $\frac{d y}{d x}+y \tan x=2 x+x^{2} \tan x, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, such that $y(0)=1$. Then
А. $y^{\prime}\left(\frac{\pi}{4}\right)-y^{\prime}\left(-\frac{\pi}{4}\right)=\pi-\sqrt{2}$
B. $Y\left(\frac{\pi}{4}\right)-Y\left(-\frac{\pi}{4}\right)=\sqrt{2}$
C. $Y\left(\frac{\pi}{4}\right)+Y\left(-\frac{\pi}{4}\right)=\frac{\pi^{2}}{2}+2$
D. $y^{\prime}\left(\frac{\pi}{4}\right)+Y^{\prime}\left(-\frac{\pi}{4}\right)=\sqrt{2}$

Answer: A

- Watch Video Solution

25. If $y=y(x)$ is the solution of the differential equation $\frac{d y}{d x}=(\tan x-y) \sec ^{2} x, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, such that $y(0)=0$, then $y\left(-\frac{\pi}{4}\right)$ is equal to:
A. $e-2$
B. $2+\frac{1}{e}$
C. $\frac{1}{e}-2$
D. $1.2-e$

Answer: A

- Watch Video Solution

26. Consider the differential equation, $y^{2} d x+\left(x-\frac{1}{y}\right) d y=0$. If value of y is 1 when $\mathrm{x}=1$, then the value of x for which $\mathrm{y}=2$, is
A. $\frac{3}{2}-\sqrt{e}$
B. $\frac{1}{2}+\frac{1}{\sqrt{e}}$
C. $\frac{5}{2}+\frac{1}{\sqrt{e}}$
D. $3 / 2-(1) /(\operatorname{sqrt}(\mathrm{e}))^{\prime}$

Answer: D

27. The general solution of the differential equation $\left(y^{2}-x^{3}\right) d x-x y d y=0(x \neq 0)$ is $y^{2}+k x^{l}+c x^{2}=0$. The value of $(l+k)$ is \qquad . (Where c is a constant of intetration)
A. $y^{2}-2 x^{3}+c x^{2}=0$
B. $y^{2}+2 x^{3}+c x^{2}=0$
C. $y^{2}-2 x^{2}+c x^{3}=0$
D. $y^{2}+2 x^{2}+c x^{3}=0$

Answer: B

- Watch Video Solution

28. If a curve $y=f(x)$ passes through the point $(1,-1)$ and satisfies the differential equation,$y(1+x y) d x=x d y$, then $f\left(-\frac{1}{2}\right)$ is equal to: (1) $-\frac{2}{5}$ (2) $-\frac{4}{5}$ (3) $\frac{2}{5}$ (4) $\frac{4}{5}$
A. $-\frac{2}{5}$
B. $-\frac{4}{5}$
C. $\frac{2}{5}$
D. $\frac{4}{5}$

Answer: D

- Watch Video Solution

Jee Advance Archive

1. The differential equation $\frac{d y}{d x}=\frac{\sqrt{1-y^{2}}}{y}$ determinea a family of circles with :
A. variable radii and a fixed centre at $(0,1)$
B. variable radii and a fixed centre at $(0,-1)$
C. fixed radius 1 and variable centres along the X-axis
D. fixed radius 1 and variable centres along the Y-axis

Answer: C

- Watch Video Solution

2. The differential equation representing the family of curves $y^{2}=2 c(x+\sqrt{c})$, where c is a positive parameter, is of (a) order 1 (b) order 2 (c) degree 3 (d) degree 4
A. order 1
B. order 2
C. degree 3
D. degree

Answer: A:C

- Watch Video Solution

3. Let a solution $y=y(x)$ of the differential equation $x \sqrt{x^{2}-1} d y-y \sqrt{y^{2}-1} d x=0$ satisfy $y(2)=\frac{2}{\sqrt{3}}$
Statement I $y(x)=\sec \left(\sec ^{-1} x-\frac{\pi}{6}\right)$
Statement $\mathrm{II} \mathrm{y}(\mathrm{x})$ is given by $\frac{1}{y}=\frac{2 \sqrt{3}}{x}-\sqrt{1-\frac{1}{x^{2}}}$
A. Statement I s true, Statement II is also true,

Statement II is the correct explanation of Statement I.
B. Statement I is true, Statement II is also true,

Statement II is not the correct explanation of Statement I.
C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: C

- Watch Video Solution

4. Prove that for $x \in\left[0, \frac{\pi}{2}\right], \sin x+2 x \geq \frac{3 x(x+1)}{\pi}$.
5. Let $f: R \rightarrow R$ be a continuous function which satisfies $f(x)=$ $\int_{0}^{x} f(t) d t$. Then the value of $f(1 n 5)$ is \qquad

- Watch Video Solution

6. Let $f:[0,1] \rightarrow R$ (the set of all real numbers) be a function. Suppose the function f is twice differentiable, $f(0)=f(1)=0$ and satiies $\left.f^{\prime}\right|^{\prime}(x)-2 f f^{\prime}(x)+f(x) \quad$ ge $\quad e^{\wedge} x, \quad x \quad$ in $\quad[0,1]$ Ifthefunction $e^{\wedge}(-x) f(x)$ as \sum esits $\min i \mu m \in$ the \int erval $[0,1] a t \mathrm{x}=1 / 4$
, whichofthefollow \in gistrue $?(A) \mathrm{f}^{\prime}(\mathrm{x})$ It $\mathrm{f}(\mathrm{x}), 1 / 4$ It x It $3 / 4(B) \mathrm{f}^{\prime}(\mathrm{x})$ gt
$\mathrm{f}(\mathrm{x}), \quad 0<x<\frac{1}{4}$
(C) $\quad f^{\prime}(x)<f(x), 0<x<\frac{1}{4}$
$f^{\prime}(x)<f(x), \frac{3}{4}<x<1$
A. $f(x)<f(x), \frac{1}{4}<x<\frac{3}{4}$
B. $f(x)^{\prime}>f(x) 0<x<\frac{1}{4}$
C. $f(x)<F(x), 0<x<\frac{1}{4}$
D. $f^{\prime}(x)<f(x), \frac{3}{4}<x<1$

Answer: C

- Watch Video Solution

7. Let $f:[0,1] \rightarrow R$ (the set of all real numbers) be a function. Suppose the function f is twice differentiable, $f(0)=f(1)=0$ and satisfies $f^{\prime \prime}(x)-2 f^{\prime}(x)+f(x) \geq e^{x}, x \in[0,1]$ Which of the following is true for $0<x<1 \quad$? (A) $0<f(x)<\infty \quad$ (B) $-\frac{1}{2}<f(x)<\frac{1}{2}$
$-\frac{1}{4}<f(x)<1$ (D) $-\infty<f(x)<0$
A. $0<f(x)<\infty$
B. $-\frac{1}{2}<f(x)<\frac{1}{2}$
C. $-\frac{1}{4}<f(x)<1$
D. $-\infty<f(x)<0$

Answer: D

8. Let $f(x)=(1-x)^{2} \sin ^{2} x+x^{2}$ for all $\mathrm{x} \in \mathrm{R}$, and let $g(x)=\int\left(\frac{2(t-1)}{t+1}-\ln t\right) f(t) d t$ for $\mathrm{t} \in[1, \mathrm{x}]$ for all $\mathrm{x} \in(1, \infty)$. Which of the following is true ?
A. g is increasing on $(1, \infty)$
B. g in decreasing on $(1, \infty)$
C. g is increasing on $(1,2)$ and decreasing on $(2, \infty)$
D. g is decresing on $(1,2)$ and increasing in $(2, \infty)$

Answer: B

- Watch Video Solution

9. Consider the statements : P : There exists some x IR such that $f(x)+2 x=$ $2(1+\mathrm{x} 2) \mathrm{Q}$: There exists some x IR such that $2 \mathrm{f}(\mathrm{x})+1=2 \mathrm{x}(1+\mathrm{x})$ $f(x)=(1-x)^{2} \sin ^{2} x+x^{2} \quad \forall x \in R$ Then (A) both P and Q are true
(B) P is true and Q is false (C) P is false and Q is true (D) both P and Q are false.
A. Both I and II are true
B. I is true and II is false
C. I is false and II is true
D. Both I and II are false

Answer: C

- Watch Video Solution

10. The function $y=f(x)$ is the solution of the differential equation $\frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}$ in $(-1,1)$ satisfying $f(0)=0 . \quad$ Then $\int_{\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) d x$ is (a) $(b)(c)(d) \frac{\pi}{e} 3(f)(g)-(h) \frac{(i) \sqrt{(j) 3(k)}(l)}{m} 2(n)(o)(p)$ (q) (b) $(r)(s)(t) \frac{\pi}{u} 3(v)(w)-(x) \frac{(y) \sqrt{(z) 3(a a)}(b b)}{c c} 4(d d)(e e)(f f) \quad$ (gg)
(c) $\quad(d)(e)(f) \frac{\pi}{g} 6(h)(i)-(j) \frac{(k) \sqrt{(l) 3(m)}(n)}{o} 4(p)(q)(r) \quad$ (s)
$(t)(u)(v) \frac{\pi}{w} 6(x)(y)-(z) \frac{(a a) \sqrt{(b b) 3(c c)}(d d)}{e e} 2(f f)(g g)(h h)$
A. $\frac{\pi}{3}-\frac{\sqrt{3}}{2}$
B. $\frac{\pi}{3}-\frac{\sqrt{3}}{4}$
C. $\frac{\pi}{6}-\frac{\sqrt{3}}{4}$
D. $\frac{\pi}{6}-\frac{\sqrt{3}}{2}$

Answer: B

- Watch Video Solution

11. Let $f:\left[\frac{1}{2}, 1\right] \rightarrow R$ (the set of all real numbers) be a positive, nonconstant, and differentiable function such that $\left.f^{\prime}(x)<2 f(x)\right) \operatorname{andf}\left(\frac{1}{2}\right)=1$. Then the value of $\int_{\frac{1}{2}}^{1} f(x) d x$ lies in the interval (a) $(2 e-1,2 e)$ (b) $(3-1,2 e-1)\left(\frac{e-1}{2}, e-1\right)$ $\left(0, \frac{e-1}{2}\right)$
A. $(2 e-1,2 e)$
B. $(e-1,2-1)$
C. $\left(\frac{e-1}{2}, e-1\right)$
D. $\left(0, \frac{e-1}{2}\right)$

Answer: D

- Watch Video Solution

12. Let the $f(x)$ be differentiabe function on the interval $(0, \infty)$ such that
$f(1)=1$ and $\lim _{t \rightarrow x}\left(\frac{t^{2} f(x)-x^{2} f(t)}{t^{2}-x^{2}}\right)=\frac{1}{2} \forall x>0$, then $f(x)$ is:
A. $\frac{1}{3 x}+\frac{2 x^{2}}{3}$
B. $-\frac{1}{3 x}+\frac{4 x^{2}}{3}$
C. $-\frac{1}{x}+\frac{2}{x^{2}}$
D. $\frac{1}{x}$

Answer: A

13. Integrating factor of $\sec ^{2} y \frac{d y}{d x}+x \tan y=x^{3}$

- Watch Video Solution

14. Let $\mathrm{u}(\mathrm{x})$ and $\mathrm{v}(\mathrm{x})$ be two continous functions satisfying the differential equations $\quad(d u)(d x)+p(x) u=f(x) \quad$ and $\quad \frac{d v}{d x}+p(x) v=g(x)$, respectively. If $u\left(x_{1}\right)>v\left(x_{1}\right)$ for some x_{1} and $f(x)>g(x)$ for all $x>x_{1}$, prove that any point (x, y), where $x>x_{1}$, does not satisfy the equations $y=u(x)$ and $y=v(x)$ simultaneously.

- Watch Video Solution

15. Let $y^{\prime}(x)+y(x) g^{\prime}(x)=g(x) g^{\prime}(x), y(0), x \in R$, where $f^{\prime}(x)$ denotes $\frac{d y(x)}{d x}$, and $g(x)$ is a given non-constant differentiable function on R with $g(0)=g(2)=0$. Then the value of $y(2)$ is \qquad

- Watch Video Solution

16. A curve passes through the point $\left(1, \frac{\pi}{6}\right)$. Let the slope of the curve at each point (x, y) be $\frac{y}{x}+\sec \left(\frac{y}{x}\right), x>0$. Then the equation of the curve is
$(b)(c) \sin \left((d)(e)(f) \frac{y}{g} x(h)(i)(j)\right)=\log x+(k) \frac{1}{l} 2(m)(n)(o)$
$(r)(s) \operatorname{cosec}\left((t)(u)(v) \frac{y}{w} x(x)(y)(z)\right)=\log x+2(a a) \quad$ (bb)
$(d d)(e e) \sec \left((f f)(g g)(h h) \frac{(i i) 2 y}{j j} x(k k)(l l)(m m)\right)=\log x+2(n n)$
(oo) (pp) [Math Processing Error] (fff)
A. $\sin \left(\frac{y}{x}\right)=\log x+\frac{1}{2}$
B. $\cos e c\left(\frac{y}{x}\right)=\log x+2$
C. $\sec \left(\frac{2 y}{x}\right)=\log x+2$
D. $\cos \left(\frac{2 y}{x}\right)=\log x+\frac{1}{2}$

Answer: A

- Watch Video Solution

17. Tangent is drawn at any point P of a curve which passes through (1, 1) cutting x-axis and y-axis at A and B respectively. If $A P: B P=3: 1$, then ,
A. differential equation of the curve is $3 x \frac{d y}{d x}+y=0$
B. differential equation of the curve is $3 x \frac{d y}{d x}-y=0$
C. curve is passing through $\left(\frac{1}{8}, 2\right)$
D. normal at $(1,1)$ is $x+3 y=4$

Answer: A::C

- Watch Video Solution

18. A spherical rain drop evaporates at a rate proportional to its surface area at any instant t. The differential equation giving the rate of change of the radius of the rain drop is \qquad

- Watch Video Solution

19. If length of tangent at any point on the curve $y=f(x)$. Intercepted between the point and the x-axis is of length 1 . Find the equation of the curve.

(Watch Video Solution

20. A right circular cone with radius R and height H contains a liquid which evaporates at a rate proportional to its surface area in contact with air (proportionality constant $=k>0$). Find the time after which the cone will be empty.

- Watch Video Solution

21. A country has a food deficit of 10%. Its population grows continuously at the rate of 3% per year. Its annual food production every year is 4% more than that of the last year Assuming that the average food requirement per person remains constant, prove that the country will
become self-sufficient in food after n years, where n is the smallest integer bigger than or equal to $\frac{\log _{e} 10-\log _{e} 9}{\left(\log _{e} 1.04\right)-0.03}$

- Watch Video Solution

22. A curve passing through the point $(1,1)$ has the porperty that the perpendicular distance of the normal at any point P on the curve from the origin is equal to the distance of P from x-axis Determine the equation of the curve.

- Watch Video Solution

23. A and B are two separate reservoirs of water. Capacity of reservoir A is double the capacity of reservoir B. Both the reservoirs are filled completely with water, their inlets are closed and then the water is released simultaneously from both the reservoirs. The rate of flow of water out of each reservoir at any instant of time is proportional to the quantity of water in the reservoir at the time. One hour after the water is
released, the quantity of water is reservoir A is $1 \frac{1}{2}$ times the quantity of water in reservoir B. After how many hours do both the reservoirs have the same quantity of water?

- Watch Video Solution

24. Determine the equation of the curve passing through the origin, in the form $y=f(x)$, which satisfies the differential equation $\frac{d y}{d x}=\sin (10 x+6 y)$.

- Watch Video Solution

25. If $y=y(x)$ satisfies the differential equation
$8 \sqrt{x}(\sqrt{9+\sqrt{x}}) d y=(\sqrt{4+\sqrt{9+\sqrt{x}}})^{-1} \mathrm{dx}$
$x>0$ and $y(0)=\sqrt{7}$, then $y(256)=$
A. 16
B. 3
C. 9
D. 80

Answer: B

- Watch Video Solution

26. The value of $\sum_{k=1}^{13} \frac{1}{\sin \left(\frac{\pi}{4}+\frac{(k-1) \pi}{6}\right) \sin \left(\frac{\pi}{4}+\frac{k \pi}{6}\right)}$ is equal to
A. $3-\sqrt{3}$
B. $2(3-\sqrt{3})$
C. $2(\sqrt{3}-1)$
D. $2(2+\sqrt{3})$

Answer: C

- Watch Video Solution

27. Let $y(x)$ be a solution of the differential equation $\left(1+e^{x}\right) y^{\prime}+y e^{x}=1$. If $y(0)=2$, then which of the following statements is (are) true? (a) $y(-4)=0$ (b) $y(-2)=0$ (c) $y(x)$ has a critical point in the interval $(-1,0)$ (d) $y(x)$ has no critical point in the interval($-1,0$)
A. $Y(-4)=0$
B. $y(-2)=0$
C. $y(x)$ has a $(-1,0)$
D. $y(x)$ has a critical point in the interval $(-1,0)$

Answer: C

- Watch Video Solution

28. Consider the family of all circles whose centers lie on the straight line $y=x$. If the family of circles is represented by the differential equation $P y^{\prime \prime}+Q y^{\prime}+1=0$, where P, Q are functions of x, y and y^{\prime} (here
$y^{\prime}=\frac{d y}{d x}, y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}$, then which of the following statements is (are) true?
A. $p=y+x$
B. $p=y-x$
C. $P+Q=1-x+y+y^{\prime}+(y)^{2}$
D. $P-Q=x+y-Y^{\prime}-\left(Y^{\prime}\right)^{2}$

Answer: B::C

- Watch Video Solution

29.

Let $f:(0 . \infty) \rightarrow R$ be a differentiable function such that $f^{\prime}(x)=2-$ Then
A. $\lim _{x \rightarrow 0^{+}} f\left(\frac{1}{x}\right)=1$
B. $\lim _{x \rightarrow 0^{+}} x f\left(\frac{1}{x}\right)=2$
C. $\lim _{x \rightarrow 0^{+}} x^{2} f^{\prime}(x)=0$
D. $|f(x) \leq 2|$ for all $\quad x \in(0,2)$

Answer: A

- Watch Video Solution

30. Let $f: R \rightarrow R$ be a differentiable function with $f(0)=0$. If $y=f(x)$ satisfies the differential equation $\frac{d y}{d x}=(2+5 y)(5 y-2)$, then the value of $\lim _{x \rightarrow \infty} f(x)$ is.

- Watch Video Solution

31. A solution curve of the differential equation $\left(x^{2}+x y+4 x+2 y+4\right) \frac{d y}{d x}-y^{2}=0, x>0$, passes through the point $(1,3)$ Then, the solution curve
A. Intersects $y=x+2$ exactly at one point
B. intersects $y=x+2$ exactly at two points
C. intersects $y=(x+2)^{2}$
D. Does not intersect $y=(x+3)^{2}$

Answer: A::D

D Watch Video Solution

32. let T denote a curve $y=f(x)$ which is in the first quadrant and let the point $(1,0)$ lie on it. Let the tangent to T at a point P intersect the y axis at Y_{P} and $P Y_{P}$ has length 1 for each poinit P on T . then which of the following option may be correct?
A. Order 1
B. $x y^{\prime}+\sqrt{1-x^{2}}=0$
C. $y=\log _{e}\left(\frac{1+\sqrt{1-x^{2}}}{x}\right)+\sqrt{1+x^{2}}$
D. $x y^{\prime} \sqrt{1-x^{2}}=0$

Answer: A::B

Watch Video Solution

