© ${ }^{\text {T doubtnut }}$

MATHS

BOOKS - BHARATI BHAWAN MATHS (HINGLISH)

Vectors and Addition of Vectors

Example

1. Prove that the vectors $3 \vec{I}+5 \vec{j}+2 \vec{k}, 2 \vec{I}-3 \vec{j}-5 \vec{k}$ and $5 \vec{I}+2 \vec{j}-3 \vec{k}$ form the sides of an equilatera, triangle.

- Watch Video Solution

2. Show that the points $(0,7,10),(-1,6,6)$ and $(-4,9,6)$ form a righat angled isosceles triangle.
3. If O is the circumcentre and P the orthocentre of $\triangle A B C$, prove that $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O P}$.

- Watch Video Solution

2. If O is the circumcentre and P the orthocentre of $\triangle A B C$, prove that $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O P}$.

- Watch Video Solution

3. If S is circumcentre, O is orthocentre of $\triangle A B C$, then $\overrightarrow{S A}+\overrightarrow{S B}+\overrightarrow{S C}$ =
4. If $A B C D E F$ is a regular hexagon, prove that $\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{E A}+\overrightarrow{F A}+3 \overrightarrow{A B}$

- Watch Video Solution

5. In Fig. ABCDEF is a regular hexagon. Prove that
$\overrightarrow{A B}+\overrightarrow{A C}+\overrightarrow{A D}+\overrightarrow{A E}+\overrightarrow{A F}=6 \overrightarrow{A O}$.

- Watch Video Solution

6. Find area of the triangle formed by the points $(1,2,3),(-1,-1,8)$ and $(-4,4,6)$.

- Watch Video Solution

7. The vectors of A, B, C and D are respectively
$2 \vec{I}+3 \vec{j}+5 \vec{k}, \vec{I}+2 \vec{j}+3 \vec{k},-5 \vec{I}+4 \vec{j}-2 \vec{k} \quad$ and
$\vec{I}+10 \vec{j}+10 \vec{k}$. Show that AB and CD are parallel.

Watch Video Solution

8. Find all $\lambda \in R$ such that $(x, y, z) \neq(0,0,0)$ and $(\vec{i}+\vec{j}+3 \vec{k}) x+(3 \vec{i}-3 \vec{j}+\vec{k}) y+(-4 \vec{i}+5 \vec{j}) z=\lambda(x \vec{i}$

Watch Video Solution

9. What is the unit vector \widehat{a} parallel to the vector $\vec{a}=3 \vec{I}+4 \vec{j}-2 \vec{k}$? Find the vector \vec{b} such that $\widehat{a}+\vec{b}$ becomes the unit vector \vec{i} ?

- Watch Video Solution

10. Vectors \vec{a}, \vec{b} are noncollinear. Find x so that the vectors $(x-1) \vec{a}+\vec{b}$ and $(2+3 x) \vec{a}-2 \vec{b}$ are collinear.

- Watch Video Solution

11. The position vectors of the points A, B, C are $\vec{a}, \vec{b}, \vec{c}$ respectively. If $3 \vec{a}+2 \vec{c}=5 \vec{b}$, are the points A, B, and C collinear? If so find $A B: B C$.

- Watch Video Solution

12. If three vector $2 \vec{i}-\vec{j}-\vec{k}, \vec{i}+2 \vec{j}-3 \vec{k}, 3 \vec{i}+\lambda \vec{j}+5 \vec{k}$ are coplanar then the value of λ is:

- Watch Video Solution

13. If $\vec{a}, \vec{b}, \vec{c}$ are three non collinear vectors then show that the following points are collinear. $6 \vec{a}-4 \vec{b}+10 \vec{c},-5 \vec{a}+3 \vec{b}-10 \vec{c}, 4 \vec{a}-6 \vec{b}-10 \vec{c} \quad$ and $2 \vec{b}+10 \vec{c}$
14. If the points $\mathrm{A}(2,3,-4), \mathrm{B}(1,-2,3)$ and $\mathrm{C}(3, \lambda,-1)$ are colliner, then value of λ is

- Watch Video Solution

$$
\begin{aligned}
& \text { 15. Show that the four point } \\
& (0,-1,-1),(4,5,1),(3,9,4) \operatorname{and}(-4,4,4) \text { are coplanar and find }
\end{aligned}
$$ the equation of the common plane.

- Watch Video Solution

16. Three non-zero vectors $\vec{a}, \vec{b}, \vec{c}$ are such that no two of them are collinear. If the vector $(\vec{a}+\vec{b})$ is collinear with the vector \vec{c} and the vector $(\vec{b}+\vec{c})$ is collinear with vector \vec{a}, then prove that $(\vec{a}+\vec{b}+\vec{c})$ is a null vector.

- Watch Video Solution

