

CHEMISTRY

AAKASH INSTITUTE ENGLISH

MOCK TEST 12

Exercise

1. For an equilibrium reaction, if the value of standard Gibb's free energy, AG° is zero, then

the value of equilibrium constant, K will be equal to

A. Zero

B. 2

C. 1

D. 10

Answer: C

Watch Video Solution

2. The equlibrium constant k_p for the reactin.

$$2NOCL(g)\Leftrightarrow 2NO(g)+Cl_2(g)$$
 is $6.95\cdot 10^{-8}$ at 298K . The standard gibb free energy change ΔG^0 at 298 K will be (

$$R = 2 cal K^{-1} mol^{-1}$$
) (log 6.95 = 0 8420)

A. 4.912 kcal

B. 14.74 kcal

C. 7.3 kcal

D. 9.825kcal

Answer: D

3. The yield of product in the reaction,

$$A_2(g) + 2B(g) \Leftrightarrow C(g) + QKJ$$

would be higher at:

A. High temperature and high pressure

B. High temperature and low pressure

C. Low temperature and high pressure

D. Low temperature and low pressure

Answer: C

4. A chemical reaction is catalysed by a catayst X. hence X.

A. Changes the equilibrium constant of the reaction

B. Changes the enthalpy of reaction (AH)

C. Alters the concentration of both reactants and products in a state of equilibrium

D. Increases the speed of both the forward and backwand eactions to same extent in a reversible

Answer: D

Watch Video Solution

5. Which one of the equation is currect?

A.
$$\Delta G = \Delta G^0 + nRT\log Q$$

B.
$$\Delta G^0 = \Delta G + nRT\log Q$$

C.
$$\Delta G = \Delta G^0 + nRT \ln Q$$

D.
$$\Delta G^0 = \Delta G + nRT \ln Q$$

Answer: C

Watch Video Solution

6. The yield of product in the reaction,

$$A_2(g) + 2B(g) \Leftrightarrow C(g) + QKJ$$

would be higher at:

A. 4.24

B. 2.12

C. 42.4

D. 8.48

Answer: A

Watch Video Solution

7. In which of the following reaction, the formation of product is favoured by increase in pressure?

A.
$$CO_2(g) \Rightarrow 2CO(g) + O_2(g)$$

$$\mathsf{B.}\, 3O_2(g) \Rightarrow 2O_3(g)$$

$$\mathsf{C.}\,CO_2(g) + C(s) \Rightarrow 2CO(g)$$

D.

$$CH_4(g) + H_2O(g) \Rightarrow CO(g) + 3H_2(g)$$

Answer: B

Watch Video Solution

8. Consider the following reaction at equilibrium: `NH_4HS(s)

A. Equilibrium shifts in the backward direction

B. Equilibrium shifts in the forward direction

C. Equilibrium remains unaffected

D. The value of K is increased

Answer: C

9. Ammonia is a weak base that reacts with water according to the equation

 $NH_3(aq) + H_2O(l) \Leftrightarrow NH_4^{\,+}(aq) + OH^{\,-}(aq)$

Select the correct option (s) that can increase

the moles of ammonium ion in water:

A. Addition of HCI

B. Addition of H₂O

C. Addition of NaOH

D. Addition of NH_4CI

Answer: C

Watch Video Solution

10. The equilibrium,

 $BaCO_3(s) \Leftrightarrow Ba0(s) + CO_2(g)$ will shift in

left hand direction by

A. Addition of BaO(s)

B. Removal of CO₂(g)

C. Removal of Bao(s)

D. Decreasing the volume of the vessel

Answer: D

Watch Video Solution

11. Le - Chatelier principle is not applicable to :

A.
$$N_2(g)+3H_2(g)<\ \Rightarrow 2NH_3(g)$$

$$\mathsf{B.}\, PCL_5(g) < \ \Rightarrow PCL_3(g) + CL_2(g)$$

$$\mathsf{C.}\,Fe(s) + S(s) < \ \Rightarrow FeS(s)$$

D.
$$CaCO_3(s) < \ \Rightarrow CaO(s) + CO_2$$

Answer: C

12. In which of the following reactions, increase in the pressure at constant temperature does not affect the moles at equilibrium?

A.
$$H_2(g) + rac{1}{2}O_2(g) \Leftrightarrow H_2O(g)$$

$$\mathsf{B.}\,H_2(g) + I_2(g) \Leftrightarrow 2HI(g)$$

$$\mathsf{C.}\ C(g) + rac{1}{2}O_2 \Leftrightarrow CO(g)$$

D.
$$2NH_3(g) \Leftrightarrow N_2(g) + 3H_2(g)$$

Answer: B

Watch Video Solution

13. For the gas phase exothermic reaction,

$$A(g) + 2B(g)$$

- A. Decreasing the temperature
- B. Increasing the pressure
- C. Adding inert yas at constant pressure
- D. Removing C(g) at equilibrium

Answer: C

Watch Video Solution

14. For the reaction

$$CO(g) + H_2O(g) \Leftrightarrow CO_2(g) + H_2(g)$$

at a given temperature, the equilibrium amount of $CO_2(g)$ can be increased by

- A. Increasing the pressure
- B. Adding an inert gas at constant pressure
- C. Increasing the volume of the container

D. Increasing the amount of CO(g)

Answer: D

Watch Video Solution