

CHEMISTRY

AAKASH INSTITUTE ENGLISH

MOCK TEST 13

Exercise

1. Which among the following is a Lewis acid?

A. NH_3

B. BF_3

 $\mathsf{C}.\,H_2O$

D. $NH_4 +$

Answer: B

Watch Video Solution

2. The species which can act both as Bronsted acid and base is

A. CO_3^2 -

B.
$$NO_3^-$$

$$\mathsf{C}.\,HSO_4^-$$

D.
$$SO_4^2$$
 $-$

Answer: C

Watch Video Solution

3. An example of a strong electrolyte is

A. Glucose

B. Urea

C. Ammonium hydroxide

D. Sodium formate

Answer: D

Watch Video Solution

4. For a weak acid HA of concentration $C(moll^{-1})$ and degree of dissociation (α) , Ostwald's dilution law is represented by the equation

A.
$$K_a=rac{C^2lpha}{1-lpha}$$

B.
$$K_a=rac{lpha^2 C}{1-lpha}$$

$$\mathsf{C}.\,K_a=Clpha$$

D.
$$K_a=rac{Clpha^2}{1-lpha^2}$$

Answer: B

Watch Video Solution

 $H_2O + HCl
ightarrow H_3O^+ + Cl^-$ the species that acts as Bronsted base is

5. In the given irreversible reaction,

A. H_2O

B. HCl

 $\mathsf{C.}\,H_3O^+$

D. Cl^-

Answer: A

Watch Video Solution

6. pH of a 0.001 M NaOH solution will be

A. 9

B. 3

C. 11

D. 12

Answer: C

Watch Video Solution

7. pH of a solution is 5. Thus. the concentration of hydroxyl ion in the solution is

A. $9molL^{-1}$

B. $5molL^{-1}$

C. $10^{-5} mol L^{-1}$

D. $10^{-9} mol L^{-1}$

Answer: D

Watch Video Solution

8. The dissociation constant of an acid, HA is $1x10^{-5}$ The pH of 0.1 M solution of the acid will be

A. 3

B. 5

C. 4

D. 2

Answer: A

Watch Video Solution

9. 100 mL of 0.01 M solution of NaOH is diluted to 1 litre. The pH of resultant solution will be

A. 3

B. 12

C. 11

D. 8

Answer: C

Watch Video Solution

10. At $80^{\circ}C$, pure distilled water has $\lceil H_3 O^+
ceil = 1 imes 10^{-6} \mod L^{-1}$ The value of

 K_w at this temperature will be

A. $1 \cdot 10^{-8}$

B. $1 \cdot 10^{-14}$

C. $1\cdot 10^{-12}$

D. $1\cdot 10^{-7}$

Answer: C

Watch Video Solution

11. The pH of a solution obtained by mixing 50 mL of 2N HCl and 50 mL of 1 N NaOH is [log 5 = 0.7]

A. 1.7

B. 1.3

C. 0.7

D. 0.3

Answer: D

Watch Video Solution

12. The pH of a solution increased from 3 to 6.

Its $\left\lceil H^{\,\oplus} \, \right
ceil$ will be

A. Increased by 1000 times

B. Reduced to half

- C. Reduced by 100 times
- D. Reduced by 1000 times

Answer: D

Watch Video Solution

- 13. Ionic product of water increases, if
 - A. $H^{\,+}$ ions are added
 - B. OH ions are added
 - C. Temperature decreases

D. Temperature increases

Answer: D

Watch Video Solution

14. The hydrogen ion concentration of 0.1 M solution of acetic acid, which is 20% dissociated, is

A. 0.02 M

B. 2 M

C. 0.2 M

D. 0.002 M

Answer: A

Watch Video Solution

15. A monobasic weak acid solution which is 0.002 M has pH value equal to 5, The percentage ionization value of the acid in the solution will be

A. 0.5

B. 0.005

C. 5

D. 0.05

Answer: A

Watch Video Solution

16. In which of the following the solubility of AgCl will be minimum?

A. $0.1MCaCl_2$

 ${\tt B.}\ 0.01 MAgNO_3$

C. Pure water

 $D. 0.1MNH_3$

Answer: A

Watch Video Solution

17. If the solubility of $Mg(OH)_2$ in water is

 $SmolL^{-1}$ then its $K_s p$ will be

A. S^3

 $\mathsf{B.}\,4S^3$

- $C. 27S^3$
- D. $8S^3$

Answer: B

Watch Video Solution

- 18. Aqueous solution of sodium acetate is
 - A. Alkaline
 - B. Neutral
 - C. Weakly acidic

D. Strongly acidic

Answer: A

Watch Video Solution

19. An acidic buffer solution can be prepared by mixing the solutions of

A. Sodium chloride and sodium hydroxide

B. Nitric acid and sodium nitrate

C. Ammonium chloride and ammonium

hydroxide

D. Sodium acetate and acetic acid

Answer: D

Watch Video Solution

20. Degree hydrolysis (h) of a salt of weak acid and a strong base is given by

A. $\frac{K_w}{K_h}$

C.
$$\frac{K_u}{K_u}$$

D.
$$rac{K_a \cdot K_b}{K_w}$$

Answer: C

Watch Video Solution

21. The pH of a solution at $25\,^{\circ}C$ containing 0.20

M sodium acetate and 0.06 M acetic acid is

 $(pK_a f \text{ or } CH_3 COOH = 4.74 \text{ and } \log 3 = 0.477)$

B. 5.26

C. 5.84

D. 6.32

Answer: B

Watch Video Solution

22. The pH of 0.2 M aqueous solution of NH_4Cl

will be $(pK_b of NH_4 OH = 4.74, \log 2 = 0.3)$

A. 4.98

B. 5.42

C. 4.76

D. 4.32

Answer: A

Watch Video Solution

23. On adding ammonium chloride to a solution ammonium hydroxide

A. Dissociation of NH_4OH increases

- B. Concentration of OH increases
- C. Concentration of OH decreases
- D. Concentration of OH remains unchanged

Answer: C

Watch Video Solution

24. Aqueous solution of which salt will not be hydrolysed?

A. Potassium nitrate

- B. Potassium cyanide
- C. Potassium formate
- D. Potassium acetate

Answer: A

Watch Video Solution

25. If K_{sp} for $HgSO_4$ is 6.4×10^{-5} , then solubility of this substance in mole per m^3 is :

A.
$$5.4\cdot 10^{-5}M$$

B. $8 \cdot 10^{-3} M$

C. $8 \cdot 10^{-4} M$

D. $6.4\cdot 10^{-3}M$

Answer: B

Watch Video Solution

26. pH of 0.5 M aqueous NaCN solution is $(pK_a of HCN = 9.3, \log 5 = 0.7)$

A. 10.3

B. 9.5

C. 10.6

D. 11.5

Answer: D

Watch Video Solution

27. Calculate the pH of an aqueous solution of 1.0M ammonium formate assuming complete dissociation. (pK_a fo atomic acid is 3.8 and pK_a of ammonia is 4.8).

- A. 5.5
- B. 7.5
- C. 6.1
- D. 6.5

Answer: D

Watch Video Solution

28. How many grams of calcium oxalate should be dissolved in water to make one litre of

saturated solution? ($K_s p$ of CaC_2O_4 is $2.5X10^{-9}$ and its molecular weight is 128 u)

A.
$$6.4\cdot 10^{-3}g$$

B.
$$8.0\cdot 10^{-3}g$$

$$\mathsf{C.}\,1.28\cdot10^{-3}g$$

D.
$$6.4\cdot 10^3 g$$

Answer: A

Watch Video Solution

29. What is the pH at which $Mg(OH)_2$ begins to precipitate from a solution containing 0.1 M Mg^{2+} ions

$$ig[K_{sp} \;\; ext{for} \;\; Mg(OH)_2 = 1.0 imes 10^{-11}ig]$$

30. A certain buffer solution contains equal concentartion of X^Θ and HX. The K_b for X^Θ is 10^{-10} . The pH of the buffer is

A. 10

- B. 4
- C. 5
- D. 11

Answer: B

Watch Video Solution