

CHEMISTRY

AAKASH INSTITUTE ENGLISH

Mock test 19

1. Number of Faraday's required to generate one gram atom

of calcium from molten $CaCl_2$ is

A. 1

B. 2

C. 3

Answer: B

2. For the production of X L H_2 at STP at cathode, cost of electricity is x then cost of production of X L O_2 at STP at anode from water will be

А. х

$$\mathsf{B}.\,\frac{x}{2}$$

C. 2x

D. 4x

Answer: C

3. When one coulomb of electricity is passed through an electrolytic solution, the mass of the element deposited on the electrode is equal to

A. Molecular weight

B. equivalent weight

C. one gram

D. Electrochemical equivalent

Answer: D

4. When an aqueous solution of $AgNO_3$ is electroysed between platinum electrodes, the substances liberted at anode and cathode are

A. Cu at anode ad Ag at cathode

B. o_2 at anode and Cu at cathode

C. o_2 at anode and Ag at cathode

D. NO_2 at anode and Ag at cathode

Answer: C

5. Which of the following reaction is not involved in corrosion

of iron?

A.
$$Fe(s) o Fe^{2+}(aq) + 2e^{-}$$

B. $4OH^{-}(aq) o O_{2}(g) + 2H_{2}O(l) + 4e^{-}$
C. $4Fe^{2+}(aq) + O_{2}(g) + 4H_{2}o(l) o 2Fe_{2}O_{3}(s) + 8H^{+}(aq)$

D. $2Fe(s) + o_2(g) + 4H^+(aq) o 2Fe^{2+}(aq) + 2H_2O(l)$

Answer: B

6. During electrolysis of $H_2SO_4(aq)$ with high charge density, $H_2S_2O_8$ is fromed as by product In such electrolysis 44.8 $LH_2(g)$ and 15 $LO_2(g)$ liberated at STP Hence, the moles of $H_2S_2O_8$ formed is approximately equal to A. 0.25

B. 0.66

C. 2

D. 2.68

Answer: B

Watch Video Solution

7. When a lead storage battery is discharged then incorrect

option s) is/are

A. only 1

B. only 1 & 2

C.1,2,&3

D. Only 4

Answer: C

8. Three moles of electrons are passed through three solutions in succession containing $AgNO_3$, $CuSO_4$ and $AuCL_3$ respectively the molar ratio of amounts of cations reduced at cathode will be

A. 1: 2: 3 B. 3: 2: 1 C. 2: 1: 3 D. 6: 3: 2

Answer: D

Watch Video Solution

9. The Zn acts as sacrificial or cathodic protection to prevent rusting of iron because

A. E_(op) of Zn = E_(op) of Fe`

B. $E_{op}ofZn > E_{op}ofFe$

 $\mathsf{C.}\, E_{op} of Zn < E_{op} of Fe$

D. Zn dose mot react with water

Answer: B

10. An aqueous solution of NaCl on electrolysis gives $H_2(g), Cl_2(g)$, and NaOH accroding to the reaction : $2Cl^{c-}(aq) + 2H_2O \rightarrow 2\overset{c-}{O}H(aq) + H_2(g) + Cl_2(g)$ A direct current of 25A with a current efficiency of 62% is passed through 20L of NaCl solution (20% by weight). Write down the reactions taking place at the anode and cathode. How long will it take to produce 1kg of Cl_2 ? (Assume no loss due to evaporation .)

A. 48.71 hr,1041M

B. 2880 min, 1041M

C. 17.54 hr, 2M

D. 170.54 min, 2M

Answer: A

11. When an electric current is passed through a cell having an electrolyte, then the cations and anions move to their respective electrodes if the cathode is pulled out of the solution then

A. Both cations and anions will move towards anode

B. cations will start moving towards anode while anions

will stop moving

C. Anions will continue to move towards anode while

cations will stop moving

D. Both cations and anions will starts moving randomly

Answer: D

12. Which of the following given batteries are rechargeable?

1.Dry-cell battery

2.Nickel-cadmium battery

3.Lithium battery

4.Fuel cell

5.Lead storage battery

A. 1,2 & 4

B. 2, 3 & 5

C. 1, 2, 4 & 5

D. 2, 4 & 5

Answer: B

13. Define Fuel celll

14. A first order reaction is found to have a rate constant $k=11 imes10^{-14}s$ – 1. Find the half life of the reaction.

Watch Video Solution

15. When an acidified solution of Na_2MoO_n (atomic mass of Moi=36) is electrolyzed, O_2 gas is liberated corresponding to a volume of 0.112 L at STP and mass of MO deposited is 0.32 g. Then the formula of the salt and oxidation state of Mo is

A. Na_2MoO ,0

B. Na_2MoO_4 ,+6

C. Na_2MoO_2 ,+2

D. Na_2MoO_3 ,+4

Answer: B

