

CHEMISTRY

AAKASH INSTITUTE ENGLISH

TEST 4

1. The specific gravity of SO_3 vapour at 0^oC and 76 cmHg in grams/ litre is A. 5.6

B. 11.2

C. 3.57

D. 4.5

Answer:

Watch Video Solution

2. The pH value of 0.20 M solution of CH_3NH_2 at 298 K is [Given that its ionisation constant K_b is $5.0 imes 10^{-5}$]

A. 12.23

 $B.\,11.50$

C. 10.90

D. 12.45

Answer:

Watch Video Solution

3. If the volume of a given mass of a gas at constant temperature becomes one third times, the pressure will be

A. 3p

B. p/3

С. 6р

D. 9p

Answer:

Watch Video Solution

4. A vessel at 1200 K contains $CO_2(g)$ at a pressure of 0.5 atm. Some of the CO_2 is converted into CO(g) on addition of graphite.

The value of equilibrium constant (K_p) for the

process, if total pressure at equilibrium is 0.7

atm, is

A. 0.53 atm

B. 0.92 atm

C. 0.76 atm

D. 0.26 atm

Answer:

Watch Video Solution

5. Some solid NH_4HS is placed in flask containing 0.5 atm of NH_3 . What would be the pressure of NH_3 and H_2S when equilibrium is reached.

 $NH_4HS(g) \Leftrightarrow NH_3(g) + H_2S(g), K_p = 0.11$

A. $P_{NH_3} = 0.70 atm, P_{H_2S} = 0.20 atm$

B. $P_{NH_3} = 0.64 atm, P_{H_2S} = 0.25 atm$

C. $P_{NH_3}=0.80 atm, P_{H_2S}=0.26 atm$

D. $P_{NH_3} = 0.45 atm, P_{H_2S} = 0.32 atm$

6. If the volume of a given mass of a gas at constant temperature becomes three times, the pressure will be

A. 4p

B. 3p

C. p/3

D. 9p

- 7. Which of the following bonds has the highest bond energy?
 - A. S = O
 - $\mathsf{B.}\, C\equiv N$
 - $\mathsf{C}.\, C\equiv C$
 - $\mathsf{D.}\,N\equiv N$

8. Dissociation constant (K_a) of formic acid and acetic acid are 2.5×10^{-4} and 0.5×10^{-5} respectively. The ratio of their relative strengths at the same concentration is

A. 2.09

B. 7.07

C. 4.26

9. At t^oC , K_w for water is $6.4 imes10^{-13}$. The pH of water at t^oC will be

A. 6.91

B. 5.90

C. 6.09

D. 5.15

Watch Video Solution

10. An ideal gas has specific heat at constant volume $C_v = (3/2)$ R. The gas is kept in closed vessel of volume 0.0080 m^3 at a temperature of 300 K and pressure 1.6×10^6 N/ m^2 . If 2.8×10^4 J of heat is supplied to the gas, then the final temperature of the gas will be

B. 782

C. 737.54

D. 437.54

Answer:

Watch Video Solution

11. Degree of hydrolysis (α) for a salt of strong

acid and weak base is :

A.
$$\sqrt{rac{K_w}{K_b imes C}}$$

B.
$$\sqrt{rac{K_w imes K_b}{K_a}}$$
C. $\sqrt{rac{K_w imes C}{K_b}}$

D.
$$\sqrt{K_a imes K_b}$$

12. An ideal gas has specific heat at constant volume C_v = (3/2)R. The gas is kept in closed vessel of volume 0.0090 m^3 at a temperature of 300 K and pressure 1.8×10^6 N/ m^2 . If

 $2.8 imes 10^4$ J of heat is supplied to the gas, then

the final temperature of the gas will be

A. 675 K

B. 725 K

C. 690 K

D. 680 K

13. The favourable conditions for the reaction, $2H(g) \Leftrightarrow H_2(g)$ are

A. Low temperature, low pressure

B. High temperature, low pressure

C. High temperature, high pressure

D. Low temperature, high pressure

Answer:

Watch Video Solution

14. At $27^{\circ}C$, K_p value for the reaction $CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$, is 0.1 atm. K_C value for this reaction is

A. $4x10^{-3}$

- B. $6x10^{-3}$
- $C. 2x10^{-3}$
- D. $9x10^{-3}$

15. Which of the following is not a conjugate acid-base pair?

- A. ${NH_4^+}, {NH_3^-}$
- B. H_3O^+, OH^-
- C. $F^{\,-}, HF$
- D. $CH_3 COOH, CH_3 COO^-$

Answer:

Watch Video Solution

16. One litre sample of hard water contains 0.006 mole $CaCl_2$. The minimum concentration of Na_2SO_4 needed for the precipitation of $CaSO_4$ is (K_{sp} for $CaSO_4$ is $3.0 imes 10^{-6}$ at 25^oC) A. $6.2 imes10^{-3}$ $\mathsf{B.}\,4.2\times10^{-5}$ $\mathsf{C.5} imes 10^{-4}$ D. $6 imes 10^{-7}$

17. In a buffer solution concentration of $(NH_4)_2SO_4$ and NH_4OH are 0.4 M and 0.8 M respectively, pH of the solution is $[K_a(NH_4^+) = 10^{-8}]$

A. 7.2

B. 8

C. 9.2

D. 10

18. At $25^{o}C$, K_{sp} for AB_2 salt is equal to 8×10^{-6} . If the salt is 70% dissociated, then the solubility of AB_2 in mol/litre is

A.
$$S = \left(rac{8 imes 10^{-6}}{0.98}
ight)^{rac{1}{3}}$$

B. $S = \left(rac{5 imes 10^{-6}}{0.76}
ight)^{rac{1}{3}}$
C. $S = \left(rac{8 imes 10^{-6}}{0.98}
ight)^{rac{1}{2}}$

D.
$$S = \left(rac{5 imes 10^{-6}}{0.76}
ight)^{rac{1}{2}}$$

19. At constant temperature, vapour density of N_2O_4 is found to be 40. Percentage degree of dissociation of N_2O_4 at this constant temperature will be $N_2O_4(g) \Leftrightarrow 2NO_2(g)$

B. 16.6 %

C. 19.2 %

D. 0.15

Answer:

Watch Video Solution

20. Which one of the following has the highest

basic character?

A. Na_2O

 $\mathsf{B}.\,K_2O$

$\mathsf{C}. Rb_2O$

D. Li_2O

Answer:

21. Calculate the change in entropy $(\Delta_r S^o)$ at 298 K for the reaction in which urea is formed from NH_3 and $CO_2 2NH_3(g) + CO_2(g) \rightarrow$ NH_2CONH_2 + H_2O . The standard entropy of $NH_2CONH_2(aq), CO_2(g), NH_3(g)$ and $H_2O(l)$ are 174.0, 213.7, 195 and 75 $JK^{-1}mol^{-1}$ respectively

A.
$$-354.7 JK^{-1}mol^{-1}$$

B. $-387 J K^{-1} mol^{-1}$

C.
$$-390 J K^{-1} mol^{-1}$$

D.
$$-375JK^{-1}mol^{-1}$$

22. At $25^{o}C$, if the concentration of Ag^+ ion is $1.5 imes 10^{-4}$ mol/L in the saturated solution of $Ag_2Cr_2O_7$, then solubility product of $Ag_2Cr_2O_7$ is

A. $6.25 imes10^{-16}$

B. 5.1 imes 10 $^{-16}$

C. $1.69 imes 10^{-12}$

D. 7.2 imes 10 $^{-14}$

23. Among the following which salt do not undergo hydrolysis?

A. CH_3COONa

B. NaCN

 $\mathsf{C.}\,Na_2CO_3$

D. $NaNO_3$

Answer:

Watch Video Solution

24. If $2^{o}C$ rise in temperature takes place on the combustion of 1.0 g of methane gas in a bomb calorimeter (heat capacity = 500 J/ ^{o}C) at $27^{o}C$, then the value of heat of combustion at constant pressure (in kJ) for one mole of methane gas is

A. - 150

B. - 165

C. -154

D. - 169

25. In a system $A(s) \Leftrightarrow 2B(g) + 3C(g)$, if the concentration of C at equilibrium is increased by a factor of 2, it will cause the equilibrium concentration of B to change to :

A. 2 times

B.
$$\frac{1}{2}$$
 times
C. $\frac{2\sqrt{2}}{3}$ times

D. $\frac{1}{2\sqrt{2}}$ times

Watch Video Solution

26. 75 calories of heat is required to raise the temperature of 3 moles of an ideal gas at constant pressure from $30^{\circ}C$ to $35^{\circ}C$. The amount of heat required in calories to raise the temperature of the gas through the range

(50°C to 55°C) at constant volume is: (y= Cv/Cp =1.4)

A. 33cal

B. 65.26cal

C. 53.55cal

D. 75cal

Answer:

Watch Video Solution

27. At $100^{\circ}C$ and 1 atm pressure the density of water vapour is 0.0005970 g/cc.What is the molar volume and how does this compare with ideal gas volume ? What is the compressibility factor ' Z '?

- A. 1
- B. 0.758
- C. 0.985

D. 0.576

28. The standard Gibbs energy change for the conversion of oxygen to ozone at 300 K is [Given that K_p for the change $\left(\frac{3}{2}\right)O_2(g) \Leftrightarrow O_3(g)$ at 300 K is 2.5×10^{-30} and $\log_{10} 5 = 0.699$]

A. 170.38 kJ

B. 178.28 kJ

C. 182.48 kJ

D. 189.38 kJ

Answer:

Watch Video Solution

29. Prove that the pressure necessary to obtain 50 % dissociation of PCl_5 at $250^{\circ}C$ is numerically three times of K_p .

A.
$$K_p=rac{9}{16}P$$

B. $K_p=rac{16}{9}P$

C.
$$K_p = rac{2}{5}P$$

D. $K_p = rac{5}{2}P$

30. If enthalpy of neutralisation of HCl by NaOH is -58.84 kJ/mol and by NH_4OH is -52.26 kJ/mol, then enthalpy of ionisation of NH_4OH is A. 6.58 kJ/mol

B. - 6.58 kJ/mol

C. 4.5 (kJ)/mol

D. - 4.5 kJ/mol`

Answer:

31. A gas expands from 4.0 L to 4.5 L against a constant external pressure of 1 atm. The work done by the gas is (1 L-atm = 101.3 J)

$\mathsf{A.}-62.25J$

 $\mathrm{B.}-50.65J$

 $\mathrm{C.}-52.25J$

 $\mathrm{D.}-60.25J$

Answer:

Watch Video Solution

32. Volume of 1.5 mole of a gas at 1 atm.

pressure and 273K is
A. 22.4L

B. 33.6L

C. 11.2L

D. 10L

Answer:

Watch Video Solution

33. In which of the following cases, the solution of sparingly soluble salt AB is unsaturated?

A.
$$\begin{bmatrix} A^+ \end{bmatrix} \begin{bmatrix} B^- \end{bmatrix} < K_{sp}$$

B. $\begin{bmatrix} A^+ \end{bmatrix} \begin{bmatrix} B^- \end{bmatrix} > K_{sp}$
C. `[A^+][B^-]=K_(sp)
D. $\begin{bmatrix} A^+ \end{bmatrix} \begin{bmatrix} B^- \end{bmatrix} \ge K_{sp}$

Watch Video Solution

34. Consider the following equilibrium reactions at 25^oC , $A(g) + 3B(g) \Leftrightarrow 2C(g), K_{eq} = x$

 $egin{aligned} A(g)+D(g)&\Leftrightarrow 2E(g), K_{eq}=y\ B(g)+D(g)&\Leftrightarrow F(g), K_{eq}=z\ \end{aligned}$ then the value of equilibrium constant for the reaction $2C+4D&\Leftrightarrow 2E+3F$, at 25^oC is

A.
$$\frac{yz^3}{x}$$

B. $\frac{xy}{z^3}$
C. $\frac{xz}{y}$
D. $\frac{y^2z}{x}$

Answer:

35. Among the following processes, select the process for which ΔS is positive.

$$egin{aligned} & ext{A.} \ N_2(g) + O_2(g) o NO(g) \ & ext{B.} \ CaCO_3(s) o CaO(s) + CO_2(g) \ & ext{C.} \ N_2(g) + 3H_2(g) o 2NH_3(g) \ & ext{D.} \ NaNO_2(s) + rac{1}{2}O_2(g) o NaNO_3(s) \end{aligned}$$

Answer:

36. When He(g) is added in the following equilibrium at constant volume $N_2(g) + 3H_2(g) \Leftrightarrow 2NH_3(g)$

Then select the correct statement.

A. Concentration of NH_3 increases

- B. Concentration of NH_3 remains same
- C. Concentration of N_2 decreases
- D. Total number of moles decreases

Answer:

37. The equilibrium constant K_{p1} and K_{p2} for the reactions $X \Leftrightarrow 2Y$ and $Z \Leftrightarrow P + Q$, respectively, are in the ratio of 1:9. If the degrees of dissociation of X and Z are equal, then the ratio of total pressure at equilibria is

A. 1:6

B.1:1

C. 1:3

D. 1:9

38. For a reversible adiabatic expansion of an ideal gas dp/p is equal to

A.
$$\gamma \frac{dv}{v}$$

B. $\frac{dv}{v}$
C. $\left(\frac{\gamma}{\gamma - 1}\right) \frac{dv}{v}$
D. $-\gamma \frac{dv}{v}$

39. Among the following select the Lewis acidbase pair respectively

A. $AICl_3, BF_3$

 $\mathsf{B}.\,BF_3,\,NH_3$

 $\mathsf{C}.\,CH_3NH_2,\,CH_3OH$

D. $FeCI_3, ZnCI_2$

40. The degree of hydrolysis of 0.005 M aqueous solution of NaOCN will be (K_a for HOCN = 4.0×10^{-4})

```
A. 7.07	imes10^{-5}
```

B. $5.06 imes 10^{-6}$

C. $6.02 imes 10^{-5}$

D. $4.56 imes10^{-4}$

41. The incorrect criterion for the spontaneity of a process is

A.
$$\Delta G_{system} < 0$$

- B. $\Delta S_{system} + \Delta S_{surrounding} > 0$
- C. $\Delta S_{system} > \Delta S_{surrounding}$
- D. $\Delta H_{system} < 0 \, \, ext{and} \, \, \Delta S_{system} > 0$

42. For the reaction at 300 K, $N_2O_4(g) \Leftrightarrow 2NO_2(g)$, the value of ΔG when concentration of each species is 5 mol/litre, will be

(Given: ($\Delta G^o_{fN_2O_4}$) = 120 kJ/mol and ($\Delta G^o_{fNO_2}$) = 70 kJ/mol)

A. 24 kJ

B. 30 kJ

C. 26 kJ

D. 29 kJ

Answer:

Watch Video Solution

43. 50 J heat is supplied to a gaseous system, simultaneously the gas expands against external pressure 2 atm by 0.8 L. The change in internal energy of the system will be

 $\mathrm{A.}-120.8\,\mathrm{J}$

$\mathrm{B.}-112.11~\mathrm{J}$

 $\mathrm{C.}-125.4\,\mathrm{J}$

 $\mathrm{D.}-130.60~\mathrm{J}$

Answer:

Watch Video Solution

44. A basic buffer solution can be prepared by

mixing the solution of

A. NaOH & HCI

B. HCN & HCI

 $\mathsf{C.}\, NH_4CI \And NH_4OH$

D. NH_4CI & HCI

Answer:

Watch Video Solution

45. Among the following the strongest acid is

A. C_2H_5OH

B. HF

$\mathsf{C}.\,H_2O$

D. CH_4

Answer:

46. The correct IUPAC name of compound

- A. Cyclohex-5-ene-1,3-diol
- B. Cyclohex-4-ene-1,3-diol
- C. Cyclohex-2-ene-1,5-dial
- D. Cyclohex-3-ene-1,5-diol

47. For the reaction $C(s)+CO_2(g) o 2CO(g), k_p=63$ atm at 100 K. If at equilibrium $p_{CO}=10p_{CO_2}$ then the total pressure of the gases at equilibrium is

A. 6.3atm

B. 6.93 atm

C. 0.63atm

D. 0.693atm

Answer:

Watch Video Solution

48. Which of the following is/are correctly matched?

(i)
$$-\overset{l}{C}^{+}$$
 – Electrophile, Lewis acid

(ii)
$$- \overset{I}{\overset{I}{\overset{}}_{\iota}} - \text{Electron deficient}$$

(iv) >C: - Nucleophile

A. (i), (ii) & (iii) only

B. (ii), (iii) & (iv) only

C. (i) & (iii) only

D. (i), (ii), (iii) & (iv)

Answer:

49. Total number of isomers of C_7H_8O

containing benzene ring is

A. 3

B.4

C. 5

D. 6

Answer:

50. The total number of cyclic isomers possible for a hydrocarbon with the molecular formula $C_4 H_6$ is

A. 4

B. 5

C. 6

D. 3

Answer:

D. Tautomerism is not possible

Answer:

Watch Video Solution

52. Which of the following has highest —I effect?

A. $-NO_2$

B. —F

С. —ОН

D. — NH3+

Answer:

Watch Video Solution

53. In thiophene, the positions at which electron density will be maximum are

A. 2, 3

B. 3, 4

C. 2, 5

D. 2, 4

Answer:

Watch Video Solution

54. Geometrical isomerism is not possible in

A. Allene

B. Aldoxime

C. Azobenzene

D. 1,2-Dichlorocyclohexane

Answer:

Watch Video Solution

55. The index of hydrogen deficiency in $C_{20}H_{20}O_2$ is

B. 6

C. 9

D. 12

Answer:

Watch Video Solution

56. Which of the following is most stable conformer?

57. The correct order of basicity among the following is

A. (i) > (iii) > (ii)

$$\mathsf{B.}\,(ii)>(i)>(iii)$$

$$\mathsf{C.}\left(i
ight)>\left(ii
ight)>\left(iii
ight)$$

$$\mathsf{D}.\left(ii
ight)>\left(iii
ight)>\left(i
ight)$$

Watch Video Solution

58. The mesomeric effects of the groups

$$-\ddot{N}H_2$$
, $-C - OCH_3$, $-\ddot{N}H - C - OC_2H_5$,
 $\parallel O$

,

Ъ

respectively is

C. — M, — M, + M, M

$$D. + M, - M, - M, + M$$

59. In the given Newmann's projection formula of 2,2-Dimethyl butane, A and B respectively can be

A. H and H

B. C H_3 and C_2H_5

C. C H_3 and H

D. C H_3 and C H_3

Answer:

Watch Video Solution

60. The acid which does not give isopentane on decarboxylation with soda lime, is

61. Calculate the percentage of free volume available in 1 mole gaseous water at 1 atm pressure and 373 K.

A. 101

B. 99.9

C. 90

D. 80

Answer:

62. For the reaction $C(s) + CO_2(g) \Leftrightarrow 2CO(g)$, the partial pressure of CO_2 and CO both is 4.0 atm, respectively, at equilibrium. The K_p of the reaction is

A. 10atm

B. 4atm

C. 8atm

D. 0.4atm

Watch Video Solution

63. For the reaction $C(s) + CO_2(g) \Leftrightarrow 2CO(g)$, the partial pressure of CO_2 and CO both is 5.0 atm, respectively, at equilibrium. The K_p of the reaction is

A. 20atm

B. 5atm

C. 15atm

D. 10atm

Answer:

Watch Video Solution

64. For the reaction $C(s) + CO_2(g) \Leftrightarrow 2CO(g)$, the partial pressure of CO_2 and CO is 4.0atm amd 8.0 atm, respectively, at equilibrium. The K_p of the reaction is

A. 16atm

B. 8atm

C. 32atm

D. 4atm

Answer:

Watch Video Solution

65. At $27^{\circ}C, K_p$ value for the reaction

 $CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$, is 2 atm.

 K_C value for this reaction is

A. 8 x 10^{-2}

- B. $4x10^{-2}$
- C. 6 x 10^{-2}
- D. 4 $\times 10^{-3}$

Answer:

66. The term "Retardation factor" is related to

the

- A. Solvent extraction
- B. Dumas method
- C. Chromatography
- D. Carius method

Answer:

67. Which of the following sets of elements

can be detected by Lassaigne's test?

A. N, H, P

B. N, CI, P, S

C. N, Br, C, P

D. N, S, F, C

Answer:

68. In Carius method, 0.18 gram of an organic compound gave 0.11 gram of AgBr. The percentage of Br in the compound is

A. 34.0

B. 39.0

C. 26.0

D. 3.0

Answer:

69. The number of moles of sodium acetate required to produce 112 ml of ethane at STP by Kolbe's electrolysis is

A. 1
$$imes$$
 10^{-2}
B. 5 $imes$ 10^{-4}

C.2
$$imes$$
 10^{-3}

D.2 imes 10^{-2}

Answer:

70. Which of the following has highest boiling

point?

Answer:

Watch Video Solution

71. Given the reaction at $967^{\circ}C$ and 1 atm.

 $CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$

DeltaH=176 kJ mol^{-1} , then DeltaE equals

A. 156.6KJ

B. 165.6KJ

C. 16.6KJ

D. 1.656KJ

Answer:

Watch Video Solution

72. The incorrect statement regarding ethylene is

A. It has higher heat of than other

members of alkene series

- B. Its degree of unsaturation is equal to one
- C. Nodal plane of it bond of ethylene is a
 - plane perpendicular to its molecular

plane

D. C—C bond length is longer than C—H

bond length

73. 90 calories of heat is required to raise the temperature of 3 moles of an ideal gas at constant pressure from $30^{\circ}C$ to $35^{\circ}C$. The amount of heat required in calories to raise the temperature of the gas through the range $(50^{\circ}C$ to $55^{\circ}C)$ at constant volume is: (Y= Cp/Cv =1.4)

A. 64.28cal

B. 74.68cal

C. 78cal

D. 90cal

Answer:

Watch Video Solution

74. Write expression for K_p and K_c for the

 $reactionCaCO_3(S) \leftrightarrow CaO(S) + CO_2(g).$

75. Given the reaction at $937^{\circ}C$ and 1 atm.

 $CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$

DeltaH=175 kJ mol^{-1} , then DeltaE equals

A. 156.6KJ

B. 166.6KJ

C. 164.9KJ

D. 15.6KJ

Answer:

76. A flask of volume 1 litre contains vapour of CH_3OH at a pressure of 1 atm and $25^{\circ}C$. The flask was then evacuated till the final pressure dropped to 10^{-4} mm. Find the number of molecules of methyl alcohol left in the flask.

A. 2.24×10¹⁵

B. 2.24×10¹²

C. 4.24×10^{15}

D. 3.24×10¹⁵

78. Complete the reaction :

 $P_4 + SOCl_2$ gives

79. 'X'mol of CO_2 and 0.05 mol of Ar are enclosed in a vessel of capacity 5 L at 1atm and 27^oC .The value of ' X ' is (R=0.0821 atm $mol^{-1}K^{-1}$)

A. 0.20

B. 0.15

C. .36

D. 0.10

Answer:

80. What happens when F_2 reacts with water?

Watch Video Solution

81. 'n'mol of O_2 and 0.04 mol of Ar are enclosed in a vessel of capacity 5 L at 1atm and 27^oC .The value of ' n ' is (R=0.0821 atm $mol^{-1}K^{-1}$)

A. 0.20

B. 0.15

C. 0.16

D. 0.10

Answer:

82. 'X'mol of Na and 0.06 mol of Cl are enclosed in a vessel of capacity 6 L at 1atm and $27^{o}C$.The value of ' X ' is (R=0.0821 atm $mol^{-1}K^{-1}$) A. 0.15

B. 0.20

C. 0.18

D. 0.16

Answer:

Watch Video Solution

83. 'X'mol of CO and 0.06 mol of C are enclosed in a vessel of capacity 5 L at 1atm and 27^oC .The value of ' X ' is (R=0.0821 atm $mol^{-1}K^{-1}$) A. 0.14

B. 0.16

C. 0.15

D. 0.12

Answer:

Watch Video Solution

84. Estimate the number of molecules left in a volume of the size of a pinhead about 1 cubic

mm when the air is pumped out to give a vaccuum of 10^{-6} m Hg at 25^oC .

A. 3.2×10⁷

B. 2.2×10^7

- C. 3.2×10^5
- D. 2.2× 10^5

85. The average velocity of an ideal gas molecule at $27^{\circ}C$ is 0.5 m/s. The average velocity at $927^{\circ}C$ will be

A. 0.6m/s

B. 1m/s

C. 0.4m/s

D. 1.2m/s

86. The average velocity of an ideal gas molecule at $27^{\circ}C$ is 0.4 m/s. The average velocity at $927^{\circ}C$ will be

A. 0.6m/s

B. 0.8m/s

C. 1m/s

D. 0.4m/s

87. The average velocity of an ideal gas molecule at $27^{\circ}C$ is 0.6m/s. The average velocity at $927^{\circ}C$ will be

A. 1m/s

B. 0.8m/s

C. 1.2m/s

D. 1.4m/s

88. The pH of acid rain is

A. 5.7

B. 5.4

C. 6.5

D. 5.9

Answer:

89. Reducing smog is the mixture of

A. Smoke, fog and SO_2

B. Smoke, fog and NO_2

C. Smoke, SO_2 and NO_2

D. Fog, SO_2 and NO_2

Answer:

90. Breakdown of ozone layer by CFCs is mainly

due to formation of

A. Fluorine radicals

B. Chlorine radicals

C. Free oxygen atoms (0)

D. Both (1) & (2)

Answer: