

MATHS

JEE (MAIN AND ADVANCED MATHEMATICS) FOR BOARD AND COMPETITIVE EXAMS

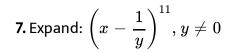
BINOMIAL THEOREM

Example

1. What is the fifth entry of row 7 of pascal's triangle?

Watch Video Solution

2. By using pascles's triangle expand $(2x + 3y)^4$.



- **3.** Expand $(2x+5y)^5$
 - Watch Video Solution

- **4.** Expand: $\left(\frac{x^2}{2} \frac{y^2}{3}\right)^6$
 - Watch Video Solution

- **5.** Using binomial theorem expand $\left(x^2 + \frac{1}{x^2}\right)^4$
 - Watch Video Solution

- **6.** Expand $\left(x^3 \frac{1}{x^2}\right)^7$
 - Watch Video Solution

Watch Video Solution

- 8. Using binomial theorem find
- (i) $\left(101\right)^{5}$
- (ii) 51^6

Watch Video Solution

- 9. Evaluate the followings using binomial theorem
- (i) $\left(999\right)^4$
- (ii) $(49)^5$

10. Using binomial theorem, prove that 8^n-7n always leaves remainder 1 when divided by 49.

11. Find
$$(x+a)^3-(x-a)^3$$
. Hence evaluate $\left(\sqrt{5}+\sqrt{4}\right)^3-\left(\sqrt{5}-\sqrt{4}\right)^3$

12. Find
$$(x+a)^5+(x-a)^5$$
. Hence, evaluate $\left(\sqrt{6}+\sqrt{7}\right)^5+\left(\sqrt{6}-\sqrt{7}\right)^5$

- **13.** In the expansion of $\left(x-rac{3}{x^2}
 ight)^{30}$, find the 5^{th} term.
 - Watch Video Solution

- **14.** Find the 13^{th} term in the expansion of $\left(9x-rac{1}{3\sqrt{x}}
 ight)^{18}, x
 eq 0$
 - Watch Video Solution

- **15.** Find the fourth term from the end in the expansion of $\left(\frac{3x}{5} \frac{5}{6x}\right)^9, x \neq 0$
 - Watch Video Solution

- **16.** Find the containing x^3 in the expansion of $\left(2y-x^{rac{1}{2}}
 ight)^{10}$
 - Watch Video Solution

- 17. Find the middle term inn
- (i) $\left(rac{2y^2}{3}+rac{3}{2y^2}
 ight)^9, y
 eq 0$

(ii)
$$\left(4x^2+9y^2+12xy\right)^n$$

18. If the coefficients of three consecutive terms in the expansion of $(1+x)^n$ are in the ratio 1:7:42, then find the value of n.

19. Find the coefficient of x^4 in the product $(1+2x)^4(2-x)^5$ by using binomial theorem.

20. Find the term independent of a in the expansion of $\left(a^{\frac{1}{3}}+\frac{1}{2a^{\frac{1}{3}}}\right)^{18}, a>0.$

21. Evaluate:

- (i) $.^{12} C_1 + .^{12} C_2 + .^{12} C_3 + \dots + .^{12} C_{12}$
- (ii) $.^{19}$ $C_3+.^{19}$ $C_5+.^{19}$ $C_7+\ldots+^{19}$ C_{19} .
 - Watch Video Solution

22. Find the sum

$$2. \ .^{10} \ C_0 + rac{2^2}{2}.^{10} \ C_1 + rac{2^3}{3}.^{10} \ C_2 + rac{2^4}{4}.^{10} \ C_3 + + rac{2^{11}}{11}.^{10} \ C_{10}.$$

23. Find numbercally the greatest term in

the expansion of $(2 = 3x)^9$, when x = 3/2

24. Show that , if the greatest term in the expansion of $(1+x)^{2n}$ has also

the greatest coefficient

then x lies between $\frac{n}{n+1}$ and $\frac{n+1}{n}$

Watch Video Solution

25. (i) Find the coefficient of $x^3y^4z^2t^5$ in the expansion of $(x-y+z-t)^{14}.$

(ii) Find the coefficient of
$$x^{10}y^{12}z^8$$
 in the expansion of $\left(xy+yz+zx
ight)^{15}$

26. Find the coefficient of x^4 in the expansion of $\left(2-x+3x^2\right)^6$.

have no common factor except 1 annd x,y \neq Q, is

28. If the expansion of
$$\left(y^{1/2}+x^{1/3}\right)^{54}$$
, the number of terms free from radical sign (number of rational terms) are independent where $|\mathbf{x}|$ and $|\mathbf{y}|$

- (1) 9
- (2) 8
- (3) 10
- (4) 11.

- **29.** The ratio of 4^{th} term and 5^{th} term in the expansion of $\left(x+\frac{\sin x}{x}\right)^6$ is $\frac{16}{3\pi^2}$, then x is equal to (1) $\frac{\pi}{2}$
- $\text{(2)}-\frac{\pi}{2}$

(3) $\frac{\pi}{3}$

(4) Both (1) & (2)

30. The coefficient of x^{20} in

$$\left(1+3x+3x^{2}+x^{3}
ight)^{20}$$
,l s

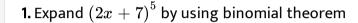
31. The sum of the last eitht coefficients in the expansion of $(1+x)^{15}$, is

32. If $\left(9+4\sqrt{5}\right)^n=p+eta$, where n and p are positive integers and eta is a positive proper fraction, prrove that $(1-\beta)(p+\beta)=1$ and p is an odd integer.

33. (i) Find the coefficeint of
$$x^{-1}$$
 in the expansion of $(1+x)^n \left(1+\frac{1}{x}\right)^n$ (ii) Find the term inependent of x in the expansion of

$$\left(x^{rac{2}{3}}+4x^{rac{1}{3}}+4
ight)^{5} \left[rac{1}{x^{rac{1}{3}}-1}+rac{1}{x^{rac{2}{3}}+x^{rac{1}{3}}+1}
ight]^{-9}$$

34. The value of $\sum_{r=1}^{10} r$. $\frac{{}^nC_r}{{}^nC_{r-1}}$ is equal to


35. Find the greatest value of the term independent of x in the expansion of $\Big(x\sin\alpha+rac{\cos\alpha}{x}\Big)^{10}$, where $\alpha\in R.$

36. Find (i) the last digit, (ii) the last two digits, and (iii) the last three digits of 17^{256} .

Illustration

Watch Video Solution

Try Yourself

1. What is the last entry of any row of pascle's triangle?

Watch Video Solution

2. What is the 6th sicth entry in row 5 of pascle's triangle?

3. Expand (i) $\left(\frac{x}{3}+3\frac{y}{2}\right)^5$,(ii) $\left(x^2+\frac{2}{x}\right)^4$ using pascle's triangle.

4. Expand $\left(2x^2+4y^2\right)^6$ using pascals triangle.

5. Expand (i) $\left(x+\frac{1}{x}\right)^{7}$, (ii) $\left(x^2+\frac{2}{x}\right)^4$ using binomial theorem.

6. Expand (i) $\left(\frac{2x}{3}-\frac{3}{2x}\right)^6$, (ii) $\left(\frac{2}{x}-\frac{x}{2}\right)^5$

7. Byusing binomial theorem evaluate (i) $(101)^3$, (ii) $(47)^4$ Watch Video Solution **8.** Byusing binomial theorem evaluate (i) $(107)^5$, (ii) $(55)^3$ Watch Video Solution **9.** Using bionomial theorem, show that $(9^n - 8n - 1)$ is always divisible by 64. **Watch Video Solution 10.** With the help of bionomial expansion, show that $(4^n - 3n)$ is always leaves remainder 1, when divided by 9. **Watch Video Solution**

11. Find $(1+x)^4+(1-x)^4$. Hence evaluate $\left(\sqrt{2}+1\right)^4+\left(\sqrt{2}-1\right)^4$

12. Find $(1+x)^6-(1-x)^6$. Hence evaluate $\left(1+\sqrt{3}\right)^6-\left(1-\sqrt{3}\right)^6$

13. Find the fifth expansion of $\left(\frac{a}{3}-3b\right)^7$

14. Find the fifth expansion of $\left(2x^2-\frac{1}{3x^2}\right)^{10}$

15. Write down the general term in the expansion of $\left(x^2-y^3\right)^6$.

(ii) Determine 4^{th} term from the end in the expansion of

$$\bigg(\frac{x^3}{2}-\frac{2}{x^2}\bigg)^9, x\neq 0$$

(iii) Find the coefficient of x^{-2} in the expansion of $\left(x+rac{1}{x^3}
ight)^{11}, x
eq 0$

16. Find the middle term in the expansion of $\left(1+3x+3x^2+x^3
ight)^{2n}$

17. If in the expansion of $(1+x)^{15}$, the coefficients of $(r+3)^{th} and \, (r-1)^{th}$ terms are equal then the value of r is a. 5 b. 6 c. 4 d. 3

18. Evaluate the following: $\left(x+\sqrt{x^2-1}\right)^6+\left(x-\sqrt{x^2-1}\right)^6$

19. if $(1+a)^n = .^n \, C_0 + .^n \, C_1 a + + .^n \, C_2 a^2 + \ldots + .^n \, C_n a^n$, then prove that

prove that
$$\frac{\cdot^n C_1}{\cdot^n C_0} + \frac{2(\cdot^n C_2)}{\cdot^n C_1} + \frac{3(\cdot^n C_3)}{\cdot^n C_2} + \ldots + \frac{n(\cdot^n C_n)}{\cdot^n C_{n-1}} = \text{Sum of first n}$$
 natural numbers.

20. If $(1+a)^n=.^n\,C_0+.^n\,C_1a+.^n\,C_2a^2+\ldots+.^n\,C_na^n$, then prove that

$$n \cdot C_1 + 2 \cdot n \cdot C_2 + 3 \cdot n \cdot 3C_3 + \ldots + n \cdot n \cdot C_n = n \cdot 2^{n-1}$$

- 1. A binomial is
 - A. An expression of second degree
 - B. A polynomial
 - C. An expression containing only two terms
 - D. An expression containing more than two terms

Answer: 3

- **2.** The expansion $(a+x)^n=.^nc_0a^n+^nc_1a^{n-1}x+$ $+.^nc_nx^n$ is valid when n is
 - A. An integer
 - B. A rational number
 - C. An irrational number

D. A natural number

Answer: 4

Watch Video Solution

- **3.** If the coefficient of rth term and $\left(r+1
 ight)^{th}$ term in the expansion of $\left(1+x
 ight)^{20}$ are in ratio 1: 2, then r is equal to
 - A. 6
 - B. 7
 - C. 8
 - D. 9

Answer: 2

- **4.** When n is any postive integer,the expansion $(x+a)^n=.^n\,c_0x^n$ +
- $a^n c_1 x^{n-1} a + \dots + a^n c_n a^n$ is valid only when
 - A. |x| < 1
 - B. |x| > 1
 - C. |x| < 1 and |a| < 1
 - D. x and a are any two numbers

Answer: 4

- **5.** If n is a positive integer, then the number of terms in the expansion of $(x+a)^n$ is
 - A. n+1
 - B. n-1
 - C. n

 $D. n^2$

Answer: 1

Watch Video Solution

- **6.** The term independent of x in the expansion of $\left(2x+rac{1}{3x}
 ight)^6$ is
 - A. 160/9
 - B.80/9
 - C. 160/27
 - D. 80/3

Answer: 3

Watch Video Solution

7. The 6th term of expansion of $\left(x-\frac{1}{x}\right)^{10}$ is

A. .
10
 c_6x^6

C.
$$(-(10)c_5)$$

 $\mathsf{B..}^{10}\ c_5$

D.
$$\left(\ -^{10} \ c_6 x^6
ight)$$

Answer: 3

Watch Video Solution

8. The number of the terms which are not similar in the expansion of $(L+M+N)^6$

A. 7

B. 42

C. 28

D. 21

Answer: 3

9. The exponent of x occuring in the 7th term of the expansion of

$$\left(\frac{ax}{2} - \frac{8}{bx}\right)^9$$
 is

- **A.** 3
- В. -3
- C. 5
- D. -5

Answer: 2

- **10.** The term containing a^3b^4 in the expansion of $\left(a-2b
 ight)^7$ is
 - A. 3^{rd}
 - $\mathsf{B.}\,4^{th}$

 $\mathsf{C.}\,5^{th}$

 $\mathsf{D.}\,6^{th}$

Answer: 3

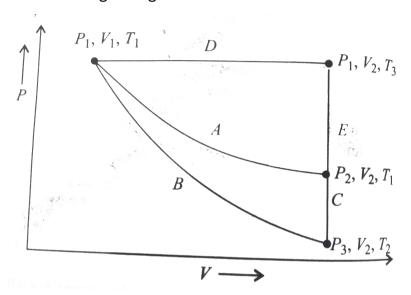
Watch Video Solution

11. The coefficient of the term independent of x in the expansion of

$$\left(x-rac{3}{x^2}
ight)^{18}$$
 is

A. . 18 c_60

B.. 18 $c_6 3^6$


 $\mathsf{C..}^{18}\,c_{12}$

D. . 18 $c_6 3^{12}$

Answer: 2

12. For an ideal gas, an illustration of three different paths A, (B+C) and (D+E) from an initial state P_1, V_1, T_1 to a final state P_2, V_2, T_1 is shown in the given figure.

Path Arepresents a reversible isothermal expansion form P_1, V_1 to P_2, V_2 , Path (B+C) represents a reversible adiabatic expansion (B) from $P_1, V_1, T_1 \to P_3, V_2, T_2$ followed by reversible heating the gas at constant volume (C)from P_3, V_2, T_2 to P_2, V_2, T_1 . Path (D+E) represents a reversible expansion at constant pressure $P_1(D)$ from P_1, V_1, T_1 to P_1, V_2, T_3 followed by a reversible cooling at constant volume $V_2(E)$ from $P_1, V_2, T_3 \to P_2, V_2, T_1$.

What is q_{rev} , for path A?

A.
$$-7920x^{-4}$$

B. $7920x^4$

C. $7920x^{-4}$

D. $-7920x^4$

Answer: 3

Watch Video Solution

13. If pandq are positive, then prove that the coefficients of x^pandx^q in the expansion of $(1+x)^{p+q}$ will be equal.

A. Unequal

B. Equal

C. reciprocal of each other

D. Assitive inverse of each other

Answer: 2

14. The number of terms in expansion of
$$\left\{(a+4b)^3(a-4b)^3\right\}^2$$
 is

- **A.** 7
- B. 6
- C. 8
- D. 32

Answer: 1

- **15.** If r^{th} term in the expansion of $\left(x^2+\frac{1}{x}\right)^{12}$ is independent of x, then r is equal to
 - A. 9
 - B. 8

C. 10

D. 7

Answer: 1

Watch Video Solution

16. Find the number of nonzero terms in the expansion of $\left(1+3\sqrt{2}x\right)^9+\left(1-3\sqrt{2}x\right)^9$.

A. 10

B. 5

C. 9

D. 6

Answer: 2

17. In the expansion of $\left(2+\frac{1}{3x}\right)^n$, the cofficient of x^{-7} and x^{-8} are equal to

- A. 51
- B. 52
- C. 55

D. 56

Answer: 3

and x^2 are 12 and 60 respectively then p and q are

18. In in the expansion of $(1+px)^q$, q belongs to N, the coefficients of x

- A. 2,6
- B. 6,2
- C.

D.

Answer: 1

Watch Video Solution

- **19.** The expansion of $\left(x^{lpha}+rac{1}{x^{eta}}
 ight)^n$ has constant term, if
 - A. nlpha is divisible by n+eta
 - B. neta is divisible by n+lpha
 - C. $n\alpha$ is divisible by $\alpha+\beta$
 - D. n is divisible by $\alpha + \beta$

Answer: 3

20. The number of rational terms in the expansion of
$$\left((25)^{\frac{1}{3}}+\frac{1}{(25)^{\frac{1}{3}}}\right)^{20} \text{ is }$$

- A. 2
- B. 7
- C. 6
- D. 19

Answer: 2

Watch Video Solution

21. The number of zeros at the end of $\left(101\right)^{11}-1$ is

- - A. 8
 - B. 4
 - C. 6

Answer: 4

Watch Video Solution

- **22.** In the expantion of $\left(1+kx\right)^4$ the cofficient of x^3 is 32, then the value of k is equal to
 - A. 2
 - B. 4
 - C. 8
 - D. 1

Answer: 1

23. In the expansion of $\left(3+\frac{x}{2}\right)^n$ the coefficients of x^7 and x^8 are equal, then the value of n is equal to

- A. 44
- B. 48
- C. 41

D. 55

Answer: 4

Watch Video Solution

- - A. An irrational number

24. $\sqrt{5} \Big\{ \left(\sqrt{5}+1\right)^{50} - \left(\sqrt{5}-1\right)^{50} \Big\}$

- B. 0
- C. A natural number
- D. A prime number

Answer: 3

Watch Video Solution

- **25.** In expansion of $(x+a)^5, T_2\!:\!T_3=1\!:\!3$, then $x\!:\!a$ is equal to
 - A. 1:2
 - B. 2:1
 - C. 2:3
 - D. 3:2

Answer: 3

Watch Video Solution

26. If the coefficient of x^7 in $\left[ax^2+\left(\frac{1}{b}x\right)\right]^{11}$ equals the coefficient of x^{-7} in $\left[ax-\left(\frac{1}{bx^2}\right)\right]^{11}$ then a and b satisfy the relation

A. 0

B. 1

C. -1

D. 2

Answer: 2

Watch Video Solution

27. The middle term in the expansioin of $\left(1+x\right)^{2n}$ is

A. . 2n $c_n x^n$

B. $\cdot^{2n} c_{n-1} x^{n+1}$

C. $.^{2n}$ $c_{n+1}x^{n-1}$

D. . 2n $c_{n-1}x^n$

Answer: 1

28. Cofficient of x^{12} in the expansion of $\left(1+x^2\right)^{50} \left(x+rac{1}{x}
ight)^{-10}$

A. 41

B. 40

C. 43

D. 44

Answer: 2

Watch Video Solution

29. The number of terms in expansion of $\left(x^2+18x+81\right)^{15}$ is

A. 15

B. 16

C. 30

Answer: 4

Watch Video Solution

- **30.** The term independent of x in the expanion of $\left(\sqrt[6]{x} \frac{2}{\sqrt[3]{x}}\right)^{18}$ is
 - A. $.^{18}$ C_82^{12}
 - $\mathrm{B..}^{18}\ C_62^6$
 - $c..^{18} C_6 2^8$
 - D. $.^{18} C_8 2^8$

Answer: 2

Watch Video Solution

31. The middle terms in the expansion of $\left(1+x\right)^{2n+1}$ is (are)

B.
$$c^{2n+1} c_{n-1} x^{n+1}$$
 and $c^{2n+1} c_{n+1} x^{n+1}$

A. $c_n x^n$ and $c_{n+1} x^{n+1} c_{n+1} x^{n+1}$

C.
$$\hat{\ }(2n+1)c_nx^n$$
 only

D.
$$.^{2n+1}\,c_{n+1}x^{n+1}$$
 only

Answer: 1

32. $(1.003)^4$ is nearby equal to

A. 1.012

B. 1.0012

C. 0.988

D. 1.003

Answer: 1

33. The nubmber of non - zeroes terns in the expansion of $\left(1+\sqrt{5}
ight)^6+\left(\sqrt{5}-1
ight)^6$ is

A. 3

B. 4

C. 5

D. 0

Answer: 2

Watch Video Solution

34. The number of non -zeroes terms in the expansion of $\left(\sqrt{7}+1
ight)^{75}-\left(\sqrt{7}-1
ight)^{75}$ is

A. 36

B. 37

C.	38

D. 39

Answer: 3

Watch Video Solution

35. The number of terms in the expansion if $\left(a+b+c\right)^{12}$ is

A. 90

B. 91

C. 81

D. 80

Answer: 2

36. Two consecutive terms in the expansion of $\left(3+2x\right)^{74}$ have equal coefficients then term are (A) $30 \, \mathrm{and} \, 31$ (B) 38 and 39 (C) 31 and 32 (D) 37 and 38

- A. 7^{th} and 8^{th}
- $\mathsf{B.}\,11^{th}$ and 12(th)
- $\mathsf{C.}\,30^{th}$ and 31^{th}
- $D.31^{th}$ and 32^{th}

Answer: 3

Watch Video Solution

the expansion of $\left(1+x\right)^{1/4}$ are in AP, then r is /are

37. If the coefficients of rth, (r + 1)th and (r + 2)th terms in

- A. 5 or 9
- B. 4 or 7

C. 3 or 8

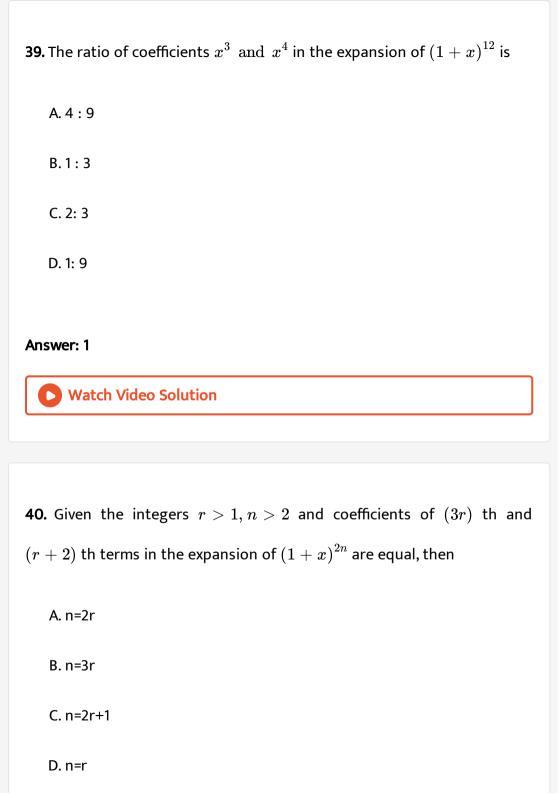
D. 6or 10

Answer: 1

Watch Video Solution

38. Cofficient of $x^3y^{10}z^5$ in expansion of $(xy+yz+zx)^6$ is

A. 20


B. 120

C. 30

D. 60

Answer: 4

Answer: 1

Watch Video Solution

- **41.** Find the coefficient of x^5 in the expansion of $(1+x^2)^5(1+x)^4$.
 - A. 61
 - B. 59
 - C. 0
 - D. 60

Answer: 4

Watch Video Solution

42. If $(r+1)^{th}$ term in the expassion of $\left(\frac{a^3}{3}-\frac{2}{a^2}\right)^{10}$ contains a^{20} then the value of r is equal to

A. 3 B. 2 C. 4 D. 1 **Answer: 2** Watch Video Solution **43.** Find n and x in the expansion of $(1+x)^n$, if the fifth term is four times the fourth term and the fourth term is 6 times the third term. A. 11,2 B. 2,11 C. 3,12 D. 12,3 Answer: 1

44. Cofficients of x^6y^3 in the expansion of $\left(x+y\right)^9$ is

A. 36

B. 16

C. 84

D. 100

Answer: 3

Watch Video Solution

45. The number of terms in the expansion of $\left(4x^2+9y^2+12xy\right)^6$ is

A. 2

B. 12

C. 13

Answer: 3

Watch Video Solution

- **46.** The middle term in the expansion of $\left(2x-\frac{1}{3}x\right)^{10}$ is
 - Watch Video Solution

47. The coefficient of the term independent of x in the expansion of

$$\left(ax+rac{b}{x}
ight)^{14}$$
 is $14!a^7b^7$ b. $rac{14!}{7!}a^7b^7$ c. $rac{14!}{\left(7!
ight)^2}a^7b^7$ d. $rac{14!}{\left(7!
ight)^3}a^7b^7$

A. .
$$^{14}\ C_5 a^9 b^5$$

B.
$$.^{14} \, C_6 a^8 b^6$$

C. .
14
 $C_7 a^7 b^7$

D. .
14
 $C_8 a^6 b^8$

Answer: 3

Watch Video Solution

- **48.** Find the middle term in the expansion of $\left(x-\frac{1}{2x}\right)^{12}$
 - A. $\frac{1}{5}$
 - B. $\frac{2}{5}$
 - c. $\frac{231}{16}$
 - D. $\frac{1}{16}$

Answer: 3

Watch Video Solution

49. The value of $.^{13} \ C_7 + .^{13} \ C_8 + .^{13} \ C_9 + .^{13} \ C_{10} + .^{13} \ C_{11} + .^{13} \ C_{12} + .^{13} \ C_{13}$ is equal

to

A.
$$2^{12}$$

B. 2^{11}

 $\mathsf{C.} \ \frac{2^{13} + 1}{2}$ $\text{D.}\ \frac{2^{13}-1}{2}$

Answer: 1

Watch Video Solution

50. For all natural number of n, $2^{2n}.3^{2n}-1-35n$ is divisible by

A. $(35)^3$

B. $(35)^2$

 $C. (35)^4$

D. $(35)^5$

Answer: 2

Assignment Section B

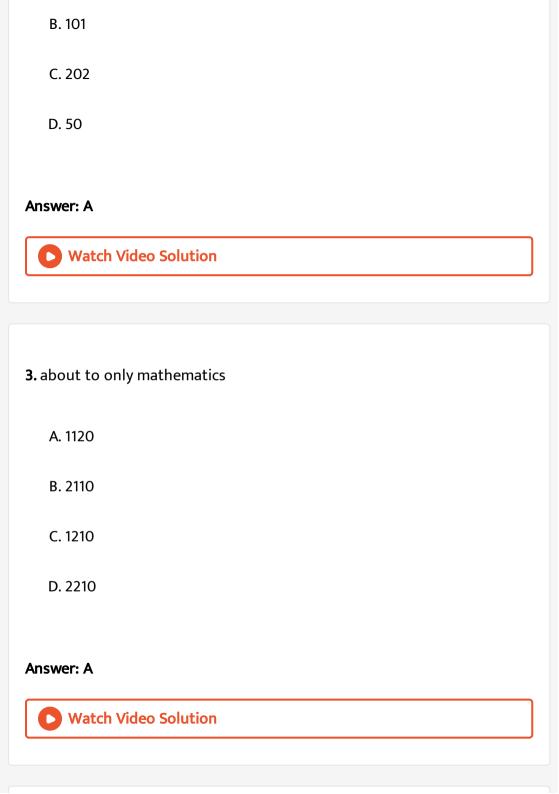
1. In the binomial expansion of $(a-b)^n, n \geq 5$ the sum of the 5th and 6th term is zero , then find $\frac{a}{b}$

A.
$$\frac{n-5}{6}$$

B.
$$\frac{n-4}{5}$$

$$\mathsf{C.}\,\frac{5}{n-4}$$

D.
$$\frac{-6}{n-5}$$


Answer: B

Watch Video Solution

2. about to only mathematics

A. 51

4. If the sum of coefficients in the expansion of $(x-2y+3z)^n$ is 128, then find the greatest coefficient in the expansion of $(1+x)^n$.

A. 30

B. 40

C. 28

D. 35

Answer: D

Watch Video Solution

5. If the coefficient of 2nd, 3rd and 4th terms in the expansion of $(1+x)^{2n}$ are in A.P. , show that $2n^2-9n+7=0$.

A.
$$2n^2 - 9n + 7 = 0$$

B.
$$2n^2 + 5n + 7 = 0$$

C.
$$n^2 - 9n + 7 = 0$$

D.
$$n^2 + 9n - 7 = 0$$

Answer: A

Watch Video Solution

- **6.** $\sum_{r=0}^{n-1} rac{{}^nC_r}{{}^nC_r + {}^nC_{r+1}}$ is equal to
 - A. $\frac{n}{2}$
 - B. $\frac{n+1}{2}$
 - C. $\frac{n(n+1)}{2}$
 - D. $\frac{n(n-1)}{2(n+1)}$

Answer: A

7. Find the numerically grates term in the expansion of $3-5x^{15}whenx=1/5.$

A. 6th

B. 5th

C. 5th & 6th

D. 4th & 5th

Answer: D

- **8.** In the expansion of $\left(y^{1/5}+x^{1/10}\right)^{55}$, the number of terms free of radical sign are
 - A. 5
 - B. 6
 - C. 50

Answer: B

Watch Video Solution

9. Consider the following statements

 S_1 : The total of terms in $\left(x^2+2x+4
ight)^{10}$ is 21

$$S_2\colon$$
 The coefficient of x^{10} in $\left(x^2+rac{1}{x}
ight)^{20}$ is $.^{20}$ $C_{10}.$

 S_3 : The middle term in the expansion of $\left(1+x
ight)^{12}$ is $.^{12}$ C_6x^6

 S_4 : If the coefficients of fifth and ninth term in the expansion of $\left(1+x
ight)^n$

are same, then n=12

Now identify the correct combination of true statements.

A.
$$S_1, S_2, S_3, S_4$$

B.
$$S_1,\,S_2$$
 only

C.
$$S_2,\,S_3$$
 only

D.
$$S_1,\,S_4$$
 only

Watch Video Solution

10. If $(1+x)^n=\sum_{r=0}^n C_r x^r,$ $\bigg(1+\frac{C_1}{C_0}\bigg)\bigg(1+\frac{C_2}{C_1}\bigg)...\bigg(1+\frac{C_n}{C_{n-1}}\bigg)$ is equal to

A.
$$\frac{n^{n-1}}{(n+1)!}$$

$$\mathsf{B.}\,\frac{\left(n+1\right)^{n+1}}{\left(n+1\right)!}$$

c.
$$\frac{(n+1)^n}{n!}$$

D.
$$\frac{(n+1)^{n+1}}{n!}$$

Answer: C

11.
$$rac{C_1}{C_0} + rac{2.\ C_2}{C_1} + rac{3.\ C_3}{C_2} + \ldots + rac{20.\ C_{20}}{C_{19}} =$$

C. 240

D. 280

Answer: B

Watch Video Solution

12. Find the term independent of x in the expansion

- $\left(1+x+2x^{3}
 ight) \left[\left(3x^{2}/2
 ight)-\left(1/3
 ight)
 ight]^{9}$
 - A. 25/54

B. 17/54

- C.1/6
- $\mathsf{D.}-17/54$

Answer: B

13. If in the expansion of $(1+x)^m(1-x)^n$, the coefficients of x and x^2 are 3 and - 6 respectively, the value of m and n are

- A. 6
- B. 9
- C. 12
- D. 24

Answer: B

Watch Video Solution

14. the value of x , for which the 6th term in the expansions of $\left[2^{\log}-2\sqrt{9^{(x-1)+7}}+\frac{1}{2^{\frac{1}{5}}(\log)_2(3^{r-1}+1)}\right]is84$, is equal to a. 4 b. 3

 $\mathsf{c.}\ 2\ \mathsf{d.}\ 1$

B. 3 or 1

C. 2 or 1

D. 1

Answer: C

Watch Video Solution

15. If $(1-x^3)^n=\sum_{r=0}^n a_r x^r (1-x)^{3n-2r}$, then the value of a_r , where

$$n \in N$$
 is

A. .
n
 $C_r \cdot 3^r$

 $B..^n C_{3r}$

$$\mathsf{C.}\,.^n\,C_{r-1}2^{r-1}$$

$$\mathsf{D}..^n \, C_r 2^r$$

Answer: A

16. Let $(1+x^2)^2(1+x)^n=\sum_{k=0}^{n+4}a_kx^k$. If a_1,a_2 and a_3 are in arithmetic progression, then the possible value/values of n is/are a. 5 b. 4 c. 3 d. 2

- A. 2,3,4
- B. 5,6,7
- C. 8,9,10
- D. -1, 4, 6

Answer: A

Watch Video Solution

17. The coefficient of x^{1007} in the expansion $(1+x)^{2006}+x(1+x)^{2005}+x^2(1+x)^{2004}x^3(1+x)^{2003}+.....+x^{2006}$ is

A. .
2006
 C_{1007}

B. C_{1006}

C. $.^{2007}$ C_{1006}

D. $.^{2007}$ C_{1007}

Answer: D

Watch Video Solution

18.
$$\sum_{r=0}^{n} (-1)^{r} \cdot {}^{n} C_{r} \left[\frac{1}{2^{r}} + \frac{3^{r}}{2^{2r}} + \frac{7^{r}}{2^{3r}} + \frac{15^{r}}{2^{4r}} + \dots m \right] = 0$$

A.
$$rac{2^{mn}-1}{2^{mn}(2^n-1)}$$

$$2^{mn}(2^n-1)$$
B. $\dfrac{2^{mn}-1}{2^n-1}$

c.
$$\frac{2^{mn}+1}{2^n+1}$$

D.
$$\frac{2^{mn}+1}{2^n-1}$$

Answer: A

19. In the expansion of $(x+a)^n$ the sum of even

terms is E and that of odd terms is O, them ${\it O}^2 + {\it E}^2$ is equal to

A.
$$\left(x^2+a^2\right)^n$$

B.
$$\left(2x^2-a^2\right)^n$$

C.
$$\left(x^2-a^2\right)^{2n}$$

D.
$$\left(x^2+a^2\right)^{2n}$$

Answer: B

Watch Video Solution

20. The sum of the last eight coefficients in the expansion of $\left(1+x\right)^{16}$ is equal to

$$\mathsf{A.}\ 2^{15}$$

B.
$$2^{14}$$

$$\mathsf{C.}\ 2^{15} - \frac{1}{2} \cdot \frac{16!}{{(8!)}^2} \\ \mathsf{D.}\ 2^{16}$$

Answer: C

Watch Video Solution

21. The coefficient fo $x^3y^4x^5$ in the expansion of

$$(xy+yz+zx)^6$$
, is

- A. 60
- B. 120
- C. 6!
- D. 0

Answer: A

22. In the expansion of $(3x+2y-z)^8$, the coefficients of $x^2y^3z^3$ is

A. 10084

 $\mathsf{B.}-40320$

C.20160

D. - 43280

Answer: B

Watch Video Solution

23. If n is ann integer greater than 1, then

$$a - ^n C_1(a-1) + .^n C_2(a-2) - \ldots + (-1)^n (a-n) =$$

A. a

B. 0

 $\mathsf{C}.\,a^2$

 $D. 2^n$

Answer: B

Watch Video Solution

- **24.** $\frac{C_0}{1} + \frac{C_1}{2} + \frac{C_2}{3} + \ldots + \frac{C_{100}}{101}$ equals
 - A. $\frac{2^{101}}{101}$
 - $\mathsf{B.} \; \frac{2^{101}-1}{101}$
 - c. $\frac{3^{101}}{101}$
 - D. $\frac{3^{101}-1}{101}$

Answer: B

- **25.** $2C_0 + \frac{2^2}{2}C_1 + \frac{2^3}{3}C_2 + \dots + \frac{2^{11}}{11}C_{10} = ?$

B. (b)
$$2^{2n}$$
C. (c) $n.2^{n+1}$
D. (d) $(n+1)2^n$

B. $\frac{3^{11}+1}{11}$

C. $\frac{3^{11}-1}{11}$

D. $\frac{3^{10}-1}{10}$

Watch Video Solution

Answer: C

26.

Watch Video Solution

Answer: D

A. (a) $n.2^{n-1}$

The coefficient of x^n in the polynomial $ig(x+{}^{2n+1}C_0ig)ig(X+{}^{2n+1}C_1ig)ig(x+{}^{2n+1}C_2ig).....ig(X+{}^{2n+1}C_nig)$ is

7. If
$$C_r$$

27. If C_r stands for $.^n\,C_r=rac{n\,!}{r\,!\,n-r\,!}$ and $\sum_{r=1}^n r.\,C_r^2=\lambda$ for $n\geq 2$,

A.
$$3(n-1)$$

then λ is divisible by

B. n + 1

C. n(2n-1)

D. $n^2 + 1$

Answer: C

Watch Video Solution

28. If $a_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$, find the

A. nk

value of $\sum_{r=0}^{n} \frac{r}{{}^{n}C_{r}}$

B. $\frac{nk}{2}$

$$\mathsf{C}.\,(n-1)k$$

D.
$$\frac{nk}{3}$$

Answer: B

Watch Video Solution

29. If x+y=1, prove that $\sum_{r=0}^n r.^n \, C_r x^r y^{n-r}=nx.$

A. nxy

B. nx(x+yn)

C. n(nx+y)

D. 1

Answer: C

30.
$$\sum_{r=1}^{n} r(.^{n} C_{r} - .^{n} C_{r-1})$$
 is equal to

A.
$$2^n + 1n + 1$$

B.
$$2^{n} - n + 1$$

$$\mathsf{C.}\, n-2^n+1$$

D.
$$n - 2^n - 1$$

Answer: C

Watch Video Solution

31. The expression

$${}^{n}C_{r} + 4. {}^{n}C_{r-1} + 6. {}^{n}C_{r-2} + 4. {}^{n}C_{r-3} + {}^{n}C_{r-4}$$

A.
$$\binom{n+4}{r+4}$$

B.
$$\binom{n+4}{r}$$

$$\mathsf{C.}\left(\frac{n+3}{r-1}\right)$$

D.
$$\left(\frac{n+4}{r+3}\right)$$

Answer: A

Watch Video Solution

- **32.** If $\sum_{k=0}^{n} \left(k^2 + k + 1\right) k! = (2007).2007!$, then value of n is
 - A. 2007
 - B. 2006
 - C. 2008
 - D. 2005

Answer: B

33. Let $R=\left(5\sqrt{5}+11
ight)^{2n+1} and f=R-[R]where[]$ denotes the greatest integer function, prove that $Rf=4^{2n+1}$

A.
$$4^{2n+1}$$

B. 4^{2n}

 $C.4^{2n-1}$

D. 4^{-2n}

Answer: A

Watch Video Solution

34. Find the coefficient of x^4 in the expansion of $\left(1+x+x^2+x^3\right)^{11}$.

A. 900

B. 909

C. 990

D. 999

Answer: C

Watch Video Solution

Assignment Section C Objective Type Question More Than One Correct Answer

1. For a positive integer n, if the expanison of

$$\left(rac{5}{x^2}+x^4
ight)$$
 has a term independent of x, then n can be

A. 18

B. 21

C. 27

D. 99

Answer: A::B::C::D

2. The positive value of $\,{}'a\,{}'$ so that the coefficient of x^5 is equal to that of

$$x^{15}$$
 in the expansion $\left(x^2+rac{a}{x^3}
ight)^{10}$ is

A.
$$\frac{1}{2\sqrt{3}}$$

B.
$$\frac{1}{\sqrt{3}}$$

$$\mathsf{C.}\,\frac{\sqrt{3}}{6}$$

D. $\frac{1}{3}$

Answer: A::C

Watch Video Solution

3. The sum of the co-efficients of all the even powers of x in the expansion of $\left(2x^2-3x+1\right)^{11}$ is -

A.
$$3.6^{10}$$

$$\mathsf{B.}\,6^{11}$$

$$\mathsf{C.}\ 2^{10}.3^{11}$$

$$D. 2^{11}.3^{10}$$

Answer: A::C

Watch Video Solution

- **4.** The term independent of x in the expansion of $\left(2x-\frac{1}{x}\right)^{10}$ is
 - A.-3
 - B. 0
 - C. . $^n P_k$, where kgtn
 - D. $.^n$ C_r where rgtn

Answer: B::C::D

5. If the secound, third and fourth terms in the expansion

of $(x + y)^n$ are 135, 30 and 10/3 respectively, then

A. x=3

$$\mathtt{B.}\,y=\frac{1}{3}$$

$$\mathsf{C}.\,n=5$$

D. n=7

Answer: A::B::C

Watch Video Solution

6. $\sum_{r=0}^4 \left(-1 \right)^{r16} C_r$ is divisible by :

A. 5

B. 7

C. 11

Answer: A::B::C::D

Watch Video Solution

7. If $\left(1+2x+3x^2\right)^{10}=a_0+a_1x+a_2x^2+a_3x^3+\ldots+a_{20}x^{20}, \; \mathsf{then}$

A. $a_1 = 20$

 $B. a_2 = 210$

 $c. a_4 = 8085$

D. $a_{20}=2^2.3^7.7$

Answer: A::B::C

Watch Video Solution

8. The maximum value of $.^n$ C_r is obtained when r is equal to

B.
$$\dfrac{(2n-1)\,!}{\left((n-1)\,!\right)^2}igg(\dfrac{2}{n}igg)$$
C. $\left(n\,!\right)^2$
D. $\left(\cdot^{2n}\,C_n
ight)^2$

A. C_n

A. $\frac{n}{3}$

B. $\frac{n}{4}$

D. $\frac{n}{2}$

Answer: C::D

C. $\frac{n-1}{2}$ or $\frac{n+1}{2}$

Watch Video Solution

9. $(.^n C_0)^2 + (.^n C_1)^2 + (.^n C_2)^2 + \dots + (.^n C_n)^2$ equals

Answer: A::B

10. Given that the 4th term in the expansion of $\left[2+(3x/8)\right]^{10}$ has the maximum numerical value. Then find the range of value of x

$$A.\left(2,\frac{64}{21}\right)$$

$$\mathsf{B.}\left(\,-\,\frac{60}{23},\;-\,2\right)$$

$$\mathsf{C.}\left(-\frac{64}{21},\ -2\right)$$

D.
$$\left(2, -\frac{60}{23}\right)$$

Answer: A::C

Watch Video Solution

11. $(.^n C_0)^2 + (.^n C_1)^2 + (.^n C_2)^2 + \ldots + (.^n C_n)^2$ equals

A. 0 if n is odd

B. $(-1)^n$ if n is odd

C. $(-1)^{n/2}$. $C_{n/2}$ if n is even

D. $(-1)^{n-1}$. C_{n-1} if n is even

Answer: A::C

Watch Video Solution

- **12.** The number 101^{100} -1 is divisible by
 - A. 10^2
 - B. 10^{3}
 - C. 10^4
 - D. 10^5

Answer: A::B::C

13. If n is a positive integer and $\left(3\sqrt{3}+5\right)^{2n+1}=lpha+eta$ where lpha is an integer and $0<\beta<1$, then

A. I is an ven integer

B. (l+f)f is divisible by 2^{2n+1}

C. The integer just less than $\left(3\sqrt{3}+5\right)^{2n+1}$ is

D. I is divisible by 10

Answer: A::B::D

14. If
$$\left(1+2x+x^2
ight)^n=\sum_{r=0}^{2n}a_rx^r$$
 , then $a_r=$

A.
$$a_r=a_{2n-r}, ext{ for } 0 \leq r \leq 2n$$

B.
$$a_0 + a_1 + \ldots + a_{n-1} = rac{1}{2}(3^n - a_n)$$

D.
$$a_0 + a_2 + \ldots + a_{2n} = rac{1}{2}(3^n + 1)$$

Answer: A::B::C::D

Watch Video Solution

15. Which of the following is/are correct?

A.
$$\left(101^{50} - 99^{50}\right) < 100^{50}$$

$$\mathsf{C.} \left(1000\right)^{1000} < \left(1001\right)^{999}$$

 $\mathsf{B.}\,(101)^{50}-100^{50}>99^{50}$

D.
$$(1001)^{999} < (1000)^{1000}$$

Answer: A::B::C

Watch Video Solution

Assignment Section D Objective Type Question Linked Comprehension Type Questions

1. If $S = 1! + 4! + 7! + 10! + \ldots + 400!$, then

Q. The last two digits in the number S is divisible by

A. 4

B. 6

C. 5

D. 7

Answer: B

Watch Video Solution

2. If $S = 1! + 4! + 7! + 10! + \ldots + 400!$, then

Q. The last two digits in the number S is divisible by

A. 13

B. 12

C. 11

Answer: A

Watch Video Solution

- **3.** If $S=1!+4!+7!+10!+\ldots+400!$, then Q. The last two digits in (1!+4!+7!)! is
 - A. 1
 - B. 10
 - C. 0
 - D. None of these

Answer: C

4. If $C_0, C_1, C_2, C_3, \ldots, C_n$ be binomial coefficients in the expansion of

 $(1+x)^n$, then

Q. The value of the expression $C_0+2C_1+3C_2+\ldots+(n+1)C_n$ is equal to

A.
$$2^{n-1}(n+1)$$

B. $2^{n-1}(n+2)$

 $C. 2^n (n+2)$

D. None of these

Answer: B

Watch Video Solution

 $(1+x)^n$, then

5. If $C_0, C_1, C_2, C_3, \ldots, C_n$ be binomial coefficients in the expansion of

The value of the expression Q.

 $C_0 - 2C_1 + 3C_2 - \ldots + (-1)^n (n+1)C_n$ is equal to

B. $2^{n}(n+3)$

C. $2^{n-1}(n-2)$

D. None of these

Answer: A

Watch Video Solution

- **6.** If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + ... + C_n x^n, n$ being even
- the value of
- $C_0 = (C_0 + C_1) + (C_0 + C_1 + C_2) + \ldots + (C_0 + C_1 + C_2 + \ldots + C_{n-1})$

is equal to

- - A. $n.2^n$
 - B. $n.2^{n-1}$
 - C. $(n+2)2^n$
 - D. None of these

Answer: B

Watch Video Solution

7. Let n be a positive integer and

$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots + C_r x^r + \ldots + C_{n-1} x^{n-1} + \ldots$$

Where C_r stands for $\binom{n}{r}$, then

Q. The values of
$$\sum_{r=0}^n \sum_{s=0}^n \left(C_r + C_S\right)$$
 is

A.
$$(n+1)2^{n+1}$$

B. $n.2^n$

C.
$$(n+1)2^n$$

D. $n.2^{n-1}$

Answer: A

Where C_r stands for $\binom{n}{r}$, then

A. 2^{2n}

B $n 2^{2n-1}$

C. $n.2^{n+1}$

Answer: A

D. $n(n-1).2^{n-2}$

Watch Video Solution

Q. The value of $\sum_{r=0}^{n}\sum_{r=0}^{n}$, C_{r} , C_{S} is

$$C_2x^2 +$$

$$C_2x^2 +$$

$$C_2 x^2 +$$

$$(1+x)^n+C_0+C_1x+C_2x^2+C_3x^3+\ldots +C_rx^r+\ldots +C_{n-1}x^{n-1}+$$

$$C_2x^2 +$$

$$C_{2}x^{2} +$$

$$C_2 x^2 +$$

$$\gamma_{o} x^2 +$$

9. Let n is a rational number and x is a real number such that |x| It1, then

can be used to find the sum of different series. Q. Sum of infinite series

 $(1+x)^n=1+nx+rac{n(n-1)x^2}{2!}+rac{n(n-1)(n-2)}{2!}.\,x^3+\ldots$

 $1+rac{2}{3}\cdotrac{1}{2}+rac{2}{3}\cdotrac{5}{6}\cdotrac{1}{2^2}+rac{2}{3}\cdotrac{5}{6}\cdotrac{8}{9}\cdotrac{1}{2^3}+\ldots\infty$ is

A. (a)
$$2^{1/3}$$

B. (b) $4^{1/3}$

C. (c) $8^{1/3}$

D. (d) $4^{2/3}$

Answer: B

Watch Video Solution

10. Let n is a rational number and x is a real number such that
$$|x|$$
It1, then

$$(1+x)^n=1+nx+rac{n(n-1)x^2}{2!}+rac{n(n-1)(n-2)}{3!}.\,x^3+\ldots$$

This can be used to find the sm of different series.

Q. The sum of the series

$$1 + \frac{1}{3^2} + \frac{1 \cdot 4}{1 \cdot 2} \cdot \frac{1}{3^4} + \frac{1 \cdot 4 \cdot 7}{1 \cdot 2 \cdot 3} \cdot \frac{1}{3^6} + \dots$$
 is

A.
$$\sqrt{rac{3}{2}}$$

B.
$$\left(\frac{3}{2}\right)^{1/3}$$

$$\mathsf{C.}\,\sqrt{\frac{1}{3}}$$

D.
$$\left(rac{2}{3}
ight)^{1/3}$$

Answer: B

Watch Video Solution

Assignment Section E Objective Type Question Assertion Reson Type Questions

1. Statement-1: The number of distict term in the expansion of $\left(1+px\right)^{20}+\left(1-px\right)^{20}$ is 42.

Statement-2: Number of term in the expansion of $\left(1+x
ight)^n$ is (n+1).

A. Statement-1 is True, statement-2 is true, statement-2 is a correct explanationn for statement-1

B. Statement-1 is true, statement-2 is true, statement-2 is NOT a correct explanation for statement-1

C. Statement-1 is true, statement-2 is false

D. Statement-1 is false, statement-2 is true

Answer: D

Watch Video Solution

2.

Statement-1: The coefficient of $a^3b^4c^3$ in the expansion of $\left(a-b+c\right)^{10}$ is 10!

3!4!3!

Statement-2: The coefficient of $x^py^qz^r$ in the expansion of $\left(x+y+z\right)^n$ is n!

 $\frac{n!}{p!q!r!}$ for all integer n.

A. Statement-1 is True, statement-2 is true, statement-2 is a correct

explanationn for statement-1

В.

C.

D.

Watch Video Solution

3. Statement-1: If $\sum_{r=1}^n r^3 \left(\frac{.^n \, C_r}{.^n \, C_{r-1}}\right)^2 = 196$, then the sum of the coeficients of powerr of xin the expansion of the polynomial $(x-3x^2+x^3)^n$ is -1. Statement-2:

$$rac{ \cdot^n C_r}{ \cdot^n C_{r-1}} = rac{n-r+1}{r} \, orall n \in N \, ext{ and } \, r \in W.$$

A. Statement-1 is True, statement-2 is true, statement-2 is a correct explanationn for statement-1

В.

C.

D.

Answer: D

4. Statement-1 The number of terms in the expansion of

$$\left(x + \frac{1}{x} + 1\right)^n$$
 is $(2n+1)$

Statement-2 The number of terms in the expansion of

$$(x_1 + x_2 + x_3 + \ldots + x_m)^n$$
 is $n+m-1$ C_{m-1} .

A. Statement-1 is True, statement-2 is true, statement-2 is a correct explanationn for statement-1

В.

C.

D.

Answer: B

Watch Video Solution

5. Statement-1:Sum of the coefficients of last 30 terms in the expansion of $\left(1+x\right)^{49}$. When expanded in ascending powers of x, is 2^{48} .

Statement-2: $P^{\it th}$ term from the end in the expansion of $(x+y)^n$ is $\left(n-P+2
ight)^{th}$ term from the beginninig.

A. Statement-1 is True, statement-2 is true, statement-2 is a correct explanationn for statement-1

C.

В.

D.

Answer: D

Watch Video Solution

6. Statement-1: In the expansion of $\left(\sqrt{5}+3^{1/5}\right)^{10}$, sum of integral terms is 3134.

Statement-2: $(x+y)^n = \sum_{r=0}^n .^n \, C_r \cdot x^{n-r} y^r.$

A. Statement-1 is True, statement-2 is true, statement-2 is a correct

explanationn for statement-1

B. Statement-1 is True, statement-2 is true, statement-2 is not correct

explanationn for statement-1

C. Statement-1 is True, statement-2 is true, statement-2 is false

D. Statement-1 is false, statement-2 is true, statement-2 is true

Answer: A

Assignment Section G Objective Type Question Integer Answer Type Questions

1. If
$$f(m)=\sum_{i=0}^m {30\choose 30-i}{20\choose m-i}$$
 where ${p\choose q}=.^p$ C_q , then

Assignment Section H Objective Type Question Multiple True False Type Questions

1. Statement-1: The integeral part of $\left(8+3\sqrt{7}\right)^{20}$ is even.

Statement-2: The sum of the last eight coefficients in the expansion of $\left(1+x\right)^{16}$ is 2^{15} .

Statement-3: if $R \big(5\sqrt{5}+11\big)^{2n+1}=[R]+F$, where [R] denotes the greatest integer in R, then $RF=2^{2n+1}$.

- A. FFF
- B. FFT
- C. TFF
- D. TFT

Answer: A

2. Statement-1: The middle term of $\left(x+\frac{1}{x}\right)^{2n}$ can exceed $\frac{\left(2n\right)^n}{n!}$ for some value of x.

Statement-2: The coefficient of x^n in the expansion o $\left(1-2x+3x^2-4x^3+\dots\right)^{-n}$ is $\frac{1\cdot 3\cdot 5\dots (2n-1)}{n!}\cdot 2^n.$

Statement-3: The coefficient of x^5 in $\left(1+2x+3x^2+\dots
ight)^{-3/2}$ is 2.1.

A. TTF

B. FTT

C. FTF

D. FFF

Answer: B

Watch Video Solution

Assignment Section I Objective Type Question Subjective Type Questions

1. $(1+x)^{15} + C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \ldots + C_{15} x^{15} \,\, ext{and} \,\, (k=C_2+2C_3)^{15}$

If

Watch Video Solution

then the value of $\frac{k-993}{1000}$ is equal to_____

2. If C_r stands for nC_r , then the sum of first (n+1) terms of the series $aC_0 - (a+d)C_1 + (a+2d)C_2 - (a+3d)C_3 + \dots$, is

expansion 3. In the off $(1+x)^{10}=.^{10}\,C_0+.^{10}\,C_1x+.^{10}\,C_2x^2+\ldots+.^{10}\,C_{10}x^{10}$, then value of $528 \left[\frac{.^{10} C_0}{2} - \frac{.^{10} C_1}{3} + \frac{.^{10} C_2}{4} - \frac{.^{10} C_3}{5} + \ldots + \frac{.^{10} C_{10}}{12} \right]$ is equal to____.

let
$$\sum_{i=1}^{20}$$

4. let $\sum_{r=0}^{2010} a_r x^r = \left(1 + x + x^2 + x^3 + x^4 + x^5\right)^{402}$ and $\sum_{r=0}^{2010} a_r = a$, then the value of $\left(\frac{\sum_{r=0}^{2010}r.~a_r}{\sum_{r=0}^{2010}a_r}\right)$ is equal to____.

Watch Video Solution

- **5.** Find $\cdot^n C_1 \frac{1}{2} \cdot^n C_2 + \frac{1}{3} \cdot^n C_3 \ldots + (-1)^{n-1} \frac{1}{n} \cdot^n C_n$
 - Watch Video Solution

- **6.** Show that the HM of $(2n+1)C_r$ and $(2n+1)C_r$ and $(2n+1)is\frac{2n+1}{n+1}$ times of $(2n)C_r$ Also show that $\displaystyle\sum^{2n-1} {(-1)^{r-1}}\cdot rac{r}{2nC_r} = rac{n}{n+1}.$
 - Watch Video Solution

Prove that the coefficient of x^3 in the expansion of $(1+x+2x^2)\Big(2x^2-rac{1}{3x}\Big)^9$ is $-rac{224}{27}$.

8. Given that the 4th term in the expansion of $\left[2+\left(3x/8\right)\right]^{10}$ has the maximum numerical value. Then find the range of value of x.

Assignment Section J Objective Type Question Aakash Challengers Questions

1. For any natural number n, the number A given by

 $A = 2903^n - 803^n - 464^n + 261^n$ is divisible by

A. 7

B. 271

C. 1897

D. 13279

Answer: A::B::C

Watch Video Solution

- **2.** The tens digit of $(81)^{100}(121)^{100}-1$ is
 - A. 1
 - B. 0
 - C. 9
 - D. 8

Answer: B

- 3. Prove the equality
- $1^2 + 2^2 + 3^2 \ldots + n^2 = .^{n+1} C_2 + 2 (.^n C_2 + .^{n-1} C_2 \ldots + .^2 C_2).$
 - Watch Video Solution

4. Show that $3^{2008}+4^{2009}$ can be written as a product of two positive integers each of which is larger than 2009^{182} .

