

India's Number 1 Education App

MATHS

JEE (MAIN AND ADVANCED MATHEMATICS) FOR BOARD AND COMPETITIVE FXAMS

CONTINUITY AND DIFFERENTIABILITY

Example

1. Check the continuity of the function given by f(x) = 3x - 5t at 5 = 1

Watch Video Solution

2. Examine whether the function f given by $f(x)=x^3$ is continuous at

$$x = 0$$

3. Discuss the continuity of the function f(x) = |x-1| at x=1

4. Show that the function f given by $f(x)=egin{cases} x^2+5 & ext{if} & x
eq 0 \ 3 & ext{if} & x=0 \end{cases}$ is not continuous at x=0

- **5.** Discuss the continuity of the function f defined by $f(x)=rac{1}{x-1}, x
 eq 1$
 - Watch Video Solution

6. Discuss the continuity of the function f defined by $f(x)=egin{cases} x+3 & ext{if} & x\leq 1 \ x-3 & ext{if} & x>1 \end{cases}$

7. Find all the points of discontinuity of the function f(x) defined by

$$f(x) = egin{cases} x+1 & ext{ if } & x < 1 \ 1 & ext{ if } & x = 1 \ x-1 & ext{ if } & x > 1 \end{cases}$$

8. Disucss the continuity of the function f given by

$$f(x) = \left\{ egin{array}{ll} -x & ext{if} & x \geq 0 \ -x^2 & ext{if} & x < 0 \end{array}
ight.$$

9. Find all the points of discontinuity of the greatest integer function defined by f(x)=[x], where [x] denotes the greatest integer less than or equal to x.

10. Show that the function f defined by f(x) = |1-x+|x| is everywhere continuous.

11. Show that f(x) = |x| is not differentiable at x = 0 .

12. Find the derivative of the following functions w.r.t x

(i)
$$\sqrt{3x-2}$$
 for $x>rac{2}{3}$

(ii)
$$\left(2x^2+3
ight)^{rac{5}{3}}\!(x+5)^{-rac{1}{3}}$$

13. Differentiate w.r.t x : $\sin(x^3)$

14. Differentiate w.r.t x f (x) sin $3x \sin^3 x$

Watch Video Solution

15. Find $\frac{dy}{dx}$, when $y = e^{-x^2} \sin(\log x)$

Watch Video Solution

16. Find $\frac{dy}{dx}$ if $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

Watch Video Solution

17. If $y = x \sin y$, prove that x. $\frac{dy}{dx} = \frac{y}{1 - x \cos u}$

18. Find the derivative of $\cos^{-1} x$ assuming that it exists.

- **19.** Differentiate $\sqrt{\sin^{-1} \sqrt{x}}$ w.r.t. x, (0 < x < 1)
 - Watch Video Solution

- **20.** Differentiate w.r.t x , $y= an^{-1}\Biggl(rac{x}{\sqrt{1+x^2}-1}\Biggr)$
 - Watch Video Solution

- **21.** Differentaite function w.r.t x : $f(x) = \dfrac{x\sqrt{x^2+4}}{(3x+4)^{rac{2}{3}}}, x>0$
 - Watch Video Solution

22. Find
$$\frac{dy}{dx}$$
 when $y = (x^{\log x})(\log x)^x, x > 1$

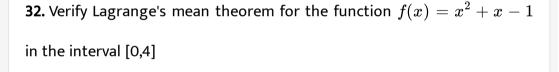
23. Differentiate $x^x + (\sin x)^{\log x}$ w.r.t. x ,x>0

24. find
$$\dfrac{dy}{dx}$$
 , when $y=\sin u$, $u=e^{\sqrt{t}}$ and $t=\log x$

25. If
$$x=rac{1-t^2}{1+t^2}$$
 and $y=rac{2t}{1+t^2}$, prove that $rac{dy}{dx}+rac{x}{y}=0$

27. Find
$$\dfrac{d^2y}{dx^2}$$
 , when $y=e^x\sin x$

28. If $y=\log\left[x+\sqrt{x^2+1}
ight]$, prove that $\left(x^2+1
ight)rac{d^2y}{dx^2}+xrac{dy}{dx}=0$


29. if $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, prove that $\frac{d^2y}{dx^2} = -\frac{b^4}{a^2y^3}$

0. If
$$x=2\cos heta -\cos 2 heta$$

30. If
$$x=2\cos\theta-\cos2\theta$$
 $y=2\sin\theta-\sin2\theta$ Find $\frac{d^2y}{dx^2}$ at $\theta=\frac{\pi}{2}$

31. Verify Rolle's theorem for the function f(x) = $x^2 + x - 6$ in the interval

[-3,2]

33. Evaluate
$$\lim_{x \to -\infty} \frac{\sqrt{x^2 + 3x} + 2x}{2x + 4}$$

 $\textbf{34.} \ \textbf{Evaluate the following using :L' Hospital 's rule }.$

(i) if f(x) be a twice differentiable function and f''(0) = 2, then find

$$\lim_{x
ightarrow 0} rac{2f(x)-3f(3x)+f(4x)}{x^2}$$

(ii) if f(a) =2, f' (a) = 1, g (a) =2 , then find $\lim_{x \to a} \frac{g(x)f(a) - g(a)f(x)}{x - a}$

(iii)
$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\sin x} \right)$$

(iv) $\lim_{x o 0\,+} x Inx$ (v) $\lim_{x o 0} \left(\cot x
ight)^{\sin x}$

(vi)
$$\lim_{x o 0} rac{ an x + 4 an 2x - 3 an 3x}{x^2 an x}$$

35. (i) Let $h(x)=\lim_{x o\infty}\,rac{x^{2n}f(x)+g(x)}{1+x^{2n}}$, find h(x) in terms of f(fx) and g(x)

(ii) without using L Hospital rule or series expansion for e^x evaluate

$$\lim_{x o0}rac{e^x-1-x}{x^2}$$
 (iii) $\lim_{n o\infty}\left[rac{e^{rac{1}{n}}}{n^2}+2rac{\left(e^{rac{1}{n}}
ight)^2}{n^2}+3.rac{\left(e^{rac{1}{n}}
ight)^3}{n^2}+.....
ight.+nrac{\left(e^{rac{1}{n}}
ight)^n}{n^2}
ight]$

(iv) $\lim_{x \to 0} \left\lceil \frac{a \sin x}{x} \right\rceil + \left\lceil \frac{b \tan x}{x} \right\rceil$ Where a,b are inegers and [] denotes

integral part.

(v)
$$\lim_{x o a} \left(\frac{\sin x}{\sin a} \right)^{\frac{1}{x-a}}$$

View Text Solution

36. Evaluate $\lim_{x \to \infty} \frac{|x|}{2x}$

Watch Video Solution

37. if
$$f(x)=egin{cases} 1+x & 0 \leq x \leq 2 \ 3-x & 2 < x \leq 3 \end{cases}$$

Determine the points of discontinuity of the function f(f(x))

- (ii) Check the continuity of the function f(x) = $\left[x\right]^2-\left[x^2\right]$
- (iii) find the values of a and b if f is continuous at $x=rac{\pi}{2}$

$$f(x) = egin{cases} \left(rac{8}{5}
ight) rac{ an 8x}{ an 5x} & 0 < x < \pi/2 \ a + 4 & x = \pi/2 \ (1 + |\cot x|) rac{b | an x|}{a} & rac{\pi}{2} < x < \pi \end{cases}$$

View Text Solution

38. (i) if $f\left(\frac{x+2y}{3}\right) = \frac{f(x)+2f(y)}{3}$, $x,y \in R$ and f (0) exists and is

finite, show that f(x) is continuous on the entire number line.

(ii) Let
$$f:R o R$$
 satisfying $f(x)$ -f (y) $|\le |x-y|^3$, $orall x,y\in R$, The prove that $f(x)$ is a constant function.

39. If
$$x=a\sin 2\theta(1+\cos 2\theta)$$
, $y=b\cos 2\theta(1-\cos 2\theta)$, then $\dfrac{dy}{dx}$ =

40. (i) If $y^{1/m} + y^{-1/m} = 2x$,

$$(x^2-1)rac{d^2y}{dx^2}+xrac{dy}{dx}-m^2y=0$$

then prove

that

(ii) If y = ln
$$\left(x+\sqrt{1+x^2}
ight)$$
 , then prove that $\left(1+x^2
ight)rac{d^2y}{dx^2}+xrac{dy}{dx}=0$

41. Find the values of a and b if f is continuous at x=0, where

$$f(x) = egin{cases} \left(\sin x + \cos x
ight)^{\cos e c x} & -rac{\pi}{2} < x < 0 \ a & x = 0 \ rac{e^{1/x} + e\left(2/x
ight) + e^{3/x}}{ae^{-2+1/x} + be^{-1+3/x}} & 0 < x < rac{\pi}{2} \end{cases}$$

42. Find the differential equation of the family of curves $y=Ae^{2x}+Be^{-2x}$, where A and B are arbitrary constants.

Try Youself

1. Prove that the function $f(x)=\left\{egin{array}{ll} rac{\sin x}{x} & x<0 \ x^2+1 & x\geq 0 \end{array}
ight.$ in $x\in\mathbb{R}$ is continuous

2. Show that the function $f(x) = \left\{ egin{array}{ll} x+\lambda & x<1 \ \lambda x^2+1 & x\geq 1 \end{array}
ight.$

is a continuous function, regardless of the choice of $\lambda \in R$

3. Show that the given function f(x) = |2 - 3x + |x|| is continuous for every $x \in R$

4. Find the domain and range of $f(x) = \sin^{-1}(x - [x])$, where [.] represents the greatest integer function.

5. Differentiate $f(x)=(x+2)^{rac{2}{3}}(1-x)^{rac{1}{3}}$ with respect to x

6. Find the derivative of $\cos \left(\sin x^2\right) atx = \sqrt{\frac{\pi}{2}}$

7. If $\log (x^2+y^2)=2\tan^{-1}\Bigl(\frac{x}{y}\Bigr)$ then show that $\ \frac{dy}{dx}=\frac{y-x}{y+x}$

8. Find $\frac{dy}{dx}$ when $y = \sin^{-1} \sqrt{\frac{1+x^2}{2}}$

- 9. Differentiate the following functions w.r.ts
- (i) $\frac{e^{x^2 \tan^{-1} x}}{\sqrt{1-x^2}}$
- (ii) $x^{\sin x}$ (x>0)

10. Find $\frac{dy}{dx}$ of $x^y + y^x = a^b$

Watch Video Solution

11.

 $x = a(\sin \theta - \theta \cos \theta)$ and $y = a(\cos \theta + \theta \sin \theta)$ find $\frac{dy}{dx}at\theta = \frac{\pi}{4}$

If

Watch Video Solution

12. If $x=a\Big(\cos t+\log\Big(\tan\Big(\frac{t}{2}\Big)\Big)\Big), y=a\sin t, then \frac{dy}{dx}=$

Watch Video Solution

13. If $y=x^x$, find $\dfrac{d^2y}{dx^2}$.

14. If $y=A\cos(\log x)+B\sin(\log x)$, prove that $x^2\,rac{d^2y}{dx^2}+xrac{dy}{dx}+y=0$.

15. Verify Rolle's theorem for the function $f(x)=x^3-9x^2+26x-24$ in the interval [2.4]

16. Verify Lagrange's mean value theorem for the function $f(x) = 2x^2 - 10x + 29$ in the interval [2.7]

Assignment Section A

1. Let
$$f(x)=\left\{egin{array}{ll} x & ext{for} & 0\leq x<1 \ 3-x & ext{for} & 1\leq x\leq 2 \end{array}
ight.$$

Then f(x) is

- A. continuous at x =1
- B. Right continuous at x = 1
- C. Left continuous at x =1
- D. Limit exists at x = 1

Answer: B

- **2.** If the function f(x) = (1-x) $\tan \frac{\pi x}{2}$ is continuous at x =1 then f (1) =
- A. $\frac{2}{\pi}$
 - B. $\frac{\pi}{2}$
 - C. 0

Answer: A

Watch Video Solution

3. Let
$$f(x)=\left\{egin{array}{ll} x\sin\left(rac{1}{x}
ight) & x
eq 0 \ k & x=0 \end{array}
ight.$$

then f(x) is continuous at x = 0 if

A. k = 1

B.k=0

C. k = 2

D. k = -1

Answer: B

4. Let
$$f(x) = \begin{cases} \frac{3|x| + 4\tan x}{x} & x \neq 0 \\ k & x = 0 \end{cases}$$

Then f(x) is continuous at x = 0 for,

A.
$$k = 7$$

D.
$$k = 2$$

Answer: C

5. Let $f(x) = \left\{ egin{array}{ll} (x+a) & x < 1 \ ax^2 + 1 & x > 1 \end{array} ight.$ then f(x) is continuous at x =1 for

C. All a
$$\ \in R$$

D. No value of a

Answer: C

- **6.** If the function $f(x) = \frac{x(e^{\sin x} 1)}{1 \cos x}$ is continuous at x =0 then f(0)=
 - Watch Video Solution

- **7.** Let $f(x) = \frac{x(2^x-1)}{1-\cos x}$ for x
 eq 0 what choice of f(0) , if any, will make f
- (x) continuous at x = 0?
 - A. log 2
 - $\mathsf{B.}\; \frac{1}{2} \!\log 2$
 - C. 1/(2 log 2)`
 - D. 2 log 2

Answer: D

Watch Video Solution

$$A. - 1$$

B. 0

C. 1

D. No value is possible

Answer: A

9. If
$$f(x)=\left\{egin{array}{ll} rac{\sin{[x]}}{[x]} & [x]
eq 0 \ 0 & [x]=0 \end{array}
ight.$$

where [.] denotes the greatest integer less than or equal to x then

- A. Continuous at x =0
- B. Left continuous at x =0
- C. Discontinuous at x =0
- D. Right continuous at x = 0

Answer: C

- **10.** Let $f(x) = \sin \frac{1}{x}, x \neq 0$ Then f(x) can be continuous at x =0
 - A. If f(0) =1
 - B. If f(0) = 0
 - C. If f(0) = -1

D. For no value of (0)

Answer: D

Watch Video Solution

11. If
$$f(x)=egin{cases} px^2-q & x\in[0,1) \ x+1 & x\in(1,2] \end{cases}$$

and f(1)=2 , then the value of the pair (p,q) for which f(x) cannot be continuous at x=1 is:

A. (a) (2, 0)

B. (b) (1, -1)

C. (c) (4, 2)

D. (d) (1, 1)

Answer: D

12. let
$$f(x) = \left\{ egin{array}{ll} x^2 & x \leq 0 \ ax & x > 0 \end{array}
ight.$$
 then f (x) is derivable at x = 0 if

C.
$$a \neq 1$$

D. Not possible

Answer: A

Watch Video Solution

13. If f is derivable at x =a,then $\lim_{x\to a}\left(\frac{xf(a)-af(x)}{x-a}\right)$

Answer: C

Watch Video Solution

- **14.** Let f(x) = x|x| then f'(0) is equal to
 - A. 1
 - B. 1
 - C. 0
 - D. ± 1

Answer: C

- **15.** If f(x) = |x|, then f'(0) is
 - A. 0

$$C. -1$$

Answer: D

Watch Video Solution

16. Let
$$f(x) = \left\{ egin{array}{ll} x+a & x \geq 1 \ ax^2+1 & x < 1 \end{array}
ight.$$
 then f(x) is derivable at x =1 , if

D.
$$a = \frac{1}{2}$$

Answer: D

17. If $f(x) = \sqrt{25 - x^2}$, then what is $\lim_{x o 1} rac{f(x) - f(1)}{x - 1}$ equal to

A.
$$\frac{1}{24}$$

$$\operatorname{B.}\frac{1}{5}$$

$$\mathsf{C.}-\sqrt{24}$$

D.
$$\frac{1}{\sqrt{24}}$$

Answer: D

Watch Video Solution

18. if $f(x) = e^{-\frac{1}{x^2}}, x \neq 0$ and f(0) = 0 then f'(0) is

A. not defined

C. e

B. 1

D. 2

Answer: A

Watch Video Solution

- **19.** If $f(x) = \log \lvert x \rvert, \, x
 eq 0$ then f'(x) equals
 - A. $\frac{1}{|x|}$
 - B. $\frac{1}{x}$
 - $\mathsf{C.} \frac{1}{x}$
 - $D.\pm\frac{1}{r}$

Answer: D

- **20.** $\frac{d}{dx} \left(\sin^{-1} \frac{2x}{1+x^2} \right)$ is equal to
 - A. $\frac{2}{1+x^2}$

B.
$$-rac{2}{1+x^2}$$
C. $rac{3ig(1-x^2ig)}{|1-x^2|(1-x^2)}, \, x
eq 1$
D. $rac{2}{1-x^2}$

Answer: B

Watch Video Solution

21. Differential coefficient of $\log_{10} xw.\ r.\ t\log_x 10$ is

$$\mathsf{A.} - \frac{\left(\log x\right)^2}{\left(\log 10\right)^2}$$

B.
$$\frac{\left(\log_{10} x\right)^2}{\left(\log 10\right)^2}$$

$$\mathsf{C.} \; \frac{\left(\log_x 10\right)^2}{\left(\log 10\right)^2}$$

$$\mathsf{D.} - \frac{(\log 10)^2}{(\log x)^2}$$

Answer: A

22. Find
$$\dfrac{dy}{dx}$$
 if $y=\log \left\{e^x \left(\dfrac{x-2}{x+2}\right)^{\frac{3}{4}}\right\}$

A.
$$\dfrac{x^2-4}{x^2-4}$$

B.
$$\frac{3}{x^2 - 4}$$
C. $\frac{x^2 - 1}{x^2 - 4}$

$$x^2-4$$
 D. $\frac{3x^2}{x^2-4}$

Answer: C

Watch Video Solution

23. If $y = \frac{e^x - e^{-x}}{e^x + e^{-1}}$, provet hat $\frac{dy}{dx} = 1 - y^2$

A.
$$1+y^2$$

B.
$$1-y^2$$

C.
$$y^2 - 1$$

D.
$$y^2-2$$

Answer: B

Watch Video Solution

24. If $y=ae^{mx}+be^{-mx}$ then $\dfrac{d^2y}{dx^2}$ is

A.
$$-m^2y$$

B.
$$-m^2y^2$$

C. my

D.-my

Answer: A

- **25.** If $y^2 = ax^2 + b$, then $\frac{d^2y}{dx^2}$

B.
$$\dfrac{x^3}{ab}$$
C. $\dfrac{ab}{y^2}$

D.
$$\frac{ab}{y^3}$$

Answer: D

Watch Video Solution

26. If
$$y=rac{\log x}{x}$$
 then $rac{d^2y}{dx^2}=$

A.
$$\frac{3-2\log x}{x^3}$$

B.
$$\frac{2\log x - 3}{x^3}$$

C.
$$\frac{2\log x - 3}{x^4}$$

D.
$$\frac{2-3\log x}{x^4}$$

Answer: B

27. Differentiate the following w.r.t.x. The differentiation conefficcient of $f(\log_e x)w.\ r.\ t.\ x, \ \$ where $f(x)=\log_e x, \$ is

A.
$$\frac{x}{\log_e x}$$

B.
$$\frac{1}{x}\log_e x$$

$$\mathsf{C.} \; \frac{1}{x \log_e x}$$

D. x log x

Answer: C

Watch Video Solution

28. If $y=(1+x)\big(1+x^2\big)\big(1+x^4\big)\big(1+x^{2n}\big),$ then find $\frac{dy}{dx}atx=0.$

A. 1

B. -1

C. 0

D. 2

Answer: A

Watch Video Solution

29. If

$$f(x) = \cos x \cdot \cos 2x \cdot \cos 4x \cdot \cos 8x \cdot \cos 16x$$
, then find $f'(\frac{\pi}{4})$.

- A. $\sqrt{2}$
- B. $\frac{1}{\sqrt{2}}$
- C. 1
- D. -1

Answer: A

Watch Video Solution

30. If $y=\cos^{-1}(\cos x)$, then $\frac{dy}{dx}$ at $x=\frac{5\pi}{4}$ is equal to (a)1 (b)-1 (c)0 (d)4

B. - 1

 $\mathsf{C.} \; \frac{1}{\sqrt{2}}$

D.
$$\sqrt{2}$$

Answer: B

Watch Video Solution

31. If $x=e^{y+e^{y+e^{y+\dots\infty}}}, x>0$, then $rac{dy}{dx}$ is equal to

A.
$$\frac{x}{1+x}$$

B.
$$\frac{1}{x}$$

$$\mathsf{C.}\,\frac{1-x}{x}$$

D.
$$\frac{x}{1-x}$$

Answer: B

32. if
$$x^y$$
. $y^x=16$ then $\frac{dy}{dx}$ at $(2,2)$ is equal to

A. 1

B. - 1

C. 0

D. 2

Answer: C

Watch Video Solution

33. If $y = \sin x^{\circ}$ and $u = \cos x$ then $\frac{dy}{du}$ is equal to

 $A. - \cos ecx \cos x$

B. $\frac{\pi}{180}$ cos $ec\frac{\pi x}{180}$ cos x

 $C. - \frac{\pi}{180} \cos ecx \cos \frac{\pi x}{180}$

D.
$$\frac{\pi}{180} \sin x \frac{\cos \pi x}{180}$$

Answer: B

Watch Video Solution

34. Let the function y = f(x) be given by

$$x = t^5 - 5t^3 - 20t + 7$$

and
$$y = 4t^3 - 3t^2 - 18t + 3$$

where $t \in (-2,2)$ then f'(x) at t = 1 is

A.
$$\frac{5}{2}$$

 $\mathsf{B.}\;\frac{2}{5}$

 $\mathsf{C}.\,\frac{7}{5}$

 $D. \frac{5}{7}$

Answer: B

35. If
$$u=fig(x^3ig), v=gig(x^2ig), f'(x)=\cos x, and g'(x)=\sin x, then rac{du}{dv}$$

is
$$\frac{3}{2}x\cos x^3\cos ecx^2$$
 $\frac{2}{3}\sin x^3\sec x^2\tan x$ (d) none of these

A.
$$\frac{3}{2}x\cos x^3\cos ecx^2$$

$$B. \frac{2}{3} \sin x^3 \sec x^2$$

$$\mathsf{C}.\tan x$$

D.
$$\frac{3}{2}x\sin x^2\sec x^3$$

Answer: A

Watch Video Solution

36. Find the derivative
$$\sec^{-1}\left(\frac{1}{2x^2-1}\right) \text{ w.r.t. } \sqrt{1-x^2} \text{ at } x-\frac{1}{2}.$$

of

$$A. - 4$$

$$C. -1$$

Answer: A

Watch Video Solution

- **37.** If $tig(1+x^2ig)=x \ ext{ and } \ x^2+t^2=y$ then at x = 2, the value of $\dfrac{dy}{dx}$ is
 - A. $\frac{88}{125}$
 - B. $\frac{488}{125}$

C. 1

D. $\frac{244}{125}$

Answer: B

38. If
$$x=t\cos t,\,y=t+\sin t$$
 . Then $\displaystyle \frac{d^2x}{dy^2}$ at $\displaystyle t=\frac{\pi}{2}$ is

(a)
$$\frac{\pi+4}{2}$$
 (b) $-\frac{\pi+4}{2}$ (c) -2 (d) none of these

A.
$$\frac{\pi+4}{2}$$

$$\mathsf{B.}-\frac{\pi+4}{2}$$

Answer: B

39. if y =
$$\sin 2x$$
, then $\frac{d^6y}{dx^6}$ at $x=\frac{\pi}{2}$ is equal to

$$A. - 64$$

Answer: B

Watch Video Solution

40. Let $f(x)=egin{array}{c|cccc} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{array}$, where p is a constant. Then

$$\frac{d^3}{dx^3}(f(x))$$
 at $x=0$ is

(a)
$$p$$
 (b) $p-p^3$ (c) $p+p^3$ (d) independent of p

A.p

B. $p + p^2$

 $\mathsf{C}.\,p+p^3$

D. Independent of p

Answer: D

41. If
$$x=2at$$
 , $y=at^2$, where a is a constant, then find $\dfrac{d^2y}{dx^2}$ at $x=\dfrac{1}{2}$

D.
$$\frac{1}{2a}$$

Answer: D

42. If
$$y=x^{\frac{1}{x}}$$
 , the value of $\frac{dy}{dx}$ at x =e is equal to

$$\mathsf{C.}-1$$

D.
$$e^{\left(rac{1}{e}
ight)-2}$$

Answer: B

Watch Video Solution

- **43.** If $y= an^{-1}igg(\sqrt{rac{x+1}{x-1}}igg) \ \ an |x|>1 \ \ an rac{dy}{dx}$ =
 - A. $\frac{-1}{2|x|\sqrt{x^2-1}}$
 - $\operatorname{B.}\frac{-1}{2x\sqrt{x^2-1}}$
 - $\mathsf{C.}\; \frac{1}{2x\sqrt{x^2-1}}$
 - D. $\dfrac{1}{2x\sqrt{x^2-1}}$

Answer: A

- **44.** If $y = \log_2\!\log_2(x)$, then $\frac{dy}{dx}$ is equal to
 - A. $\frac{1}{x}\log_2 e$. $\log_x e$

B.
$$\frac{1}{x}\log_2 x$$

C.
$$\frac{1}{x}\log_e x$$

D.
$$\frac{1}{x}\log_x e$$

Answer: A

Watch Video Solution

45. If
$$f'(x) = \sqrt{2x^2 - 1}$$
 and $y = f(x^2)$, $then \frac{dy}{dx}$ at x = 1 is

- A. 2
- B. 1
- $\mathsf{C}.-2$
- D. 1

Answer: A

46. Let the function f(x) be defined as $f(x) = \left\{egin{array}{ll} rac{\log x - 1}{x - e} & x
eq e \\ k & x = e \end{array}
ight.$

The value of k, for which the function is continuous at x = e, is equal to

- A. e
- B. $\frac{1}{e}$
- $\mathsf{C}.\,e^2$
- D.-e

Answer: B

Watch Video Solution

47. Rolle's theorem is not applicable to f(x) = |x| in [-2,2] because

- A. f(x) is not continuous in [-2,2]
- B. f(x) is not derivable in (-2,2)
- C. $f(2) \neq f(-2)$

D. it is applicable

Answer: B

Watch Video Solution

48. Lagrange's mean value theorem is not applicable to f(x) in [1,4] where

f(x) =

A. x^2-2x

B. |x-2|

C. x|x|

D. x^3

Answer: B

49. The value of C (if exists) in Lagrange's theorem for the function $|\mathbf{x}|$ in

50. If f be a function such that f(9) = 9 and f'(9) = 3, then

the interval [-1,1] is

 $\operatorname{B.}\frac{1}{2}$

$$C.-\frac{1}{2}$$

D. Nonexistent in the interval

Answer: D

Watch Video Solution

 $\lim_{x o 9}rac{\sqrt{f(x)}-3}{\sqrt{x}-3}$ is equal to

B. 3

C. 1

D.
$$\frac{1}{3}$$

Answer: B

Watch Video Solution

51. If
$$f(x)=\left\{egin{array}{ll} rac{1}{1+e^{1/x}} & x
eq 0 \ 0 & x=0 \end{array}
ight.$$
 then f(x) is

A. continuous at x =0

B. continuous and differnetiable at x = 0

C. continuous but not differentiable at x=0

D. Discontinuous at x=0

Answer: D

C. continuous and differentiable on (-1,1)

D. Discontinuous on [-1,1]

A. continuous on [-1,1] and differentiable on (-1,1)

B. continuous on [-1,1] and differentiable on $(-1,0)\cup(0,1)$

Answer: B

Watch Video Solution

53. Domain of differentiations of the function $f(x) = |x-2| \cos x$ is

A.R

B. $R - \{2\}$

 $C.(0,\infty)$

D. {2}

Answer: B

54. Let
$$f(x) = \frac{\sin(\pi[x+\pi])}{1+{[x]}^2}$$
 where [] denotes the greatest integer

function then f(x) is

- A. continuous and differentiable at all $x \in R$
- B. continuous but not differentiable at some x
- C. Differentiable but not continuous at x =0
- D. Neither continuous nor differentiable at x =0

Answer: A

55. If
$$f(x)=x^2+rac{x^2}{1+x^2}+rac{x^2}{\left(1+x^2
ight)^2}+....\infty$$
 term then a

$$x=0, f(x)$$

A.
$$\lim_{x o 0} f(x)$$
 does not exist

B. f(x) is continuous but not differentiable at x=0

C. f(x) is discontinuous at x = 0

D. f(x) is differentiable at x=0

Answer: C

Watch Video Solution

56. Let $f(x)=\left\{rac{|x+1|}{ an^{-1}(x+1)}, x eq -1, 1, x eq -1 ext{ Then } f(x) ext{ is} ight.$

A. continuous at x = -1

B. Differentiable at x=-1

C. Discontinuous at x = -1

D. Continuous but not derivable at x =1

Answer: C

57. The value of
$$\lim_{h o 0} rac{f(x+h) + f(x-h)}{h}$$
 is equal to

$$\mathsf{D}.\left(d
ight)-f'(x)$$

Answer: C

58. If
$$y=rac{e^x+1}{e^x-1}$$
, $hen rac{y^2}{2}+rac{dy}{dx}$ is equal to

- A. 1
- B. 1
- $C. \frac{1}{2}$
- D. $\frac{1}{2}$

Answer: D

Watch Video Solution

59. If
$$f(x) = e^x g(x), g(0) = 2, g^{\,\prime}(0) = 1, then f^{\,\prime}(0)$$
 is

A. 1

B. 3

C. 2

D. 0

Answer: B

60. If
$$ax^2+2hxy+by^2=0$$
, show that $\dfrac{d^2y}{dx^2}=0$
A. $\dfrac{h^2-ab}{\left(hx+by\right)^2}$

B.
$$\dfrac{h^2-ab}{\left(hx+by
ight)^3}$$
C. $\dfrac{ab-h^2}{\left(hx+by
ight)^3}$

D.
$$\frac{ab-h^2}{\left(hx+by\right)^2}$$

Answer: B

61. Derivative of the function $f(x) = \log_5(\log_8 x)$, where x > 7 is

A.
$$\frac{1}{x(\log 5)(\log 7)(\log_7 x)}$$

$$\mathsf{B.}\; \frac{1}{x(\log 5)(\log 7)}$$

$$\operatorname{C.} \frac{1}{x(\log x){\log_e 5}}$$

D.
$$\frac{1}{(\log 5)(\log 7)(x \log x)}$$

Answer: C

Section B

1. The value of
$$\lim_{x \to 0} \left(1 - \frac{1}{2^x}\right) \left(\frac{1}{\sqrt{\tan x + 4} - 2}\right)$$

A. $\log_a 16$

B. Cannot exist

C. 3l n2

D. 4 ln 2

Answer: D

Watch Video Solution

- **2.** If $\lim_{x\to 0}\frac{\sin x}{\tan 3x}=a$, $\lim_{x\to \infty}\frac{\sin x}{x}=b$, $\lim_{x\to \infty}\frac{\log x}{x}=c$ then value of a + b + c is
 - A. 1

B. 1/3

C. 3

D. 4

Answer: B

Watch Video Solution

3. Let $a = \lim_{x \to 0} x \cot x$ and $b = \lim_{x \to 0} x \log x$, then

A. a =b

B.b > a

C. a =b+1

D. b = a + 1

Answer: C

4.
$$\lim_{x o 0} \, rac{x an 2x - 2x an x}{\left(1 - \cos 2x
ight)^2}$$
 equal

B.
$$\frac{1}{3}$$

$$\mathsf{C.}\ \frac{1}{4}$$

D. $\frac{1}{2}$

Answer: D

Watch Video Solution

5.
$$\lim_{x \to \infty} \frac{\left(1 + x + x^3\right)}{\left(\ln x\right)^3}$$
 is equal to

- A. 2
- B. e^2

 $\mathsf{C}.\,e^{-2}$

- D. Not defined

Answer: D

Watch Video Solution

- **6.** Find $\lim_{x o 0} \frac{\sin x^n}{\left(\sin x\right)^m}$ where, $m, n \in Z^+$ equal
 - A. (a) 1 if n < m
 - B. (b)0, if n = m
 - C. (c) $\frac{n}{m}$
 - D. (d)0, if n > m

Answer: D

Watch Video Solution

7. Let f(2)=4 and f'(2)=4. Then $\lim\limits_{x
ightarrow2}rac{xf(2)-2f(x)}{x-2}$ is equal to

A.
$$-\frac{1}{3}$$

$$B.-2$$

$$\mathsf{C.}-4$$

Answer: C

Watch Video Solution

8. If f(4)= 4, f'(4) =1 then $\lim_{x \to 4} 2\left(\frac{2-\sqrt{f(x)}}{2-\sqrt{x}}\right)$ is equal to

- A. 0
- B. 2
- C. -1
- D. 2

Answer: B

9. Evaluate:
$$(\lim)_{x\stackrel{
ightarrow}{0}} rac{2^x-1}{\sqrt{1+x}-1}$$

B.
$$\log_e 2$$

c.
$$\frac{\log_e 2}{2}$$

D.
$$2\log_e 2$$

Answer: D

Watch Video Solution

10. Let lpha and eta be the distinct roots of $ax^2+bx+c=0$. Then $1-\cos(ax^2+bx+c)$

$$\lim_{x o lpha} rac{1-\cosig(ax^2+bx+cig)}{ig(x-lphaig)^2}$$
 equal to

A.
$$rac{1}{2}(lpha-eta)^2$$

$$\mathsf{B.} - \frac{a^2}{2}(\alpha - \beta)^2$$

D.
$$rac{a^2}{2}(lpha-eta)^2$$

Answer: D

Watch Video Solution

11. $(\lim)_{x\stackrel{
ightarrow}{0}} \left(rac{\sin(\pi\cos^2x)}{x^2} isequa < o-\pi$ (b) π (c) $rac{\pi}{2}$ (d) 1

A.
$$-\pi$$

 B, π

C.
$$\frac{\pi}{2}$$

D. e

Answer: B

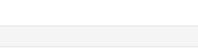
12.
$$\lim_{x \to \infty} \left(\sqrt{x + \sqrt{x}} - \sqrt{x} \right)$$
 equals

C.
$$\frac{2}{3}$$
D. $\frac{1}{2}$
Answer: C

Watch Video Solution

A. $\frac{1}{2}$

B. 2


C. 3

D. 4

Answer: A

A. 0

 $\mathsf{B.}\;\frac{1}{3}$

13. $\lim_{x o 0} \left(rac{1}{x^2} - rac{1}{ an^2 x}
ight)$

14.
$$\frac{1}{x}$$

14.
$$\lim_{x\to\infty} \left(\frac{x-3}{x+2}\right)^x$$
 is equal to :

A. e

B. e^{-1}

C. e^{-5}

D. e^5

Answer: C

Watch Video Solution

15. $\lim_{x \to 0} \left(\frac{1 + \tan x}{1 + \sin x} \right)^{\cos ecx}$ is equal to

A. - 1

B. e

C. 1

D.
$$e^{-1}$$

Answer: C

Watch Video Solution

- **16.** $\lim_{x \to 0} \left(\frac{4^x + 9^x}{2} \right)^{\frac{1}{x}}$
 - A. 2
 - B. 6
 - C. 16
 - D. 112

Answer: B

Watch Video Solution

17. If $\lim_{x o 0} (\cos x + a \sin b x)^{rac{1}{x}} = e^2$ then the possible values of a and b are

A.
$$a = 1$$
, $b = -2$

B.
$$a=2\sqrt{2}, b=\sqrt{2}$$

C.
$$a=2\sqrt{2}, b=rac{1}{\sqrt{2}}$$

D. a= -2 , b = 1

Answer: C

Watch Video Solution

18.
$$Lt \atop x o 0 \frac{\sqrt{1-\cos 2x}}{\sqrt{2}x} =$$

B.-1

C. zero

D. Does not exist

Answer: D

19.
$$\lim_{x\to 2^+}\left(\frac{\left[x\right]^3}{3}-\left[\frac{x}{3}\right]^3\right)$$
 is where [x] represents the integral part of x

A. 0

 $\mathsf{B.}\;\frac{64}{27}$

 $\mathsf{C.}\ \frac{8}{3}$

D. None of these

Answer: C

Watch Video Solution

20. The value of $\lim_{x \to 0} \frac{\left(4^x - 1\right)^3}{\sin \frac{x}{4} \log \left(1 + \frac{x^2}{3}\right)}$ equals

 $\mathsf{A.}\, 3(\log 4)^3$

 $\mathsf{B.}\,4(\log 4)^3$

 $\mathsf{C.}\,12(\log 4)^3$

 $D. 15(\log 4)^3$

Answer: C

Watch Video Solution

21. If
$$f(x)=egin{cases} rac{x^2+3x+p}{2\,(\,x^2-1\,)} & x
eq 1 \ rac{5}{4} & x=1 \end{cases}$$
 is continuous at x =1 then

A. p =2

B. p=0

C. p=-4

D. None of these

Answer: C

22. In order that the function
$$f(x)=(x+1)^{\cot x}$$
 is continuous at x = 0, $f(0)$ must be defined as

23. The number of points at which the function $f(x) = \frac{1}{\log \lvert 2x \rvert}$ is

 $\mathsf{B.}\,\frac{1}{e}$

- C. e
- D. 1

Answer: C

Watch Video Solution

- - A. 1

discontinuous is

- B. 2
- C. 3

Answer: C

Watch Video Solution

- **24.** If $f(x)=egin{cases} xe^{-\left(rac{1}{|x|}+rac{1}{x}
 ight)} & x
 eq 0 \ 0 & x=0 \end{cases}$ then f(x) is
 - A. (a)Continuous for all x but not differentiable
 - B. (b)Neither differentiable nor continuous
 - C. (c)Discontinuous everywhere
 - D. (d)Continuous as well as differentiable for all x

Answer: A

Watch Video Solution

25. The set of points where $f(x) = \frac{x}{1+|x|}$ is differentiable is

A.
$$(-\infty, -1), \ \cup \ (-1, \infty)$$

B. $(-\infty, \infty)$

 $C.(0,\infty)$

D. $(-\infty,0)\cup(0,\infty)$

Answer: B

Watch Video Solution

26. The function $\left|x^2-3x+2\right|+\cos|x|$ is not differentiableat x=

A.
$$-1, 2$$

$$\mathsf{B.}-1,\;-2$$

C. 1,2

D. `-2,1

Answer: C

27. At x = 0 , the function $y=e^{-\,|\,x\,|}$ is

A. Continuous

B. Continuous and differentiable

C. Differentiable with derivative = 1

D. Differentiable with derivative =- 1

Answer: A

Watch Video Solution

28. Let $f(x) = \lambda + \mu |x| + \nu |x|^2$, where $\lambda, \mu,
u \in \mathit{R}$, then f'(0) exists if

A.
$$\mu=0$$

$$\mathsf{C}.\lambda=0$$

D.
$$\mu=v$$

Answer: A

Watch Video Solution

- **29.** If {x} denotes the fractional part of x, then $\lim_{x \to 0} \frac{\{x\}}{\tan\{x\}}$ is equal to
 - A. 1
 - B. 0
 - C. -1

D. Limit doesn't exist

Answer: D

30. Let f(x)=[x], g(x)=|x| and $f\{g(x)\}=h(x)$,where [.] is the greatest integer function . Then h(-1) is

 $\mathsf{B.}-\infty$

A. 0

C. 3

D. None of these

Answer: D

31. A function f is defined by $fig(x^2ig) = x^3\,orall x>0$ then f(4) equals

A. (a)1

B. (b)2

C. (c)8

D. (d) Not differentiable

Watch Video Solution

32. If $3\sin(xy) + 4\cos(xy) = 5$, then $\dfrac{dy}{dx} =$

$$(a)\frac{y}{x}$$

$$\text{(b) } \frac{3\sin(xy)+4\cos(xy)}{3\cos(xy)-4\sin(xy)}$$

(c)
$$rac{3\cos(xy)+4\sin(xy)}{4\cos(xy)-3\sin(xy)}$$

(d) none

A.
$$\frac{y}{x}$$

$$\mathsf{B.}-rac{y}{x}$$

$$\mathsf{C.}\,\frac{x}{y}$$

$$D.-\frac{x}{y}$$

Answer: B

33. Let $f(x) = \max \{4, 1 + x^2, x^2 - 1\}, \ \forall x \in R$. Then, the total number of points, where f(x) is not differentiable,.....

B. 4

C. 6

D. 0

Answer: A

Watch Video Solution

34. Let g(x) be the inverse of f(x) and $f'(x)=\dfrac{1}{1+x^3}$. Find g'(x) in terms of g(x).

A.
$$\dfrac{1}{(1+g^3)}$$

B.
$$\dfrac{1}{1+f^3}$$

$$\mathsf{C.}\,1+g^3$$

D.
$$1+f^3$$

Answer: C

Watch Video Solution

- **35.** If f is a real-valued differentiable function satisfying $|f(x)-f(y)|\leq (x-y)^2, x,y,\ \in R \ ext{and} \ f(0)=0 ext{ then f(1) equals}$
 - **A.** 1
 - B. 2
 - C. 0
 - D. -1

Answer: C

1. $\lim_{x \to 0} \left(1 + ax\right)^{rac{b}{x}} = e^2$, " where" a, b in N` such that a+ b = 3 , then the value of (a,b) is

B.(8,4)

C.(2,1)

D. (1,2)

Answer: C::D

Watch Video Solution

Number of integral values of λ for 2. which $(\ \lim\)_{x\stackrel{\rightarrow}{1}}\sec^{-1}\!\left(\frac{\lambda^2}{(\log)_e x}-\frac{\lambda^2}{x-1}\right) \text{does not exist is a. 1 b. 2 c. 3 d. 4}$

A.
$$(-\infty,\sqrt{2}]$$

B. $\left[\sqrt{2},\infty\right)$

C.
$$ig(-\infty,\sqrt{2}ig]\cupig[\sqrt{2},\inftyig)$$

D. None of these

Answer: A::B::C

Watch Video Solution

3. Given the function $f(x)=rac{1}{1-x}$, The points of discontinuity of the composite function $f[f\{f(x)\}]$ are given by

B. 1

C. 2

D. - 1

Answer: A::B

4. A function is defined as follows

$$f(x) = \left\{egin{array}{ll} x^3 & x^2 < 1 \ x & x^2 > 1 \end{array}
ight.$$
 then function is

- A. Continuous at x=1
- B. Differentiable at x=1
- C. Continuous but not differentiable at x=1
- D. None of these

Answer: A::C

Watch Video Solution

5. Which of the following function(s) defined at x = 0 has/have removable discontinuity at the origin ?

A.
$$\frac{1}{\left(1+2^{\cot x}\right)}$$

$$\mathsf{B.}\cos\!\left(\frac{|\!\sin x|}{x}\right)$$

C.
$$x \sin \frac{\pi}{x}$$

D.
$$\frac{1}{\ln|x|}$$

Answer: B::C::D

Watch Video Solution

Section D

1. A square is inscribed in circle of radius R, a circle is inscribed in the square, a new square in the circle and so on for n times.

Sum of the areas of all circles is

A.
$$4\pi R^2 igg(1-igg(rac{1}{2}igg)^nigg)$$

B.
$$2\pi R^2 \bigg(1-\bigg(\dfrac{1}{2}\bigg)^n\bigg)$$

$$\mathsf{C.}\,3\pi R^2 \bigg(1 - \bigg(\frac{1}{3}\bigg)^n\bigg)$$

D.
$$\pi R^2 \left(1 - \left(\frac{1}{2}\right)^n\right)$$

Answer: B

147-4-I-1/2-I--

2. A square is inscribed in a circle of radius R, a circle is inscribed in this square then a square in this circle and so on n times. Find the limit of the sum of areas of all the squares as $n\to\infty$.

A.
$$2R^2$$

$$B.3R^2$$

$$\mathsf{C.}\,4R^2$$

D.
$$8R^{2}$$

Answer: C

Watch Video Solution

3. A square is inscribed in a circle of radius R, a circle is inscribed in this square then a square in this circle and so on n times. Find the limit of the sum of areas of all the squares as $n \to \infty$.

A.
$$2\pi R^2$$

B.
$$3\pi R^2$$

C.
$$4\pi R^2$$

D. $8\pi R^2$

Answer: A

Watch Video Solution

- **4.** A function f:R o R Satisfies the following conditions
- (i) $f(x)
 eq 0 \, orall x \in R$
- (ii) $f(x+y)=f(x)f(y)\,orall x,y,\ \in R$
- (iii) f(x) is differentiable
- (iv) f'(0) = 2

The derivative of f(x) satisfies the equation

A.
$$f'(x + y) = f'(x) + f'(y)$$

B.
$$f'(x + y) = f'(x) \times f'(y)$$

C.
$$f'(x+y) = f'(x) f(y)$$

D.
$$f'(x + y) = f'(x) + f(y)$$

Answer: B

Watch Video Solution

5. A function f:R o R Satisfies the following conditions

(i)
$$f(x)
eq 0 \, orall x \in R$$

(ii)
$$f(x+y)=f(x)f(y)\,orall x,y,\ \in R$$

The derivative of f(x) satisfies the equation

- A. 1
- B.-1
- C. 2
- $\mathsf{D.}\;\frac{1}{2}$

Watch Video Solution

6. A function $f: R \to R$ Satisfies the following conditions

(i)
$$f(x)
eq 0 \, orall x \in R$$

(ii)
$$f(x+y)=f(x)f(y)\,orall x,y,\ \in R$$

(iii) f(x) is differentiable

$$(iv) f'(0) = 2$$

$$\lim_{x\to 0}\,\frac{f(x)-f(\,-x)}{x}$$

A. 1

B. 2

C. 3

D. 4

Answer: D

Section E

1. STATEMENT -1 :
$$f(x) = \frac{1-\cos(1-\cos x)}{x^4}$$
 is continuous if f(0)=1/8 and

STATEMENT -2 :
$$\lim_{x
ightarrow 0^+} f(x) = \lim_{x
ightarrow 0^-} f(x) = rac{1}{8}$$

A. Statement -1 is True, Statement -2 is True, Statement -2 is a correct explantion for Statement -1

- B. Statement -1 is True, Statement -2 is True, Statement -2 is NOT a correct explanation for Statement -1
- C. Statement -1 is True, Statement -2 is Flase
- D. Statement -1 is Flase, Statement 2 is True

Answer: A

A. Statement-1 is true, Statement-2 is true, Statement-2 is a correct

2. STATEMENT -1 : If $f(\mathsf{x}) = \log_{x^2}(\log x)$, $\operatorname{then} f'(e) = \frac{1}{2}$

STATEMENT -2 : If a gt 0 , b gt 0 and a
eq b then $\log_a b = \frac{\log b}{\log a}$

C. Statement-1 is True, Statement-2 is false

expanation for statement-1

D. Statement-1 is False, Statement-2 is true

Answer: D

$$f'(x)=g(x)$$
 and $f''(x)=-f(x)$. If $h'(x)=[f(x)]^2+[g(x)]^2, h(1)=8$ and $h(0)=2\Rightarrow h(2)=14$ and STATEMENT - 2 : $h''(x)=0$

3. STATEMENT - 1: Let f be a twice differentiable function such that

STATEMENT -1 : for the function **ν**= f(x)

$$f(x), rac{\left\{1+\left(rac{dy}{dx}
ight)^2
ight\}^{rac{3}{2}}}{rac{d^2y}{dx^2}} = -rac{\left\{1+\left(rac{dx}{dy}
ight)^2
ight\}^{rac{3}{2}}}{rac{d^2x}{dy^2}}$$

STATEMENT -2 : $\frac{dy}{dx} = \frac{\frac{1}{dx}}{dy}$ and $\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right)$

Section F

1. For f to be continuous at x = f(0) is given by

Column - II Column- I

$$(\mathbf{A}) f(x) = \frac{\ln(1+4x)}{2}$$

$$(A)f(x) = \frac{\ln(1+4x)}{x}$$
 $(p)\frac{1}{4}$

$$(\mathrm{B})f(x) = rac{\ln{(4+x)} - \ln{4}}{x} \ \ (\mathrm{q}) \ 0$$

$$(C)f(x) = \frac{1}{\sin x} - \frac{1}{\tan x}$$
 (r)4

$$(D)f(x) = \frac{1-\cos^3 x}{x\sin 2x} \qquad (s)\frac{3}{4}$$

Column-I

Column - II

$$\lim_{x \to \frac{\pi}{2}} \left(\sin 2x\right)^{ an^2 2x} \qquad \qquad (\mathrm{p}) rac{1}{2}$$

$$(\mathrm{A})\lim_{x o rac{\pi}{4}} \left(\sin 2x
ight)^{ an^2 2x} \qquad \qquad (\mathrm{p})rac{1}{2}$$

$$ext{(B)} \lim_{x o \infty} \left(rac{2x-1}{2x+1}
ight)^x ext{(q)} e^{-rac{1}{2}} \ ext{(C)} \lim_{x o rac{\pi}{2}} \left(an x
ight)^{ an 2x} ext{(r)} e^{-1} \ ext{(r)} e^{-1}$$

$${
m (D)}\, \lim_{x
ightarrow rac{\pi}{4}}\, an 2x an \Big(rac{\pi}{4} - x\Big) \ \ {
m (s)}$$

Watch Video Solution

3. Match the following:

(A) if
$$\lim_{n \to \infty} (1 - x)$$

(A) if
$$\lim_{n \to \infty} (1-x)$$

A) if
$$\lim_{x\to 1} (1-x) \tan \frac{\pi x}{2} = k$$
 then $\sin \left(\frac{1}{k}\right)$ is B) if $\lim_{x\to 1} \frac{x^k-5^k}{x^k} = 500$ then k is

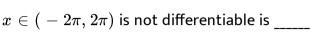
(B) if
$$\lim_{x\to 1} \frac{x^k-5^k}{x^k-5^k} = 50$$

(B) if
$$\lim_{x \to 5} \frac{x^k - 5^k}{x - 5} = 500$$
 then k is

(C)
$$\lim_{x \to \infty} \ \left(1 + rac{4}{x+1}
ight)^{rac{3x-1}{3}}$$
 is equal to $\ e^k$, then k is

$${
m (D)} \;\; rac{d^{20}}{dx^{20}}(2\cos x,\cos 3x) = 2^{4k} igl[\cos 2x + 2^{20}.\cos 4kigr] \;\; {
m then} \; {
m k} \; {
m is} \;\; ({
m s}) 5$$

Colum


(p)4

(q)1

$$(t)$$
An oc

Section G

1. The number of points where $f(x) = max \{|sin x|, |cos x|\}$,

2. The number of points where g(x) = min { $||\mathbf{x}||$ -3|, $9-x^2$ } $(x \in R)$ is not differentiable is

3. if the right hand derivative of $h(x) = \{x\}$ ($\{.\}$ is fractional of x) exists at x

1. Statement -1: y = [x], ([.] denotes greatest integer function) is not a continuous function.

Statement -2: {x} ({.} denotes fractional fractional function) is discontinuous at integral points.

Statement -3 : $y = 7^x$ is continuous in its domain.

A. TFT

B. TTT

C. FFF

D. FFT

Answer: B

Watch Video Solution

2. Statement -1 : $\lim_{x o 0} \frac{\sin x}{x}$ exists ,.

Statement -2 : |x| is differentiable at x=0

Statement -3 : If lim =3, then k = 15

B. TTT

C. FFF

D. FFT

Answer: A

Watch Video Solution

Section I

- $k \in R \text{ and } f'(0) = 11 \text{ then find f'(k)}$
 - Watch Video Solution

1. Let f(x + y) = f(x) .f(y) $\forall x, y \in R$ suppose that f(k) = 3,

 $\dfrac{\sin\!2x + a\!\sin\!x}{2} = b$ (finite), then $\left(ab
ight)^2$ equals.....

2. If \lim

 $x \rightarrow 0$

 $x^{\bar{3}}$

$$\mathbf{3.} \quad f(x) = \begin{cases} x + a\sqrt{2}\sin x & 0 \leq x < \frac{\pi}{4} \\ 2x\cot x + b & \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \text{ continuous} \end{cases} \quad \text{function}$$

$$a\cos 2x - b\sin x & \frac{\pi}{2} < x \leq \pi$$

$$\forall x \in [0,\pi] \quad \text{then} \quad 5\left(\frac{a}{b}\right)^2 \text{ equals}$$

- **4.** Find the value of f(1) that the function $f(x)=rac{9\left(x^{rac{2}{3}}-2x^{rac{1}{3}}+1
 ight)}{\left(x-1
 ight)^2}, \, x
 eq 1$ is continuous at x =1
 - Watch Video Solution

- **5.** find the value of $\lim_{x\to\infty} 48x \left(\frac{\pi}{4} \tan^{-1}\left(\frac{x+1}{x+2}\right)\right)$
 - Watch Video Solution

6. Let f(x) be a continuous function defined for $\forall x \in R$, if f(x) take rational values $\,\,orall \,x\in R\,$ and $\,f(2)=198,$ then $fig(2^2ig)$ =

7. ABC is an isosceles triangle inscribed in a circle of radius r, if AB = AC and h is the altitude from A to BC . If the $\ riangle$ ABC has perimeter P and

$$riangle$$
 is area then $\displaystyle\lim_{h o 0}\,512rrac{\Delta}{p^3}$ equals

8. Let F(x) = f(x)g(x)h(x) for all real x, where f(x), g(x), and h(x) are differentiable functions. Αt point some

 $x_0, F'(x_0) = 21F(x_0), f'(x_0) = 4f(x_0), g'(x_0) = -7g(x_0), \text{ and } h'(x_0)$

Then k = -

1. the value of $\lim_{x \to y} \frac{\sin^2 x - \sin^2 y}{x^2 - y^2}$ equals

Watch Video Solution

2. Let $f(x)=rac{x+x^2+...+x^n-n}{x-1},$ $g(x)=(4^n+5^n)^{rac{1}{n}}$ and lpha and eta are the roots of equation $\lim_{x o 1}f(x)=\lim_{n o\infty}g(x)$ then the value of

$$\sum_{n=0}^{\infty} \left(\frac{1}{\alpha} + \frac{1}{\beta} \right)^n$$
 is

- 3. Let $f(x)=rac{x+x^2+\ldots\ldots+x^n}{x-1}$ and $g(x)=(4^n+5^n)^{1/n}$ such that $\lim_{x o 1}f(x)=\lim\ (n o\infty)g(x)$
 - Watch Video Solution

4. If $g(x)=(\lim_{m\to\infty}\frac{x^mf(x)+h(x)+3}{2x^m+4x+1}$ when $x\neq 1$ and $g(1)=e^3$ such that f(x), g(x) and h(x) are continuous functions at x = 1 then the value of 5f(1) - 2h(1) is 7 b. 6 c. 9 d. 8

Watch Video Solution

Let f(x) is a polynomial satisfying 5. $f(x).\ f(y)=f(x)+f(y)+f(xy)-2$ for all x,y and f(2)=1025,then the value of $\lim_{x o 2} f'(x)$ is

6. Let f(x) = ||x| -1|, g(x) = |x| + |x-2|, h (x) = $\max \{1, x, x^3\}$ If a, b,c are the no .of points where f(x), g(x) and h(x), are not differentiable then the value of a+ b + c is

