

PHYSICS

AAKASH INSTITUTE ENGLISH

Mock test 19

Example

1. Which of the following formula is correct? [

Where symbols have their usual meaning]

A.
$$C_v = rac{R}{\gamma - 1}$$

B.
$$C_p = rac{\gamma^R}{\gamma - 1}$$
C. $rac{C_p}{C_v} = \gamma$

Answer: D

Watch Video Solution

2. Five molecules of a gas have speeds 1, 1, 3, 3, 2 km/s the value of the r.m.s spreed of the gas molecules is

A.
$$\sqrt{rac{4}{5}}km/s$$

B.
$$\sqrt{rac{23}{5}}km/s$$

C.
$$\sqrt{rac{24}{5}}km/s$$

D.
$$\sqrt{rac{87}{5}}km/s$$

Answer: C

Watch Video Solution

3. The ratio of average spreed to the rms spreed of the gas is

A.
$$\sqrt{8}$$
: $\sqrt{3}\pi$

B.
$$\sqrt{3}\pi$$
: $\sqrt{8}$

C.
$$\sqrt{6}$$
: $\sqrt{5}\pi$

D.
$$\sqrt{8}$$
: $\sqrt{5}\pi$

Answer: A

Watch Video Solution

4. The internal energy of one mole of the diatomic gas at 200 K is

- A. 100 R
- B. 200 R
- C. 500 R
- D. 400 R

Answer: C

Watch Video Solution

5. If the number density of molecule of an ideal gas becomes 4 time then its mean free path becomes

- A. Half of its initial value
- B. Double of its initial value
- C. Four time of its initial value
- D. One fourth of its initial value

Answer: D

Watch Video Solution

6. Internal energy of n_1 moles of hydrogen at temperature 150 K is equal to the in ternal

energy of n_2 moles of helium at temperature

300 K The ratio of $n_1 \, / \, n_2$ is

- A. 3:5
- B. 2:3
- C. 6:5
- D. 5:6

Answer: C

Watch Video Solution

7. The ratio of diameters of molecules of the two gases is 3:5 and their mean free path of the molecule is in the ratio of 5:3 then the ratio of number density of the two gases is

- A. 5:3
- B. 25:9
- C. 9: 25
- D. 1:1

Answer: A

Vatch Video Solution

valcii video solution

8. The density of the given gas at constant pressure and temperature is ρ and its rate of diffusion isr. If density of the gas becone $\rho/3$ then rate of diffusion becomes

A.
$$\sqrt{2}r$$

B. r

C.
$$r/\sqrt{3}$$

D. $\sqrt{3}r$

Answer: D

Watch Video Solution

9. Which of the following motions is not simple harmonic?

A. $A \sin \omega t$

 $\mathsf{B.}\,A\sin\omega t + B\cos\omega t$

C. $A \sin \omega t + B \cos 2\omega t$

D. $A \sin \omega t + B \sin \omega t$

Answer: C

Watch Video Solution

10. A particle executes S.H.M with time period 12 s. The time taken by the particle to go directly from its mean position to half its amplitude.

A. 4 s

B. 3 s

C. 6 s

D. 1 s

Answer: D

Watch Video Solution

11. The heart beat of a person is 72 per minute

.Its frequency is

A. $1s^{-1}$

B. $1.2s^{-1}$

C. $7.2s^{-1}$

D.
$$0.8s^{-1}$$

Answer: B

Watch Video Solution

12. The amplitude of given simple harmonic motion is $y=(3\sin\omega t+4\cos\omega t)m$

A. 1 m

B. 3 m

C. 4 m

D. 5 m

Answer: D

Watch Video Solution

13. The equation of S.H.M of a particle whose amplitude is 2 m and frequency 50 Hz. Start from extreme position is

$$A. y = (2\sin 100\pi t)m$$

$$B. y = (2\cos 100\pi t)m$$

$$\mathsf{C.}\,y = (2\sin 50\pi t)m$$

D.
$$y=(2\cos 50\pi t)m$$

Answer: B

Watch Video Solution