
PHYSICS

AAKASH INSTITUTE ENGLISH

MOCK TEST 20

Example

1. The displacement time graph of a particle executing S.H.M as shown in the figure.

Answer: B

2. As a body performs SHM, its potential energy U varies with time t as indicated in

Answer: A

3. The potential energy of a particle executing S H M is 25 J. when its displacement is half of amplitude. The total energy of the particle is

- A. 250 J
- B. 180 J
- C. 100 J
- D. 25 J

Answer: C

4. In S.H.M

- A. Velocity is ahead of displacement by $\label{eq:phase angle of phase angle of } \pi$
- B. Velocity is ahead of displacement by $\text{phase angle of } \frac{\pi}{2}$
- C. Acceleration is ahead of displacement by $\text{phase angle of } \frac{\pi}{2}$
- D. Acceleration is ahead of velocity by $\label{eq:phase angle of phase angle of π}$

Answer: B

Watch Video Solution

5. The force of a particle of mass 1 kg is depends on displacement as F = -4x then the frequency of S.H.M. is

A.
$$\pi Hz$$

B.
$$2\pi Hz$$

C.
$$\frac{1}{\pi}Hz$$

D.
$$\frac{1}{2\pi}Hz$$

Watch Video Solution

6. The ratio of maximum velocity to the velocity of a particle performing S.H M at a point where potential energy is 25% of total energy is

A. 2:
$$\sqrt{3}$$

B.
$$\sqrt{3}:2$$

D. 1:
$$\sqrt{3}$$

Answer: A

Watch Video Solution

7. If the length of a simple pendulum is equal to the radius of the earth, its time period will be

A.
$$\pi \sqrt{\frac{R}{g}}$$
B. $2\pi \sqrt{\frac{R}{g}}$

C.
$$4\pi\sqrt{\frac{R}{g}}$$
D. $2\pi\sqrt{\frac{R}{2}g}$

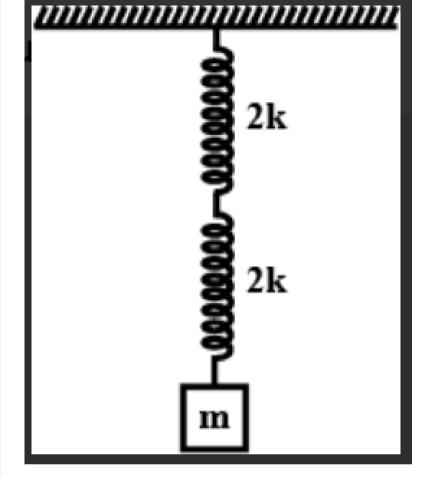
Answer: D

Watch Video Solution

8. A simple pendulum with a metallic bob has a time preiod 10 s. The bob is now immersed in a non-viscous liquide of density 1/3 that of metal. the time period of the same pendulum becomes

B.
$$\frac{10}{\sqrt{2^s}}$$

$$\mathsf{C.}\,10\sqrt{\frac{3}{2}}s$$


D.
$$10\sqrt{3}s$$

Watch Video Solution

9. The time period of oscillation of the block as

shown in figure is

A.
$$2\pi\sqrt{rac{m}{2k}}$$

B.
$$\pi \sqrt{\frac{m}{k}}$$

A.
$$2\pi\sqrt{\frac{m}{2k}}$$
B. $\pi\sqrt{\frac{m}{k}}$
C. $4\pi\sqrt{\frac{m}{k}}$

D.
$$2\pi\sqrt{\frac{m}{k}}$$

Answer: D

Watch Video Solution

10. A simple pendulum of length 5 m is suspended from the ceiling of a cart. Cart is sliding down on a frictionless surface having angle of inclination 60°. The time period of the pendulum is

A. $2\pi s$

B. πs

 $\mathsf{C.}\,4\pi s$

D. $\frac{\pi}{2}s$

Answer: A

Watch Video Solution

11. A weightless spring has a force constant k oscillates with frequency f when a mass m is suspended from it The spring is cut into three equal parts and a mass 3 m is suspended from

it The frequency of oscillation of one part will now become

A. f

B. 2 f

C. f / 3

D. 3 f

Answer: A

12. A mass M attached to a spring oscillation with a period of 2s. If the mass is increased by 2kg, the period increases by 1s, find the initial mass m assuming that Hooke's law is obeyed.

- A. 1.6 kg
- B. 3.2 kg
- C. 6.4 kg
- D. 4.8 kg

Answer: A

valcii video Solution

13. If a simple pendulum is taken on to the moon from the earth, then it

A. Runs faster

B. Runs slower

C. Shows no change

D. Will not perform S.H.M.

Answer: B

14. For a spring-mass system spring having spring constant 19.7 N/m is attached to it. What should be the value of mass m (approx.) so that it will give the same period as that of seconds pendulum?

A. 1 kg

B. 2 kg

C. 3 kg

D. 4 kg

Answer: B

Watch Video Solution

15. Time period of a given spring-mass system

A.
$$2\pi\sqrt{\frac{m}{k}}$$

B.
$$\pi \sqrt{\frac{m}{k}}$$

C.
$$\pi \sqrt{\frac{2m}{k}}$$

D.
$$\pi \sqrt{\frac{m}{2}}k$$

Watch Video Solution

16. For the small damping oscillator, the mass of the block is 500 g and value of spring constant is k = 50 N/m and damping constant is $10 \text{ `gs^{-}(-1)}$ The time period of oscillation is (approx.)

A. $2\pi s$

B.
$$\frac{2\pi}{13}$$

$$\operatorname{C.}\frac{\pi}{5}s$$

$$\text{D.} \, \frac{\pi}{\sqrt{5}} s$$

Watch Video Solution

17. A uniform solid sphere of mass m and radius R is suspended in vertical plane from a point on its periphery. The time period of its oscillation is

A.
$$2\pi\sqrt{\frac{r}{g}}$$
B. $2\pi\sqrt{\frac{5R}{3g}}$
C. $2\pi\sqrt{\frac{7R}{5g}}$
D. $2\pi\sqrt{\frac{2R}{5g}}$

Watch Video Solution

18. The amplitude (A) of damped oscillator becomes half in 5 minutes. The amplitude

after next 10 minutes will be

A. A

B. A/8

C. A/4

D. 4A

Answer: B

19. The total force acting on the mass at any time t, for damped oscillator is given as (where symbols have their usual meanings)

A.
$$\overrightarrow{F} = -k\overrightarrow{x}$$

B.
$$\overrightarrow{F} = -k\overrightarrow{x} - b\overrightarrow{v}$$

C.
$$\overrightarrow{F} = -k\overrightarrow{x} - b\overrightarrow{v} + 2\overrightarrow{x}$$

D.
$$\overrightarrow{F} = -b\overrightarrow{v} - bk^2\overrightarrow{x}$$

Answer: B

