©゙’ doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - DISHA PUBLICATION CHEMISTRY (HINGLISH)

CHAPTERWISE NUMERIC/INTEGER ANSWER QUESTIONS

Chapter 1 Some Basic Concepts Of Chemistry

1. What is the mass of water (in g) produced from 445 g of $\mathrm{C}_{57} \mathrm{H}_{110} O_{6}$ in the following reaction?

$$
2 \mathrm{C}_{57} \mathrm{H}_{110} \mathrm{O}_{6}(\mathrm{~s})+163 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 114 \mathrm{CO}_{2}(\mathrm{~g})+110 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

- Watch Video Solution

2. The amount of suga ($\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$) required to prepare 2L of its 0.1 M aqueous solution is
3. 5 moles of $A B_{2}$ weigh $125 \times 10^{-3} \mathrm{~kg}$ and 10 moles of $A_{2} B_{2}$ weigh $300 \times 10^{-3} \mathrm{~kg}$. What is the sum of molar mass of $\mathrm{A}\left(M_{A}\right)$ and molar mass of $B\left(M_{B}\right)$ in $g \mathrm{~mol}^{-1}$?

- Watch Video Solution

4.5 .0 g of a certain element X forms 10.0 g of its oxide having the formula
$X_{4} O_{6}$. What is the atomic mass of X

- Watch Video Solution

5. A 100% pure sample of a divalent metal carbonate weighing 2 g on complete thermal decomposition releases $44 g c c$ of carbon dioxide at STP. The equivalent mass of the metal is
6. The specific heat of a metal is $0.16 \mathrm{cal} g_{1}$. The equivalent mass of the metal is 20.04 . What is the correct atomic mass of the metal in grams?

- Watch Video Solution

7. 1.500 g of hydroxide of a metal gave 1.000 g of its oxide on heating.

What is the equivalent mass of the metal ?

- View Text Solution

8. Limestone $\left(\mathrm{CaCO}_{3}\right)$ decomposes into quicklime (CaO) on strong heating. How much quantity of limestone will be required to prepare 100 kg of quicklime?

- Watch Video Solution

9. 1 mole of mixture of CO and CO_{2} requires exactly 28 g KOH in solution for complete conversion of all the CO_{2} into $\mathrm{K}_{2} \mathrm{CO}_{3}$. How much amount more of KOH will be required for conversion into $\mathrm{K}_{2} \mathrm{CO}_{3}$? If one mole of mixture is completely oxidised to CO_{2}.

- Watch Video Solution

10.1 mol of N_{2} and 4 mol of H_{2} are allowed to react in a sealed container and after the reaction some water is introduced in it. The aqueous solution formed required 1 L of 1 M HCl for neutralization. Calculate the mole fraction of the gaseous product in the mixture after the reaction.

- Watch Video Solution

11. 6.2 g of a sample containing $\mathrm{NaHCO}_{3}, \mathrm{NaHCO}_{3}$ and non -volatiale inert impurity on gentle heating loses 5% of its mass due to reaction $2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$. Residue is dissolved in water and formed 100 mL solution and its 10 mL portion requires 7.5 mL of 0.2

M aqueous solution of BaCl_{2} for complete precipitation of carbonates. Determine mass (in gram) of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the original sample .

- Watch Video Solution

12. $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KI} \xrightarrow{40 \% \text { yield }} \mathrm{I}_{2}+2 \mathrm{KOH}$
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{50 \% \text { yield }} \mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{O}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
150 mL of $\mathrm{H}_{2} \mathrm{O}_{2}$ sample was divided into two parts. First part was treated with KI and formed KOH required 200 mL of $\mathrm{M} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$ for neutralisation. Other part was treated with KMnO_{4} yielding 6.74 litre of
O_{2} at 1 atm. and 273 K . Using \% yield indicated find volume strength of $\mathrm{H}_{2} \mathrm{O}_{2}$ sample used.

- Watch Video Solution

13. 5 g sample contain only $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ This sample is dissolved and the volume made up to 500 mL .25 mL of this solution
neutralizes 20 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. Calculate the percentage of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in the sample.

- View Text Solution

14. A mixture of FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is completely reacted with 100 mL of 0.25 M acidified KMnO_{4} solution. The resultant solution was then treated with Zn dust which converted Fe^{3+} of the solution to Fe^{2+}. The Fe^{2+} required 1000 mL of $0.10 \mathrm{MK}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution. Find out the weight \% $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the mixture.

- Watch Video Solution

15. An impure sample of sodium oxalate $\left(\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right.$ weighing 0.20 g is dissolved in aqueous solution of $\mathrm{H}_{2} \mathrm{SO}_{94}$) and solution is titrated at 70° C,requiring 45 mL of $0.02 \mathrm{M} \mathrm{KMnO}_{4}$ solution. The end point is overrun, and back titration in carried out with 10 mL of 0.1 M oxalic acid solution.Find the purity of $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in sample:

Chapter 2 Structure Of Atom

1. The ground state energy of hydrogen atom is -13.6 eV . The energy of second excited state of $H e^{+}$ion in eV is

- Watch Video Solution

2. what is the work fuction of the metal if the light of wavelength 4000 generates photoelectrons of velocity $6 \times 10^{5} \mathrm{~ms}^{-1}$ from it ?
(Mass o felectron $=9 \times 10^{-31} \mathrm{~kg}$
Velocity of light $=3 \times 10^{8} \mathrm{~ms}^{-1}$
Planck's constant $=6.626 \times 10^{-34} \mathrm{Js}$
Charge of electron $=1.6 \times 10^{-19} \mathrm{jeV}^{-1}$

- Watch Video Solution

3. Monochromatic radiation of specific wavelength is incident on H -atoms in ground state. H-atoms absorb energy and emit subsequently radiations of six different wavelength. Find wavelength of incident radiations:

(Watch Video Solution

4. In a measurement of quantum efficiency of photosynthesis in green plants, it was found that 10 quanta of red light of wavelength $6850 \AA$ were needed to release one molecule of O_{2}. The average energy storage in this process for $1 \mathrm{~mol} O_{2}$ evolved is 112 Kcal .

What is the energy conversion efficieny in this experiment?
Given: 1 cal $=4.18 \mathrm{~J}, N_{A}=6 \times 10^{23}, h=6.63 \times 10^{-34} \mathrm{~J} . \mathrm{s}$

- Watch Video Solution

5. The given diagram indicates the energy levels of certain atoms. When ihe system moves from $2 E$ level to F. a photon of wave length λ is emitted.

Calculate the wave-length of photon produced during its transition from $\frac{4 E}{3}$ level to E in terms of λ

- View Text Solution

6. An element undergoes a reaction as shown $s x+2 e^{-} \rightarrow x^{-2}$

Energy released $=30.87 \mathrm{ev} /$ atom. If the energy released is used to dissociated $4 g$ to H_{2} molecules equally into H^{+}and H^{+}is excited state of H atoms where the electron travels in orbit whose circumference equal to four times its de -roglie's wavelength. Determine the minimum number of moles of x that would be required.

Given IE of $H=13.6 \mathrm{ev} /$ atom, bond energy of $H_{2}=4.526 \mathrm{v} / \mathrm{molecule}$

- Watch Video Solution

7. Two fast moving particles X and Y are associated with de Broglie wavelengths 1 nm and 4 nm respectively. If mass of X is nine times the
mass of Y , then calculate ratio of kinetic energies of X and Y .

- Watch Video Solution

8. An electron has a speed of $30,000 \mathrm{~cm} \mathrm{sec}{ }^{-1}$ accurate upto 0.001%. What is the uncertainty (in cm) in locating it's position?

- Watch Video Solution

9. What is the sum of radial and angular nodes in the following orbitals of H-atom?
(I) $\Psi_{2 p x}$, (ii) $\Psi_{2 s}$, (iii) $\Psi_{3 d_{x}}$, (iv) $\Psi_{3 d_{x^{2}-y^{2}}}$

- Watch Video Solution

10. Determine the Bohr orbit of Li^{2+} ion in which electron is moving at speed equal to the speed of electron in the first Bohr orbit of H -atom
11. A certain day absorbs lights of $\lambda=400 \mathrm{~nm}$ and then fluorescence light of wavelength 500 mn . Assuming that under given condition 40% of the absorbed energy is re-emitted as fluorescence, calculate the ratio of quanta obserbed to number of quanta emitted out.

- Watch Video Solution

12. Infrared lamps are used in restaurants to keep the food warm. The infrared radiation is strongly absorbed by water, raising its temperature and that of the food. If the wavelength of infrared radiationis assumed to be 1500 nm , and the number of quanta of infrared radiation produced per second by an infrared lamp (that consumes enregy at the rate of 100 W and is 12% effcient only) is ($\times 10^{19}$, then the value of x is: (Given: $h=6.665 \times 10^{-34} J-s$)

- Watch Video Solution

13. When an electron makes transition from $(n+1)$ state to n state the wavelength of emitted radiations is related to $\mathrm{n}(n \ggg 1)$ according to $\lambda \propto n^{x}$.

What is the value of x ?

- Watch Video Solution

14. A gas absorbs a photon of 355 nm and emits at two wavelengths. If one of the emission is at 680 nm , the other is at :

(Watch Video Solution

15. Calculate the minimum potential (eV) which must be applied to a fr ee electron so that it has enough energy to excite, upon impact, the electron in a hydrogen atom from its ground state to a state of $n=5$.

- View Text Solution

1. The boiling point of Kr and Rn are $-152^{\circ} \mathrm{C}$ and $-62^{\circ} \mathrm{C}$ respectively. Find the approximate boiling point of fXe.

- Watch Video Solution

2. How much energy in joules must be needed to convert all the atoms of sodium to sodium ions present in 2.3 mg of sodium vapours ?

Given : lonisation energy of sodium is $495 \mathrm{~kJ} \mathrm{~mol}^{-1}$

- View Text Solution

3. The ionization energy of lithium is $520 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Find the amount of energy (in kJ) required to convert 70 mg of lithium atoms in gaseous state into Li+ ions.
4. The electron affinity of bromine (g) is 3.9 eV . How much energy in kJ is released when 10.0 g of bromine is converted completely to Br - in gaseous state?
[Given. Atomic mass of $\mathrm{Br}=80,1 \mathrm{eV}=96.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$].

- Watch Video Solution

5. How many pairs are, in which first species has lower ionisation enegy than second species:
(i) N and O
(ii) Br and K
(iii) Be and B
(iv) I and I^{-}
(V) Li and Li^{+}
(vi) and O and S
(vii) Ba and Sr.
6. How many elements of the following are electropositive element(s)?

Sodium, calcium, germanium and polonium and chlorine.

- Watch Video Solution

7. An element ' X ' has its electronic configuration of ' K ' shell is $(n-5) s^{2}$ and it has total number of electrons in its outermost, penultimate and antipenultimate shell are 2,8 and 25 respectively then find out total number of unpaired electrons in element ' X ' in their ground state.

- Watch Video Solution

8. Total number of element(s) which have only single oxidation state (other than zero) in their corresponding stable compounds: Cs, Ba, F, $\mathrm{Zn}, \mathrm{Be}, \mathrm{Al}, \mathrm{Sr}, \mathrm{Ga}, \mathrm{Pb}$.

- Watch Video Solution

9. Consider the following order:
(i) $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$: Lewis basic character
(ii) $\mathrm{CH}_{4}<\mathrm{CCl}_{4}<C F_{4}$: Electronegatively of central 'C'- atom
(iii) $\mathrm{Mg}^{2+}<\mathrm{K}^{+}<\mathrm{S}^{2-}<S e^{2+}$ Stable oxidation state
(vi) $L i F>N a F>K F>R b F$, Lattice energy
(vii) $\mathrm{F}^{-}(a q)>\mathrm{Cl}^{-}(a q)>\mathrm{Br}^{-}(a q)>I^{-}(a q)$, Electrical conductance
(viii) $\mathrm{Li}^{+}<\mathrm{Mg}^{2+}<A l^{3+}$: Hydration energy
(ix) $\mathrm{Cl}>\mathrm{Br}>F>\mathrm{I}$: Electron affinity
(x) $\mathrm{BeCl}_{2}<\mathrm{AlCl}_{3}<\mathrm{SiCl}_{4}$: Lewis acidic character

Then calculate value of ($x-y$), where x and y are correct and incorrect order respectively.

- View Text Solution

10. Among the following, the number of elements showing only one nonzero oxidation state is:

O,Cl,F,N,P,Sn,Tl,Na,Ti

- Watch Video Solution

1. A diatomic molecule has dipole moment of $1.2 D$. If the bond distance is
$1 \AA$ what parcentage of covalent in the molecule is

- Watch Video Solution

2. The dipole moments of a diatomic molecule $A B$ is 10.4 D and bond distance is $2.82 A^{\circ}$, calculate the \% ionic character of $A B$

- Watch Video Solution

3. Bond angle between two hybrid orbitals is 105° Percentage of s-orbital character of hybrid orbital is between

- Watch Video Solution

4. In O_{2}^{-}, O_{2} and O_{2}^{-2} molecular species, the total number of antibonding electrons respectively are

- Watch Video Solution

5. There are two groups of compounds A and B. Groups A contains three compounds $P x_{4}, Q y_{3}, R z_{2}$. Groups B also contains three compounds $S x_{4}, T y_{3}, U z_{2}$. Hybridization of each central atom of group A compounds is same as that of iodine in IBrCl^{-}while in group B compounds it is same as that of iodine IBrCl^{+}. Substituents X, Y and Z exhibit covalency of one in ground state. Then find the value of x / y.

Where, x and y are total number of lone pair present at central atoms of compounds of group A and B respectively.

- Watch Video Solution

6. Consider the following three compounds (i) $A X_{2 n}^{n-}$, (ii) $A X_{3 n}$ and (ii)
$A X_{4 n}^{n+}$, where central atom A is 15 th group element and their maximum
covalency is 3 n . If total number of proton in surrounding atom X is n and value of n is one, then calculate value of $x^{3}+y^{2}+z^{2}$. (where x, y and z are total number of lone pair at central atom in compounds (i), (ii) and
(iii) respectively.

- Watch Video Solution

7. Calculate the value of " $x+y-z$ " here x, y and z are total number of nonbonded electron pair (s),pie (π) bond(s) and sigma (σ) bonds in hydrogen phosphite ion respectively.

- Watch Video Solution

8. Consider the following compounds :
(i) $\mathrm{IF}_{5} \quad$ (ii) $\mathrm{ClI}_{4}^{-} \quad$ (iii) $\mathrm{XeO}_{2} \mathrm{~F}_{2} \quad$ (iv) NH_{2}^{-}
$(v) \mathrm{BCl}_{3} \quad(v i) \mathrm{BeCl}_{2} \quad(v i i) \mathrm{AsCl}_{4}^{+} \quad(v i i i) B(\mathrm{OH})_{3}$
(ix) $\mathrm{NO}_{2}^{-} \quad(x) \mathrm{ClO}_{2}^{+}$

Then calculate value of " $x+y-z$ ", here, x, y and z are total number of compounds in given compounds in which central atom used their all
three p-orbitals, only two p-orbitals and only one p-orbital in hybridisation respectively.

- Watch Video Solution

9. Total number of species which used all three p-orbitals in hybridisation of central atom and should be non-polar also.
$\mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{SnCl}_{2}, \mathrm{IF}_{5}, \mathrm{I}_{3}^{+}, \mathrm{XeO}_{4}, \mathrm{SO}_{2}, \mathrm{XeF}_{7}^{+}, \mathrm{SeF}_{4}$

- Watch Video Solution

10. Consider the following orbitals
$3 s, 2 p_{x}, 4 d_{x y}, 4 d_{z^{2}}, 3 d_{x^{2}-y^{2}}, 3 p_{y}, 4 s, 4 p_{z}$ and find total number of orbital
(s) having even number of nodal plane.

- Watch Video Solution

11. For the following molecules:
$\mathrm{PCl}_{5}, \mathrm{BrF}_{3}, \mathrm{ICl}_{2}^{-}, \mathrm{XeF}_{5}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{PCl}_{4}^{+}, \mathrm{CH}_{3}^{+}$
Calculate the value of $\frac{a+b}{c}$
$\mathrm{a}=$ Number of species having $s p^{3} \mathrm{~d}$-hybridisation
$\mathrm{b}=$ Number of species which are planar
c= Number of species which are non-planar

- Watch Video Solution

12. Find total number of orbital which can overlap colaterally, (if inter nuclear axis is z):
$s, p_{x}, p_{y}, p_{z}, d_{x y}, d_{y z}, d_{x z}, d_{z}, d_{x^{2}-y^{2}}$

- View Text Solution

13. The total number of lone-pairs of electrons in melamine is.
14.

$\mathrm{BeCl}_{2}, \mathrm{~N}_{3}^{-}, \mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}^{+}, \mathrm{O}_{3}, \mathrm{SCl}_{2}, \mathrm{lCl}_{2}^{-}, l_{3}^{-} \quad$ and $\quad \mathrm{XeF}_{2}$, the total number of linear molecules (s)/ion(s) where the hybridisation of the central atom does not have contribution from the d - orbitals (s) is [atomic number of $S=16, C l=17, I=53$ and $X e=54]$

- Watch Video Solution

15. The sum of the number of lone pair of electrons on each central atom in the following species is $\left[\mathrm{TeBr}_{6}\right]^{2-},\left[\mathrm{BrF}_{2}\right]^{2+}, S N F_{3}$, and $\left[\mathrm{XeF}_{3}\right]^{-}$
(Atomic number: $\mathrm{N}=7, \mathrm{~F}=9, \mathrm{~S}=16, \mathrm{Br}=35, \mathrm{Te}=52, \mathrm{Xe}=54$)

- Watch Video Solution

Chapter 5 States Of Matter

1. $20 \mathrm{dm}^{3}$ of SO_{2} diffuse through a porous partitions in 60 second What volume be O_{2} will diffuse under similar conditions in 30 second? .

- Watch Video Solution

2. 4.5 g of PCl_{5} on vapourisation occupied a volume of 1700 mL at atmosphere pressure and $227^{\circ} \mathrm{C}$ temperature. Calculate it: degree of dissociation.

- View Text Solution

3. A spherical balloon of 21 cm diameter is to be filled up with hydrogen at 1 atm, 273 K from a cylinder containing the gas at 20 atm and $27^{\circ} \mathrm{C}$. If the cylinder can hold 2.82 litre of water, calculate the number of balloons that can be filled up completely.

- Watch Video Solution

4. At $27^{\circ} C$, hydrogen is leaked through a tiny hole into a vessel for 20 min . Another unknown gas at the same temperature and pressure as that of hydrogen is leaked through the same hole for 20 min . After the effusion of the gases, the mixture exerts a pressure of 6 atm . The hydrogen content of the mixture is 0.7 mol . If the volume of the container is $3 L$, what is the molecular weight of the unknown gas?

(Watch Video Solution

5. A bubble of gas released at the bottom of a lake increases to four times its original volume when it reaches the surface. Assuming that atmospheric pressure is equivalent to the pressure exerted by a column of water 10 m high, what is the depth of the lake?

D Watch Video Solution

6. A mixture of $N H_{3(g)}$ and $N_{2} H_{4_{(g)}}$ is placed in a sealed container at 300 K . The total pressure is 0.5 atm . The container is heated to 1200 K , at
which time both substances decompose completely according to the equations:
$2 \mathrm{NH}_{3(\mathrm{~g})} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})}$
$\mathrm{N}_{2} \mathrm{H}_{4_{(g)}} \rightarrow \mathrm{N}_{2(\mathrm{~g})}+2 \mathrm{H}_{2(\mathrm{~g})}$
After decomposition is complete, the total pressure at 1200 K is found to be 4.5 atm . Find the amount (mole) per cent of $N_{2} H_{4(\mathrm{~g})}$ in the original mixture.

- Watch Video Solution

7. If 250 mL of N_{2} over water at $30^{\circ} \mathrm{C}$ and a total pressure of 740 torr is mixed with 300 mL of Ne over water at $25^{\circ} \mathrm{C}$ and a total pressure of 780 torr, what will be the total pressure if the mixture is in a 500 mL vessel over water at $35^{\circ} \mathrm{C}$.
(Given : Vapour pressure (Aqueous tension)of $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ are 23.8, 31.8 and 42.2 torr respectively. Assume volume of $\mathrm{H}_{2} \mathrm{O}(l)$ is negligible in final vessel)
8. At 300 K , the density of a certain gaseous molecule at 2 bar is double to that of dinitrogen $\left(N_{2}\right)$ at 4 bar. The molar mass of gaseous molecule is:

- Watch Video Solution

9. Calculate the total pressure (in atm) in a 10.0 L cylinder which contains 0.4 g helium, 1.6 g oxygen and 1.4 g nitrogen at $27^{\circ} \mathrm{C}$.

- Watch Video Solution

10. At STP, a container has 1 mole of $\mathrm{He}, 2$ mole $\mathrm{Ne}, 3$ mole O_{2} and 4 mole N_{2} without changing total pressure if 2 mole of O_{2} is removed. Calculate the percentage decrease in the partial pressure of O_{2}

- Watch Video Solution

11. A gaseous mixture contains three gaseous A, B and C with a total number of moles of 10 and total pressure of 10 atm . The partial pressure of A and B are 3 atm and 1 atm respectively and if C has molecular weight of $2 g /$ mol. Then, the weight of C present in the mixture will be :

- Watch Video Solution

12. Two flask A and B of equal volumes maintained at temperature 300 K and 700 K contain equal mass of $H e(g)$ and $N_{2}(g)$ respectively. What is the ratio of total translational kinetic energy of gas in flask A to that of flask B ?

- Watch Video Solution

13. If one mole of a monoatomic gas $(\gamma=5 / 3)$ is mixed with one mole of a diatomic gas $(\gamma=7 / 5)$ the value of γ for the mixture is .
14. A mixture of Ne and Ar kept in a closed vessel at 250 K has a total K.E. $=3 \mathrm{~kJ}$. The total mass of Ne and Ar is 30 g . Find mass \% of Ne in gaseous mixture at 250 K .

- Watch Video Solution

15. What is the compressibility factor (Z) for 0.02 mole of a van der Waals's gas at pressure of 0.1 atm. Assume the size of gas molecules is negligible.

Given : RT=20 L atm mol^{-1} and $\mathrm{a}=1000$ atm $L^{2} \mathrm{~mol}^{-2}$

(Watch Video Solution

Chapter 6 Thermodynamics

1. A gas present in a cylinder fitted with a frictionless pistion expands against a constant pressure of 1 atm form a volume of $2 L$ to a volume of
$6 L$. In doing so, it absorbs $800 J$ heat form the surroundings. Determine the increases in internal enegry of process.

- Watch Video Solution

2. The heat of neutralisation of strong base and strong acid is 57.0 kJ . Calculate the heat released when 0.5 mole of HNO_{3} is added to 0.20 mole of NaOH solution.

- Watch Video Solution

3.

Based on data provided, find the value of electron gain enthalpy of fluorine.
4. The standard enthalpy of formation of NH_{3} is $-46.0 \mathrm{~K} \mathrm{Jmol}^{-1}$. If the enthalpy of formation of H_{2} from its atoms is $-436 \mathrm{KJmol}^{-1}$ and that of N_{2} is $-712 \mathrm{KJmol}^{-1}$, the average bond enthalpy of $N-H$ bond in NH_{3} is

- Watch Video Solution

5. The enthalpy of neutralisation of a weak acid in 1 M solution with a strong base is $-56.1 \mathrm{~kJ} \mathrm{~mol}^{-1} /$ If the enthalpy of ionization of the acid is $1.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and enthalpy of neutralization of the strong acid with a strong base is -57.3 kJ equiv $^{-1}$, what is the $\%$ ionization of the weak acid in molar solution (assume the acid to be monobasic)?

- Watch Video Solution

6. The heat of sublimation of iodine is $24 \mathrm{cal} g^{-1}$ at $50^{\circ} \mathrm{C}$. If specific heat of solid iodine and its vapour are 0.055 and 0.031 cal g^{-1} respectively Calculate the heat of sublimation of iodine at $100^{\circ} \mathrm{C}$.

- View Text Solution

7. When 0.2 mole of anhydrous CuSO_{4} is dissolved in water, the heat evolved is 1.451 kcal . If 0.2 moleof $\mathrm{CuSO} \mathrm{C}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is dissolved in water, the heat absorbed is 0.264 kcal. Calculate the molar heat of hydration of CuSO_{4}

- Watch Video Solution

8. The specific heat of a monoatomic gas at constant pressure is 248.2 J $\mathrm{kg}^{-1} \mathrm{~K}^{-1}$ and at constant volume it is $149.0 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$. Find the mean molar mass of the gas.

- Watch Video Solution

9. The standard entropies of $\mathrm{CO}_{2(g)}, C_{(s)}$, and $O_{2(g)}$ are 213.5, 5.740 and $205 \mathrm{JK}^{-1}$ respectively. The standard entropy of formation of CO_{2} is

- Watch Video Solution

10. Titanium metal is extensively used in aerospace industry because the metal imparts strength to structures but does not unduly add to their masses. The metal is produced by the reduction of $T i C l_{4(l)}$ which in turn is produced from mineral rutile $\left[\mathrm{TiO}_{2(s)}\right]$. can the following reaction for production of $\mathrm{TiCl}_{4(l)}$ be carried out at $25^{\circ} \mathrm{C}$?
$\mathrm{TiO}_{2(s)}+2 \mathrm{Cl}_{2(g)} \rightarrow \mathrm{TiCl}_{4(l)}+\mathrm{O}_{2(g)}$
Given that H_{f}° for $\mathrm{TiO}_{2(s)}, \mathrm{TiCl}_{4(l)}, \mathrm{Cl}_{2(g)}$ and $O_{2(g)}$ are -944.7, $-804.2,0.0,0.0 \mathrm{kJol}^{-1}$. also S° for
$\mathrm{TiO}_{2(g)}, \mathrm{TiCl}_{4(l)}, \mathrm{Cl}_{2(g)} \quad$ and $\quad O_{2(g)} \quad$ are $50.3,252.3,233.0,205.1 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ respectively.

- Watch Video Solution

11. One mole of $\mathrm{CH}_{3} \mathrm{COOH}$ undergo dimerization in vapour state at $127^{\circ} \mathrm{C}$ as $2 \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{g}) \Leftrightarrow\left(\mathrm{CH}_{3} \mathrm{COOH}\right)_{2}$ if dimer formation is due
to two H -bonds involved in dimer, each of 33 kJ strenght and the degree of dimerization of acetic acid 98.2% which is correct

- Watch Video Solution

12. The factor of ΔG values is important in metallurgy. The ΔG values for the following reactions at $800^{\circ} \mathrm{C}$ are given as :
$S_{2}(s)+2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{SO}_{2}(g), \Delta G=-544 k J$
$2 Z n(s)+S_{2}(s) \rightarrow 2 Z n S(s), \Delta G=-293 \mathrm{~kJ}$
$2 \mathrm{Zn}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ZnO}(\mathrm{s}), \Delta G=-480 \mathrm{~kJ}$
Calculate the ΔG for the reaction:
$2 \mathrm{ZnS}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ZnO}(\mathrm{s})+2 \mathrm{SO}_{2}(\mathrm{~g})$

- Watch Video Solution

13. For vaporization of water at 1 atmospheric pressure, the values of ΔH and ΔS are $40.63 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $108.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively. The temperature when Gibbs energy change (ΔG) for this transformation will be zero, is :

- Watch Video Solution

14. An ideal gas is allowed to expand from 1 L to 10 L against a constant external pressure of 1 bar. Calculate the work done inkJ.

- Watch Video Solution

15. During compression of a spring the work done is 10 kJ and 2 kJ escaped to the surroundings as heat. The change in internal energy, ΔU (in kJ) is
\qquad .

- Watch Video Solution

Chapter 7 Equilibrium

1. Equilibrium constant K_{p} for the reaction:
`CaCO_(3)(s) If 1 mole of CaCO_{3} is placed in a closed container of 20 L and
heated to this temperature, what amount of CaCO_{3} in grams would dissociate at equilibrium ?

- View Text Solution

2. An amount of solid $\mathrm{NH}_{4} \mathrm{HS}$ is placed in a flask already containing ammonia gas at a certain temperature and 1.0 atm pressure. Ammonium hydrogen sulphide decomposes to yield NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ gases in the flask. When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 2 atm. What will be the equilibrium constant for $\mathrm{NH}_{4} \mathrm{HS}$ decomposition at this temperature?

- View Text Solution

3. Calculate the pH of a solution obtained by diluting 1 mL of 0.10 M weak monoacidic base to 100 mL at constant temperature if Kb of the base is 1×10^{-5}.
4.28 g N 2 and 6.0 g of H_{2} are heated over catalyst in a closed one litre flask of $450^{\circ} \mathrm{C}$. The entire equilibrium mixture required 500 mL of 1.0 M $\mathrm{H}_{2} \mathrm{SO}_{4}$ for neutralisation. Calculate the value of Kc in $L^{2} \mathrm{~mol}^{2}$ for the given reaction.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

- View Text Solution

5. The equilibrium constant of the reaction of weak acid HA with strong base is 10^{-7} Find the pOH of the aqueous solution of 0.1 M NaA .

- View Text Solution

6. For the reaction $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(g) \rightarrow 2 \mathrm{CO}(g), k_{p}=63$ atm at 100 K . If at equilibrium $p_{C O}=10 p_{\mathrm{CO}_{2}}$ then the total pressure of the gases at equilibrium is
7. The $p K_{a}$ of HCOOH is 3.8 and $p K_{b}$ of NH_{3} is 4.8 , find the pH of aqueous solution of 1M HCOONH 4.

- Watch Video Solution

8. In the reaction $A B(g) \Leftrightarrow A(g)+B(g)$ at $30^{\circ} C, k_{p}$ for the dissociation equilibrium is $2.56 \times 10^{-2} \mathrm{~atm}$. If the total pressure at equilibrium is 1 atm, then the percentage dissociation of $A B$ is

- Watch Video Solution

9. Calculate the pH at the equivalence point when a solution of 0.01 M $\mathrm{CH}_{3} \mathrm{COOH}$ is titrated with a solution of $0.01 \mathrm{M} \mathrm{NaOH.pKa}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ is 4.74

- View Text Solution

10. The value of $K p$ for the equilibrium reaction ${ }^{\prime} \mathrm{N}_{-}(2) \mathrm{O}(4)(\mathrm{g})$

- View Text Solution

11. A buffer solution is prepared by mixing 10 ml of 1.0 M acetic acid \& 20 ml of 0.5 M sodium acetate and then diluted to 100 ml with distilled water. If the $p K_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ is 4.76 . What is the pH of the buffer solution prepared?

- Watch Video Solution

12. At a certain temperature and 2 atm pressure equilibrium constant $\left(K_{p}\right)$ is 25 for the reaction
$\mathrm{SO}_{2}(g)+\mathrm{NO}_{2}(g) \Leftrightarrow \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{NO}(\mathrm{g})$
Initially if we take 2 moles of each of the four gases and 2 moles of inert gas, what would be the equilibrium pparital pressure of NO_{2} ?
13. Find the pH of a 2 litre solution which is 0.1 M each with respect to $\mathrm{CH}_{3} \mathrm{COOH}$ and $\left(\mathrm{CH}_{3} \mathrm{OO}\right)_{2} \mathrm{Ba},\left(\mathrm{Ka}=1.8 \times 10^{-5}\right)$.

Watch Video Solution

14. On addition of increasing amount of $\mathrm{AgNO}_{3}(\mathrm{~g})$ to 0.1 M each of NaCl and NaBr in a solution, what \% of Br^{-}ion gets precipitated when Cl^{-} ion starts precipitating?

Given: $K_{s p}(\mathrm{AgCl})=1.0 \times 10^{-10}, K_{s p}(A g B r)=1 \times 10^{-13}$.

- View Text Solution

15. What can be the maximum possible molarity of Co^{2+} ions in $0.1 \mathrm{M} \mathrm{HC1}$ saturated with $H_{2} S\left(K_{a}=4 \times 10^{-21}\right)$? Given that $K_{s p}$ for CoS is 2×10^{-21} and concentration of saturated $H_{2} S=0.1 M$
16. Find the sum of oxidation number of nitrogen in $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}, \mathrm{~N}_{2} \mathrm{H}_{4}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$.

- Watch Video Solution

2. Among $\mathrm{NH}_{3}, \mathrm{HNO}_{3}, \mathrm{~N}_{2}$ and $\mathrm{Mg}_{3} \mathrm{~N}_{2}$, the number of molecules having nitrogen in negative oxidation state is :

- Watch Video Solution

3. When $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is converted to $\mathrm{K}_{2} \mathrm{CrO}_{4}$, the change in the oxidation state of chromium is

- Watch Video Solution

4. Oxidation numbers of P in PO_{4}^{3-}, of S in SO_{4}^{2-}, and that of Cr in $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ are respectively,

- Watch Video Solution

5. In a balance equation $\mathrm{H}_{2} \mathrm{SO}_{4}+x \mathrm{HI} \rightarrow \mathrm{H}_{2} \mathrm{~S}+y \mathrm{I}_{2}+z \mathrm{H}_{2} \mathrm{O}$, find the ratio of $x+y, y+z$

- View Text Solution

6. One mole of $N_{2} H_{4}$ loses ten moles of electrons to form a new compound A. Assuming that all the nitrogen appears in the new compound, what is the oxidation state of nitrogen in A ? (There is no change in the oxidation state of hydrogen.)

- Watch Video Solution

7. For the redox reaction,
$\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
the correct coefficients of the reactants for the balanced reaction are

- Watch Video Solution

8. The equivalent weight of a metal is 36 . What weight of the metal would give 9.322 gm. Of its chloride ?

- View Text Solution

9. Equivalent weight of $\mathrm{MnO}_{4}^{\ominus}$ in acidic neutral and basic media are in ratio of:

- Watch Video Solution

10. Find the number of moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ reduced by three mole of $S n^{2+}$ ions.

Watch Video Solution

11. Atomic weight of barium is 137.34 The equivalent weight of barium is $\mathrm{BaCrO} \mathrm{O}_{4}$ used an an oxidising agent in acid medium is

- Watch Video Solution

12. In an experiment 50 ml of $0.1(M)$ solution of a salt is reacted with 25 ml of $0.1(M)$ solution of sodium sulphite. The half equation for the oxidation $\begin{aligned} & \text { of } \\ & \mathrm{SO}_{3}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{4}^{2-}(a q)+2 \mathrm{H}^{+}(a q)+2 e^{-}\end{aligned}$if the oxidation number of metal in the salt was 3 , what would be the new oxidation number of metal?
13. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ molecular weight and equivalent weight of NH_{3} and N_{2} are $17.03 \mathrm{~g}, 14 \mathrm{~g}$ and Y_{1}, Y_{2} respectively. Find the value of $\left(Y_{1}-Y_{2}\right)$.

- View Text Solution

14. An element A in a compound $A B D$ has oxidation number A^{n-}. It is oxidised by $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ in acid medium. In the experiment 1.68×10^{-3} moles of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ were used for 3.26×10^{-3} moles of $A B D$. The new oxidation number of A after oxidation is:

- Watch Video Solution

15. Find the oxidation state of Fe in $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$.

- View Text Solution

1. The molecular formula of diphenyl methane.

How many structural isomers are possible when one of the hydrogen is replaced by a chlorine atom?

- View Text Solution

2.

The positive charge of carbocation can be delocalized over how many oxygen atoms in the resonating structures?

- View Text Solution

3. How many carbocations are possible for molecular formula $\mathrm{C}_{3} \mathrm{H}_{5}^{+}$?
4. The compound (X) has molecular formula $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{Cl}$. Find out the number ofits cyclic isomers (structural and geometrical only excluding optical isomers).

- View Text Solution

5. The number of stereoisomers obtained by bromination of trans-2butene is

- Watch Video Solution

6. From the following compounds/ions, how many are electrophiles?
$\mathrm{CH}_{3}^{+}, \mathrm{NH}_{4}^{+} \cdot \mathrm{BF}_{3} . \mathrm{NH}_{3} . \mathrm{NH}_{2}-\mathrm{NH}_{2} . \mathrm{PC}_{3} . \mathrm{PCl}_{3} \cdot \mathrm{SbCl}_{5} . \mathrm{GaCl}_{3} . \mathrm{AlCl}_{3}$.
("C" atom of halide)

- View Text Solution

7. How many stereocentres are possible for the given compound?

- View Text Solution

8. From the gifven compound, how many are optically inactive?

- View Text Solution

9. Write structural formula for all the isomeric alcohols having the molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$.

- Watch Video Solution

10. How many of the following are not ambiguous? Pentane, Neopentane, sec-Butanol, sec-Pentanol

- View Text Solution

11. Compound is a vicinal diol. How many vicinal diols are possible with the same molecular formula.

- View Text Solution

12. Which of the following compound(s) is/are optically active?

- View Text Solution

13. Find the number of fractions obtained after the completion of the reaction.

- View Text Solution

14. How many cyclic isomers of molecular formula $C_{7} H_{15}$ can form 1 methylcyclohexan-l-olon reaction with $\mathrm{H}_{2} \mathrm{O}$ /acetone/ $\mathrm{Ag}^{\text {' }}$ \{consider only structural isomers)?

- View Text Solution

15. How many stereoisomers are possible for 1,3-dichloro-cyclopentane?

- View Text Solution

Chapter 13 Hydrocarbons

1.

Find the number of monochloro derivatives formed (excluding
stereoisomers) in the above reaction.

- View Text Solution

2. Find the total number of trichloroderivatives of the compound (excluding stereoisomers).

- View Text Solution

3. How many isomers (including geometrical and optical) are possible for bromochlorocyclobutane?

- View Text Solution

4. How many stereoisomers are possible for dichlorocyclobutane?

- View Text Solution

5. How many enantiomeric pairs are possible in bromochlorocyclopentane?

- View Text Solution

6. How many alkyl bromides would yield isopentane on reaction with Grignard reagent followed by treatment with water?

- View Text Solution

7. How many free radicals can be produced during following reaction (ignoring resonating structure) ?
8.

Find the number of fractions obtained after fractional distillation of product mixture.

- View Text Solution

9.

Calculate sum of number of products formed in the reaction a, b and c .

- View Text Solution

10. How many alkenes, alkynes, alkadienes can be hydrogenated to form isopentane (include all isomers)?

- View Text Solution

11. The total number of cyclic isomers possible for a hydrocarbon with the molecular formula $C_{4} H_{6}$ is

Watch Video Solution

12. Write total number of hydrogen atoms on all the carbon atoms which are connected directly by a single bond to benzylic carbon (carbon connected to benzene ring) in the product

- View Text Solution

13. Number ofmonochloro derivatives (excluding stereoisomers), dichloro derivatives and trichloro derivatives of cyclopentane are n_{2} and n_{3} Find the value of $\frac{n_{1},+n_{2}}{n_{3}}$.

- View Text Solution

14.

Find the number of alkenes produced in the reaction given

- View Text Solution

15. Find the total no. of alkynes that on catalytic reduction gives 3 -ethyl- 4 methylheptane.

- View Text Solution

Chapter 15 The Solid State

1. The edge length of unit cell of a metal having molecular weight $75 \mathrm{gmol}^{-1}$ is $5 \AA$ which crystallizes in cubic lattice. If the density is $2 g^{\wedge}(-1)$, then find the radius of metal atom $\left(N_{A}=6 \times 10^{23}\right)$. Give the answer in pm.
2. In face - centred cubic (fcc) crystal lattice, edge length is 400 pm . Find the diameter of the greatest sphere which can be fitted into the interstital void without distortion of the lattice.

- Watch Video Solution

3. $A B$ crystallizes in a body centred cubic lattice with edge length a equal to $387 p m$.The distance between two oppositely charged ions in the lattice is :

- Watch Video Solution

4. If calcium crystallizes in bcc arrangement and the radius of Ca atom is 96 pm , and the volume of unit cell of Ca is $x \times 10^{-30} \mathrm{~m}$. Find the value of X.
5. The radii of $\mathrm{Na}+$ and Cl^{-}ions are 100 pm and 200 pm respectively.

Calculate the edge length of NaCl unit cell.

- Watch Video Solution

6. CsBr has bcc like structures with edge length $4.3 \AA$. The shortest inter ionic distance in between Cs^{+}and Br^{-}is:

- Watch Video Solution

7. A metallic crystal cystallizes into a lattice containing a sequence of layers $A B A B A B . .$. Any packing of spheres leaves out voids in the lattice. What percentage by volume of this lattice is empty spece?

- Watch Video Solution

8. A molecule $A_{2} B(M w=166.4)$ occupies triclinic lattice with $a=5 \AA, b=8 \AA$, and $c=4 \AA$, If the density of $A B_{2}$ is $5.2 \mathrm{gcm}^{-3}$, the
number of molecules present in one unit cell is

- Watch Video Solution

9. Consider the bcc unit cells of the solids 1 and 2 with the position of atoms are shown below. The radius of atom B is twice that of atom A. The unit cell edge length is 50% more in solid 2 than in 1 . What is the approximate packing efficiency (in \%) in solid 2?

- View Text Solution

10. Find the sum of number of atoms present in a simple cubic, body centered cubic and face centered cubic structure.

- Watch Video Solution

11. Calculate the radius (in pm) of the largest sphere which fits properly at the centre of the edge of a body centred cubic unit cell. (Given edge length is 100 pm)

- View Text Solution

12. A compound CuCl has face - centred cubic structure. Its density is $3.4 \mathrm{gcm}^{-3}$. What is the length of unit cell ?

- Watch Video Solution

13. Molybdenum forms body-centred cubic crystals whose density is $10.3 \mathrm{gcm}^{-3}$. Calculate the edge length of the unit cell. The molar mass of Mo is $95.94 \mathrm{gmol}^{-1}$.

- Watch Video Solution

14. The density of mercury is $13.6 \mathrm{gm} L^{-1}$. Calculate the approximate diameter of an atom of mercury assuming that each atom is occupying a cube of edge length equal to the diameter of the mercury atom.

- Watch Video Solution

15. In the fluorite structure if the radius ratio is $\left(\frac{\sqrt{3}}{2}-1\right)$ how many ions does each cation touch?

- Watch Video Solution

Chapter 16 Solutions

1. What is the molar solubility of $\mathrm{Al}(\mathrm{OH})_{3}$ in 0.2 M NaOH solution? Given that, solubility product of $\mathrm{Al}(\mathrm{OH})_{3}=2.4 \times 10^{-2}$
2. At room temperature, a dilute solution of urea is prepared by dissolving 0.60 g of urea in 360 g of water. If the vapour pressure of pure water at this temperature is 35 mm Hg , lowering of vapour pressure will be: (molar mass of urea $=60 \mathrm{gmol}^{-1}$)

- Watch Video Solution

3. Molal depression constant for a solvent is $4.0 \mathrm{Kkgmol}^{-1}$ The depression in the freezing point of the solvent for $0.03 \mathrm{molkg}^{-1}$ solution of $K_{2} \mathrm{SO}_{4}$ is: (Assume complete dissociation of the electrolyte)

- Watch Video Solution

4. The osmotic pressure of a dilute solution of a compound $X Y$ in water is four times that of a solution of $0.01 \mathrm{M} \mathrm{BaCl} l_{2}$ in water. Assuming complete dissociation of the given ionic compounds in water, the concentration of XY (in $\mathrm{mol} L^{-1}$) in solution is:
5. Calculate the amount of sodium chloride (in g) which must be added to 1000 mL of water so that its freezing point is depressed by 0.744 K . For water, $K_{f}=1.86 \mathrm{~K} / \mathrm{m}$. Assume density of water to be $1 \mathrm{~g} m L^{-1}$.

- Watch Video Solution

6. What weight of the non-volatile solute urea' $\left(\mathrm{NH}_{2}-\mathrm{CO}-\mathrm{NH}_{2}\right)$ needs to be dissolved in $100 g$ of water in order to decrease the vapour pressure of water by 25% ? What will be the molality of the solution?

- Watch Video Solution

7. A bottle of commercial sulphuric acid $\left(d=1.787 \mathrm{gmL}^{-1}\right)$ is 86% by weight.
a. What is molarity of the acid?
b. What volume of the acid has to be used to make 1 L of $0.2 \mathrm{MH}_{2} \mathrm{SO}_{4}$?
c. What is the molality of the acid?

- Watch Video Solution

8. 0.5 gm of fuming $\mathrm{H}_{2} \mathrm{SO}_{4}$ (Oleum) is diluted with water. This solution is completely neutralised by 26.7 ml of 0.4 M NaOH solution. Calculate the percentage of free $S O_{3}$ in the given sample. Give your answer excluding the decimal places.

- Watch Video Solution

9. The vapour pressure of pure benzene at a certain temperature is 640 mmHg . A non-volatile solid weighing 2.175 g is added to 39.0 g of benzene. The vapour pressure of the solution is 600 mmHg . What is the molar mass of the solid substance?

- Watch Video Solution

10. 0.400 g of an acid HA (mol. mass $=80$) was dissolved in 100 g of water. The solution showed a depression of freezing point of 0.12 K . What will be the dissociation constant (in multiple of 10^{-3}) of the acid at about $0^{\circ} \mathrm{C}$? Given K_{f} (water) $=1.86 \mathrm{~K} \mathrm{Kg} \mathrm{mol}^{-1}$ (Assume molarity of solution a molality)

D View Text Solution

11. An element X (Atomic mass $=25$) exists as $X 4$ is benzene. 51 g of saturated solution of X in benzene was added to 50.0 g of pure benzene. The resulting solution showed a depression of freezing point of 0.55 K . Find the solubility of X per 100 g of benzene. (Kf for benzene $=5.5 \mathrm{~K} \mathrm{~kg}$ mol^{-1}

- View Text Solution

12. At $10^{\circ} \mathrm{C}$, the osmotic pressure of urea solution is 500 mm . The solution is diluted and the temperature is raised to $25^{\circ} \mathrm{C}$.when the
osmotic pressure is found to be 105.3 mm . Determine the extent of dilution.

- Watch Video Solution

13. A mixture of two immiscible liquids nitrobenzene and water at $99^{\circ} \mathrm{C}$ has a partial vapour pressure of water 733 mm and that of nitrobenzene 27 mm . Calculate the ratio of the weights of nitrobenzene to the water in the distillate.

- Watch Video Solution

14. A solution containing 28 g of phosphorus in $315 \mathrm{~g} C S_{2}\left(b . p .46 .3^{\circ} \mathrm{C}\right)$ boils at $47.98^{\circ} \mathrm{C}$. If K_{b} for $C S_{2}$ is $2.34 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$. The formula of phosphorus is (at , mass of $\mathrm{P}=31$).

- Watch Video Solution

15. Calculate the molality of 1 litre solution of 93% $\mathrm{H}_{2} \mathrm{SO}_{4}$ (weight / volume). The density of solution is 1.84 g mL . .

- Watch Video Solution

Chapter 17 Electrochemistry

1. The equivalent conductances of sodium chloride, hydrochloric acid and sodium acetate at infinite dilution are $126.45,426.16$ and $91.0 \mathrm{ohm} \mathrm{m}^{-1} \mathrm{~cm}^{2} e q^{-1}$, respectively at $25^{\circ} \mathrm{C}$. Calculate the equivalent conductance of acetic acid at infinite dilution.

- Watch Video Solution

2. 2F of electricity is passed through 20 L of a solution of aquous solution of KCI . Calculate the pH of the solution.
3. The specific conductivity of a solution containing 1.0 g of anhydrous $B a C l_{2}$ in $200 \mathrm{~cm}^{3}$ of the solution has been found to be $0.0058 \mathrm{~S} \mathrm{~cm}^{-1}$. Calculate the molar conductivity of the solution. (Molecular wt. of $\left.B a C l_{2}=208\right)$.

- View Text Solution

4. The equivalenet conductivites of acetic acid at $298 K$ at the concentration of $0.1 M$ and $0.001 M$ are 5.20 and $49.2 \mathrm{Scm}^{2} \mathrm{eq}^{-1}$ respectively. Calculate the degree of dissociation of acetic acid at the these concentrations. Given that, $\lambda^{\propto}\left(\mathrm{H}^{+}\right)$and $\lambda^{\alpha}\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$are 349.8 and $40.9 \mathrm{hm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively.

- Watch Video Solution

5. The amount of electricity which release 2.0 g of gold from a gold salt is same as that which dissolves 0.967 g of copper anode during the
electrolysis of copper sulphate solution. What is the oxidation number of gold in the gold ion ? (At mass of $\mathrm{Cu}=63.5, \mathrm{Au}=197$)

- Watch Video Solution

6. If K_{c} for the reaction
$\mathrm{Cu}^{2+}(a q)+\mathrm{Sn}^{2+}(a q) \rightarrow \mathrm{Sn}^{4+}(a q)+C u(s)$
at $25^{\circ} \mathrm{C}$ is represented as 2.6×10^{y} then find the value of y .
(Given: $E_{C u^{2+} \mid C u}^{\circ}=0.34 V, E_{S n^{4+} \mid S n^{2+}}$ (०) $=0.15 V$

- Watch Video Solution

7. If ΔG° for the half cell $\mathrm{MnO}_{4}^{-} \mid \mathrm{MnO}_{2}$ in an acid solution is xF then find the value of x.
(Given: $E_{M n O_{4}^{-} \mid M n^{2+}}^{\circ}=0.34 V, E_{S n^{4+} \mid S n^{2+}}^{\circ}=0.15 \mathrm{~V}$)

- Watch Video Solution

8. The standard reduction potential of a silver chloride electrode (metal sparingly soluble salt electrode) is 0.209 V and for silver electrode is 0.80 V . If the moles of AgCl that can dissolve in 10 L of a 0.01 MNaCl solution is represented as 10^{-z} then find the value of z.

- Watch Video Solution

9. Molar conductivity of aqueous solution of HA is $200 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}, \mathrm{pH}$ of this solution is 4 . Calculate the value of $p K_{a}(H A)$ at $25^{\circ} \mathrm{C}$

Given: $\wedge_{M}^{\infty}(N a A)=100 S c m^{2} \mathrm{~mol}^{-1}, \wedge_{M}^{\infty}(H C l)=425 S c m^{2} \mathrm{~mol}^{-1}$, $\wedge_{M}^{\infty}(N a C l)=125 S \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$.

- Watch Video Solution

10. If electrode potential of following cell:

$$
P t_{s}\left|F e_{a q}^{2+}, F e_{a q}^{3+}\right|\left|M n O_{4(a q)}^{-}, M n_{a q}^{2+}, H_{a q}^{+}\right| P t_{s}
$$

is X then calculate value of 20X.
[Given: $E_{M n O_{4}^{-}} \mid M n^{2+}=1.51 \mathrm{~V}$,
$\left.E_{F e^{3+} \mid F e^{2+}}=0.78 \mathrm{~V},{ }^{\prime}(2.303 \mathrm{RT}) / \mathrm{F}=0.06\right]$

- Watch Video Solution

11. A solution of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2}$ is electrolysed between platinum electrodes using 0.1 Faraday electricity. How many mole of Ni will be deposited at the cathode?

Watch Video Solution

12. The standard Gibbs energy for the given cell reaction is KJmol^{-1} at 298 K is :
$Z n(s)+C U^{2+}(a q) \rightarrow Z n^{2+}(a q)+C u(s)$
$E^{\circ}=2 V a t 298 K$
(Friday's constant , $F=96000 \mathrm{Cmol}^{-1}$)

- Watch Video Solution

13. All the energy realesed from the reation $X \rightarrow Y, \Delta_{r} G^{\circ}=-193 \mathrm{kJmol}^{-1}$, is used for oxidizing M^{+}as $M^{+} \rightarrow M^{3+}+2 e^{-}, E^{\circ}=-0.25 V$. Under standard consistions, the number of moles of M^{+}oxidized when on e mol of X is converted to Y is $\left[F=96,500 \mathrm{Cmol}^{-1}\right]$

- Watch Video Solution

14. Consider the following half-cell reaction and associated standerd halfcell potentials and determine the maximum voltage thatr can be obtained by combination resulting in spontenous process :

$$
\begin{aligned}
& \mathrm{AuBr}_{4}^{-}(a q)+3 e^{-} \rightarrow A u(s)+4 B R^{-}(a q), E^{\circ}=-086 \mathrm{~V} \\
& E u^{3+}(a q)+e^{-} \rightarrow E u^{2+}(a q), E^{\circ}=-043 V \\
& \mathrm{Sn}^{2+}(a q)+2 e^{-} \rightarrow \operatorname{Sn}(s), E^{\circ}=-0.14 V \\
& I O^{-}(a q)+\mathrm{H}_{2} O(l)+2 e^{-} \rightarrow I^{-}(a q)+2 O H^{-}, E^{\circ}=+0.49 \mathrm{~V}
\end{aligned}
$$

- Watch Video Solution

15. The standard e.m.f. of the cell $Z n\left|Z n^{2+}(0.01 M)\right|\left|F e^{2+}(0.001 M)\right| \mathrm{Fe}$ at 298 K is 0.02905 then the value of equilibrium constant for the cell reaction 10^{x}. Find x .

- Watch Video Solution

Chapter 18 Chemical Kinetics

1. For a chemical reaction $2 X+Y \rightarrow Z$, the rate of appearance of Z is $0.05 \mathrm{molL}^{-1} \mathrm{~min}^{-1}$. The rate of diappearance of X will be

- Watch Video Solution

2. For the reaction at 273 K

$$
\mathrm{NO}(g)+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

It is observed that the pressure of $N O(g)$ falls form 700 mmHg to

500 mmHg in 250 s . Calculate the average rate of reaction in (a) atms^{-1}, (b) $\mathrm{molL}^{-1} s^{-1}$.

- Watch Video Solution

3. For a first order reaction, calculate the ratio between the time taken to complete $3 / 4 t h$ of the reaction and time to complete half of the reaction.

Watch Video Solution

4. The half-life period and initial concentration for a reaction are as follows.

What is order of reaction?

- View Text Solution

5. The rate of a reaction triples when temperature change from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Calculate the energy of activation.

Watch Video Solution

6. Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law, with $t_{1 / 2}=3.00 \mathrm{hr}$. What fraction of sample of sucrose remains after $8 h r$?

- Watch Video Solution

7. A reaction takes place in various steps. The rate constant for first, second, third and fifth steps are $\mathrm{k} 1, \mathrm{k} 2, \mathrm{k} 3$ and k 5 respectively. The overall rate constant is is given by:
$k=\frac{k_{2}}{k_{1}}\left(\frac{k_{1}}{k_{2}}\right)^{\frac{1}{2}}$ activation energy are $40,60,50$ and $10 \mathrm{~kJ} / \mathrm{mol}$ respectively, find the overall energy of activation ($\mathrm{kJ} / \mathrm{mol}$).

- Watch Video Solution

8. The half-life of decomposition of gaseous $\mathrm{CH}_{3} \mathrm{CHO}$ at initial pressure of 365 mm and 170 mm of Hg were 420 sec and 880 sec respectively. The order of the reaction is:

- Watch Video Solution

9. A gaseous reaction $A_{2}(g) \rightarrow B(g)+\frac{1}{2} C(g)$ shows increase in pressure form 100 mm to 120 mm in 5 min . What is the rate of disappearance of A_{2} ?

- Watch Video Solution

10. The reaction $X \rightarrow Y$ is an exothermic reaction. Activation energy of the reaction for X into Y is $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Enthalpy of reaction is 135 kJ mol^{-1}. Calculate the activation energy for the reverse reaction, $Y \rightarrow X$ in kJmol^{-1}.
11. 2 g of a radioactive sample having half-life of 15 days was synthesised on 1st Jan. 2009. What is the amount of the sample left behind on 1st March, 2009 (including both the days) in g ?

- Watch Video Solution

12. Half-lives of decomposition of NH_{3} on the surface of a catalyst for different initial pressures are given as:

Find the order of the reaction.

- View Text Solution

13. The decomposition of ammonia on tungsten surface at 500 K follows zero order kinetics. The half-life period of this reaction is 45 minutes when the initial pressure is 4 bar. Find the half-life period (in minutes) of the reaction when the initial pressure is 16 bar at the same temperature.

(D) Watch Video Solution

14. The rate of a reaction starting with initial concentration of 2×10^{-3} and $1 \times 10^{-3} \mathrm{M}$ are equal to 2.40×10^{-40} and $0.60 \times 10^{-4} \mathrm{Ms}^{-1}$, respectively. Calculate the order of reaction w.r.t. reactant and also the rate constant.

- Watch Video Solution

15. The instataneous rate of disappearance of the MnO_{4}^{-}ion in the following reaction is $4.56 \times 10^{-3} \mathrm{Ms}^{-1}$. Then the rate of appearance of I_{2} is :
$2 \mathrm{MnO}_{4}^{-}+10 \mathrm{I}^{-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+5 \mathrm{I}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
A. $1.14 \times 10^{-3} \mathrm{Ms}^{-1}$
B. $5.7 \times 10^{-3} \mathrm{Ms}^{-1}$
C. $4.56 \times 10^{-3} \mathrm{Ms}^{-1}$
D.

- Watch Video Solution

Chapter 19 Surface Chemistry

1. How many of the following are colloid? Sodium chloride, Starch solution, Cane sugar and Blood

- Watch Video Solution

2. Which of the following substance gives a positively charged sol?

- Watch Video Solution

3. How many of the following are not a colloid? Chlorophyll, Smoke, Ruby glass and Milk
4. For the coagulation of 500 mL of arsenious sulphide sol, $2 m L$ of 1 MNaCl is required. What is the flocculation value of NaCl ?

- Watch Video Solution

5. The gold number of gelatin is 0.01 . Calculate the amount of gelatin to be added to 1000 mL of a colloidal sol of gold to prevent its coagulation, before adding 1 mL of $10 \% \mathrm{NaCl}$ solution.

- Watch Video Solution

6. 526.3 mL of 0.5 MHCl is shaken with 0.5 g of activated charcoal and filtered. The concentration of the filtrate is reduced to $0.4 M$. The amount of adsorption (x / m) is

- Watch Video Solution

7. How many colloidal systems exist in nature in which liquid is dispersed phase?

- View Text Solution

8. For soaps critical micelle concentration (CMC) is $10^{-x}(\mathrm{~min})$ to $10^{-\gamma}$ (max.) $\mathrm{mol} / \mathrm{L}$ what is the value of x ?

- Watch Video Solution

9. Graph between $\log \left(\frac{x}{m}\right)$ and $\log \mathrm{P}$ is a straight line at angle 45° with intercept OA as shown:

Calcualte $\left(\frac{x}{m}\right)$ at a pressure of 2 atm. (Given: $\mathrm{k}=2$)

- View Text Solution

10. On addition of $1 m L$ solution of $10 \% \mathrm{NaCl}$ to 10 mL gold sol in the presence of 0.0250 g of starch, the coagulation is just prevented. What is the gold number of starch?

- Watch Video Solution

11. 3.6 gram of oxygen of adsorbed on 1.2 g of metal powder. What volume of oxygen adsorbed per gram of the adsorbent at 1 atm and 273 K ?

- Watch Video Solution

12. 100 mL of 0.6 M acetic acid is shaken with 2 g activatid carbon. The final concetration solution after adsorption is 0.5 M . what is the amount of acetifc acid adsorbed per gram of carbon ?

- Watch Video Solution

13. Find the order of the reaction in which a gas is formed at the surface of tungsten due to adsorption.

- Watch Video Solution

14. 1 gm of charcoal adsorbs 100 mL 0.7 M CH 3 COOH to form a monolayer, and there by the molarity of $\mathrm{CH}_{3} \mathrm{COOH}$ reduces to 0.59 .

Calculate the surface area of the charcoal adsorbed by each molecule of acetic acid in terms of 10^{-19}. Surface area of charcoal $=$ $3.01 \times 10^{2} \mathrm{~m}^{2} / \mathrm{gm}$.

- View Text Solution

15. Twenty precent of the surface sites of a catalyst is occupied by nitrogen molecules. The density of surface sites is $6.023 \times 10^{14} \mathrm{~cm}^{-2}$. The total sarface area is $1000 \mathrm{~cm}^{2}$. The catalyst is is henced to 300 K and nitrogen is completely desorbed a pressure of 0.001 atm and volume of $2.46 \mathrm{~cm}^{3}$. Calculate the number of sites occupied by niitrogen molecules.

Chapter 21 The P Block Elements Group 15161718

1. The number of σ bonds in $P_{4} O_{10}$ is

- Watch Video Solution

2. How many bonding electron pairs are there in white phosphorus ?

- Watch Video Solution

3. The number of $P-O-P$ bonds in cyclic metaphosphoric acid is.

- Watch Video Solution

4. Calculate the total number of bond pairs and lone pairs of electrons present in $O F_{2}$ molecule.
A. 10
B. 4
C. 6
D. 8

Answer: 10

- Watch Video Solution

5. How many forms of SO_{3} exists

- View Text Solution

6. The number of $\mathrm{S}-\mathrm{S}$ bonds in sulphur trioxide trimer $\left(\mathrm{S}_{3} \mathrm{O}_{9}\right)$ is
7. The number of $P-O-P$ bonds in cyclic metaphosphoric acid is.

- Watch Video Solution

8. The number of P-O-P bonds present in $P_{4} O_{6}$ and $P_{4} O_{10}$ are respectively

- Watch Video Solution

9. Bleaching powder and bleach solution are produced on a large scale and used in several hous-hold products. The effectiveness of bleach solution id often measured by iodometry.
$25 m L$ of household bleach solution was mixed with 30 mL of 0.50 MKI and 10 mL of 4 N acetic acid. In the titration of the liberated iodine, 48 mL of $0.25 \mathrm{NNa}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ was used to reach the end point. The molarity of the household bleach solution is :
10. The value of n in the molecular formula $\mathrm{Be}_{n} \mathrm{Al}_{2} S i_{6} O_{18}$ is:

- Watch Video Solution

11. Reaction of Br_{2} with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in aquesous solution gives sodium bromide bromate with evolution of CO_{2} gas. The number of sodium bromide molecules involved in the balanced chemical equation is:

- Watch Video Solution

12. Among the following, the number of compounds that can react with PCl_{5} to give POCl_{3} is $\mathrm{O}_{2}, \mathrm{CO}_{2}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{P}_{4} \mathrm{O}_{10}$.

- Watch Video Solution

13. What is the number of sigma (σ) and $\mathrm{pi}(\pi)$ bonds present in sulphuric acid molecule ?

- Watch Video Solution

14. $\mathrm{H}_{3} \mathrm{PO}_{2}$ is the molecular formula of an acid of phosphorus. Its name and basicity respectively are

- Watch Video Solution

15. How many hygroscopic compounds are formed when Cl_{2} reacts with hot aqueous NaOH .

- View Text Solution

1. The colour of KMnO_{4} solution is decolourised by Fe^{+2} solution, one mole of Fe^{2+} reacts with x moles of KMnO_{4} Find x .

- Watch Video Solution

2. Use Hund's rule to derive the electronic configuration of Ce^{3+} ion, and calculatel its magntic moment on the basis of spin-only formula.

- Watch Video Solution

3. A compound of a metal ion $M^{X+}(z=24)$ has a spin only magnetic moment of $\sqrt{15} B . M$. . The number of unpaired electrons in the compound are

- Watch Video Solution

4. The number of ions formed on dissolving one molecule of $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ is

- Watch Video Solution

5. In alkaline medium, KMnO_{4} reacts as follows
$2 \mathrm{KMnO}_{4}+2 \mathrm{KOH} \rightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}$
Therefore, the equivalent mass of KMnO_{4} will be

- Watch Video Solution

6. Titanium shows magnetic moment of $1.73 B . M$. in its compounds.

What is the oxidation number of $T i$ in the compound?

- Watch Video Solution

7. Four successive members of the first series of transition metals are listed below. For which one of the of standard potential $\left(E_{M^{2+} / M}^{\circ}\right)$ value has a positive sign ?

- Watch Video Solution

8. What is the approximate percentage of iron in mischmetal?

- View Text Solution

9. The standard redox potentials for the reactions,
$M N^{2+}+2 e^{-} \rightarrow M n$ and $\mathrm{Mn}^{3+}+e^{-}$are-1.18V and 1.51V respectively. What is the redox potential for the reaction $\mathrm{Mn}^{3+}+3 e^{-} \rightarrow M n$?

- Watch Video Solution

10. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \xrightarrow{p \mathrm{H}=x} \mathrm{CrO}_{4}^{2-} \xrightarrow{p H=y} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ x and y can be :

Watch Video Solution

11. 12 grams of silver was extracted from a sample of an ore from whidi the only source of silver was $A g_{2} S$. How many grams of $A g_{2} S$ were in the original sample?

- View Text Solution

12. The oxidation number of Mn in the product of alkaline oxidative fusion of MnO_{2} is

- Watch Video Solution

13. Out of the following, how many oxides are acidic. MnO, $\mathrm{Mn}_{2} \mathrm{O}_{3}, \mathrm{MnO}_{2}, \mathrm{MnO}_{3}, \mathrm{Mn}_{2} \mathrm{O}_{7}$.

D View Text Solution

14. How many of the transition elements are called Platinum metals.

- Watch Video Solution

15. (A) light blue coloured compound on heating will convert into black
(B) which reacts with glucose gives red compound (C) and (A) reacts with ammonium hdyroxide in excess in presence of ammonium sulphate give blue compound (D). What is (A), (B), (C) and (D)?

- Watch Video Solution

$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{Cl}_{2}$ and 0.02 mole of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{SO}_{4}$ are present

 in 200 cc of a solution X. The number of moles of the precipitates Y and Z that are formed when the solution X is treated with excess silver nitrate and excess barium chloride are respectively
- Watch Video Solution

2. 50 ml of 0.2 M solution of a compound with empirical formula $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ on treatment with excess of $\mathrm{AgNO}_{3}(a q)$ yields 1.435 g of AgCl . Ammonia is not removed by treatment with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. The formula of the compound is

- Watch Video Solution

3. The ion $\mathrm{Co}(e n) \mathrm{Cl}_{2} \mathrm{Br}_{2}^{-}$is expected to have x isomers. Find the value of x.
4. How many of the following compounds have optical isomers?
(i) $\left[\mathrm{Co}(e n)_{3} \mathrm{Br}_{3}\right.$, (ii) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Br}_{3}\right]$
(iii) $\left[\mathrm{Co}(e n)_{2} \mathrm{Br} r_{2}\right] \mathrm{Br}$, (iv) $\left[\mathrm{Co}(e n)\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Br} r_{2}\right] \mathrm{Br}$

D View Text Solution

5. Considering $\mathrm{H}_{2} \mathrm{O}$ as a weak field ligand, the number of unpaired electrons in $\left[M n\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ will be (At. no. of $M n=25$)

- Watch Video Solution

6. What is the crystal field stabilization energy for high spin d^{6} octahedral complex?

- Watch Video Solution

7. How many of the following complexes are optically inactive?
(i) trans- $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{I}_{2}\right]^{+}$
(ii) cis- $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}(e n)_{2}\right]^{3+}$
(iii) trans- $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}(e n)_{2}\right]^{3+}$

- Watch Video Solution

8. The coordination number of Fe (II) in oxyhaemoglobin is

- Watch Video Solution

9. If PQRS are four different ligands, then how many geometric isomers will be found for square planar $[P t . P Q R S]^{2+}$?

- Watch Video Solution

10. Among the following complexes : $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right],\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$, $\mathrm{Na}_{3}\left[\mathrm{Co}(o x)_{3}\right],\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}, \quad \mathrm{~K}_{2}\left[\operatorname{Pt}(\mathrm{CN})_{4}\right] \quad$ and $\left[\mathrm{Zn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left(\mathrm{NO}_{3}\right)_{2}\right]$

The diamagnetic are .

- Watch Video Solution

11.

Among
$\left[\mathrm{Ni}(\mathrm{CO})_{4}\right],\left[\mathrm{NiBr}_{4}\right]^{2-},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}, \mathrm{Na} 3\left[\mathrm{CoF}_{6}\right], \mathrm{BaO}_{2}$ and CsO_{2}
,the total number of diamagnetic compounds is

- Watch Video Solution

12. The volume (in $m L$) of $0.1 \mathrm{MAgNO}_{3}$ required for complete precipitation of chloride ions present in 30 mL of 0.01 M solution of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$, as silver chloride is close to:
13. $E D T A^{4-}$ i9s ethylenediamine tetraacetate ion The total number of $N-C O-O$ bond angles in $[C o(E D T A)]^{-1}$ complex ion is .

- Watch Video Solution

14. Among the complex ions,

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right)_{2} \mathrm{Cl}_{2}\right]^{+},\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{3-},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right.
$$ and $\left.\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]^{2+}\right]$, the number of complex ion (s) that show(s) cis-trans isomerism is

- Watch Video Solution

15. Find the total no. of unpaired $\mathrm{e} \sim$ present in the following complexes.
(i) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$, (ii) $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$
(iii) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$, (iv) $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$
16. The number of structural and configurational isomers of a bromo compound, $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{Br}$, formed by the addition of HBr to 2-pentyne respectively, is:

- Watch Video Solution

2.

.

Find the sum of total number of isomeric chlorides obtained in these reactions (consider only the major products).

- View Text Solution

3. How many total number of alkenes are possible by dehydrobromination of 3-bromo-3-cyclopentylhexane using alcoholic KOH ?
4. How many of the following compounds will give white precipitate with aqueous AgNO_{3} ?

- View Text Solution

5. 2-bromopentane is treated with alcoholic KOH solution the reaction respectively are :

- Watch Video Solution

6. In the following sequence of reactions
$\mathrm{CH}_{3}-\mathrm{Br} \xrightarrow{\mathrm{KCN}} A \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} B \xrightarrow[\text { ether }]{\mathrm{LiAlH}_{4}} C$
How many $s p^{3}$ hybridized atoms are present in product C

- Watch Video Solution

7. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl} \xrightarrow{\mathrm{NaCN}} X \xrightarrow{\mathrm{Ni} / \mathrm{H}_{2}} Y \xrightarrow[\text { anhydride }]{\text { Acetic }} Z$

Find the sum of carbon and hydrogen atoms in product Z.

- View Text Solution

8. Consider the following reaction.
$\mathrm{C}_{2} \mathrm{H}_{5} I \xrightarrow{\mathrm{Alc} . \mathrm{KOH}} X \xrightarrow{\mathrm{Br}_{2}} Y \xrightarrow{\mathrm{KCN}} Z$
How many CN group are present in product Z ?

- Watch Video Solution

9. How many following reactions are correct?
(i) $R X+A g C N \rightarrow R N C$
(ii) $R X+K C N \rightarrow R C N$
(iii) 'RX + KNO_(2) to
(iv) $\mathrm{RX}+\mathrm{AgNO}_{2} \rightarrow \mathrm{R}-\mathrm{O}-\mathrm{N}=\mathrm{O}$
10. In the following sequence of reaction
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\text { P+ I }} \mathrm{I} A \xrightarrow[\text { ether }]{\mathrm{Mg}} B \xrightarrow{\mathrm{HCHO}} C \xrightarrow{\mathrm{H}_{2} \mathrm{O}} D$
Find the number of -OH group in compound D .

- View Text Solution

11. Find the total number of lone pair in compound Z which is formed as follows:
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \xrightarrow{\text { aq. } \mathrm{NaOH}} X \xrightarrow{\mathrm{Al}_{2} \mathrm{O}_{3}} Y \xrightarrow{\mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}} Z$

- View Text Solution

12. An organic compound A with molecular formula $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ on treatment with alcoholic KOH gave two isomeric compounds B and C with the formula $\mathrm{C}_{4} \mathrm{H}_{8}$ On ozonolysis, B gave only one product $\mathrm{CH}_{3} \mathrm{CHO}$ while C gave two different products. Find the sum of carbon atoms in compound A, B and C .
13. Consider the following compound:

How many following statements are correct?
(I) Loss of Br (a) atom in dehydrobromination reaction results in the formation of the most reactive double bond towards hydrogenation reaction.
(II) Removal of Br (c) atom results in the formation of the most stable carbocation.
(III) The above compound contains five asymmetric C atoms.
(IV) The above compound does not show geometrical isomers.

- View Text Solution

14. IUPAC name of DDT is 2,2-bis (p -chlorophenyl)-1,1,1 -trichloroethane.

How many reactive chlorine atoms are there in the compound?
15. How many methylanilines are formed when 3 -methylchlorobenzene is treated with sodamide in liquid ammonia?

- View Text Solution

Chapter 25 Alcohols Phenols And Ether

1. Among the given hydroxyl compound how many will give precipitate immediately when treated with concentrated hydrochloric acid and anhydrous zinc chloride. 3-methyl-2-butanol, 3-methyl-1-butanol, 1-butanol, 2-methyl-2-butanol, 2,3-dimethyl-2-butanol, 2,3-dimcthyl-1-butanol

- View Text Solution

2.

How many products are formed in above reaction?
3. An ether $\mathrm{A}\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}\right)$ when heated with excess hot concentrated HI produced two alkyl halides which on hydrolysis give B and C. Oxidation of B gives an acid D whereas oxidation of C gives ketone E. Both B and C give haloform reaction. Identify A to E along with their structures and the given reactions.

- Watch Video Solution

4. How many of the given reaction will form tert-Butyl ethyl ether?
I) tert - Butanol + Ethanol $\xrightarrow{\mathrm{H}^{+}}$
(II) tert-Butyl bromide + Sodium ethoxide \rightarrow
(III) Sodium tot-butoxide + Ethyl bromide \rightarrow
(iv) Isobutene + Ethanol $\xrightarrow{\mathrm{H}^{+}}$

- View Text Solution

5. Which of the following statements is/ are true?
(I) Ethers are soluble in cone. $\mathrm{H}_{2} \mathrm{SO}_{4}$ but separate out on addition of water.
(II) Ethers are used as solvents for $B F_{3}$ and Grignard reagent.
(III) Mononitration of p -methylanisolc gives 2-nitro-4-methylanisole (IV) Monobromination ofp-ethoxyphenol gives 2-bromo-4-ethoxyphenol (V) 4-Chlorophenol (I) will dissolve in NaOH but 4-chloro-1 -methyl benzene (II) will not.
(VI) 4-Methyl benzoic (111) acid will dissolve in aq. NaHCO_{3}, but 4methyl phenol (IV) will not.
(VII) 2,4,6-Trinilrophenol (V) will dissolve in aq. NaHCO_{3} but 4-methyl phenol (VI) will not.
(VIII) 4-Ethyl phenol (VII) will dissolve in aq. NaOH but ethyl phenyl ether (V111) will not.

- View Text Solution

6. Generally, phenols, 1,3,1,4-benzenediols and 1,3,5- benzenetriols do not react with $\mathrm{NaBH}_{4} / \mathrm{H}_{3} \mathrm{O}^{+}$, However, 1,3,5-benzenetriol (phloroglucinol) gives a high yield of product (B).

The compound (B) has how many functional groups on benzene ring?

- View Text Solution

7. underset("Chiral ether")(A(C_(5)H_(10)O) overset(Hot HI) to

C_(5)H_(10)I_(2)(B) overset("hot")underset(KOH + EtOH) to
How many members are there in the ring of structure of A ?

- View Text Solution

8.

How many among the below given compounds correctly match the products of the given reaction sequence?

- View Text Solution

9. The reactivity of compound Z with different halogens under appropriate conditions is given below:

How many among the below given statements correctly explains pattern of elctrophilic substitution?
(I) The steric effect of the halogen.
(II) The steric effect of the tot-butyl group.
(III) The electronic effect of the phenolic group.
(IV) The electronic effect of the tot-butyl group.
(V) The mesomeric effect of tot-butyl group.

- View Text Solution

10. When phenol is reacted with CHCl_{3} and NaOH followed by acidification, salicylaldehyde is obtained. How many among following
species are involved in the above mentioned reaction as intermediates?

- View Text Solution

11. How many total number of'carbon has $s p^{2}$ hybridization in 5 . the compound X and Y ?

- View Text Solution

12. Total number of isomers, considering only structural isomers of cyclic ethers with the molecular formula $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$ is \qquad

- Watch Video Solution

13. What amount of bromine will be required to convert $2 g$ of phenol into

2, 4, 6 - tribromphenol
14. Calculate the number of metamers represented by molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$.

- Watch Video Solution

15. How many number of dihydric phenols possible with the molecular formula
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$.

- Watch Video Solution

Chapter 26 Aldehydes Ketones And Carboxylic Acid

1. Acetic acid is dissolved in water having oxygen as ${ }^{18} O$ Howmany ${ }^{18} O$ atom will be present in the product molecule?

2.

How many number of $s p^{2}$ hybridised carbon atoms are there in the product Z.

- View Text Solution

3. How many membered ring will be formed in the product P of the following reaction.

- View Text Solution

4. Compound A is obtained by following reaction.
$\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\stackrel{(i) \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}}{\longrightarrow}}[A]$
How many following statement(s) is(are) true about A ?
(i) It gives red colour with blue litmus solution.
(ii) It decomposes NaHCO_{3}, solution and evolves CO_{2} gas.
(iii) It decolourises bromine water colour.
(iv) It reacts with 2,4-dinitrophenyl-hydrazine
(v) Product A will undergo acid catalysed halogenation.

- View Text Solution

5. How many of the following compound is decarboxyl ated on heating ? $\mathrm{CH}_{2} \mathrm{COOH}$
(i) ${ }^{\mid}$, (ii) $\mathrm{C}_{2} \mathrm{H}_{5}(\mathrm{COOH})_{2}$
$\mathrm{CH}_{2} \mathrm{COOH}$
(iii) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOH}$, (iv)

D View Text Solution

6. How many of the following compounds can be used as an acylating agent ?
(i) $\mathrm{CH}_{3} \mathrm{COCl}$, (ii) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$
(iii) $\mathrm{CH}_{3} \mathrm{COOH}$,(iv) $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCl}$.
7. In the scheme given below, how many number of intramolecular aldol condensation products formed from ' Y '?

- View Text Solution

8. Among the following, how many number of reaction(s) produce(s) benzaldehyde?

- View Text Solution

9. Find the number of reactants among the given options which does not undergo Michael addition?
(i) $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{CH}=\mathrm{CHCOCH}_{3}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$
(II) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{COC}_{6} \mathrm{H}_{5}+\mathrm{CH}_{2}\left(\mathrm{COOC}_{2} \mathrm{H}_{5}\right)_{2}$
(III)
(IV) $\mathrm{CH}_{2}-\mathrm{CHCOCH}_{3}+\mathrm{CH}_{3} \mathrm{COCH}_{3}$

- View Text Solution

10. How many number of aldol reaction(s) occurs in the given transformation?

- View Text Solution

11. How many number of organic compounds among the following compounds are present in the reaction mixture after the completion of reactions I and II?
12. Find the total number of product in the given reaction

- View Text Solution

13. How many steps are there in the mechanism of the following reaction?

- View Text Solution

14. An unknown compound of car bon, hydrogen and oxygen contains 69.77% carbon and 11.63% hydrogen and has a molecular weight of 86 . It does not reduce Fehling solution, but forms a bisulphite addition compound and gives a positive iodoform test. How many possible structures can be drawn for the unknown compound?
15. How many total number of ketonic groups are present in compound C and D in the given reaction sequence?

- View Text Solution

Chapter 27 Amines

1. How many alkenes can be formed when n-butylamine is treated with nitrous acid

- Watch Video Solution

2.

How many statements are correct?
(I) Pyrrole is more basic than pyridine.
(II) Pyridine is more basic than pyrrole and aniline.
(III) Aniline is more basic than pyridine.
(IV) All are aromatic bases.

- View Text Solution

3. Consider the following reaction:
(i)

Find the sum of total number of nitrogen atoms, which are present in products $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .

- View Text Solution

4. Find the difference between the number of products formed in given reactions.
(i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}^{+} \mathrm{Me}_{3} \mathrm{OH}$
(ii)

View Text Solution

Total number of Br atom in produc t " P " is-

- View Text Solution

6. $\mathrm{Ph}-\mathrm{NH}_{2} \xrightarrow[0-5^{\circ} \mathrm{C}]{\mathrm{NaNO}_{2} / \mathrm{HCl}} \xrightarrow[\text { dil. } \mathrm{HCl}]{\mathrm{Ph}-\mathrm{NH}_{2}}(\mathrm{X})$

Find the sum of number of nitrogen atoms present in (X) and the total number of stereoisomers of (X) formed.

- View Text Solution

7.

E has how many halogens?

- View Text Solution

8. In following conversion, find the number of carbon atoms in products.

- View Text Solution

9.

Find the number ofunsaturaled carbon in the product

- View Text Solution

Chapter 28 Biomolecules

1. For 'invert sugar', the total number of correct statement(s) is(are)
(Given : specific rotations of (+) -sucrose, (+)-maltose, L-(-)-glucose and L-
$(+)$ fructose in aqueous solution are $+66^{\circ},+140^{\circ},-52^{\circ}$ and $+92^{\circ}$ respectively)
(I) 'invert sugar' is prepared by acid catalyzed hydrolysis of maltose.
(II) 'invert sugar' is an equimolar mixture of $D-(+) \sim g i u c o s e ~ a n d ~ D-(-)-$ fruetose.
(III) specific rotation of invert sugar' is -20°.
(IV) on reaction with $B r_{2}$ water, 'invert sugar' forms saccharic acid as one of the products.

- View Text Solution

2. How many dipeptides are possible from two molecules of a typical α amino acid?

- Watch Video Solution

3. The total number of basic groups in the following form of lysine is

- View Text Solution

4. A decapeptide (Mol. Wt. 769) on complete hydrolysis gives glycine (Mol. Wt. 75), alanine and phenylalanine.

Glycine contributes 47.0% to the total weight of the hydrolysed products. The number of glycine units. Present in the decapeptide is.

- Watch Video Solution

5. When the following aldohexose exists in its D-configuration, the total number of stereoisomers in its pyranose form is :

$$
\mathrm{CHO}-\mathrm{CH}_{2}-\mathrm{CHOH}-\mathrm{CHOH}-\mathrm{CH}_{2} \mathrm{OH}
$$

- View Text Solution

6. A tetrapeptide has -COOH group on alanine. This produces glycine (Gly), valine (Val), phenyl alanine (Phe) and alanine (Ala), on complete hydrolysis. For this tetrapeptide, the number of possible sequences (primary structures) with $-\mathrm{NH}_{2}$ group attached to a chiral centre is :

- Watch Video Solution

7. The specific optical rotations of pure a- and b-D-mannopyranose are + 29.3° and -17.0 , respectively. When either form is dissolved in water, specific optical rotation of the equilibrium mixture is found to be $+14.2^{\circ}$.

Calculate the percentage of a anomer at equilibrium.

- View Text Solution

8. Penicillin, the common antibiotic, has following structure :

Find the number of different functional groups present in it.

- View Text Solution

9. The enzyme cytochrome C , involved in oxidation-reduction processes in the living system, has $0.43 \% \mathrm{Fe}$ and $1.48 \% \mathrm{~S}$. Calculate the number of S atoms in the enzyme per Fe atom.
10. A strongly alkaline solution of a monoaminodicarboxylic acid contains how many basic groups ?
