đず doubtnut

India's Number 1 Education App

PHYSICS

AAKASH INSTITUTE ENGLISH

Mock Test 29: PHYSICS

Example

1. The magnetic field $d B$ due to a small element
at a distance r and carrying current i is

> A. $\overline{d B}=\frac{\mu_{0}}{4 \pi} i\left(\frac{\overline{d l} \times \bar{r}}{r}\right)$
> B. $\overline{d B}=\frac{\mu_{0}}{4 \pi} i^{2}\left(\frac{\overline{d l} \times \bar{r}}{r}\right)$
> C. $\overline{d B}=\frac{\mu_{0}}{4 \pi} i\left(\frac{\overline{d l} \times \bar{r}}{r^{2}}\right)$
> D. $\overline{d B}=\frac{\mu_{0}}{4 \pi} i\left(\frac{\overline{d l} \times \bar{r}}{r^{3}}\right)$

Answer: D

D Watch Video Solution

2. a very long straight wire carries a current I. at the instant when are charge $-Q$ at point P
has velocity v as shown in figure the force on the charge is
A. opposite to OX
B. along OX
C. opposite to OY
D. along OY

Answer: C

- Watch Video Solution

3. Two coils are having magnetic field B and $2 B$

at their centres and current i and $2 i$ then the ratio of their radius is
A. 1:2
B. 2:1
C. 1:1
D. $4: 1$

Answer: C

- Watch Video Solution

4. A and B are two concentric circular conductors of centre O and carrying currents
i_{1} and i_{2} as shown in the figure. The ratio of their radii is $1: 2$ and ratio of the flux densities at O due to A and B is $1: 3$. The value of i_{1} / i_{2} will be :

A. $\frac{1}{6}$
B. $\frac{1}{4}$
C. $\frac{1}{3}$
D. $\frac{1}{2}$

Answer: A

D Watch Video Solution

5. A coil having N turns carry a current I as
shown in the figure. The magnetic field
intensity at point P is

$$
\begin{aligned}
& \text { A. } \mu_{0} N I \frac{R^{2}}{\left(R^{2}+x^{2}\right)^{3}} / 2 \\
& \text { B. } \mu_{0} N I \frac{R^{2}}{\left(R^{2}+x^{2}\right)^{1}} / 2 \\
& \text { C. } \mu_{0} N I \frac{R^{2}}{2} \frac{\left(R^{2}+x^{2}\right)^{3}}{2} \\
& \text { D. } \mu_{0} N I 2 \frac{R^{2}}{\left(R^{2}+x^{2}\right)^{3}} / 2
\end{aligned}
$$

Answer: C

D Watch Video Solution

6. a vertical wall is in South north direction. a
current carrying where is kept in the world
such that to the west of the wall magnetic
field due to wire is towards south then the wire where should be
A. vertical and current in downwards
B. horizontal and current is toward West

C. vertical and current in upward

D. horizontal and current is towards east

Answer: C

- Watch Video Solution

7. The expression for magnetic induction inside a solenoid of length L carrying a current I and having N number of turns is
A. $\mu_{0} \frac{n}{4} \pi l$
B. $\mu_{0} \frac{l}{4} \pi n$
C. $\frac{\mu_{0}}{4} \pi n l$
D. $\mu_{0} n l$

Answer: D

D Watch Video Solution

8. The current on the winding of a toroid is 2
A. It has 400 turns and mean circumferential
length is 40 cm . With the help of search coil and charge measuring instrument the
magnetic field is found to be 1 T . The

susceptibility is

A. 2000
B. 2500
C. 1000
D. 1500

Answer: B

- Watch Video Solution

9. Two long parallel wires are at a distance 2d apart. They carry steady equal current flowing out of the plane of the paper as shown. The variation of the magnetic field along the line $x x^{\prime}$ is given by :
A.
B.
c.
D.

Answer: B

10. the force on current carrying wire placed in

 uniform magnetic field B as shown in figure is
A. $B I L(-\hat{j})$
B. $B I L(\hat{j})$
c. $B I L(-\hat{i})$
D. Zero

Answer: D

D Watch Video Solution

11. a straight wire current element is carrying
current 100 A as shown in figure. the magnitude of magnetic field at a point P.
A. $5 \times 10^{-3} \mathrm{~T}$
B. $2.5 \times 10^{-6} \mathrm{~T}$
C. $0.8 \times 10^{-5} \mathrm{~T}$
D. $5 \times 10^{-6} \mathrm{~T}$

Answer: D

D Watch Video Solution

12. A long thick conducting cylinder of radius
' R ' carries a current uniformly distributed over
its cross section :
A. the magnetic field strength is maximum
on the surface
B. the strength of the magnetic field inside
the conductor will vary as inversely

proportional to r where r is the distance

from the axis.
C. the strength of the magnetic field outside the conductor varies as inversely
e proportional to $1 / r^{\wedge} 2$ where r is the
distance from the axis

D. both (2) \& (3)

Answer: A

D Watch Video Solution

13. in given figure X and Y are two long straight parallel conductor each carrying a
current 2 A. the force per unit length on each
conductor is F. when the current in each is
changed to 1 A and reversed in direction. the
force per unit length on each is now
A. $\frac{F}{4}$ and unchanged in direction
B. $\frac{F}{2}$ and reversed in direction
C. $\frac{F}{2}$ and changed in direction
D. $\frac{F}{4}$ and reversed in direction

Answer: A

- Watch Video Solution

14. the value of $\oint \bar{B} . \overline{d l}$ for the loop L is

A. $\mu_{0}\left(l_{1}+l_{2}-l_{4}\right)$
B. $\mu_{0}\left(l_{1}+l_{2}-l_{3}+l_{4}\right)$

$$
\begin{aligned}
& \text { C. } \mu_{0}\left(l_{1}-l_{2}+l_{4}\right) \\
& \text { D. } \mu_{0}\left(l_{1}+l_{4}+l_{3}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

15. A current i flows along the length of an infinitely long, straight, thin-walled pipe. Then,
(a) the magnetic field at all points inside the pipe is the same, but not zero
(b) the magnetic field at any point inside the
pipe is zero
(c) the magnetic field is zero only on the axis of the pipe
(d) the magnetic field is different at different points inside the pipe
A. the magnetic field at all points inside the pipe is the same but not zero
B. the magnetic field at any point inside
the pipe is zero
C. the magnetic field is zero only on the axis of the pipe
D. the magnetic field is different at different points inside the pipe

Answer: B

D Watch Video Solution

16. Three long, straight and parallel wires
carrying currents are arranged as shown in
the figure. The wire C which carries a current of 5.0 amp is so placed that it experiences no force. The distance of wire C from wire D is
then

A. 9 cm
B. 7 cm
C. 5 cm
D. 3 cm

Answer: A
17. the net force on the loop is

A. $2.5 \times 10^{-7} \mathrm{~N}$ away from wire
B. $37 \times 10^{-7} \mathrm{~N}$ onwards wire
C. $25 \times 10^{-7} \mathrm{~N}$ onwards wire
D. $3.7 \times 10^{-7} \mathrm{~N}$ away from wire

Answer: C
(D) Watch Video Solution

