©゙’ doubtnut

India's Number 1 Education App

PHYSICS

AAKASH INSTITUTE ENGLISH

Mock Test 36

Example

1. Two thin lenses of focal lengths 20 cm and

25 cm are placed in a contact. The effective power of the combination is
A. 10 D
B. 9 D
C. 8 D
D. 5 D

Answer: B

D Watch Video Solution

2. In case of myopia
A. The image of far objects is formed
behind the retina
B. The image of far objects is formed in
front of retina
C. A concave lens should be used for correction
D. Both (2) \& (3)

Answer: D
3. A convex lens causes a ray of light to converge, for this reason it may be used to correct
A. Near sightedness
B. Far sightedness
C. Astigmatism
D. Both (2) \& (3)

Answer: B
4. A person cannot see objects clearly beyond

125 cm . The power of the lens to correct the vision is
A. $-2 D$
B. $+2 D$
C. $-0.8 D$
D. $+0.8 D$

Answer: C

- Watch Video Solution

5. In a compound microscope, the intermediate image is
A. Virtual, inverted and diminished
B. Real, inverted and magnified
C. Virtual, erect and magnified
D. Real, inverted and diminished

Answer: B

D Watch Video Solution

6. If f_{o} and f_{e} are the focal lengths of the objective lens and eye-piece lens respectively for a telescope, the length of telescope in normal adjustment is
A. $\left|f_{o}\right|-\left|f_{e}\right|$
B. $2\left|f_{e}\right|-\left|f_{o}\right|$
C. $\left|f_{o}\right|+\left|f_{e}\right|$
D. $2 \sqrt{\left|f_{o}\right|\left|f_{e}\right|}$

Answer: C

7. In a laboratory five convex tenses
$L_{1}, L_{2}, L_{3}, L_{4}$ and L_{5} of focal lengths, $3 \mathrm{~cm}, 6$
$\mathrm{cm}, 9 \mathrm{~cm}, 12 \mathrm{~cm}$ and 18 cm respectively are available. If two of these lenses form a telescope of length 12 cm and magnifying power 3, then objective and eye piece lenses respectively are
A. L_{5}, L_{2}
B. L_{3}, L_{1}
C. L_{4}, L_{2}

D. L_{2}, L_{1}

Answer: B

- Watch Video Solution

8. The minimum magnification produced by
simple microscope of focal length 5 cm is
A. 6
B. 5
C. 4

D. 10

Answer: A

- Watch Video Solution

9. The difference between maximum

magnification and minimum magnification of a
simple microscope is
A. 1
B. 2
C. 3
D. 4

Answer: A

D Watch Video Solution

10. A person cannot see objects clearly that are closer that 1 m and farther than 5 m . To correct the eye vision, the person will use
A. Bifocal lenses of power -3 D and +0.2 D
B. Bifocal lenses of power -2.5 D and +3.5 D
C. Bifocal lenses of power -1.5 D and +5D
D. Bifocal lenses of power -0.2 D and +3D

Answer: D

D Watch Video Solution

11. Magnifying power of an astronomical telescope is M.P. If the focal length of the eyepiece is doubled, then its magnifying power will become
A. 2 M
B. $\frac{M}{2}$
C. 4 M
D. M

Answer: B

D Watch Video Solution

12. A far sighted person cannot see object clearly al a distance less than 75 cm from his
eyes. The power of the lens needed to read an object al 25 cm is
A. $+1.50 D$
B. $+2.67 D$
C. $-2.67 d$
D. $-1.50 d$

Answer: B
(Watch Video Solution
13. Select the correct option
A. The aperture and focal length of the
objective lens of microscope is smaller
than eye-piece lens
B. The aperture and focal length of the
objective lens of telescope is large than
eye-piece lens
C. The magnifying powers of astronomical
telescope and terrestrial telescope are
same
D. All of these

Answer: D

D Watch Video Solution

14. In order to increase the magnifying power of a telescope
A. The objective should have large focal
length and the eye-piece should have
small
B. The objective should have small focal length and the eye-piece should have large
C. The focal lengths of both objective and
eye- piece lens are small
D. The focal lengths of both objective and
eye piece lens are large

Answer: A

15. Identify the correct description of the below figure

A. A correction for shortsightedness
B. B represents farsightedness
C. C correction for farsightedness

D. All of these

Answer: D

D Watch Video Solution

16. The shape of reflected wavefronts in case of
reflection of plane wave front from concave mirror is
A. Spherical
B. Plane

C. Cylindrical

D. Both (2) \& (3)

Answer: A

D Watch Video Solution

17. For point source, the wavefront is
A. Cylindrical always
B. Spherical always
C. Plane always

D. May be spherical or plane, depending

upon distance

Answer: D
(Watch Video Solution
18. The value of angle r in figure below is

A. $r=\sin ^{-1}\left(\frac{1}{2}\right)$
B. $r=\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$
C. $r=\sin ^{-1}\left(\frac{8}{15}\right)$
D. $r=\sin ^{-1}\left(\frac{4}{15}\right)$

D Watch Video Solution

19. Huygen's wave theory explain the phenomena of
A. Reflection
B. Refraction
C. Particle nature of light
D. Both (1) \& (2)

Answer: D

D Watch Video Solution

20. Huygen's principle allows us to determine,
A. Shape of wavefront at any instant, if the
shape of wavefront at earlier time is not
known.
B. Shape of wavefront at any instant, if the
shape of wavefront at earlier time is
C. Shape of wavefront at any time, if the
shape of wavefront at next time interval
is known
D. Both (1) \& (3)

Answer: B

D Watch Video Solution

21. According to Huygen's principle
A. Each point of a wavefront is a source of
secondary disturbance
B. The wavelets emanating from points on
wavefront spread out in all directions
with the speed of wave
C. The direction of ray is always in the
direction given by tangent to the
wavefront
D. Both (1) \& (2)
22. How is a wavefront related to the direction of corresponding rays ?

D Watch Video Solution

23. When source is linear, the wavefront is
A. Spherical
B. Cylindrical

C. Circular

D. All of these

Answer: B
(Watch Video Solution

