

India's Number 1 Education App

CHEMISTRY

BOOKS - DISHA PUBLICATION CHEMISTRY (HINGLISH)

CHEMICAL BONDING AND MOLECULAR STRUCTURE

Jee Main 5 Years At Glance

1. Which of the following conversions involves change in both shape and hybridization?

A. $H_2O o H_3O^+$

 ${\rm B.}\,BF_3 \to BF_4^{\;-}$

 $\mathsf{C.}\,CH_4C_2H_6$

D. ${NH_3}
ightarrow {NH_4^+}$

Answer: B

2. The incorrect geometry is represented by :

A. NF_3 trigonal planar

B. BF_3 -trigonal planar

C. AsF_5 - trigonal bipyramidal

D. H_2O – bent

Answer: A

3. Which of the following compounds contain(s)

no covalent bond(s)?

 $KCl, PH_3, O_2, B_2H_6, H_2SO_4$

A. KCl, B_2H_6, PH_3

B. KCl, H_2SO_4

C. KCl

D. $KCl. B_2H_6$

Answer: C

4. Total number of lone pair of electrons in I_3^- ,

ion is:

A. 3

B. 6

C. 9

D. 12

Answer: C

5. sp^3d^2 hybridization is not displayed by :

A. BrF_5

B. SF_6

 $\mathsf{C.}\left[CrF_{6}\right]^{3-}$

D. PF_5

Answer: D

6. Which of the following is paramagnetic?

A. NO^-

$\mathsf{B.}\,CO$

 $\mathsf{C}.\,O_2^{2\,-}$

D. B_2

Answer: D

7. Which of the following species is not paramagnetic?

A. NO

B. CO

 $\mathsf{C}.\,O_2$

D. B_2

Answer: B

8. The group of molecules having identical shape is:

A. PCl_5IF_5, XeO_2F_2

 $B. BF_3, PCl_3, XeO_3$

 $C. SF_4, XeF_4, CCl_4$

D. $CIF_3, XeOF_2, XeF_3^+$

Answer: D

Watch Video Solution

9. The species in which the N-atom is in a state

of sp hybridisation is

A. NO_3^-

B. NO_2

$\mathsf{C.}\,NO_3^{\,+}$

$\mathrm{D.}\,NO_2^{\,-}$

Answer: C

10. The intermolecular interaction that is dependent on the inverse cube of distance between the molecules is

A. London force

B. hydrogen bond

C. ion-ion interaction

D. ion-dipole interaction

Answer: B

> Watch Video Solution

11. Which of the following has unpaired electron(s)?

A. N_2

 $\mathsf{B.}\,NO_2^{\,-}$

 $\mathsf{C.}\,N_2^{2\,+}$

 $\mathsf{D.}\,O_2^{2\,-}$

Answer: B

12. Which one of the following properties is not

shown by NO ? .

A. It is diamagnetic in gaseous state

B. It is neutral oxide

C. It combines with oxygen to form nitrogen

dioxide

D. It's bond order is 2.5

Answer: A

> Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 1 Electrovalent Covalent And Coordinate Bonding **1.** Out of the following which compound will have electrovalent bonding

A. P and CI

 $B. NH_3$ and BF_3

C. H and Ca

D. H and S

Answer: C

2. Which of the following has a giant covalent

structure?

A. PbO_2

B. SiO_2

 $\mathsf{C.}\, NaCl$

 $\mathsf{D}.\,AlCl_3$

Answer: C

3. Which one of the following contains a co-

ordinate covalent bond?

A. H_2O

 $\mathsf{B.}\,HCl$

 $C. BaCl_2$

D. $\stackrel{+}{N_2}H_5$

Answer: D

4. The number of dative bonds in sulphuric acid

molecule is

A. 0

B. 1

C. 2

D. 4

Answer: C

5. Which of the following statements is not true

about covalent compounds ?

A. They may exhibit space isomerism

B. They have low melting and boiling points

C. They show ionic reactions

D. They show molecular reactions

Answer: C

6. Indicate the nature of bonding in CCl_4 and CaH_2

A. Covalent in CCI_4 and electrovalent in CaH_2

B. Electrovalent in both CCI_4 and CaH_2

C. Covalent in both CCI_4 and CaH_2

D. Electrovalent in CCI_4 and covalent in

 CaH_2

Answer: A

7. Lattice energy of an ionic compound depedns upon :

A. charge on the ion and size of the ion

B. packing of ions only

C. size of the ion only

D. charge on the ion only

Answer: A

8. Which compound will show the highest lattice energy?

A. KF

B. NaF

C. CsF

D. RbF

Answer: B

9. The compound that has the higest ionic character associated with the X-Cl bond is :

A. PCl_5

B. BCl_3

 $\mathsf{C.} \mathit{CCl}_4$

D. $SiCl_4$

Answer: D

10. Which combination of atoms can form a

polar covalent bond?

A. H and H

B. H and F

C. N and N

D. Na and F

Answer: B

11. Which of the following pairs will form the most stable ionic bond ?

A. Na and Cl

B. Mg and F

C. Li and F

D. Na and F

Answer: B

12. In which of the following species central atom is NOT surrounded by exactly 8 valence electrons ?

- A. $BF_4^{\ -}$
- B. NCl_4
- $\mathsf{C.}\,PCl_4^{\,+}$
- D. SF_4

Answer: D

13. Which of the following does not apply to metallic bond ?

A. Overlapping valence orbitals

B. Mobile valency electrons

C. Delocalized electrons

D. Highly directed bonds

Answer: D

14. Which set contains only covalently bonded molecules ?

A. BCl_3 , $SiCl_4PCl_3$

B. NH_4, Br, N_2H_4HBr

 $\mathsf{C}. I_2, H_2S, NaI$

D. Al, O_3As_4

Answer: A

15. Among LiCI, RbCI, $BeCI_2$ and $MgCI_2$ the compound with the greatest and least ionic character respectively are

A. LiCI and RbCl

B. RbCl and $BeCl_2$

 $C. MgCl_2$ and $BeCl_2$

D. RbCl and $MgCl_2$

Answer: B

16. The correct sequence of increasing covalent character is represented by

A. $LiCl < NaCl < BeCl_2$

 $\mathsf{B.} \textit{BeCl}_2 < \textit{LiCl} < \textit{NaCl}$

 $\mathsf{C.} \ NaCl < LiCl < BeCl_2$

 $\mathsf{D.} \ BeCl_2 < NaCl < LiCl$

Answer: C

17. Which of the following statement is correct?

A. $FeCl_2$ is more covalent than $FeCl_3$

B. $FeCl_3$ is more covalent than $FeCl_2$

C. Both $FeCl_2$ and $FeCl_3$ are equally

covalent.

D. $FeCl_2$ and $FeCl_3$ do not have any

covalent character.

Answer: B

1. A pair of compounds which has odd electrons in the group NO, CO, CIO, N_2, SO_2 and O_3 are

A. No and CIO_2

B.CO and SO_2

 $C. CIO_2$ and CO

 $D. SO_2$ and O_3

Answer: A

- **2.** Point out incorrect statement about resonance
 - A. Resonance structures should have equal energy
 - B. In resonance structures, the constituent

atoms should be in the same position

C. In resonance structures, there should not

be the same number of electron pairs

D. Resonance structures should differ only in

the location of electrons around the

constituent atoms

Answer: C

Watch Video Solution

3. In the cyanide ion, the formal negative charge

is on :

B. N

C. Both C and N

D. resonate between C and N

Answer: B

Watch Video Solution

4. Among the following, the species having the smallest bond is

A. NO^-

B. *NO*⁺

 $\mathsf{C}.O_2$

 $\mathsf{D}.NO$

Answer: B

O View Text Solution

5. The bond length of C = O bond in CO is 1.20Å and in CO_2 it is 1.34Å Then C = O bond length in CO_3^{2-} will be .

A. 1.50Å

B. 1.34Å

C. 1.29Å

D. 0.95Å

Answer: C

Watch Video Solution

6. Which of the following would have a permanent dipole moment ?

A.
$$SiF_4$$

B. SF_4

$\mathsf{C}. XeF_4$

D. BF_3

Answer: B

Watch Video Solution

7. Dipole moment is shown by

A. cis-1, 2-dichloroethene

B. trans-1, 2-dichloroethene

C. trans-2, 3-dichloro-2 pentene

D. Both (a) and (c)

Answer: D

Watch Video Solution

8. Which of the following salt shows maximum

covalent character?

A. $AlCl_3$

B. $MgCl_3$

C. CsCl

D. $LaCl_3$

Answer: A

9. Pauling's electronegativity values for

elements are useful in predicting

A. polarity of bonds in molecules

B. ionic and covalent nature of bonds

C. coordination number

D. both (a) and (b)

Answer: D

Watch Video Solution

10. Which of the following substances has the

greatest ionic character ?

A. Cl_2O

B. NCl_3

 $\mathsf{C}. PbCl_2$

D. $BaCl_2$

Answer: D

11. Which bond angle, θ would result in the maximum dipole moment for the triatomic molecule XY_2 ?

A. $heta=90^{\,\circ}$

B. $heta=120^\circ$

 ${\sf C}.\, heta=150^\circ$

D. $heta=180^{\,\circ}$

Answer: A

12. polarisibility of halide ions increasing in the

order

A.
$$F^{\,-}, I^{\,-}, Br^{\,-}, Cl^{\,-}$$

B.
$$Cl^-, Br^-, I^-, F^-$$

C. I^-, Br^-, Cl^-, F^-

D. $F^{\,-}, Cl^{\,-}, Br^{\,-}, I^{\,-}$

Answer: D

13. If one assume linear structure instead of bent structure for water then which on of the following properties cannot be explained ? .

A. The formation of intermolecular hydrogen

bond in water.

B. The high boiling point of water

C. Solubility of polar compounds in water

D. Ability of water to form coordinate

covalent bond.

Answer: C

Exercise 1 Concept Builder Topicwise Topic 3 Vsepr Theory Vbt Theory And Hybridization 1. The angle between the overlapping of one s-

orbital and one p-orbital is

A. 180°

B. $120\,^\circ$

C. $109^{\circ}28^{\circ}$

D. $120\,^\circ\,60$ '

Answer: A

- 2. The equilateral shape has
 - A. sp hybridisation
 - B. sp^2 hybridisation
 - C. sp^3 hybridisation
 - D. None of these

Answer: B

3. Which one of the following has the shortest

carbon-carbon bond length ?

A. Benzene

B. Ethene

C. Ethyne

D. Ethane

Answer: C

4. Which of the following does not have a tetrahedral structure ?

A. BH_4

 $\mathsf{B.}\,BH_3$

C. NH_4^+

 $\mathsf{D.}\, CH_4$

Answer: B

5. In which one of the following molecules , the central atom said to adopt sp^2 hybridisation ?

A. BeF_2

 $\mathsf{B.}\,BF_2$

 $\mathsf{C.}\, C_2 H_2$

D. NH_2

Answer: B

6. Which of the following two are isostructural?

A. NH_3BF_3

B. PCl_3 , ICl_5

C. XeF_2, IF_2^{-}

D. CO_3^{-2}, SO_3^{-2}

Answer: C

7. The decreasing values of bond angles from $NH_3(106^\circ)$ to $SbH_3(101^\circ)$ down group -15 of the periodic table is due to .

A. decreasing bp-bp repulsion

B. decreasing electronegativity

C. increasing bp-bp repulsion

D. increasing Ip-bp repulsion

Answer: A

8. Among the following the pair in which the two species are not isostructural is

A. SiF_4 and SF_4

 $B.IO_3^-$ and XeO_3

 $\mathsf{C}.BH_4^-$ and NH_4^+

D. PF_6^- and SF_6

Answer: A

9. Which of the following molecules has trigonal

planar geometry ?

A. BF_3

 $\mathsf{B.}\,NH_3$

 $C. PCl_3$

D. IF_3

Answer: A

10. Linear combination of two hybridised orbitals belonging to the two atoms , each having one electron leads to a

A. sigma bond

B. double bond

C. co-ordinate covalent bond

D. pi bond.

Answer: A

11. Which of the following statement is not correct for sigma and pi- bonds formed between two carbon atoms ?

A. Sigma-bond determines the direction between carbon atoms but a pi-bond has no primary effect in this regard B. Sigma-bond is stronger than a pi-bond C. Bond energies of sigma- and pi-bonds are of the order of 264 kJ/mol and 347 kJ/mol, respectively

D. Free rotation of atoms about a sigma-

bond is allowed but not in case of a pi-

bond

Answer: C

Watch Video Solution

12. How many sigma and pi bonds are present in

toluene?

A. $3\pi+8\sigma$

B. $3\pi + 8\sigma$

 $\mathsf{C.}\,3\pi+15\sigma$

D. $6\pi + 3\sigma$

Answer: C

Watch Video Solution

13. The type of bonds present in sulphuric anhydride

A. 3σ and there $p\pi-d\pi$

B. 3σ one $p\pi-p\pi$ and two $p\pi-d\pi$

C. 2σ and three $p\pi-d\pi$

D. 2σ and two $p\pi-d\pi$

Answer: B

Watch Video Solution

14. How many sigma bonds are in a molecule of

diethyl ether, $C_2H_5OC_2H_5$?

B. 12

C. 8

D. 16

Answer: A

Watch Video Solution

15. Which of the following statements is not correct?

Answer: D

16. Which of the following species has a linear shape ?

- A. SO_2
- $\mathrm{B.}\,NO_2^{\,+}$
- $\mathsf{C}.CH_4$
- $\mathsf{D.}\,NO_2^{\,-}$

Answer: B

17. Which molecule is planar?

A. SF_4

- $\mathsf{B.}\, XeF_4$
- $\mathsf{C}.NF_3$
- D. SiF_4

Answer: B

18. Amongst the following, the molecule/ion that is linear is:

A. SO_2

 $\mathsf{B.}\,CO_2$

 $\mathrm{C.}\, CkO_2^{\,-}$

 $\mathsf{D.}\,NO_2^{\,-}$

Answer: B

View Text Solution

19. The trigonal bipyramidal geometry results from the hybridisation

A. dsp^3 or sp^3d

 $B. dsp^2$ or sp^2d

 $\mathsf{C}. d^2 s p^3$ or $s p^3 d^2$

D. None of these

Answer: A

20. The true statements from the following are

- 1. PH_5 and $BiCl_5$ do not exist
- 2. $\pi\pi d\pi$ bond is present in SO_2
- 3. Electrons travel with the speed of light
- 4. SeF_4 and CH_4 have same shape
- 5. I_4^+ has bent geometry

A. 1,3

- B. 1,2,5
- C. 1,3,5

D. 1,2,4

21. The hybrid state of S in SO_2 , is similar to that of

A. C in C_2H_2

B. C in C_2H_4

C. C in CH_4

D. C in CO_2

Answer: B

22. Match List I with List II and select the correct

answer:

- List I(ion) 1 List II (Shapes)
- $A \quad ICl_2^-$ 1 Linear
- $B BrF_2^+$ 2 Pyramidal
- $C \quad CIF_4^{-}$ 3 Tetrahedral
- $D \quad AICl_4^-$ 4
 - 4 Square planar
 - 5 Angular

A.
$$\begin{array}{cccc} A & B & C & D \\ 1 & 2 & 4 & 5 \end{array}$$

B. $\begin{array}{cccc} A & B & C & D \\ 4 & 5 & 2 & 3 \end{array}$

Answer: C

23. All bond angles are exactly equal to $109^{\,\circ}\,28\,$ '

in:

A. methyl chloride

B. iodoform

C. chloroform

D. carbon tetrachloride

Answer: D

24. Which of the least bond angle ?

- A. NH_3
- B. BeF_2

$\mathsf{C}.\,H_2O$

D. CH_4

Answer: C

Watch Video Solution

25. The shape of IF_6^- is :

A. Trigonally distorted octahedron

B. Pyramidal

C. Octahedral

D. Square antiprism

26. Which of the following has the square planar structure?

A. XeF_4

- B. NH_4^+
- C. BF_4^{-}
- D. CCl_4

27. In which of the following pair both the species have sp^3 hybridization?

A. H_2S, BF_3

B. SiF_4, BeH_2

 $\mathsf{C}.NF_3,H_2O$

 $\mathsf{D}.NF_3,BF_3$

28. In which of the following pairs, the two species are isostructural :

A.
$$SO_3^{2-}$$
 and NO_3^{-}

 $B.BF_3$ and NF_3

 $\mathsf{C}.BrO_3^-$ and XeO_3

D. SF_4 and XeF_4

29. The structure of the noble gas compound XeF_4 is :

A. square planar

B. distorted tetrahedral

C. tetrahedral

D. octahedral

30. Which is the following pairs of species have identical shapes ?

A. NO_2^+ and NO_2^-

B. PCl_5 and BrF_5

C. XeF_4 and ICl_4^-

D. $TeCl_4$ and XeO_4

Answer: C

Answer: B

32. What is the shape of the IBr_2^- ion ?

A. Linear

B. Bent shape with bond angle of about 90°

C.Bent shape with bond angle of about 109°

D. Bent shape with bond angle of about

 120°

Answer: A

33. According to VSEPR theory, in which species

do all the atoms lie in the same plane?

 $1CH_{3}^{+}2CH_{3}^{-}$

A.1 only

B. 2 only

C. both 1 and 2

D. neither 1 or 2

Answer: A

34. Which bonds are formed by a carbon atom with sp^2 -hybridisation ?

A. 4π bonds

B. 2π - bonds and 2σ bonds

C. 1π bond and 3σ bonds

D. 4σ bonds

Answer: C

Watch Video Solution

35. SF_2, SF_4 and SF_6 have the hybridisation at

sulphur atom respectively as .

A. $sp^2,\,sp^3,\,sp^2d^2$

 $\mathsf{B.}\, sp^3,\, sp^3,\, sp^3d^2$

C. sp^3 , sp^3d , sp^3d^2

D. sp^3, spd^2, d^2sp^3

Answer: C

36. A sigma-bonded molecule MX_3 is T-shaped.

The number of non-bonding pairs of electrons

is

A. 2

B. 1

C. 0

D. Can be predicted only if atomic number of

M is known

Answer: A

Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 4 Mot And Hydrogen Bonding

1. The bond order in N_2^+ ion is _____.

A. 1.5

 $\mathsf{B.}\,3.0$

C. 2.5

 $\mathsf{D}.\,2.0$

Answer: C

2. The molecular electronic configuration of H_2^+ ion is?

A.
$$(\sigma 1 s^2)$$

B. $(\sigma 1 s^2) (\sigma^* 1 s^2)$
C. $(\sigma 1 s^2) (\sigma^* 1 s^1)$
D. $(\sigma 1 s^1)$

Answer: C

3. During change of $NO^+ ightarrow NO$, the electron

is added to

A. σ -orbital

B. π -orbital

C. σ^* - orbital

D. π^* – orbital

Answer: D

4. The correct statement with regard to H_2^+

and $H_2^{\,-}$ is

A. Both H_2^+ and H_2^- do not exist

- B. H_2^{-} is more stable than H_2^{+}
- C. H_2^+ is more stable than H_2^-
- D. Both H_2^+ and H_2^- are equally stable

Answer: C

View Text Solution

5. Which of the following molecules/ins does

not contain unpaired electrons?

A. N_2^+

 $\mathsf{B}.O_2$

 $\mathsf{C}.\,O_2^{2\,-}$

D. B_2

Answer: C

6. Which of the following MO's has two nodal

planes?

A. $\pi 2 p_y$

 $\mathsf{B.}\,\sigma 2s$

C. $\pi^* 2p_y$

D. $\sigma^* 2p_z$

Answer: C

7. Which of the following combination is not allowed in the LCAO method for the

formation of molecular orbital (consider Z-axis

as the molecular axis)?.

A.
$$s+p_x$$

B. $s + p_z$

$$\mathsf{C}.\,p_x+p_x$$

 $\mathsf{D.}\, p_z + p_z$

Answer: A

8. Of the following hydrides which one has the lowest boiling point ?

A. AsH_3

 $\mathsf{B.}\,SbH_3$

 $\mathsf{C}.\, PH_3$

D. NH_3

Answer: C

View Text Solution

9. Which one of the following is the correct order of interactions ?

A. covalent < hydrogen bonding van der Waals < dipole-dipole B. van der Waals < hydrogen bonding <dipole-dipole < covalent C. van der Waals < dipole-dipole <hydrogen bonding < covalent D. dipole-dipole < van der Waals <hydrogen bonding < covalent

10. An ether is more volatile than an alcohol having the same molecualr formula. This is due to -

A. alcohols having resonance structures

B. intermolecular hydrogen bonding in ethers

alcohols

D. dipolar character of ethers

Answer: C

Watch Video Solution

11. Which one of the following molecules will form a linear polymeric structure due to hydrogen bonding?

A. NH_3

 $\mathsf{B.}\,H_2O$

C. HCl

D. HF

Answer: D

View Text Solution

12. Hydrogen bonding is maximum in:

A. C_2H_5OH

B. CH_3OCH_3

 $C. (CH_3)_2 C = O$

D. CH_3CHO

Answer: A

13. What is the dominant intermolecular forces or bond that must be overcome in converting liquid CH_3OH to gas ?

A. Dipole-dipole interaction

B. Covalent bonds

C. London dispersion force

D. Hydrogen bonding

Answer: D

Watch Video Solution

14. Which of the following is not true about H_2O molecule ?

A. The molecule has $\mu=0$

B. The molecule can act as a base

C. Shows abnormally high boiling point in

comparison to the hydrides of other

elements of oxygen group

D. The molecule has a bent shape

Answer: A

Watch Video Solution

Exercise 2 Concept Applicator

1. Correct set of species with zero dipole moment is :

(i)

 CO_2 $(ii)COCl_2$ $(iii)CH_2Cl_2$ $(iv)BCl_3$

A. (i) and (iv)

B. (ii) and (iv)

C. (iii) and (iv)

D. (i), (iii) and (iv)

Answer: A

2. Match List I and List II and pick out correct

matching codes from the given choices :

List	List II
Compound	Structure
A. CIF ₃	 Square planar
B PCL	Tetrahedral
C. IF,	Trigonal bipyramidal
D. CCI	Square pyramidal
E XeF4	5. T-shaped

A. A-5, B-4, C-3, D-2, E-1

B. A-5, B-3, C-4, D-2, E-1

C. A-5, B-3, C-4, D-1, E-2

D. A-4, B-3, C-5, D-2, E-1

3. Which of the following is correct order of σ bond strength ? I. 2s-2s

- II. 2s-2p
- III. 2p-2p
- IV. 3s-3s

A. I > II > III > IV

 $\mathsf{B}. III > II > I > IV$

$\mathsf{C}.\,IV>I>II>III$

 $\mathsf{D}.\,III > I > II > IV$

Answer: B

Watch Video Solution

4. In pyrophosphoric acid, $H_4P_2O_7$, number of

 σ and $d\pi - p\pi$

A. 8 and 2

B. 6 and 2

C. 12 and zero

D. 12 and 2

Answer: D

5. Arrange the following ions in the order of decreasing X - O bond length where X is the central atom:

A.
$$ClO_{4}^{-}, SO_{4}^{2-}, PO_{4}^{2-}, SiO_{4}^{-}$$

B.
$$SiO_4^{4-}$$
, PO_4^{3-} , SO_4^{2-} , ClO_4^{-}
C. SiO_4^{4-} , PO_4^{3-} , ClO_4^{-} , SO_4^{2-}
D. SiO_4^{4-} , SO_4^{2-} , PO_4^{3-} , ClO_4^{-}

Answer: B

6. Which of the following statements is correct

in the context of the allene molecule, C_3H_4 ?

A. The central carbon is sp hybridized

B. The terminal carbon atoms are sp^2

hybridized

C. The planes containing the CH_2 groups

are mutually perpendicular to permit the

formations two separate π – bonds

D. All are correct

Answer: D

Watch Video Solution

7. Which of the following set contains species having same angle around the central atom?

A. SF_4, CH_4, NH_3

 $B. NF_3, BCl_3, NH_3$

 $C. BF_3, NF_3, AlCl_3$

 $\mathsf{D}.\,BF_3,\,BCl_3,\,BBr_3$

Answer: D

> Watch Video Solution

8. Bond angle between two hybrid orbitals is 105° Percentage of s-orbital character of hybrid orbital is between

A. 50-55%

B. 9-12%

C. 22-23%

D. 11-12%

Answer: C

Watch Video Solution

9. The group of molecules having identical shape is:

A. PCl_5, IF_5, XeO_2F_2

 $\mathsf{B}.\,BF_3,\,PCl_3,\,XeO_3$

C. $SF_4XeF_4CCl_4$

D. ClF_3 , $XeOF_2$, XeF_3^+

Answer: D

> Watch Video Solution

10. The shapes of XeF_4 , XeF_5^- and $SnCl_2$ are

A. octahedral, trigonal bipyramidal and bent

B. square pyramidal, pentagonal planar and

linear

:

C. square planar, pentagonal planar and angular

D. see-saw, T-shaped and linear

Answer: C

11. Which of these statements is not true?

A. NO^+ is isoelectronic with O_2

B. B is always covalent in its compounds

C. In aqueous solution, the Tl^+ ion is much

more stable than Tl (III)

D. $LiAlH_4$ is a versatile reducing agent in

organic synthesis.

- 12. The statement true for $N_3^{\,-}$ is
 - A. It has a non-linear structure
 - B. It is called pseudo halogens
 - C. The formal oxidation state of N in this
 - anion is -1
 - D. It is isoelectronic with NO_2

Answer: C

13. The dipole moments of diatomic molecules AB and CD are 10.41D and 10.27 D, respectively while their bond distances are 2.82 and 2.67Å respectively. This indicates that

A. bonding is 100% ionic in both the molecules

B. AB has more ionic bond character than CD

C. AB has lesser ionic bond character than

D. bonding is nearly covalent in both the

molecules

Answer: C

14. The electronegaivity difference between Nand F is greater than that between N and Hyet the dipole moment of NH_2 (1.5 D) is larger than that of $NF_3(0.2D)$. This is because : A. in NH_3 , the atomic dipole and bond dipole are in the same direction, whereas in NF_3 these are in opposite directions B. in NH_3 as well as NF_3 , the atomic dipole and bond dipole are in opposite directions C. in NH_3 the atomic dipole and bond dipole are in the opposite directions, whereas in NF_3 these are in the same direction

D. in NH_3 as well as in NF_3 , the atomic

dipole and bond dipole are in the same

direction

Answer: A

Watch Video Solution

15. The charge/size ratio of a cation determines its polarizing power. Which one of the following sequences represents the increasing order of the polarizing power of the cationic species, $K^+, Ca^{2+}, Mg^{2+}, Be^{2+}$ A. $Ca^{2+} < Mg^{2+} < Be^+ < K^+$ B. $Mg^{2+} < Be^{2+}, < K^+Ca^{2+}$ C. $Be^{2+} < K^+ < Ca^{2+} < Mg^{2+}$ D. $K^+ < Ca^{2+} < Mq^{2+} < Be^{2+}$

Answer: D

16. The resultant dipole moment (μ) of two compounds *NOF* and *NO*₂*F* is 1.81*D* and 0.47*D* respectively Which dipole momnet do you predict ? .

A. 1.81 D for NO_2F and 0.47 D for NOF

B. 0.47 D for NO_2F and 1.81 D for NOF

C. For both NO_2F and NOF, dipole moment

 (μ) is 1.81 D

D. For both NO_2F and NOF, dipole moment

 (μ) is 0.47 D

Answer: B

17. The BCl_3 is a planar molecule whereas NCI_3 is pyramidal because

A. B-Cl bond is more polar than N-Cl bond

B. N-Cl bond is more covalent than B-Cl bond

C. nitrogen atom is smaller than boron atom

D. BCI_3 has no lone pair but NCI_3 has a

lone pair of electrons

18. The cylindrical shape of alkynes is due to

A. three sigma C-C bonds

B. two sigma C-C and one $\,{}^\prime\pi{}^\prime C - C$ bonds

C. three $\pi' C - C$ bonds

D. one sigma C-C and two $\,{}^\prime\pi\,{}^\prime C-C$ bonds

Answer: D

19. The AsF_5 molecule is trigonal bipyramidal. The orbitals used by As for hybridisation are

A.
$$d_{x^2-y^2}, d_z, s, p_x, p_y$$

 $\mathsf{B}.\, d_{xy}, s, p_x, p_y, p_z$

C. $p, p_x, p_y, p_z, d_{z^2}$

D.
$$d_{x^2-y^2}, s, p_x, p_y, p_z$$

Answer: C

20. The correct order of O - O bond length in $O_2H_2O_2$ and O_3 is

A.
$$O_2 > O_3 > H_2 O_2$$

B. $O_3 > H_2 O_2 > O_2$

 ${\sf C}.\,O_2>H_2O_2>O_3$

D. $H_2O_2 > O_3 > O_2$

Answer: D

21. The number and type of bonds in c_2^{2-} ion in CaC_2 are

A. One σ bond and one π -bond

B. One σ bond and two π -bond

C. Two σ bond and two π -bond

D. Two σ bond and one π -bond

Answer: D

Watch Video Solution

22. In which of the following sets, all the given species are isostructural ?

A. CO_2, NO_2, ClO_2, SiO_2

 $\mathsf{B}.\, PCl_3,\, Al,\, Cl_3,\, BCl_3,\, SbCl_3$

 $C. BF_3, NF_3, PF_3, AlF_3$

 $\mathsf{D}.\,BF_4^{\,-}, CCl_4, NH_4^{\,+}, PCl_4^{\,+}$

Answer: D

View Text Solution

23. Correct statement about VBT is .

A. Each bond is formed by maximum overlap

for its maximum stability

B. It represents localised electron modal of bonding.

C. Most of the electrons retain the same

orbital localisation as in a separate atom,

D. All are correct.

24. Which of the following species used both axial set of d-orbitals in hybridisation of central atom ?

A. PBr_4^+

- B. PCl_4^-
- ${\rm C.}\,ICl_4^{\,-}$
- D. None of these

Answer: C

25. The relationship between the dissociation energy of N_2 and $N_2^{\,+}$ is

A. Dissociation energy of $N_2^+ =$

dissociation energy of N_2

B. Dissociation energy of $N_2=\,$ dissociation

energy of N_2^+

C. Dissociation energy of $N_2 > \,$ dissociation

energy of $N_2^{\,+}$

D. Dissociation energy of N_2 can either be

lower or higher than the dissociation

energy of $N_2^{\,+}$

Answer: C

Watch Video Solution

26. Bond order normally gives idea of stability of

a molecular species. All the molecules viz.

 H_2Li_2 and B_2 have the same bond order yet

they are not equally stable. Their stability order

is

A.
$$H_2 > B_2 > Li_2$$

B. $H_2 > Li_2 > B_2$

C. $Li_2 > B_2 > H_2$

D. $B_2 > H_2 > Li_2$

Answer: B

27. The internuclear distances in 0-0 bonds for O_2^+, O_2, O_2^- and O_2^{2-} respectively are : A. 1.30Å, 1.49Å, 1.12Å, 1.21Å B. 1.49Å, 1.21Å, 1.12Å, 1.30Å C. 1.21Å, 1.12Å, 1.49Å, 1.30Å D. 1.12Å, 1.21Å, 1.30Å, 1.49Å

Answer: D

> Watch Video Solution

28. In forming $(i)N_2 o N_2^\oplus$ and $O_2 o O_2^\oplus$ the electrons respectively removed from .

Α.

 $(\pi * 2p_y \text{ or } \pi^* 2p_x)$ and $(\pi^* 2p_y \text{ or } p^* 2p_x)$ B. $(\pi 2p_y \text{ or } \pi 2p_x)$ and $(\pi 2p_y \text{ or } \pi 2p_x)$ C. $(\pi 2p_y \text{ or } \pi 2p_x)$ and $(\pi^* 2p_y \text{ or } \pi^* 2p_x)$ D. $(\pi^* 2p_y \text{ or } \pi^* 2p_x)$ and $(\pi 2p_y \text{ or } \pi 2p_x)$

Answer: C

Watch Video Solution

29. The energy of σ_{2s} , is greater than that of σ_{1s}^* orbital because

A. $2\sigma s$ is bigger than $\sigma^* 1 s MO$

B. $\sigma 2s$ is bonding whereas $\sigma^* 1s$ is an ABMO

C. $\sigma 2s$ orbital has a greater value of n than

 $\sigma^* 1 s MO$

D. $\sigma 2s$ orbital is formed only after $\sigma 1s$

Answer: C

Watch Video Solution

30. Which statement is correct?

A. m.p of H_2O , NH_3 are maximum in their respective group due to intermolecular Hbonding B. b.p. of CH_4 our ot CH_4, SiH_4, GeH_4 and SnH_4 is least due to weak intermolecular force of attraction C. formic acid forms dimer by H-bonding

D. all are correct

