©゙"doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS = DISHA PUBLICATION CHEMISTRY (HINGLISH)

CHEMICAL BONDING AND MOLECULAR

STRUCTURE

Jee Main 5 Years At Glance

1. Which of the following conversions involves change in both shape and hybridization?
A. $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$
B. $B F_{3} \rightarrow B F_{4}^{-}$
C. $\mathrm{CH}_{4} \mathrm{C}_{2} \mathrm{H}_{6}$
D. $\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}$

Answer: B
2. The incorrect geometry is represented by :
A. $N F_{3}$ trigonal planar
B. $B F_{3}$ - trigonal planar
C. $A s F_{5}$-trigonal bipyramidal
D. $\mathrm{H}_{2} \mathrm{O}-$ bent

Answer: A

- Watch Video Solution

3. Which of the following compounds contain(s)

 no covalent bond(s)?$\mathrm{KCl}, \mathrm{PH}_{3}, \mathrm{O}_{2}, \mathrm{~B}_{2} \mathrm{H}_{6}, \mathrm{H}_{2} \mathrm{SO}_{4}$
A. $\mathrm{KCl}, B_{2} \mathrm{H}_{6}, P H_{3}$
B. $\mathrm{KCl}, \mathrm{H}_{2} \mathrm{SO}_{4}$
C. KCl
D. $\mathrm{KCl} . \mathrm{B}_{2} \mathrm{H}_{6}$

Answer: C

4. Total number of lone pair of electrons in I_{3}^{-},

 ion is:A. 3
B. 6
C. 9
D. 12

Answer: C

Watch Video Solution
5. $s p^{3} d^{2}$ hybridization is not displayed by :
A. $B r F_{5}$
B. $S F_{6}$
C. $\left[C r F_{6}\right]^{3-}$
D. $P F_{5}$

Answer: D

- Watch Video Solution

6. Which of the following is paramagnetic?
A. NO^{-}
B. $C O$
C. O_{2}^{2-}
D. B_{2}

Answer: D

Watch Video Solution

7. Which of the following species is not paramagnetic?
A. NO
B. CO
C. O_{2}
D. B_{2}

Answer: B

- Watch Video Solution

8. The group of molecules having identical
shape is:
A. $\mathrm{PCl}_{5} I F_{5}, \mathrm{XeO}_{2} F_{2}$
B. $\mathrm{BF}_{3}, \mathrm{PCl}_{3}, \mathrm{XeO}_{3}$
C. $S F_{4}, X e F_{4}, C C l_{4}$
D. $\mathrm{CIF}_{3}, \mathrm{XeOF}_{2}, \mathrm{XeF}_{3}^{+}$

Answer: D

D Watch Video Solution
9. The species in which the N -atom is in a state of $s p$ hybridisation is
A. NO_{3}^{-} B. NO_{2}
C. NO_{3}^{+}
D. NO_{2}^{-}

Answer: C

D Watch Video Solution

10. The intermolecular interaction that is dependent on the inverse cube of distance between the molecules is

A. London force

B. hydrogen bond
C. ion-ion interaction
D. ion-dipole interaction

Answer: B

D Watch Video Solution

11. Which of the following has unpaired electron(s)?
A. N_{2}
B. NO_{2}^{-}
C. N_{2}^{2+}
D. O_{2}^{2-}

Answer: B

Watch Video Solution
12. Which one of the following properties is not shown by $N O$?
A. It is diamagnetic in gaseous state
B. It is neutral oxide
C. It combines with oxygen to form nitrogen dioxide
D. It's bond order is 2.5

Answer: A

D Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 1 Electrovalent Covalent And Coordinate Bonding

1. Out of the following which compound will have electrovalent bonding
A. P and Cl
B. NH_{3} and BF_{3}
C. H and Ca
D. H and S

Answer: C
2. Which of the following has a giant covalent structure?
A. PbO_{2}
B. SiO_{2}
C. NaCl
D. AlCl_{3}

Answer: C
3. Which one of the following contains a coordinate covalent bond?
A. $\mathrm{H}_{2} \mathrm{O}$
B. HCl
C. $B a C l_{2}$
D. $\stackrel{+}{N}_{2} H_{5}$

Answer: D

4. The number of dative bonds in sulphuric acid

 molecule isA. 0
B. 1
C. 2
D. 4

Answer: C
5. Which of the following statements is not true about covalent compounds ?
A. They may exhibit space isomerism
B. They have low melting and boiling points
C. They show ionic reactions
D. They show molecular reactions

Answer: C

6. Indicate the nature of bonding in $C C l_{4}$ and CaH_{2}
A. Covalent in $C C I_{4}$ and electrovalent in
CaH_{2}
B. Electrovalent in both CCI_{4} and CaH_{2}
C. Covalent in both CCI_{4} and CaH_{2}
D. Electrovalent in $C C I_{4}$ and covalent in
CaH_{2}

Answer: A
7. Lattice energy of an ionic compound depedns
upon :
A. charge on the ion and size of the ion
B. packing of ions only
C. size of the ion only

D. charge on the ion only

Answer: A

8. Which compound will show the highest lattice energy?
A. KF
B. NaF
C. CsF
D. RbF

Answer: B
9. The compound that has the higest ionic character associated with the $\mathrm{X}-\mathrm{Cl}$ bond is :
A. $P C l_{5}$
B. $B C l_{3}$
C. $C C l_{4}$
D. SiCl_{4}

Answer: D

10. Which combination of atoms can form a polar covalent bond?
A. H and H
B. H and F
C. N and N

D. Na and F

Answer: B
11. Which of the following pairs will form the most stable ionic bond?
A. Na and Cl
B. Mg and F
C. Li and F
D. Na and F

Answer: B
12. In which of the following species central atom is NOT surrounded by exactly 8 valence electrons?
A. $B F_{4}^{-}$
B. $N C l_{4}$
C. PCl_{4}^{+}
D. $S F_{4}$

Answer: D
(Watch Video Solution
13. Which of the following does not apply to metallic bond?
A. Overlapping valence orbitals
B. Mobile valency electrons
C. Delocalized electrons
D. Highly directed bonds

Answer: D
14. Which set contains only covalently bonded molecules?
A. $B C l_{3}, S i C l_{4} P C l_{3}$
B. $\mathrm{NH}_{4}, \mathrm{Br}, \mathrm{N}_{2} \mathrm{H}_{4} \mathrm{HBr}$
C. $I_{2}, H_{2} S, N a I$
D. $A l, O_{3} A s_{4}$

Answer: A

15. Among $\mathrm{LiCI}, \mathrm{RbCI}, B e C I_{2}$ and $M g C I_{2}$ the compound with the greatest and least ionic character respectively are
A. $L i C I$ and $R b C l$
B. RbCl and BeCl_{2}
C. MgCl_{2} and BeCl_{2}
D. RbCl and MgCl_{2}

Answer: B
16. The correct sequence of increasing covalent character is represented by
A. $\mathrm{LiCl}<\mathrm{NaCl}<\mathrm{BeCl}_{2}$
B. $\mathrm{BeCl}_{2}<\mathrm{LiCl}<\mathrm{NaCl}$
C. $\mathrm{NaCl}<\mathrm{LiCl}<\mathrm{BeCl}_{2}$
D. $\mathrm{BeCl}_{2}<\mathrm{NaCl}<\mathrm{LiCl}$

Answer: C

17. Which of the following statement is correct?
A. FeCl_{2} is more covalent than FeCl_{3}
B. FeCl_{3} is more covalent than FeCl_{2}
C. Both FeCl_{2} and FeCl_{3} are equally covalent.
D. FeCl_{2} and FeCl_{3} do not have any covalent character.

Answer: B

Exercise 1 Concept Builder Topicwise Topic 2 Octet Rule Resonance Dipole Moment And Bond Polarity

1. A pair of compounds which has odd electrons
in the group $\mathrm{NO}, \mathrm{CO}, \mathrm{CIO}, \mathrm{N}_{2}, \mathrm{SO}_{2}$ and O_{3} are
A. No and CIO_{2}
B. CO and SO_{2}
C. CIO_{2} and CO
D. $S O_{2}$ and O_{3}

- Watch Video Solution

2. Point out incorrect statement about resonance
A. Resonance structures should have equal
energy
B. In resonance structures, the constituent
atoms should be in the same position
C. In resonance structures, there should not

D. Resonance structures should differ only in

the location of electrons around the

constituent atoms

Answer: C

D Watch Video Solution

3. In the cyanide ion, the formal negative charge
is on :
A. C

C. Both C and N

D. resonate between C and N

Answer: B

D Watch Video Solution

4. Among the following, the species having the smallest bond is
A. NO^{-}
B. NO^{+}
C. O_{2}
D. $N O$

Answer: B

D View Text Solution

5. The bond length of $C=O$ bond in $C O$ is
$1.20 \AA$ and in $C O_{2}$ it is $1.34 \AA$ then $C=O$ bond
length in CO_{3}^{2-} will be .
A. $1.50 \AA$

B. $1.34 \AA$

C. $1.29 \AA \AA$

D. $0.95 \AA$

Answer: C

D Watch Video Solution

6. Which of the following would have a permanent dipole moment?
A. $S i F_{4}$
B. $S F_{4}$
C. $X e F_{4}$
D. $B F_{3}$

Answer: B

D Watch Video Solution

7. Dipole moment is shown by
A. cis-1, 2-dichloroethene
B. trans-1, 2-dichloroethene

C. trans-2, 3-dichloro-2 pentene

D. Both (a) and (c)

Answer: D

D Watch Video Solution

8. Which of the following salt shows maximum covalent character?
A. $A l C l_{3}$
B. $M g C l_{3}$

C. $C s C l$

D. LaCl_{3}

Answer: A

- View Text Solution

9. Pauling's electronegativity values for elements are useful in predicting
A. polarity of bonds in molecules
B. ionic and covalent nature of bonds

C. coordination number

D. both (a) and (b)

Answer: D

D Watch Video Solution

10. Which of the following substances has the greatest ionic character?
A. $\mathrm{Cl}_{2} \mathrm{O}$
B. $N C l_{3}$
C. PbCl_{2}

D. $B a C l_{2}$

Answer: D

- View Text Solution

11. Which bond angle, θ would result in the maximum dipole moment for the triatomic molecule $X Y_{2}$?
A. $\theta=90^{\circ}$
B. $\theta=120^{\circ}$

C. $\theta=150^{\circ}$

$$
\text { D. } \theta=180^{\circ}
$$

Answer: A

D Watch Video Solution

12. polarisibility of halide ions increasing in the order
A. $\mathrm{F}^{-}, \mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}$
B. $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{F}^{-}$

$$
\text { C. } I^{-}, B r^{-}, C l^{-}, F^{-}
$$

$$
\text { D. } F^{-}, C l^{-}, B r^{-}, I^{-}
$$

Answer: D

D Watch Video Solution

13. If one assume linear structure instead of
bent structure for water then which on of the following properties cannot be explained?.
A. The formation of intermolecular hydrogen bond in water.

B. The high boiling point of water

C. Solubility of polar compounds in water
D. Ability of water to form coordinate
covalent bond.

Answer: C

(D) Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 3 Vsepr
Theory Vbt Theory And Hybridization

1. The angle between the overlapping of one sorbital and one p-orbital is
A. 180°
B. 120°
C. $109^{\circ} 28^{\circ}$
D. $120^{\circ} 60^{\prime}$

Answer: A

2. The equilateral shape has

A. $s p$ hybridisation
B. $s p^{2}$ hybridisation
C. $s p^{3}$ hybridisation
D. None of these

Answer: B

- Watch Video Solution

3. Which one of the following has the shortest

 carbon-carbon bond length ?A. Benzene
B. Ethene
C. Ethyne

D. Ethane

Answer: C

4. Which of the following does not have a tetrahedral structure?
A. $B H_{4}$
B. BH_{3}
C. NH_{4}^{+}
D. CH_{4}

Answer: B
5. In which one of the following molecules, the central atom said to adopt $s p^{2}$ hybridisation ?
A. $B e F_{2}$
B. $B F_{2}$
C. $\mathrm{C}_{2} \mathrm{H}_{2}$
D. NH_{2}

Answer: B
6. Which of the following two are isostructural?
A. $N H_{3} B F_{3}$
B. $P C l_{3}, I C l_{5}$
C. $X e F_{2}, I F_{2}^{-}$
D. $\mathrm{CO}_{3}^{-2}, \mathrm{SO}_{3}^{-2}$

Answer: C

- Watch Video Solution

7. The decreasing valuse of bond angles from
$N H_{3}\left(106^{\circ}\right)$ to $S b H_{3}\left(101^{\circ}\right)$ down group -15 of the periodic table is due to .
A. decreasing bp-bp repulsion
B. decreasing electronegativity
C. increasing bp-bp repulsion
D. increasing Ip-bp repulsion

Answer: A

D
 Watch Video Solution

8. Among the following the pair in which the two species are not isostructural is
A. $S i F_{4}$ and $S F_{4}$
B. IO_{3}^{-}and XeO_{3}
C. BH_{4}^{-}and NH_{4}^{+}
D. $P F_{6}^{-}$and $S F_{6}$

Answer: A

9. Which of the following molecules has trigonal

 planar geometry?A. $B F_{3}$
B. NH_{3}
C. $P C l_{3}$
D. $I F_{3}$

Answer: A

10. Linear combination of two hybridised orbitals belonging to the two atoms, each having one electron leads to a
A. sigma bond
B. double bond
C. co-ordinate covalent bond
D. pi bond.

Answer: A
11. Which of the following statement is not correct for sigma and pi- bonds formed between two carbon atoms ?
A. Sigma-bond determines the direction between carbon atoms but a pi-bond has no primary effect in this regard
B. Sigma-bond is stronger than a pi-bond
C. Bond energies of sigma- and pi-bonds are
of the order of $264 \mathrm{~kJ} / \mathrm{mol}$ and $347 \mathrm{~kJ} / \mathrm{mol}$,
respectively

D. Free rotation of atoms about a sigma-

 bond is allowed but not in case of a pibond
Answer: C

D Watch Video Solution

12. How many sigma and pi bonds are present in toluene?
A. $3 \pi+8 \sigma$
B. $3 \pi+8 \sigma$
C. $3 \pi+15 \sigma$
D. $6 \pi+3 \sigma$

Answer: C

D Watch Video Solution

13. The type of bonds present in sulphuric anhydride
A. 3σ and there $p \pi-d \pi$
B. 3σ one $p \pi-p \pi$ and two $p \pi-d \pi$
C. 2σ and three $p \pi-d \pi$
D. 2σ and two $p \pi-d \pi$

Answer: B

D Watch Video Solution

14. How many sigma bonds are in a molecule of diethyl ether, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OC}_{2} \mathrm{H}_{5}$?
A. 14
B. 12
C. 8
D. 16

Answer: A

D Watch Video Solution

15. Which of the following statements is not correct?
A. Hybridisation is the mixing of atomic orbitals prior to their combining into molecular orbitals B. $s p^{2}$ hybrid orbitals are formed from two $p-$ atomic orbitals and one s-orbital
C. $d^{2} s p^{3}$ hybrid orbitals are directed towards
the corners of a regular octahedron
D. $d s p^{3}$ hybrid orbitals are all at 90° to one
another

D View Text Solution

16. Which of the following species has a linear shape ?
A. SO_{2}
B. NO_{2}^{+}
C. CH_{4}
D. NO_{2}^{-}

Answer: B

17. Which molecule is planar?

A. $S F_{4}$
B. $X e F_{4}$
C. $N F_{3}$
D. $S i F_{4}$

Answer: B

D Watch Video Solution
18. Amongst the following, the molecule/ion that is linear is:
A. SO_{2}
B. CO_{2}
C. CkO_{2}^{-}
D. NO_{2}^{-}

Answer: B

D View Text Solution
19. The trigonal bipyramidal geometry results
from the hybridisation
A. $d s p^{3}$ or $s p^{3} d$
B. $d s p^{2}$ or $s p^{2} d$
C. $d^{2} s p^{3}$ or $s p^{3} d^{2}$
D. None of these

Answer: A
20. The true statements from the following are

1. $P H_{5}$ and $B i C l_{5}$ do not exist
2. $\pi \pi-d \pi$ bond is present in SO_{2}
3. Electrons travel with the speed of light
4. $S e F_{4}$ and $C H_{4}$ have same shape
5. I_{4}^{+}has bent geometry
A. 1,3
B. 1,2,5
C. 1,3,5
D. 1,2,4

Answer: B

D View Text Solution

21. The hybrid state of S in SO_{2}, is similar to that of
A. C in $\mathrm{C}_{2} \mathrm{H}_{2}$
B. C in $\mathrm{C}_{2} \mathrm{H}_{4}$
C. C in CH_{4}
D. C in CO_{2}

Answer: B

D Watch Video Solution

22. Match List I with List II and select the correct answer:

$$
\begin{array}{llll}
& \text { List I(ion) } & 1 & \text { List II (Shapes) } \\
A & I C l_{2}^{-} & 1 & \text { Linear } \\
B & B r F_{2}^{+} & 2 & \text { Pyramidal } \\
C & C I F_{4}^{-} & 3 & \text { Tetrahedral } \\
D & A I C l_{4}^{-} & & 4
\end{array} \text { Square planar }
$$

${ }_{C} A \quad B \quad C \quad D$
 $\begin{array}{llll}1 & 2 & 4 & 3\end{array}$
 $\begin{array}{llll}A & B & C\end{array}$
 D.
 $\begin{array}{llll}5 & 1 & 3 & 4\end{array}$

Answer: C

D View Text Solution

23. All bond angles are exactly equal to $109^{\circ} 28^{\prime}$ in:
A. methyl chloride
B. iodoform

C. chloroform

D. carbon tetrachloride

Answer: D

- View Text Solution

24. Which of the least bond angle ?
A. NH_{3}
B. $B e F_{2}$
C. $\mathrm{H}_{2} \mathrm{O}$

Answer: C

D Watch Video Solution

25. The shape of $I F_{6}^{-}$is:
A. Trigonally distorted octahedron
B. Pyramidal
C. Octahedral
D. Square antiprism

Answer: A

D View Text Solution

26. Which of the following has the square planar structure?
A. $X e F_{4}$
B. NH_{4}^{+}
C. $B F_{4}^{-}$
D. $C C l_{4}$

Answer: A

D View Text Solution

27. In which of the following pair both the species have $s p^{3}$ hybridization?
A. $H_{2} S, B F_{3}$
B. $\mathrm{SiF}_{4}, \mathrm{BeH}_{2}$
C. $\mathrm{NF}_{3}, \mathrm{H}_{2} \mathrm{O}$
D. $N F_{3}, B F_{3}$

Answer: C

D Watch Video Solution

28. In which of the following pairs, the two species are isostructural :
A. SO_{3}^{2-} and NO_{3}^{-}
B. $B F_{3}$ and $N F_{3}$
C. BrO_{3}^{-}and XeO_{3}
D. $S F_{4}$ and $X e F_{4}$

Answer: C

D Watch Video Solution

29. The structure of the noble gas compound $X e F_{4}$ is :
A. square planar
B. distorted tetrahedral
C. tetrahedral
D. octahedral

Answer: A

D Watch Video Solution

30. Which is the following pairs of species have identical shapes?
A. NO_{2}^{+}and NO_{2}^{-}
B. $P C l_{5}$ and $B r F_{5}$
C. $X e F_{4}$ and $I C l_{4}^{-}$
D. TeCl_{4} and XeO_{4}

Answer: C

D Watch Video Solution

31.

Amongst
$\mathrm{NO}_{3}^{-}, \mathrm{AsO}_{3}^{3-}, \mathrm{CO}_{3}^{2-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$ and BO_{3}^{2-}
, the non-planar species are :
A. $\mathrm{CO}_{3}^{2}, \mathrm{SO}_{3}^{2-}, \mathrm{BO}_{3}^{-3}$
B. $\mathrm{AsO}_{3}^{-3-}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}^{2-}$
C. $\mathrm{NO}_{3}^{-}, \mathrm{CO}_{3}^{2-}, \mathrm{BO}_{3}^{3-}$
D. $\mathrm{SO}_{3}^{2}-\mathrm{NO}_{3}^{-}, \mathrm{BO}_{3}^{3-}$

D Watch Video Solution

32. What is the shape of the $I B r_{2}^{-}$ion ?
A. Linear
B. Bent shape with bond angle of about 90°
C. Bent shape with bond angle of about 109°
D. Bent shape with bond angle of about 120°

Answer: A

D Watch Video Solution

33. According to VSEPR theory, in which species
do all the atoms lie in the same plane?
$1 \mathrm{CH}_{3}{ }^{+} 2 \mathrm{CH}_{3}{ }^{-}$
A. 1 only
B. 2 only

C. both 1 and 2

D. neither 1 or 2

Answer: A

- View Text Solution

34. Which bonds are formed by a carbon atom with $s p^{2}$-hybridisation?
A. 4π bonds
B. 2π-bonds and 2σ bonds
C. 1π bond and 3σ bonds

D. 4σ bonds

Answer: C

D Watch Video Solution

35. $S F_{2}, S F_{4}$ and $S F_{6}$ have the hybridisation at sulphur atom respectively as .
A. $s p^{2}, s p^{3}, s p^{2} d^{2}$
B. $s p^{3}, s p^{3}, s p^{3} d^{2}$

$$
\text { C. } s p^{3}, s p^{3} d, s p^{3} d^{2}
$$

D. $s p^{3}, s p d^{2}, d^{2} s p^{3}$

Answer: C

D Watch Video Solution

36. A sigma-bonded molecule $M X_{3}$ is T-shaped.

The number of non-bonding pairs of electrons is
A. 2
B. 1
C. 0

D. Can be predicted only if atomic number of

M is known

Answer: A

- Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 4 Mot And Hydrogen Bonding

1. The bond order in N_{2}^{+}ion is
A. 1.5
B. 3.0
C. 2.5
D. 2.0

Answer: C

Watch Video Solution
2. The molecular electronic configuration of
H_{2}^{+}ion is?
A. $\left(\sigma 1 s^{2}\right)$
B. $\left(\sigma 1 s^{2}\right)\left(\sigma^{*} 1 s^{2}\right)$
C. $\left(\sigma 1 s^{2}\right)\left(\sigma^{*} 1 s^{1}\right)$
D. $\left(\sigma 1 s^{1}\right)$

Answer: C

D Watch Video Solution

3. During change of $\mathrm{NO}^{+} \rightarrow \mathrm{NO}$, the electron is added to
A. σ-orbital
B. π-orbital
C. σ^{*} - orbital
D. $\pi^{*}-$ orbital

Answer: D

- Watch Video Solution

4. The correct statement with regard to H_{2}^{+}
and H_{2}^{-}is
A. Both H_{2}^{+}and H_{2}^{-}do not exist
B. H_{2}^{-}is more stable than H_{2}^{+}
C. H_{2}^{+}is more stable than H_{2}^{-}
D. Both H_{2}^{+}and H_{2}^{-}are equally stable

Answer: C

D View Text Solution

5. Which of the following molecules/ins does not contain unpaired electrons?
A. N_{2}^{+}
B. O_{2}
C. O_{2}^{2-}
D. B_{2}

Answer: C

Watch Video Solution

6. Which of the following MO's has two nodal planes?
A. $\pi 2 p_{y}$
B. $\sigma 2 s$
C. $\pi^{*} 2 p_{y}$
D. $\sigma^{*} 2 p_{z}$

Answer: C

D View Text Solution

7. Which of the following combination is not allowed in the $L C A O$ method for the
formation of molecular orbital (consider Z-axis as the molecular axis) ? .
A. $s+p_{x}$
B. $s+p_{z}$
C. $p_{x}+p_{x}$
D. $p_{z}+p_{z}$

Answer: A

D Watch Video Solution
8. Of the following hydrides which one has the lowest boiling point ?
A. AsH_{3}
B. SbH_{3}
C. PH_{3}
D. NH_{3}

Answer: C

9. Which one of the following is the correct

 order of interactions?A. covalent $<$ hydrogen bonding van der

Waals < dipole-dipole
B. van der Waals $<$ hydrogen bonding $<$
dipole-dipole $<$ covalent
C. van der Waals $<$ dipole-dipole $<$
hydrogen bonding $<$ covalent
D. dipole-dipole $<$ van der Waals $<$
hydrogen bonding $<$ covalent

Answer: C

D Watch Video Solution

10. An ether is more volatile than an alcohol
having the same molecualr formula. This is due
to -
A. alcohols having resonance structures
B. intermolecular hydrogen bonding in
ethers
C. intermolecular hydrogen bonding in alcohols
D. dipolar character of ethers

Answer: C

D Watch Video Solution

11. Which one of the following molecules will
form a linear polymeric structure due to hydrogen bonding?
A. NH_{3}
B. $\mathrm{H}_{2} \mathrm{O}$
C. HCl
D. $H F$

Answer: D

D View Text Solution

12. Hydrogen bonding is maximum in:
A. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{OCH}_{3}$

C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{O}$

D. $\mathrm{CH}_{3} \mathrm{CHO}$

Answer: A

D View Text Solution

13. What is the dominant intermolecular forces
or bond that must be overcome in converting liquid $\mathrm{CH}_{3} \mathrm{OH}$ to gas ?
A. Dipole-dipole interaction B. Covalent bonds

C. London dispersion force

D. Hydrogen bonding

Answer: D

D Watch Video Solution

14. Which of the following is not true about $\mathrm{H}_{2} \mathrm{O}$ molecule ?
A. The molecule has $\mu=0$
B. The molecule can act as a base
C. Shows abnormally high boiling point in comparison to the hydrides of other elements of oxygen group

D. The molecule has a bent shape

Answer: A

(Watch Video Solution

Exercise 2 Concept Applicator

1. Correct set of species with zero dipole moment is :
(i)
$\mathrm{CO}_{2} \quad(i i) \mathrm{COCl}_{2} \quad(i i i) \mathrm{CH}_{2} \mathrm{Cl}_{2} \quad$ (iv) BCl_{3}
A. (i) and (iv)
B. (ii) and (iv)
C. (iii) and (iv)
D. (i), (iii) and (iv)

Answer: A

2. Match List I and List II and pick out correct

 matching codes from the given choices :List 1
Compound
A. ClF_{3}
B. $\mathrm{PCl}_{\text {, }}$
C. $\mathbb{I F}$,
D. CCl_{4}
E. XeF_{4}

List II
Structure
1. Square planar
2 Tetrahedral
3. Trigonal bipyramidal
4 Square pyramidal
5. T-shaped

A. $A-5, B-4, C-3, D-2, E-1$
B. $A-5, B-3, C-4, D-2, E-1$
C. $A-5, B-3, C-4, D-1, E-2$
D. $A-4, B-3, C-5, D-2, E-1$

Answer: B

D Watch Video Solution

3. Which of the following is correct order of σ bond strength ?
I. $2 \mathrm{~s}-2 \mathrm{~s}$
II. $2 s-2 p$
III. $2 p-2 p$
IV. 3s-3s
A. $I>I I>I I I>I V$

$$
\text { B. } I I I>I I>I>I V
$$

C. $I V>I>I I>I I I$
D. $I I I>I>I I>I V$

Answer: B

D Watch Video Solution

4. In pyrophosphoric acid, $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$, number of
σ and $d \pi-p \pi$
A. 8 and 2

B. 6 and 2

C. 12 and zero

D. 12 and 2

Answer: D

D Watch Video Solution

5. Arrange the following ions in the order of decreasing $X-O$ bond length where X is the central atom:

$$
\text { A. } \mathrm{ClO}_{4}^{-}, \mathrm{SO}_{4}^{2-}, \mathrm{PO}_{4}^{2-}, \mathrm{SiO}_{4}^{-}
$$

$$
\begin{aligned}
& \text { B. } \mathrm{SiO}_{4}^{4-}, \mathrm{PO}_{4}^{3-}, \mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{4}^{-} \\
& \text {C. } \mathrm{SiO}_{4}^{4-}, \mathrm{PO}_{4}^{3-}, \mathrm{ClO}_{4}^{-}, \mathrm{SO}_{4}^{2-} \\
& \text { D. } \mathrm{SiO}_{4}^{4-}, \mathrm{SO}_{4}^{2-}, \mathrm{PO}_{4}^{3-}, \mathrm{ClO}_{4}^{-}
\end{aligned}
$$

Answer: B

D Watch Video Solution

6. Which of the following statements is correct in the context of the allene molecule, $C_{3} H_{4}$?
A. The central carbon is $s p$ hybridized
B. The terminal carbon atoms are $s p^{2}$

hybridized

C. The planes containing the CH_{2} groups
are mutually perpendicular to permit the
formations two separate π - bonds

D. All are correct

Answer: D

7. Which of the following set contains species having same angle around the central atom?
A. $\mathrm{SF}_{4}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$
B. $\mathrm{NF}_{3}, \mathrm{BCl}_{3}, \mathrm{NH}_{3}$
C. $B F_{3}, N F_{3}, A l C l_{3}$
D. $B F_{3}, B C l_{3}, B B r_{3}$

Answer: D
8. Bond angle between two hybrid orbitals is
105° Percentage of s-orbital character of hybrid orbital is between
A. $50-55 \%$
B. $9-12 \%$
C. 22-23\%
D. 11-12\%

Answer: C

- Watch Video Solution

9. The group of molecules having identical shape is:
A. $P C l_{5}, I F_{5}, \mathrm{XeO}_{2} F_{2}$
B. $\mathrm{BF}_{3}, \mathrm{PCl}_{3}, \mathrm{XeO}_{3}$
C. $S F_{4} X e F_{4} C C l_{4}$
D. $\mathrm{ClF}_{3}, \mathrm{XeOF}_{2}, \mathrm{XeF}_{3}^{+}$

Answer: D

10. The shapes of $X e F_{4}, X e F_{5}^{-}$and $S n C l_{2}$ are
A. octahedral, trigonal bipyramidal and bent B. square pyramidal, pentagonal planar and
linear
C. square planar, pentagonal planar and
angular
D. see-saw, T-shaped and linear

Answer: C
11. Which of these statements is not true?
A. NO^{+}is isoelectronic with O_{2}
B. B is always covalent in its compounds
C. In aqueous solution, the $T l^{+}$ion is much
more stable than Tl (III)
D. LiAlH_{4} is a versatile reducing agent in
organic synthesis.

- View Text Solution

12. The statement true for N_{3}^{-}is
A. It has a non-linear structure
B. It is called pseudo halogens
C. The formal oxidation state of N in this
anion is -1
D. It is isoelectronic with NO_{2}

Answer: C
13. The dipole moments of diatomic molecules
$A B$ and $C D$ are 10.41D and 10.27 D, respectively while their bond distances are 2.82 and $2.67 \AA$ respectively. This indicates that
A. bonding is 100% ionic in both the molecules
B. $A B$ has more ionic bond character than $C D$
$C . A B$ has lesser ionic bond character than

D. bonding is nearly covalent in both the

molecules

Answer: C

D Watch Video Solution

14. The electronegaivity difference between N
and F is greater than that between N and H
yet the dipole moment of NH_{2} (1.5 D) is larger than that of $N F_{3}(0.2 D)$. This is because :
A. in NH_{3}, the atomic dipole and bond
dipole are in the same direction, whereas
in $N F_{3}$ these are in opposite directions
B. in $N H_{3}$ as well as $N F_{3}$, the atomic dipole
and bond dipole are in opposite
directions
C. in NH_{3} the atomic dipole and bond
dipole are in the opposite directions,
whereas in $N F_{3}$ these are in the same direction
D. in $N H_{3}$ as well as in $N F_{3}$, the atomic dipole and bond dipole are in the same direction

Answer: A

D Watch Video Solution

15. The charge/size ratio of a cation determines
its polarizing power. Which one of the following sequences represents the increasing order of
the polarizing power of the cationic species,
$\mathrm{K}^{+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Be}^{2+}$
A. $\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{+}<\mathrm{K}^{+}$
B. $M g^{2+}<B e^{2+},<K^{+} C a^{2+}$
C. $\mathrm{Be}^{2+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}$
D. $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}$

Answer: D

D Watch Video Solution
16. The resultant dipole moment (μ) of two compounds NOF and $\mathrm{NO}_{2} \mathrm{~F}$ is 1.81 D and $0.47 D$ respectively Which dipole momnet do you predict?.

A. 1.81 D for $\mathrm{NO}_{2} \mathrm{~F}$ and 0.47 D for NOF

B. 0.47 D for $\mathrm{NO}_{2} \mathrm{~F}$ and 1.81 D for NOF
C. For both $\mathrm{NO}_{2} \mathrm{~F}$ and NOF, dipole moment
(μ) is 1.81 D
D. For both $\mathrm{NO}_{2} \mathrm{~F}$ and NOF, dipole moment (μ) is 0.47 D

Answer: B

D Watch Video Solution

17. The $B C l_{3}$ is a planar molecule whereas
$N C I_{3}$ is pyramidal because
A. B-Cl bond is more polar than $\mathrm{N}-\mathrm{Cl}$ bond B. $\mathrm{N}-\mathrm{Cl}$ bond is more covalent than $\mathrm{B}-\mathrm{Cl}$ bond
C. nitrogen atom is smaller than boron atom
D. $B C I_{3}$ has no lone pair but $N C I_{3}$ has a
lone pair of electrons

D Watch Video Solution

18. The cylindrical shape of alkynes is due to
A. three sigma C-C bonds
B. two sigma C-C and one ' π ' $C-C$ bonds
C. three ' π ' $C-C$ bonds
D. one sigma C-C and two ' π ' $C-C$ bonds
19. The $A s F_{5}$ molecule is trigonal bipyramidal.

The orbitals used by As for hybridisation are

$$
\text { A. } d_{x^{2}-y^{2}}, d_{z}, s, p_{x}, p_{y}
$$

B. $d_{x y}, s, p_{x}, p_{y}, p_{z}$

$$
\text { C. } p, p_{x}, p_{y}, p_{z}, d_{z^{2}}
$$

$$
\text { D. } d_{x^{2}-y^{2}}, s, p_{x}, p_{y}, p_{z}
$$

Answer: C
20. The correct order of O - O bond length in
$\mathrm{O}_{2} \mathrm{H}_{2} \mathrm{O}_{2}$ and O_{3} is

$$
\begin{aligned}
& \text { A. } O_{2}>O_{3}>\mathrm{H}_{2} O_{2} \\
& \text { B. } O_{3}>H_{2} O_{2}>O_{2} \\
& \text { C. } O_{2}>H_{2} O_{2}>O_{3} \\
& \text { D. } H_{2} O_{2}>O_{3}>O_{2}
\end{aligned}
$$

Answer: D
21. The number and type of bonds in c_{2}^{2-} ion in
$C a C_{2}$ are
A. One σ bond and one π-bond
B. One σ bond and two π-bond
C. Two σ bond and two π-bond
D. Two σ bond and one π-bond

Answer: D

22. In which of the following sets, all the given species are isostructural ?
A. $\mathrm{CO}_{2}, \mathrm{NO}_{2}, \mathrm{ClO}_{2}, \mathrm{SiO}_{2}$ B. $\mathrm{PCl}_{3}, \mathrm{Al}, \mathrm{Cl}_{3}, \mathrm{BCl}_{3}, \mathrm{SbCl}_{3}$
C. $B F_{3}, N F_{3}, P F_{3}, A l F_{3}$

$$
\text { D. } B F_{4}^{-}, C C l_{4}, N H_{4}^{+}, P C l_{4}^{+}
$$

Answer: D

D View Text Solution

23. Correct statement about $V B T$ is .
A. Each bond is formed by maximum overlap
for its maximum stability
B. It represents localised electron modal of
bonding.
C. Most of the electrons retain the same
orbital localisation as in a separate atom,
D. All are correct.
24. Which of the following species used both axial set of d-orbitals in hybridisation of central atom?
A. $P B r_{4}^{+}$
B. PCl_{4}^{-}
C. ICl_{4}^{-}
D. None of these
25. The relationship between the dissociation energy of N_{2} and N_{2}^{+}is
A. Dissociation
energy
of
$N_{2}^{+}=$
dissociation energy of N_{2}
B. Dissociation energy of $N_{2}=$ dissociation
energy of N_{2}^{+}
C. Dissociation energy of $N_{2}>$ dissociation
energy of N_{2}^{+}

D. Dissociation energy of N_{2} can either be

lower or higher than the dissociation

 energy of N_{2}^{+}
Answer: C

D Watch Video Solution

26. Bond order normally gives idea of stability of
a molecular species. All the molecules viz.
$H_{2} L i_{2}$ and B_{2} have the same bond order yet
they are not equally stable. Their stability order is

$$
\begin{aligned}
& \text { A. } H_{2}>B_{2}>L i_{2} \\
& \text { B. } H_{2}>L i_{2}>B_{2} \\
& \text { C. } L i_{2}>B_{2}>H_{2} \\
& \text { D. } B_{2}>H_{2}>L i_{2}
\end{aligned}
$$

Answer: B
27. The internuclear distances in 0-0 bonds for
$\mathrm{O}_{2}^{+}, \mathrm{O}_{2}, \mathrm{O}_{2}^{-}$and O_{2}^{2-} respectively are :
A. $1.30 \AA, 1.49 \AA, 1.12 \AA, 1.21 \AA$
B. $1.49 \AA, 1.21 \AA, 1.12 \AA, 1.30 \AA$
C. $1.21 \AA, 1.12 \AA, 1.49 \AA, 1.30 \AA$
D. $1.12 \AA, 1.21 \AA, 1.30 \AA, 1.49 \AA$

Answer: D
28. In forming (i) $N_{2} \rightarrow N_{2}^{\oplus}$ and $O_{2} \rightarrow O_{2}^{\oplus}$ the electrons respectively removed from .
A.

$$
\left(\pi * 2 p_{y} \text { or } \pi^{*} 2 p_{x}\right) \text { and }\left(\pi^{*} 2 p_{y} \text { or } p^{*} 2 p_{x}\right)
$$

B. $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$ and $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$
C. $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$ and $\left(\pi^{*} 2 p_{y}\right.$ or $\left.\pi^{*} 2 p_{x}\right)$
D. $\left(\pi^{*} 2 p_{y}\right.$ or $\left.\pi^{*} 2 p_{x}\right)$ and $\left(\pi 2 p_{y}\right.$ or $\left.\pi 2 p_{x}\right)$

Answer: C

29. The energy of $\sigma_{2 s}$, is greater than that of $\sigma_{1 s}^{*}$

 orbital becauseA. $2 \sigma s$ is bigger than $\sigma^{*} 1 s M O$
B. $\sigma 2 s$ is bonding whereas $\sigma^{*} 1 s$ is an ABMO
C. $\sigma 2 s$ orbital has a greater value of n than

$$
\sigma^{*} 1 s M O
$$

D. $\sigma 2 s$ orbital is formed only after $\sigma 1 s$

Answer: C

30. Which statement is correct?

A. m.p of $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}$ are maximum in their respective group due to intermolecular H bonding
B. b.p.
of
CH_{4}
our
ot
$\mathrm{CH}_{4}, \mathrm{SiH}_{4}, \mathrm{GeH}_{4}$ and SnH_{4} is least
due to weak intermolecular force of
attraction
C. formic acid forms dimer by H -bonding
D. all are correct

Answer: D

D View Text Solution

