©゙" doubtnut

India's Number 1 Education App

PHYSICS

AAKASH INSTITUTE ENGLISH

MOCK TEST 9

Example

1. When two bodies collide elastically, then
A. Kinetic energy of the system alone is
conserved throughout the collision

B. Only momentum is conserved

throughout the collision
C. Both kinetic energy and momentum are
conserved throughout the collision
D. Neither kinetic energy nor momentum is
conserved throughout the collision

Answer: C

2. A body falls on a surface of coefficient of

 restitution 0.6 from a height of 1 m . Then the body rebounds to a height ofA. 0.6 m
B. 0.4 m
C. 1 m
D. 0.36 m

Answer: D

D Watch Video Solution
3. In an inelastic collision
A. only momentum is conserved
B. only kinetic energy is conserved
C. neither momentum nor kinetic energy is
conserved
D. both momentum and kinetic energy are
conserved

- Watch Video Solution

4. Two masses m_{A} and m_{B} moving with velocities v_{A} and v_{B} in opposite direction collide elastically after that the masses m_{A} and m_{B} move with velocity v_{B} and v_{A} respectively. The ratio $\left(m_{A} / m_{B}\right)$ is
A. 1
B. $\frac{V_{A}-V_{B}}{V_{A}+V_{B}}$
C. $\frac{3 V_{A}}{2 V_{B}}$
D. $\frac{V_{A}}{V_{B}}$

Answer: A

D Watch Video Solution

5. Two masses of 0.25 kg each moves toward each other with speed $3 \mathrm{~ms}^{-1}$ collide and stick together. Find the final velocity
6. Two equal masses m_{1} and m_{2} moving along
the same straight line with velocites $+3 m / s$
and $-5 m / s$ respectively collide elastically.
Their velocities after the collision will be respectively.
A. $+4 \frac{m}{s}$ for both
B. $-3 \frac{m}{s}$ and $+5 \frac{m}{s}$
C. $-4 \frac{m}{s}$ and $+4 \frac{m}{s}$
D. $-5 \frac{m}{s}$ and $+3 \frac{m}{s}$

Answer: D
7. A body of mass 4 kg moving with velocity $12 \mathrm{~m} / \mathrm{s}$ collides with another body of mass 6 kg at rest. If two bodies stick together after collision, then the loss of kinetic energy of system is
A. Zero
B. 288J
C. 172.8J
D. 144J

Answer: C

D Watch Video Solution

8. A shell of mass 20 kg at rest explodes into
two fragments whose masses are in the ratio
$2: 3$. The smaller fragment moves with a velocity of $6 \mathrm{~m} / \mathrm{s}$. The kinetic energy of the larger fragment is
A. 96 J
B. 216 J
C. 144 J
D. 360 J

Answer: A

- Watch Video Solution

9. There object A, B and C are kept is a straing line a frictionless horizontal surface .

These have masses have increase on $2 m$ and m respectively. The object A move toward B
with a speed $9 \mathrm{~m} / / \mathrm{s}$ and makes as elastic collision with a there after B makes completely inclesis with C. All motion over on the same straight line. Find the first speed of the object C

A. $3 \mathrm{~m} / \mathrm{s}$
B. $4 \mathrm{~m} / \mathrm{s}$
C. $5 \mathrm{~m} / \mathrm{s}$

D. $1 \mathrm{~m} / \mathrm{s}$

Answer: B

D Watch Video Solution

10. A particle falls from a height h upon a fixed
horizontal plane and rebounds. If e is the coefficient of restitution the total distance travelled before rebounding has stopped is

$$
\begin{aligned}
& \text { A. } h \frac{1+e_{2}}{1-e^{2}} \\
& \text { B. } h \frac{1-e^{2}}{1+e^{2}} \\
& \text { C. } h \frac{1-e^{2}}{2}\left(1+e^{2}\right) \\
& \text { D. } h \frac{1+e^{2}}{2}\left(1-e^{2}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

11. If the collision of a ball of mass m is inelastic, then the relation between theta and alpha is (where theta is the coefficient of
restitution)

A. $\tan \alpha=(\tan \theta) /$ 'alpha'
B. $2 \tan \alpha=\operatorname{etan} \theta$
C. $\tan \alpha=(\cot \theta) / \theta$
D. $\alpha=\theta$

Answer: A
12. Two balls each of mass 2 kg (one at rest) undergo oblique collision is perfectly elastic, then the angle between their velocities after collision is
A. 30°
B. 60°
C. 45°
D. 90°

- Watch Video Solution

13. Two balls of equal masses moving with equal speed in mutually perpendicular directions, stick together after collision. If the balls were initially moving with a speed of 30 $\frac{30}{\sqrt{ }} 2 \mathrm{~ms}^{\wedge}(-1)$ each, the speed of their combined mass after collision is

$$
\text { A. } 30 m s^{-1}
$$

B. $15 m s^{-1}$

> C. $\frac{30}{\sqrt{ }} 2 m s^{-1}$
> D. $30 \sqrt{2} m s^{-1}$

Answer: B

- Watch Video Solution

14. The practicals having position vectors $\vec{r}_{1}=(6 \hat{i}+10 \hat{j}) \quad$ metre and $\vec{r}_{2}=(-10 \hat{i}-6 \hat{j})$ metre are moving with velocities $\quad \vec{V}_{1}=(8 \hat{i}+6 \hat{j}) \frac{m}{s} \quad$ and
$\vec{V}_{2}=(2 \alpha \hat{j}+14 \hat{j}) \mathrm{m} / \mathrm{s}$. If they collide after 2 second, then value of α is
A. 2
B. 4
C. 6
D. 8

Answer: D
(Watch Video Solution
15. A particle of mass m moving in the x direction with speed $2 v$ is hit by another particle of mass $2 m$ moving in the y direction with speed v. If the collision is perfectly inelastic, the percentage loss in the energy during the collision is close to
A. 0.56
B. 0.8
C. 0.35
D. 0.44

Answer: D

- Watch Video Solution

16. A transistor is connected in common emitter configuration as shown in the figure.lf $V_{B E}=1 V$ and current gain $\beta=100$,then the voltage across collector emitter terminals VCE

A. 5 V
B. 1 V
C. 4 V
D. 2 V

Answer:

- Watch Video Solution

17. The output of the given logic gate is

A. $Y=\bar{A} B+\bar{B}$
B. $Y=A B$
C. $Y=(A+B) \cdot \bar{B}$
D. $Y=1$

Answer: D

18. The count rate of a radioactive sample was

1600 count/s at $t=0$ and 100 count/s at $\mathrm{t}=8 \mathrm{~s}$.Select the correct option.
A. Its count rate was 400 count $/ \mathrm{s}$ at $\mathrm{t}=2 \mathrm{~s}$
B. Half life of the sample is 2.88 s
C. Mean life of the sample is 4 s
D. Its count rate was 200 count/s at $\mathrm{t}=6 \mathrm{~s}$

Answer: A

D Watch Video Solution

19. In Young's double slit experiment, the phase different between two coherent sources of equal intensity is $\pi / 3$. The intensity at a point which is at equal distance from the two slits is (IO is maximum intensity)
A. $\left(l \circ \frac{)}{2}\right.$
B. $\left(3 l \circ \frac{)}{4}\right.$
C. $\left(l \circ \frac{)}{4}\right.$
D. $\frac{l_{\circ}}{\sqrt{2}}$

Answer: B

D Watch Video Solution

20. A person cannot see beyond a distance of

50 cm .The power of corrective lens required to
see distant object is
A. -1.5 D
B. -1.0 D
C. -3 D
D. -2.0 D

Answer: A

D Watch Video Solution

21. A plano convex lens fits exactly into a plano
concave lens. Their plane surface are parallel
to each other. If lenses are made at different materials of refractive indicies μ_{1} and μ_{2} and
R is the radius of curvature of length of the combination is
A. $\frac{R}{\mu_{1}+\mu_{2}}$

$$
\mu_{1}+\mu_{2}
$$

$$
\begin{aligned}
& \text { B. } \frac{R}{\mu_{1}-\mu_{2}} \\
& \text { C. } \frac{R}{2\left(\mu_{1}-\mu_{2}\right)} \\
& \text { D. } \frac{R}{2 \mu_{1}-\mu_{2}}
\end{aligned}
$$

Answer: C

- Watch Video Solution

22. If charge q 1 and q 2 lies inside and outside respectively of a closed surface S . Let E be the electric field at any point on S and ϕ be the electric flux over S. Select the incorrect option.
A. If $q_{1}=0$ and $q_{2} \neq 0$,then $\mathrm{E}=0$ but $\phi \neq 0$
B. If q_{1} changes,both E and ϕ will change
C. If q_{2} changes, E will changes but ϕ will not change
D. If $q_{1} \neq 0$ and $q_{2} \neq 0$, then $\phi \neq 0$

Answer: A

D Watch Video Solution
23. At a place horizontal and vertical
components
of
earth
smag \neq ticfieldareasfollows $\mathrm{BH}=1 \mathrm{G} 5^{\wedge} . `$ East of north
$B V=1 G$ vertically upward
Then inclination and declination are respectively
A. $45^{\circ}, 5^{\circ} W$
B. $5^{\circ}, 45^{\circ} E$
C. $45^{\circ}, 5^{\circ} E$
D. $5^{\circ}, 45^{\circ} W$

Answer: A

D Watch Video Solution

24. The product of angular speed and tangential speed of electron in $n^{\text {th }}$ orbit of hydrogen atom is
A. Inversly proportional to n^{2}
B. Directly proportional to n^{2}
C. inversly proportional to n^{4}
D. Independent of n

Answer: A

D Watch Video Solution

25. When light of wavelength λ is incident on a metal surface ,stopping potential is found to
be V_{\circ}. When light of wavelength $n \lambda$ is in incident on the same metal surface ,stopping
potential is found to be $\frac{V_{\circ}}{n+1}$. The threshold wavelength of the metal is
A. $n^{3} \lambda$
B. $\frac{\lambda}{n^{2}}$
C. $n^{\wedge} 2 \lambda^{\prime}$
D. $(\mathrm{n}+2) \lambda^{\wedge}$

Answer: D
(Watch Video Solution
26. A semicircular conducting wire of radius a
is moving perpendicular to a uniform
magnetic field B with speed $\sqrt{ } 2 v$ as shown in
the figure.The emf induced across the wire is
A. $B v a$
B. 2Bva
C. 3Bva
D. $\sqrt{ } 2$ Bva`

Answer: C

- Watch Video Solution

27. The instantaneous value of current at a given instant is 1 A and peak value of current is $\frac{5}{3} A$.The potential difference between A and B at the same instant is
A. 4 V
B. $\frac{5}{3 \sqrt{ } 2} V$
C. $23 / 3 \mathrm{~V}$
D. 3 V

Answer:

D Watch Video Solution

28. A wire of certain length carries a current I.It
is bent to form a circle of one turn and the magnetic field at the centre is $B 1$. If it is bent
to form a coil of four turns, then magnetic
field at centre is B_{2}. The ratio of B_{1} and B_{2} is
A. $1: 16^{`}$
B. 1 : 4
C. 64 : $1^{`}$
D. $2: 1^{\text {` }}$

Answer: C
(Watch Video Solution
29. A charge particle of mass m and charge q enters in a region of uniform magnetic field as
shown in figure.The magnitude of change in linear momentum due to magnetic field will be

A. mv
B. 2 mv
C. $\sqrt{3} m^{\prime}{ }^{`}$
D. zero

Answer: D

D Watch Video Solution

30. The dimensional formula of $\frac{1}{\mu_{\circ}^{c^{2}}} \frac{d \phi_{E}}{d t}$ is same as that of[where $Ф \mathrm{e}$ is same as that of
[where ϕ_{E} is electric flux and c is speed od light,t is time and μ_{0} is permeability of free space)
A. Current
B. electric potential
C. capacitance
D. charge

Answer: D

D Watch Video Solution
31. The wavelength of de-Broglie wave associated with a thermal neutron of mass m
kg at $27^{\wedge} \cdot \mathrm{C}$ is (KB is the Boltzmann constant and all quantities are in SI units)

$$
\begin{aligned}
& \text { A. } \frac{h}{\sqrt{100} m K_{B}} \text { metre } \\
& \text { B. } \frac{h}{\sqrt{900} m K_{B}} \text { metre } \\
& \text { C. } \frac{h}{\sqrt{400} m K_{B}} \text { metre } \\
& \text { D. } \frac{h}{\sqrt{300} m K_{B}} \text { metre }
\end{aligned}
$$

Answer: A
32. Match the column in radioactive decay process of nucleus with atomic number Z and mass number A.

Column I

a. If the process is γ-decay
b. If the process is β^{+}decay
c. If the process is β^{-}- decay
d. If the process is α-decay

Column II

(i) Both Z and A will
decrease
(ii) Z will increase but A
will not decrease
(iii) Z will decrease but A
will not change
(iv) Z and A will remain
unchanged
A. $a($ iv $), b(i i i), c(i i), d(i)$
B. $a(i i i), b(i v), c(i i), d(i)$
C. $a(i v), b(i i i), c(i), d(i i)$

D. $a(i i), b(i), c(i v), d(i i i)$

Answer: A

D Watch Video Solution

33. Unpolarised light of intensity I_{0} passes
through five successive polaroid sheets,each of whose transmission axes makes an angle
45°. With the previous one.The intensity of the finally transmitted light is

$$
\text { A. } \frac{I_{\circ}}{64}
$$

B. $\frac{I_{\circ}}{16}$
C. $\frac{I_{\circ}}{8}$
D. $\left(I_{\circ} \frac{)}{32}\right.$

Answer: B

D Watch Video Solution

34. The circuit shown in figure contains two diodes each with a forward resistance of 50Ω and infinite reverse resistance.If the battery
voltage is 6 v ,then the current through the

100Ω resistance is

A. 0.04 A
B. 0.02 A
C. 0.2 A
D. 0.15 A

Answer: B
(Watch Video Solution
35. A fruit which is at 20 m above a lake suddenly detaches from the tree.A fish inside the lake, in the line of fall of fruit, is looking at fruit when fruit is at 12.8 m above the water surface.Speed of fruit as observed by fish $\left(\mu_{\text {water }}=\frac{4}{3}\right.$ and $\left.g=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)$
A. $6 \mathrm{~m} / \mathrm{s}$
B. $12 \mathrm{~m} / \mathrm{s}$
C. $15 \mathrm{~m} / \mathrm{s}$
D. $16 \mathrm{~m} / \mathrm{s}$

Answer: D

D Watch Video Solution

36. Two parallel conducting plates of area A each,are placed at distance d.A third plate ,identical with the first two placed at a distance $d / 3$ from one of the plate as shown in
figure.The capacitance of given arrangement is

A. $\frac{3 \varepsilon_{0} A}{d}$
B. $\frac{3}{2} \frac{\varepsilon_{0} A}{d}$
C. $\frac{\varepsilon_{0} A}{2 d}$
D. $\frac{9 \varepsilon_{0} A}{2 d}$

Answer:

- Watch Video Solution

37. The diagram shows a circuit with two identical resistance.The battery has a neglible resistance .If switch S is closed,then which of the following statement in incorrect ?[Assume volmeter and ammeter are ideal \& $R_{A}=R_{B}$

A. Power dissipated in R_{A} increases
B. Power dissipated in R_{B} becomes zero
C. voltmeter reading decreases
D. Ammeter reading increases

- Watch Video Solution

38. Two concentric conducting shells of radii R and $2 R$ are having charges Q and $-2 Q$ respectively.In a region r
A. Electric field is zero but electric potential
is non zero
B. electric field is non-zero,electric
potential is zero

C. Both electric field and electric potential

 are zero
D. Both electric field and electric potential

 are non-zero
Answer: C

D Watch Video Solution

39. A uniform rod of mass m is hinged at one end and other end is connected to a light extensible string having length L.If the Young's
modulus and crosssectional area of the wire is
Y and A respectively then the elongation in the
string is

$$
\begin{aligned}
& \text { A. } \frac{m g L}{A Y} \\
& \text { B. } 2 \frac{m g L}{A Y} \\
& \text { C. } \frac{m g L}{2 A Y} \\
& \text { D. } \frac{m g L}{4 A Y}
\end{aligned}
$$

Answer:

D Watch Video Solution

40. A ring, a solid cylinder, a hollow sphere and a solid sphere are released from rest on an inclined plane from same level. If there is no slipping then which one of these will reach the ground at last?
A. Ring
B. Solid cylinder
C. Hollow sphere
D. Solid sphere

Answer: A

- Watch Video Solution

41. In the figure shown, the tension is strings
are T_{1} and T_{2} for figure (1) and (2) respectively
and acceleration of mass m are a_{1} and a_{2} for
figure (1) and (2) respectively.Select the correct option
A. $T_{1}>T_{2}$ and $a_{2}>a_{1}$
B. T_2gtT_1 and a_1gta_2`
C. $T_{1}>T_{2}$ and $a_{1}>a_{2}$
D. $T_{2}>T_{1}$ and $a_{2}>a_{1}$

Answer: C

- Watch Video Solution

42. A particle of mass 1 kg is moved under the
action of a force and velocity time graph of
the particle is shown in figure.Work done by
the force from $t=0$ to $t=6 \mathrm{~s}$ is

A. 40 J
B. 80 J
C. 20 J
D. Zero

Answer: C

D Watch Video Solution

43. The temperature in kelvin at which the average speed of H 2 molecues will be same as
that of N 2 molecules at 35 C will be ?

- Watch Video Solution

44. A system consists of two concentric spherical shells of radii a and $b(b>a)$ maintained at tempareture T_{1} and T_{2} respectively.The radial rate of flow of heat through subtance between the two concentric spherical shells is proportional to
A. $\mathrm{b}-\mathrm{a}$
B. $\frac{a b}{b-a}$
C. $\log _{e}\left(\frac{b}{a}\right)$
D. $\frac{b-a}{a b}$

Answer: B

D Watch Video Solution

45. The ratio of the masses and radii of two
planets are 2:3 and 8:27.The ratio of respective escape speeds from their surfaces are
A. $\sqrt{3}: \sqrt{2}$
B. 9 : 4

C. $3: 2^{`}$

$$
\text { D. } 3: 4{ }^{\text { }}
$$

Answer: C

D Watch Video Solution

46. A metal rod has length L , radius of its cross-section r. Youngs modulus Y and thermal coefficient of linear expansion is α.It is clamped between two rigid supports with negligible tension. If its temperature is
increased by $T^{\circ} C$, then force exerted by the rod on any of the supports is
A. $2 \pi^{2} Y T$
B. $2 \pi r^{2} Y \alpha T$
C. $\pi r^{2} Y L T$
D. $\pi r^{2} Y \alpha T$

Answer: A
(Watch Video Solution
47. A person P is standing at perpendicular
distance of 100 m from point Q on a highway.A
bus B is moving with a speed of $30 \sqrt{ } 2 \mathrm{~m} / \mathrm{s}$
toward point Q on the highway.The driver of the bus blows a horn of frequency 1200 Hz .

The frequency of the sound received by the person P, when the bus emits sound when it is at distant 100 m from Q is [speed of sound in air is $330 \mathrm{~m} / \mathrm{s}$]

D Watch Video Solution

48. Third overtone of a closed organ pipe is in unison with fourth harmonic of an open organ pipe. Find the ratio of the lengths of the pipes.
A. $7: 8{ }^{\text { }}$
B. 2 : 5^{\prime}
C. $7: 4^{\prime}$
D. $2: 1^{`}$

Answer: B
49. A particle is executing S.H.M. If u_{1} and u_{2} are the velocitiesof the particle at distances x_{1} and x_{2} from the mean position respectively, then

$$
\begin{aligned}
& \text { A. } 2 \pi \sqrt{\frac{\left(x_{2}^{2}+X_{1}^{2}\right)}{\left(V_{1}^{2}+V_{2}^{2}\right)}} \\
& \text { B. } 2 \pi \sqrt{\frac{\left(x_{2}^{2}-X_{1}^{2}\right)}{\left(V_{1}^{2}-V_{2}^{2}\right)}} \\
& \text { C. } 2 \pi \sqrt{\frac{\left(x_{2}^{2}-X_{1}^{2}\right)}{\left(V_{2}^{2}-V_{1}^{2}\right)}} \\
& \text { D. } 2 \pi \sqrt{\frac{\left(x_{1}^{2}-X_{2}^{2}\right)}{\left(V_{1}^{2}+V_{2}^{2}\right)}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

50. A faulty thermometer has ice point at $-5^{\circ} \mathrm{C}$ and steam point at $105^{\circ} \mathrm{C}$ What would be the tempareture shown by this thermometer of a person?(Assume correct tempareture of person is $37^{\circ} \mathrm{C}$)
A. $42^{\circ} C$
B. $32^{\circ} C$

C. $35.7^{\circ} \mathrm{C}$

D. $47^{\circ} \mathrm{C}$

Answer: C

- Watch Video Solution

51. Tempareture and volume of one mole of an
ideal momatomic gas in a process are related
as $T V^{\frac{2}{3}}=K$,where k is constant.The molar specific heat capacity for the process is
A. 2 R
B. $(5 R) / 2^{`}$
C. 3R
D. Zero

Answer: A

D Watch Video Solution

52. Displacement time(x-t) graph of a particle executing S.H.M is shown In the figure.The

A. $x=4 \sin \left(\frac{\pi}{2} t+\frac{\pi}{6}\right) c m$
В. $x=4 \sin \left(\pi t+\frac{\pi}{6}\right) c m$
C. $x=4 \sin \left(\frac{\pi}{4} t+\frac{5 \pi}{6}\right) c m$
D. $x=4 \sin \left(\pi t+\frac{5 \pi}{6}\right) c m$
53. An ideal gas undergoes a process $P \rightarrow Q \rightarrow R$
as shown in pressure (p) - volume (v) diagram.The work done by the gas is

A. $\frac{7}{4} P_{0} V_{0}$
B. $15 P_{0} V_{0}$
C. $9 P_{0} V_{0}$
D. $12 P_{0} V_{0}$

Answer: C

D Watch Video Solution

54. A solid cylinder of length L is in equilibrium
in two different liquid A and B as shown in the figure.The density of liquid A $\frac{3 \rho}{2}$ and liquid B is 3ρ.The density of cylinder is
A. $7 / 5 \rho$
B. $13 / 5 \rho$
C. $5 / 2 \rho$
D. 2ρ

Answer: B

D Watch Video Solution

55. A ball is thrown onto a floor as shown in
figure.If its velocity vector $(\bar{V} 1)$ is
$(3 \hat{i}-4 \hat{j}) \frac{m}{s}$ and coefficient ofrestitution is
$\frac{1}{2}$ then,th
rebounds is

A. $(3 \hat{i}+4 \hat{j}) \frac{m}{s}$
B. $(3 \hat{i}+2 \hat{j}) \frac{m}{s}$
C. $(-3 \hat{i}+2 \hat{j}) \frac{m}{s}$
D. $(-3 \hat{i}-2 \hat{j}) \frac{m}{s}$

D Watch Video Solution

56. A verical thin rod is hinged at point P, due to slight push rod starts to rotate.The velocity of centre of mass of rod just after turning angle 0 is [L is length of rod] (\#\# AAK_TST_09_NEET_19_PHY_E09_041_Q001 \#\#)

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{6 g}{L}} \sin 0 / 2^{`} \\
& \text { B. } \sqrt{\frac{3 g L}{2}} \sin 0 / 2^{`} \\
& \text { C. } \sqrt{\frac{6 g L}{5}(1+\cos \theta)}
\end{aligned}
$$

D. $\sqrt{\frac{3 g L}{2}}$. costheta/2

Answer: B

D Watch Video Solution

57. Three identical cubes each of mass m are place on a smooth horizontal surface.A constant force F is applied on A as shown in the figure.The force on B applied by C is
A. $F / 2^{`}$
B. $F / 3^{`}$
C. F
D. $(2 F) / 3^{`}$

Answer: B

D Watch Video Solution

58. A physical quantity of the dimension of length that can be formed out of c, G and $\frac{e^{2}}{4 \pi \varepsilon_{0}}$ is [c is velocity of light G is universal constant of gravitation, e is charge
A. $C^{2}\left[G \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{\frac{1}{2}}$
B. $C^{3}\left[G \frac{e^{2}}{4 \pi \varepsilon_{0}}\right]^{\frac{1}{2}}$
C. $\frac{1}{C^{3}}\left[\frac{G e^{2}}{4 \pi \varepsilon_{0}}\right]^{\frac{1}{2}}$
D. $\frac{1}{C^{3}}\left[\frac{G e^{2}}{4 \pi \varepsilon_{0}}\right]^{-\left(\frac{3}{2}\right)}$

Answer: A

D Watch Video Solution

59. A particle is projected from origin x-axis
with velocity V_{0} such that it suffers
retardation of magnitude given by $K x^{3}$
(where k is a positive constant).The stopping distance of particle is
A. $\left(\frac{3 V_{0}^{2}}{4 k}\right)^{\frac{1}{3}}$
B. $\left(\frac{2 V_{0}^{2}}{k}\right)^{\frac{1}{4}}$
C. $\left(\frac{V_{0}^{2}}{2 k}\right)^{\frac{1}{4}}$
D. $\left(\frac{2 V_{0}^{2}}{3 k}\right)^{\frac{1}{3}}$

Answer: B
60. A particle is moving on a circle of radius A
.At an instant its speed and tangential acceleration are B and C respectively.Total acceleration of the particle at that instant is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{A^{2}}{B^{2}}+C^{2}} \\
& \text { B. } \sqrt{\frac{A^{4}}{B^{2}}+C^{2}} \\
& \text { C. } \sqrt{\frac{B^{4}}{A^{2}}+C^{2}} \\
& \text { D. } \frac{B^{2}}{A}+C
\end{aligned}
$$

61. In an n-p-n transistor 10^{10} electron enter the emitter in 10^{-6} s. If 2% of the electrons are lost in the base, the current amplification factor is
A. 49
B. 27
C. 39
D. 38

Answer:

- Watch Video Solution

62. For the given logic gate network, the output at Y when $\mathrm{A}=1, \mathrm{~B}=1$ and $\mathrm{A}=0, \mathrm{~B}=0$ are

A. 1,0
B. 0,1
C. 1,1
D. 0,0

Answer:

D Watch Video Solution

63. The electrical conductivity of a semiconductor increases
when
electromagnetic radiation of wavelength
shorter than 2480 nm is incident on it. Find
the band gap of the semiconductor.
A. 0.75 eV
B. 0.05 eV
C. 1.5 eV
D. 0.5 eV

Answer:
(Watch Video Solution
64. A freshly prepared radioactive source of half-life 2 h emits radiation of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is
A. 42 hr
B. 128 hr
C. 6 hr
D. 12 hr
65. The graph showing the energy spectrum of β particle is
A.
B.
c.
D.

Answer:
66. For the given reaction, the particle X is :
${ }_{\cdot 6} C^{11} \rightarrow{ }_{.5} B^{11}+\beta^{+}+X$
A. Neutron
B. Neutrino
C. Electron
D. Proton

Answer:

- Watch Video Solution

67. The recoil energy of a hydrogen atom after it emits a photon in going from $\mathrm{n}=5$ state to $\mathrm{n}=1$ state is $(\mathrm{M}=$ Mass of H atom, $\mathrm{R}=$ Rydberg's constant, $\mathrm{h}=$ Planck's constant)
A. $\left(\frac{21}{25} R h\right)^{2} \frac{1}{2 M}$
B. $\left(\frac{18}{25} R h\right)^{2} \frac{1}{2 M}$
C. $\left(\frac{24 R h}{25}\right)^{2} \frac{1}{2 M}$
D. $\frac{(R h)^{2}}{2 M}$
68. Two identical metal plates show
photoelectric effect by a light of wavelength
λ_{A} falling on plate A and λ_{B} on plate B
$\left(\lambda_{A}=2 \lambda_{B}\right)$. The maximum kinetic energy is
A. $K_{A}=2 K_{B}$
B. $K_{A}>\frac{K_{B}}{2}$
C. $2 K_{A}=K_{B}$
D. $K_{A}<\frac{K_{B}}{2}$

Answer:

- Watch Video Solution

69. A ray of light of intensity I is incident on a parallel glass-slab at the point A and it undergoes partial reflection and refraction as
shown in the figure. At each reflection 25% of
the incident energy is reflected and the rest is
transmitted. If the rays $A B$ and $A^{\prime} B^{\prime}$ undergo
interference, then the ratio $\frac{I_{\text {max }}}{I_{\text {min }}}$ is

A. 7:1
B. $49: 1$
C. 4:3
D. $16: 9$

Answer:
70. An object is 20 cm away from a concave mirror of focal length, 15 cm . If the object moves with a speed of $5 \mathrm{~m} / \mathrm{s}$ along the axis,
then the instantaneous speed of image will be
A. $30 \mathrm{~m} / \mathrm{s}$
B. $45 \mathrm{~m} / \mathrm{s}$
C. $9 \mathrm{~m} / \mathrm{s}$
D. $18 \mathrm{~m} / \mathrm{s}$

Answer:

- Watch Video Solution

71. If the critical angle for the material of a prism is C, and the angle of the prism is A, then there will be no emergent ray when
A. A gt 2C
B. A lt C
C. Alt 2C
D. $A \leq 2 C$

Answer:

D Watch Video Solution

72. IF E_{0} and μ_{0} are respectively the electric permittivity and magnetic permeability of free space, ε and μ are the corresponding quantities In a medium, the index of refraction of the medium is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{\mu \varepsilon}{\mu_{0} \varepsilon_{0}}} \\
& \text { B. } \sqrt{\frac{\mu_{0} \varepsilon_{0}}{\mu}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { C. } \sqrt{\frac{\mu_{0} \varepsilon_{0}}{\mu \varepsilon}} \\
& \text { D. } \sqrt{\frac{\varepsilon}{\mu_{0} \varepsilon_{0}}}
\end{aligned}
$$

Answer:

- Watch Video Solution

73. Choose the correct combination for the given graph.
(Symbols have their usual meaning)
(Impedance) 2
A. (1)LCR, (2)L, (3)R, (4)C
B. (1)LCR, (2)C, (3)R, (4)L
C. (1)LR, (2)R, (3)C, (4)L
D. (1) RC, (2)C, (3)R, (4)L

Answer:

74. In an $L C$ circuit the capacitor has maximum charge q_{0}. The value of $\left(\frac{d I}{d t}\right)_{\max }$ is

A. $\frac{q_{0}}{2 L C}$
B. $\frac{2 q_{0}}{L C}$
C. $\frac{q_{0}}{L C}$

D. $\frac{q_{0}}{\sqrt{L C}}$

Answer:

D Watch Video Solution

75. A wire carrying a current of $3 A$ is bent in
the form of a parabola $y^{2}=4-x$ as shown in figure, where x and y are in metre. The wire is placed in a uniform magnetic field $B=5 \hat{k}$
tesla. The force acting on the wire is
$y(\mathrm{~m}) \uparrow$
A. $30 \hat{i} N$
B. $-30 \hat{i} N$
C. $60 \hat{i} n$
D. $-60 \hat{i} N$

76. The segment of wire shown in figure carries

a current of $\mathrm{i}=5 \mathrm{~A}$. The magnetic field (in Tesla)

at the point P is

A. $\frac{28}{3} \mu_{0}$
B. $\frac{22}{7} \mu_{0}$

> C. $\frac{5}{18} \mu_{0}$
> D. $\frac{25}{18} \mu_{0}$

Answer:

D Watch Video Solution

77. Two parallel wires P and Q placed at a separation
$d=6 \mathrm{~cm}$ carry electric currents $\mathrm{i}_{-} 1=5 \mathrm{~A}$ and
i_2= 2A in opposite directions as shown in figure. Find the point on the line $P Q$ where the
resultant magnetic field `
is zero.

(a)

(b)
A. 4 cm from Q on right
B. 2 cm from P on left
C. 4 cm from P on right

D. 2 cm from Q on left

Answer:

78. Which of the follwing particles will have minimum frequency of revolution when projected with the same velocity perpendicular to a magnetic field?
A. He^{+}
B. Li^{+}
C. Electron

D. Proton

Answer:

79. An electric bulb, when connected across a power supply of 220 V , consumes a power of $60 W$. If the supply drops supply is suddently increased to 240 V , what will be the power consumed?
A. 160 W
B. 240 W
C. 112 W
D. 71 W

Answer:

- Watch Video Solution

80. Find the current through 4Ω resistor in the
circuit shown in figure.

A. $4 A$
B. $6 A$
C. Zero
D. $2 A$

Answer:

D Watch Video Solution

81. The energy density in the electric field created by a point change falls off with the distance from the point charge as

$$
\text { A. } \frac{1}{r^{2}}
$$

B. $\frac{1}{r}$
C. $\frac{1}{r^{4}}$
D. $\frac{1}{r^{3}}$

Answer:

D Watch Video Solution

82. A metallic sphere having no net charge is
placed near a finite metal plate carrying a positive charge. The electric force on the sphere will be
A. Parallel to the plate
B. Zero
C. Towards the plate
D. Away from the plate

Answer:

D Watch Video Solution
83. Two successive resonance frequencies in an open organ pipe are 1944 Hz and 2592 Hz . Find
the length of the tube. The speed of sound in air is $324 m s^{-1}$.
A. 100 cm
B. 12.5 cm
C. 25 cm
D. 50 cm

Answer:
(Watch Video Solution
84. An observer moves towards a stationary
source of sound with a velocity one-fifth of the
velocity of sound. What is the percentage increase in the apparent frequency?
A. 0.05
B. 0.2
C. Zero
D. 0.5%

Answer:

85. "The velocity of sound is generally greater in solids than in gas at N.T.P." Why?
A. Both the density and elasticity of solids
are low
B. The density of solids is low but the
elasticity is high
C. The density of solids is high but the
elasticity is low
D. The density of solids is high but the elasticity of solids is very high

Answer:

D Watch Video Solution

86. The rate of cooling of a body depends

upon

A. Surface area of body
B. Mass of body
C. Specific heat of material of body
D. All of these

Answer:

D Watch Video Solution

87. The temperature of an ideal gas is increased from 120 K to 480 K . If at 120 K , the rms velocity of the gas molecules is $v_{r m s}$ then at 480 K , it becomes
A. $\frac{v}{2}$
B. $\frac{v}{4}$
C. 4 v
D. 2 v

Answer:

D Watch Video Solution
88. When an ideal diatomic gas is heated at constant pressure the fraction of the heat
energy supplied which increases the internal energy of the gas is

> A. $\frac{3}{7}$
> B. $\frac{5}{7}$
> C. $\frac{2}{5}$
> D. $\frac{3}{5}$

Answer:
(Watch Video Solution
89. A volume V versus pressure P graph was obtained from state 1 to state 2 when a given mass of a gas is subjected to temperature changes. During the process the gas is

A. Heated in the beginning and cooled towards end
B. Cooled in the beginning and heated towards end
C. Heated continuously
D. Cooled continuously

Answer:

D Watch Video Solution

90. The potential energy of a particle in motion along X axis is given by $U=U_{0}-u_{0}$ cos ax. The time period of small oscillation is
A. $\frac{2 \pi}{a} \sqrt{\frac{m}{U_{0}}}$
B. $2 \pi \sqrt{\frac{m}{a U_{0}}}$
C. $2 \pi \sqrt{\frac{m a}{U_{0}}}$
D. $2 \pi \sqrt{\frac{U_{0}}{m a}}$

Answer:

- Watch Video Solution

91. A child is standing with folded hands at the center of a platform rotating about its central axis. The kinetic energy of the system is K. The
child now stretches his arms so that the moment of inertia of the system doubles. The kinetic energy of the system now is: a) K/4 b)
$\mathrm{K} / 2 \mathrm{c}) 2 \mathrm{~K} \mathrm{~d}) 4 \mathrm{~K}$

$$
\text { A. } \frac{K}{4}
$$

B. 4 K
C. 2 K
D. $\frac{K}{2}$

Answer:

92. A boat of mass 90 kg is floating in still water. A boy of mass 30 kg walks from one end to the other on it. If the length of the boat is 3 m , then the distance through which the boat will move is
A. 0.45 m
B. 0.65 m
C. 0.75 m
D. 0.25 m

Answer:

D Watch Video Solution

93. A ball impinges directly on another ball at
rest. The first ball is brought to rest by the impact. If half of the kinetic energy is lost by
the impact, the value of coefficient of restitution is

$$
\begin{aligned}
& \text { A. } \frac{3}{4} \\
& \text { B. } \frac{1}{\sqrt{2}}
\end{aligned}
$$

C. $\frac{1}{4}$
D. $\frac{1}{2}$

Answer:

D Watch Video Solution

94. A block of mass 2 kg is placed on the floor.

The coefficient of static friction is 0.4 . A force F
of 2.5 N is applied on the block as shown in
Fig. 15.4.4. The force of friction between the
block and the floor is $\left(g=9.8 m / s^{2}\right)$

A. 20.15 N
B. 20 N
C. 10 N
D. 12.5 N

Answer:
95. A body falls from a height $\mathrm{h}=200 \mathrm{~m}$. The ratio of distance travelled each 2 s , during $\mathrm{t}=$ 0 to $t=6$ of the journey is
A. 1:3:5
B. 1:2:3
C. $1: 4: 9$
D. 1:2:4
96. The Poisson's ratio of a material is 0.4 . If a
force is applied to a wire of this material, there
is a decrease of cross-sectional area by 2%.
The percentage increase in its length is
A. 0.01
B. 0.5%
C. 0.03
D. 2.5%

Answer:

D Watch Video Solution

97. A particle executes SHM with an amplitude of 2 cm . When the particle is at 1 cm from the mean position, the magnitude of its velocity equal to that of its acceleration. Then its time period in seconds is
A. $\frac{2 \pi}{\sqrt{3}}$
B. $\frac{\sqrt{3}}{2 \pi}$
C. $\frac{1}{2 \pi \sqrt{3}}$
D. $2 \pi \sqrt{3}$

Answer:

- Watch Video Solution

98. A body weight 50 g in air and 40 g in water.

How much would it weigh in a liquid of specific gravity 1.5 ?
A. 65 g
B. 45 g
C. 30 g
D. 35 g

Answer:

D Watch Video Solution

99. 10 min are taken to emptied a rectangular vessel of height h through an orifice in its bottom. How much time will it take to be emptied the vessel when half filled ?
A. 5 minutes
B. 3 minutes
C. 9 minutes
D. 7 minutes

Answer:

D Watch Video Solution

100. A small cone fitted with water is revloved
in a vertical circle of radius 4 m and does not
fall down. What must be the maximum period of revolution?
A. 8 s
B. 4 s
C. 1 s
D. 10 s

Answer:

D Watch Video Solution
101. Moment of inertia of a uniform circular disc about a diameter is I. Its moment of inertia about an axis perpendicular to its
plane and passing through a point on its rim
will be

> A. $\frac{1}{2}$
> B. $\frac{1}{\sqrt{2}}$
> C. $\sqrt{2} I$
D. 21
102. The terminal velocity of small sized spherical body of radius r falling veertically in
a viscous liquid is given by a following proportionality
A. $v r^{2}=$ Constant
B. $\frac{v}{r^{2}}=$ Constant
C. $\frac{v}{r}=$ Constant
D. $\mathrm{vr}=$ Constant

Answer:

D Watch Video Solution

103. The magnitude of gravitational potential energy of a body at a distance r from the centre of earth is u. Its weight at a distance $2 r$ from the centre of earth is
A. $\frac{U}{4 r}$
B. $\frac{U}{\sqrt{2} r}$
C. $\frac{U}{r}$
D. $\frac{U}{2 r}$

Answer:

D Watch Video Solution

104. The kinetic energy K of a particle moving along a circle of radius R depends upon the distance S as $K=\beta S^{2}$, where β is a constant. Tangential acceleration of the particle is proportional to
A. S
B. $S \sqrt{S}$
C. \sqrt{S}
D. $\frac{1}{\sqrt{S}}$

Answer:

D Watch Video Solution

105. If speed (V),acceleration (A) and force (F) are considered as fundamental units, the dimesnion of Young 's modulus will be :
A. $F a^{2} v^{-3}$
B. $F a^{2} v^{-2}$
C. $F a^{2} v^{-5}$
D. $F a^{2} v^{-4}$

Answer:

- Watch Video Solution

