©゙doubtnut

CHEMISTRY

BOOKS - DISHA PUBLICATION CHEMISTRY
 (HINGLISH)

CHEMICAL KINETICS

Jee Main 5 Years At A Glance

1. If 50% of a reaction occurs in 100 second and 75% of the reaction occurs in 200 second, the order of this reaction is :
A. 2
B. 3
C. Zero
D. 1

Answer: D

- Watch Video Solution

2. $N_{2} O_{5}$ decomposes to $N O_{2}$ and O_{2} and follows first order kinetics. After 50 minutes the pressure inside the vessel increases from 50 mm Hg to 87.5 mmHg . The pressure of the gaseous mixture afte 100 minute at constant temperature will be :
A. $136,25 \mathrm{~mm} \mathrm{Hg}$
B. 106.25 mm Hg
C. 175.0 mm Hg
D. 116.25 mm Hg

Answer: B

- Watch Video Solution

3. At $518^{\circ} \mathrm{C}$ the rate of decomposition of a sample of gaseous acetaldehyde initially at a pressure of 363 Torr, was $1.00 T$ or $r s^{-1}$ when 5% had reacted and $0.5 T$ or $r s^{-1}$ when 33% had reacted. The order of the reaction is
A. 2
B. 3
C. 1
D. 0

Answer: A

D Watch Video Solution

4. The rate of a reaction A doubles on increasing the temperature from 300 to 310 K . By how much, the temperature of reaction B should be increased from 300 K so that rate doubles if activation energy of the reaction B is twice to that of reaction A
A. 9.84 K
B. 4.92 K
C. 2.45 K
D. 19.67 K

Answer: B

- Watch Video Solution

5. The rate of a reaction quadruples when the temperature changes from 300 to 310 K . The activation energy of this reaction is :
(Assume Activation energy and pre-exponential factor are independent of temperature,
$\left.\ln (2)=0.693, R=8.314 J-\operatorname{mol}^{-1} K^{-1}\right)$
A. $107.2 \mathrm{kJmol}^{-1}$
B. $53.6 \mathrm{kJmol}^{-1}$
C. $26.8 \mathrm{kJmol}^{-1}$
D. $214.4 \mathrm{kJmol}^{-1}$

Answer: A

- Watch Video Solution

6. Two reactions R_{2} and R_{2} have identical pre exponential factors. Activations enery of R_{1} exceeds that of R_{2} by $10 \mathrm{~kJ} \mathrm{~mol}-1$. If k_{1} and k_{2} are rate constants for rate constants for reactions R_{1} and R_{2}
respectively at 300 k , then $\ln \left(\frac{k_{2}}{k_{1}}\right)$ is equal to $\left(R=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$
A. 8
B. 12
C. 6
D. 4

Answer: D

- Watch Video Solution

7. The reaction of ozone with oxygen atoms in the presence of chlorine atoms can occur by a two step process shown below:
$\mathrm{O}_{3}(\mathrm{~g})+\mathrm{Cl} \cdot \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{ClO} \cdot(\mathrm{g}) \ldots(i)$
$k_{i}=5.2 \times 10^{9} \mathrm{~L} \mathrm{~mol}^{-1} s^{-1}$
$\mathrm{ClO} \cdot(g)+\mathrm{O} \cdot(g) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{Cl} \cdot(\mathrm{g}) \ldots \ldots . .(i i)$
$k_{i i}=2.6 \times 10^{10} \mathrm{~L} \mathrm{~mol}^{-1} s^{-1}$
The closest rate constant for the overall reaction
$O_{3}(g)+O \cdot(g) \rightarrow 2 O_{2}(g)$ is :
A. $1.4 \times 10^{20} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
B. $3.1 \times 10^{10} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
C. $5.2 \times 10^{9} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$
D. $2.6 \times 10^{10} \mathrm{Lmol}^{-1} \mathrm{~s}^{-1}$

Answer: A
8. The rate law for the reaction below is given by the expresssion $K[A][B]$.
$A+B \rightarrow$ product
If the concentration of B is increased from 0.1 to 0.3 mole, keeping the value of A at 0.1 , mole the rate constant will be :
A. 3 k
B. 9 k
C. $k / 3$
D. k

Answer: D

9. Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ follows a first order reactions.

In 50 min the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ decreases from 0.5
to 0.125 M in one such decomposition . When the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ reaches 0.05 M , the rate of formation of O_{2} will be
A. $366 L \mathrm{~min}^{-1}$ at STP
B. $1.34 \times 10^{-2} \mathrm{~mol} \mathrm{~min}^{-1}$
C. $6.96 \times 10^{-2} \mathrm{~mol} \mathrm{~min}^{-1}$
D. $6.93 \times 10^{-4} \mathrm{~mol} \mathrm{~min}^{-1}$

Answer: D

10. The reaction $2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)$ follows first order kinetics. The pressure of a vessel containing only $\mathrm{N}_{2} \mathrm{O}_{5}$ was found to increase from 50 mm Hg to 87.5 mm Hg in 30 mim . The pressure exerted by the gases after 60 min . will be (Assume temperature remains constant):
A. 106.25 mm Hg
B. 150 mm Hg
C. 125 mm Hg
D. 116.25 mm Hg

Answer: A

11. $A+2 B$ 'rarr C, the rate equation for this reaction is given as

Rate $=k[A][B]$.

If the concentration of A is kept the same but that of B is
doubled what will happen to the rate itelf?
A. halved
B. the same
C. doubled
D. quadrupled

Answer: C

12. Higher order (>3) reaction are rare due to :
A. shifting of equilibrium towards reactants due to elastic collisions.
B. loss of active species on collision.
C. Iow probability of simultaneous collision of all the reacting species.
D. increase in entropy and activation energy as more molecules are involved.

Answer: C

13. The half-life period of a first order reaction is 15 minutes. The amount of substance left after one hour will be:
A. $\frac{1}{4}$ of the original amount
B. $\frac{1}{8}$ of the original amount
C. $\frac{1}{16}$ of the original amount
D. $\frac{1}{32}$ of the original amount

Answer: C

D Watch Video Solution

14. In the formation of sulphur trioxide by the contact process,
$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \Leftrightarrow 2 \mathrm{SO}_{3}(g)$

The rate of reaction is expressed as
$-\frac{d\left(O_{2}\right)}{d t}=2.5 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
The rate of disappearance of $\left(\mathrm{SO}_{2}\right)$ will be
A. -1.25×10^{-4}
B. -2.50×10^{-4}
C. -3.75×10^{-4}
D. -5.00×10^{-4}

Answer: D
15. The rate of reaction.
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
can be written in three ways.
$\frac{-d\left[N_{2} O_{5}\right]}{d t}=k\left[N_{2} O_{5}\right]$
$\frac{d\left[N_{2} O_{5}\right]}{d t}=\left(k^{\prime}\left[N_{2} O_{5}\right]\right)$
$\frac{d\left[O_{2}\right]}{d t}=\left(k^{\prime}\left[N_{2} O_{5}\right]\right)$
The relation between k and k^{\prime} are:
A. $k=k$
B. $2 \mathrm{k}=\mathrm{k}$
C. $\mathrm{k}=2 \mathrm{k}$ '
D. $\mathrm{k}=4 \mathrm{k}^{\prime}$

- Watch Video Solution

16. The rate coefficient (k) for a particular reactions is

$$
1.3 \times 10^{-4} M^{-1} s^{-1} \text { at } 100^{\circ} C \text {, and } 1.3 \times 10^{-3} M^{-1} s^{-1}
$$

at $150^{\circ} \mathrm{C}$. What is the energy of activation $\left(E_{a}\right)$ (in kJ) for this reaction? ($\mathrm{R}=$ molar gas constant $=$ 8.314JK ${ }^{-1} \mathrm{~mol}^{-1}$)
A. 16
B. 60
C. 99
D. 132

Answer: B

- Watch Video Solution

17. For the reaction,
$3 A+2 B \rightarrow C+D$,
the differential rate law can be written as:
A. $\frac{1}{3} \frac{d[A]}{d t}=\frac{d[C]}{d t}=k[A]^{n}[B]^{m}$
B. $-\frac{d[A]}{d t}=\frac{d[C]}{d t}=k[A]^{n}[B]^{m}$
C. $+\frac{1}{3} \frac{d[A]}{d t}=-\frac{d[C]}{d t}=k[A]^{n}[B]^{m}$
D. $-\frac{1}{3} \frac{d[A]}{d t}=\frac{d[C]}{d t}=k[A]^{n}[B]^{m}$

Answer: D
18. For the non-stoichiometric reaction
$2 A+B \rightarrow C+D$, The following data were obtained in three separate experiments, all at 298 K .

Initial Concentration [A]	Initial Concentration [B]	Initial rate of formation of C (mol $\mathbf{L}^{-1} \mathbf{S}^{-1}$)
0.1 M	0.1 M	
0.1 M	0.2 M	
0.2 M	0.1 M	12×10^{-3}
		12×10^{-3}

The rate law for the formation of C is:
A. $\frac{d c}{d t}=k[A][B]$
B. $\frac{d c}{d t}=k[A]^{2}[B]$
C. $\frac{d c}{d t}=k[A][B]^{2}$
D. $\frac{d c}{d t}=k[A]$

Answer: D

- Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 1 Rate Of Reaction Rate Laws And Rate Constant

1. Which of the following will react at the highest rate ?
A. 1 mole of A and I mole of Bin a 1-L vessel
B. 2 mole of A and 2 mole of B in a $2-L$ vessel
C. 3 mole of A and 3 mole of Bin a 3-L vessel
D. All would react at the same rate

- Watch Video Solution

2. Burning of coal is represented as
$C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$. The rate of this reaction is increased by
A. decrease in the concentration of oxygen
B. powdering the lumps of coal
C. decreasing the temperature of coal
D. providing inert atmosphere

Answer: B
3. If n_{A} and n_{B} are the number of moles at any instant in the reaction : $2 A(g) \rightarrow 3 B g$ (carried out in a vessel of VL , the rate of the reaction at that instant is given by
A. $-\frac{1}{2} \frac{d n_{A}}{d t}=\frac{1}{3} \frac{d n_{B}}{d t}$
B. $-\frac{1}{V} \frac{d n_{A}}{d t}=\frac{1}{V} \frac{d n_{B}}{d t}$
C. $-\frac{1}{2 V} \frac{d n_{A}}{d t}=\frac{1}{3 V} \frac{d n_{B}}{d t}$
D. $-\frac{1}{V} \frac{n_{A}}{t}=\frac{1}{V} \frac{n_{B}}{t}$

Answer: C

D Watch Video Solution

4. Rate of a reaction
A. decreases with increase in temperature.
B. increases with increase in temperature.
C. may increase or decrease with increase in temperature.
D. does not depend on temperature.

Answer: B

D View Text Solution

5. If $3 A \rightarrow 2 B$, then the rate of reaction of $+\frac{d B}{d t}$ is equal to
A. $-\frac{3}{2} \frac{d[A]}{d t}$
B. $-\frac{2}{3} \frac{d[A]}{d t}$
C. $-\frac{1}{3} \frac{d[A]}{d t}$
D. $+2 \frac{d[A]}{d t}$

Answer: B

D Watch Video Solution

6. for the reaction, $2 A+B \rightarrow 3 C+D$, which of the following does not express the reaction rate
A. $\left.-\frac{d[B]}{d t} \right\rvert\,$
B. $\left.\frac{d[D]}{d t} \right\rvert\,$
C. $\left.-\frac{1}{2} \frac{d[A]}{d t} \right\rvert\,$
D. $\left.-\frac{1}{3} \frac{d[C]}{d t} \right\rvert\,$

Answer: D

- Watch Video Solution

7. For the reaction, $\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})$, the value of rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$ is given as $6.25 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. The rate of formation of NO_{2} and O_{2} is given respectively as
A. $6.25 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$ and
$6.25 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
B. $1.25 \times 10^{-2} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$

$$
3.125 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1}
$$

C. $6.25 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$

$$
3.125 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1}
$$

D. $1.25 \times 10^{-2} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
and

$$
6.25 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~s}^{-1}
$$

Answer: B

D Watch Video Solution

8. The rate of a reaction increases four-fold when the concentration of reactant is increased 16 times. If the rate of reaction is $4 \times 10^{-6} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$ when the
concentration of the reactant is $4 \times 10^{-4} \mathrm{molL}^{-1}$. The rate constant of the reaction will be
A. $2 \times 10^{-4} \mathrm{~mol}^{1 / 2} L^{-1 / 2} s^{-1}$
B. $1 \times 10^{-2} s^{-1}$
C. $2 \times 10^{-4} \mathrm{~mol}^{-1 / 2} L^{1 / 2} s^{-1}$
D. $25 \mathrm{~mol}^{-1} \mathrm{~L} \mathrm{~min}^{-1}$

Answer: A

- Watch Video Solution

9. $\frac{k_{34^{\circ}}}{k_{35^{\circ}}}<1$, then
A. rate increases with the rise in temperature
B. rate decreases with rise in temperature
C. rate does not change with rise in temperature
D. none of these

Answer: A

- Watch Video Solution

10. The rate of the reaction
$2 \mathrm{NO}+\mathrm{CI}_{2} \rightarrow 2 \mathrm{NOCI}$
is given by the rate equation
Rate $=k[N O]^{2}\left[C I_{2}\right]$
The value of the rate constant can be increased by
A. increasing the concentration of NO.
B. increasing the temperature.
C. increasing the concentration of the $C I_{2}$
D. doing all of these

Answer: B

D Watch Video Solution

11. For a reaction $A+B \rightarrow C+2 D$, experimental results were collected for three trials and the data obtained are given below:

Trial	$[\mathbf{A}], \mathbf{M}$	[B], M	Initial Rate, M s
(i)	0.40	0.20	5.5×10^{-1}
(ii)	0.80	0.20	5.5×10^{-1}
(iii)	0.40	0.40	2.2×10^{-1}

The correct rate law of the reaction is
A. rate $=k[A]^{0}[B]^{2}$
B. rate $=k[A][B]^{2}$
C. rate $=k[A][B]$
D. rate $=k[A][B]^{0}$

Answer: A

- Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 2 Order Of
Reaction And Half Life Period

1. Cyclopropane rearranges to form propane :
$\Delta \rightarrow \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
This follows first order kinetics. The rate constant is
$2.174 \times 10^{-3} \mathrm{sec}^{-1}$. The initial concentration of cyclopropane is 0.29 M . What will be the concentration of cyclopropane after 100 sec
A. 0.035 M
B. 0.22 M
C. 0.145 M
D. 0.0018 M

Answer: B
2. The rate constant of the reaction $A \rightarrow B$ is 0.6×10^{-3} mole per second. If the concentration of A is $5 M$, then concentration of B after 20 minutes is:
A. 1.08 M
B. 3.60 M
C. 0.36 M
D. 0.72 M

Answer: D

D Watch Video Solution
3. A Geiger Muller counter is used to study the radioactive process. In the absence of radioactive substances A, it counts 3 disintegration per second (dps). At the start in the presence of A, it records 23 dps , and after 10 m in 13 dps ,
i. What does it count after 20 m in ?
A. $8 \mathrm{dps}, 10 \mathrm{~min}$
B. $5 \mathrm{dps}, 10 \mathrm{~min}$
C. $5 \mathrm{dps}, 20 \mathrm{~min}$
D. $5 \mathrm{dps}, 5 \mathrm{~min}$

Answer: A

4. The rate constant of a reaction is 0.0693 min .

Starting with 10 mol , the rate of the reaction after 10 min is
A. $0.0693 \mathrm{~mol} \mathrm{~min}^{-1}$
B. $0.0693 \times 2 \mathrm{~mol} \mathrm{~min}^{-1}$
C. $0.0693 \times 5 \mathrm{~mol} \mathrm{~min}^{-1}$
D. $0.0693 \times(5)^{2} \mathrm{~mol} \mathrm{~min}^{-1}$

Answer: C

D Watch Video Solution

5. The hydrolysis of ester in alkaline medium is a
A. first order reaction with molecularity 1
B. second order reaction with molecularity >2
C. first order reaction with molecularity 2
D. second order reaction with molecularity 1

Answer: B

- Watch Video Solution

6. Which of the following expression is correct for first order reaction (c_{0} refers to initial concentration of reactant)
A. $t_{1 / 2} \propto c_{0}$
B. $t_{1 / 2} \propto c_{0}^{-1}$
C. $t_{1 / 2} \propto c_{0}^{-2}$
D. $t_{1 / 2} \propto c_{0}^{0}$

Answer: D

- Watch Video Solution

7. If a is the initial concentration of the rectant, the half
life period of the reaction of $n^{\text {th }}$ order is inversely proportional to :
A. a^{n-1}
B. a^{n}
C. a^{1-n}
D. a^{n+1}

Answer: A

- Watch Video Solution

8. For the zero order reaction $A \rightarrow B+C$, initial concentration of A is 0.1 M . If $[A]=0.08 \mathrm{M}$ after 10 minutes, then its half-life and completion time are respectively:
A. $10 \mathrm{~min}, 20 \mathrm{~min}$
B. $2 \times 10^{-3} \mathrm{~min}, 4 \times 10^{-3} \mathrm{~min}$
C. $25 \mathrm{~min}, 50 \mathrm{~min}$
D. $250 \mathrm{~min}, 500 \mathrm{~min}$

Answer: C

- Watch Video Solution

9. In the presence of acid, the initial concentration of cane sugar was reduced from 0.2 M to 0.1 M in 5 h and to 0.05 M in 10 h . The reaction must be of
A. zero order
B. first order
C. Second order
D. third order

Answer: B

- Watch Video Solution

10. For the reaction $3 A(g) \xrightarrow{k} B(g)+C(g) \mathrm{k}$ is $10^{-4} L /$ mol. min .

If $[\mathrm{A}]=0.5 \mathrm{M}$ then the value of $-\frac{d[A]}{d t}$ (in $m s^{-1}$ is:
A. 7.5×10^{-5}
B. 3×10^{-4}
C. 2.5×10^{-5}
D. 1.25×10^{-6}

- Watch Video Solution

11. 99% at a first order reaction was completed in 32 min . When will 99.9% of the reaction complete.
A. 50 min
B. 46 min
C. 48 min
D. 49 min

Answer: C

12. Which of the following represent the expression for 3 $\frac{3}{4}$ th life of first order reaction
A. $\frac{k}{2.303} \log 4 / 3$
B. $\frac{2.303}{k} \log 3 / 4$
C. $\frac{2.303}{k} \log 4$
D. $\frac{2.303}{k} \log 3$

Answer: C

- Watch Video Solution

13. A hypothetical reaction $A_{2}+B_{2} \rightarrow 2 A B$ follows the mechanism as given below:
$A_{2} \Leftrightarrow A+A$ (fast)
$A+B_{2} \rightarrow A B+B$ (slow)
$A+B \rightarrow A B$ (fast)
The order of the overall reaction is
A. 0
B. 1
C. 2
D. $3 / 2$

Answer: D
14. The time taken for 90% of a first order reaction to be completed is approximately
A. 1.1 times that of half-life
B. 2.2 times that of half-life
C. 3.3 times that of half-life
D. 4.4 times that of half-life

Answer: C

15. A substance 'A' decomposes by a first order reaction starting initially with $[A]=2.00 M$ and after $200 \mathrm{~min},[\mathrm{~A}]$ becomes $0.15 M$. For this reaction, $t 1 / 2$ is
A. 53.72 min
B. 50.49 min
C. 48.45 min
D. 46.45 min

Answer: A

D Watch Video Solution

16. Half life of a first order reaction is 4 s and the initial concentration of the reactant is 0.12 M . The concentration of the reactant left after 16 s is
A. 0.0075 M
B. 0.06 M
C. 0.03 M
D. 0.015 M

Answer: A

D Watch Video Solution

17. $3 A \rightarrow B+C$, it would be a zero order reaction when
A. the rate of reaction is proportional to square of concentration of A.
B. the rate of reaction remains same at any concentration of A
C. the rate remains unchanged at any concentration of B and C.
D. the rate of reaction doubles if concentration of B is increased to double.

Answer: B

Watch Video Solution

18. The reaction $A \rightarrow B$ follows first order reaction. The
time taken for 0.8 mole of A to produce 0.6 mole of B is 1
hour. What is the time taken for conversion of 0.9 mole of A to produce 0.675 moles of B ?
A. 2 hours
B. 1 hour
C. 0.5 hour
D. 0.25 hour

Answer: B
19. For a first-order reaction $A \rightarrow B$ the reaction rate at reactant concentration of $0.10 M$ is found to be $2.0 \times 10^{-5} \mathrm{~mol} L^{-1} s^{-1}$. The half-life period of the reaction is
A. 30 s
B. 220 s
C. 300 s
D. 347 s

Answer: D
20. For a reaction $A+2 B \rightarrow C$, rate is given by $R=K[A][B]^{2}$. The order of reaction is:
A. 3
B. 6
C. 5
D. 7

Answer: A

D Watch Video Solution

21. In a first order reaction, the concentration of the reactant, decreases from 0.8 M to 0.4 M in 15 minutes.

The time taken for the concentration to change from 0.1

M to 0.025 M is -
A. 7.5 minutes
B. 15 minutes
C. 30 minutes
D. 60 minutes

Answer: C

- Watch Video Solution

22. In a reaction, when the concentration of reactant is increased two times, the increase in rate of reaction was
four times. Order of reaction is:
A. zero
B. 1
C. 2
D. 3

Answer: C

D Watch Video Solution

23. The rate constant of a first order reaction is
$6.9 \times 10^{-3} s^{-1}$. How much time will it take to reduce the initial concentration to its $1 / 8^{\text {th }}$ value?
A. 100 s
B. 200 s
C. 300 s
D. 400 s

Answer: C

D Watch Video Solution

24. The plot that represents the zero order reaction is:
A.

B.

Answer: D

D Watch Video Solution

25. For a chemical reaction $t_{1 / 2}$ is 2.5 hours at room temperature. How much of the reactant will be left after 7.5 hours if initial weight of reactant was 160 g ?
A. 10 g
B. 40 g
C. 80 g
D. 20 g

Answer: D

- Watch Video Solution

26. Point out the wrong statement:

For a first order reaction
A. time for half-change $\left(t_{1 / 2}\right)$ is independent of initial concentration
B. change in the concentration unit does not change the rate constant (k)
C. time for half-change rate constant $=0.693$
D. the unit of k is $\mathrm{mole}^{-1} \min ^{-1}$

Answer: D

- View Text Solution

27. For a reaction $\frac{d x}{d t}=K\left[H^{+}\right]^{n}$. If $p H$ of reaction medium changes from two to one rate becomes 100 times of value at $p H=2$, The order of reaction is
A. 1
B. 2
C. 0
D. 3

Answer: B

- Watch Video Solution

28. Ethylene is produced by $\mathrm{C}_{4} H_{8} \xrightarrow{\Delta} 2 C_{2} H_{4}$

The rate constant is $2.3 \times 10^{-4} \mathrm{sec}^{-1}$. Approximately in
what time will the molar ratio of ethylene to cyclobutane
in mixture attain the value equal to one?
$(\log 2=0.3, \log 3=0.47)$
A. 1700 sec
B. 1600 sec
C. 2000 sec

D. 1200 sec

Answer: A

D Watch Video Solution

29. Which one of the following statements for the order of a reaction is incorrect?
A. Order can be determined only experimentally.
B. Order is not influenced by stoichiometric coefficient of the reactants.
C. Order of reaction is sum of power to the concentration terms of reactants to express the
rate of reaction.
D. Order of reaction is always whole number.

Answer: D

- Watch Video Solution

30. The rate of a first-order reaction is $0.04 \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
at 10 seconds and $0.03 \mathrm{molL}^{-1} \mathrm{~s}^{-1}$ at 20 seconds after initiation of the reaction. The half-life period of the reaction is
A. 24.1 s
B. 34.1 s
C. 44.1 s
D. 54.15 s

Answer: A

- Watch Video Solution

31. Mechanism of a hypothetical reaction
$X_{2}+Y_{2} \rightarrow 2 X Y$ is given below:
(i) $X_{2} \rightarrow X+X$ (fast)
(ii) $X+Y_{2} \Leftrightarrow X Y+Y$ (slow)
(iii) $X+Y \rightarrow X Y$ (fast)

The overall order of the reaction will be :
A. 2
B. 0
C. 1.5
D. 1

Answer: C

D Watch Video Solution

32. A first order reaction has a specific reaction rate of $10^{-2} \mathrm{sec}^{-1}$. How much time will it take for 20 g of the reactant to reduce to $5 g$?
A. 138.6 sec
B. 346.5 sec
C. 693.0 sec
D. 238.6 sec

Answer: A

- Watch Video Solution

Exercise 1 Concept Builder Topicwise Topic 3 Theories Of

 Rate Of Reaction1. Rate constant $k=1.2 \times 10^{3} \mathrm{~mol}^{-1} \mathrm{Ls}^{-1} \quad$ and

$$
E_{a}=2.0 \times 10^{2} \mathrm{kJmol}^{-1} . \text { When } T \rightarrow \infty:
$$

A. $A=2.0 \times 10^{2} \mathrm{kJmol}^{-1}$
B. $A=1.2 \times 10^{3} \mathrm{~mol}^{-1} L^{-1} \mathrm{~s}^{-1}$
C. $A=1.2 \times 10^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$
D. $A=2.4 \times 10^{3} \mathrm{kJmol}^{-1} \mathrm{~s}^{-1}$

Answer: B

- Watch Video Solution

2. An exothermic reaction $A \rightarrow B$ has an activation energy of $17 k J$ per mole of A. The heat of the reaction is 40 kJ . Calculate the activation energy for the reverse reaction $B \rightarrow A$.
A. 60 kJ
B. 57 kJ
C. 75 kJ
D. 90 kJ

Answer: B

- Watch Video Solution

3. A catalyst only

A. decreases activation energy
B. increases activation energy
C. both (a) and (b)
D. comes to equilibrium

- Watch Video Solution

4. An example of autocatalytic reaction is
A. decomposition of nitroglycerine
B. thermal decomposition of KCIO_{3} and MnO_{2}
mixture
C. breakdown of ${ }^{14} C_{6}$
D. hydrogenation of vegetable oil using nickel
catalysts

- Watch Video Solution

5. For an endothermic reaction, where ΔH represents the enthalpy of reaction in kJmol^{-1}, the minimum value for the energy of activation will be
A. less than ΔH
B. more than ΔH
C. equal to ΔH
D. zero

Answer: B
6. The activation energies of the forward and backward reactions in the case of a chemical reaction are 30.5 and
$45.5 \mathrm{KJ} / \mathrm{mol}$, respectively. The reaction is:
A. exothermic
B. endothermic
C. neither exothermic nor endothermic
D. independent of temperature

Answer: A

- Watch Video Solution

7. A homogenous catalytic reaction takes place through the three alternative plots A, B, and C shown in the given figure. Which one of the following indicates the relative ease with which the reaction cant take place?

A. $A>B>C$
B. $C>B>A$
C. $A>C>B$
D. $A=B=C$

Answer: B

D Watch Video Solution

8. For an exothermic reaqction, the energy of activation of the reactants is
A. equal to the energy of activation of products
B. less than the energy of activation of products
C. greater than the energy of activation of products

D. sometimes greater and sometimes less than that

 of the products
Answer: B

- Watch Video Solution

9. The activation energy for a simple chemical reaction
$A \rightarrow B$ is E_{a} in the forward reaction: The activation of the reverse reaction
A. is always double of E_{a}
B. is negative of E_{a}
C. is always less than E_{a}
D. can be less than or more than E_{a}

Answer: D

D Watch Video Solution

10. For a reaction the activation energy $E_{a}=0$ and the rate constant $=3.2 \times 10^{6} \mathrm{sec}^{-1}$ at 300 K . What is the value of rate constant at 310 K ?
A. $3.2 \times 10^{-12} s^{-1}$
B. $3.2 \times 10^{-6} s^{-1}$
C. $6.4 \times 10^{12} s^{-1}$
D. $6.4 \times 10^{6} s^{-1}$

Answer: B

- Watch Video Solution

11. A graph plotted between $\log k$ versus $1 / T$ for calculating activation energy is shown by

Answer: B

- Watch Video Solution

12. When a biochemical reaction is carried out in laboratory from outside of human body in the absence of enzyme, the rate of reaction obtained is 10^{-6} times, then activation energy of the reaction in the presence of enzyme is
A. $\frac{6}{R T}$
B. different from E_{a} obtained in laboratory
C. P is required
D. can't say anything

Answer: B

- Watch Video Solution

13. For an endothermic reaction, energy of activation is
E_{a} and enthalpy of reaction is ΔH (both of these in $\mathrm{kJ} / \mathrm{mol})$. Minimum value of E will be
A. less than ΔH
B. equal to ΔH
C. more than ΔH
D. equal to zero

Answer: B

- Watch Video Solution

14. In a zero-order reaction for every 10° rise of temperature, the rate is doubled. If the temperature is increased from $10^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$, the rate of the reaction will become
A. 256 times
B. 512 times
C. 64 times
D. 128 times

Answer: B

D Watch Video Solution

15. Activation energy $\left(E_{a}\right)$ and rate constants (k_{1} and k_{2})
of a chemical reaction at two different temperatures (T_{1} and T_{2}) are related by
A. $\operatorname{In} \frac{k_{2}}{k_{1}}=-\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)$
B. $\operatorname{In} \frac{k_{2}}{k_{1}}=-\frac{E_{a}}{R}\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)$
C. $\operatorname{In} \frac{k_{2}}{k_{1}}=-\frac{E_{a}}{R}\left(\frac{1}{T_{2}}+\frac{1}{T_{1}}\right)$
D. $\operatorname{In} \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}+\frac{1}{T_{2}}\right)$

D Watch Video Solution

16. What is the activation energy for a reaction if its rate doubles when the temperature is raised from $20^{\circ} \mathrm{C}$ to $35^{\circ} C ?\left(R=8.314 J \mathrm{~mol} \mathrm{~K}^{-}\right)$
A. $269 \mathrm{kJmol}^{-1}$
B. $34.7 \mathrm{kJmol}^{-1}$
C. $15.1 \mathrm{kJmol}^{-1}$
D. $342 \mathrm{kJmol}^{-1}$

Answer: B
17. The activation energy of a reaction can be determined from the slope of which of the following graphs?
A. $\frac{I n K}{T}$ vs. T
B. $\ln \mathrm{K}$ vs. $\frac{1}{T}$
C. $\frac{T}{\operatorname{InK}}$ vs. $\frac{1}{T}$
D. In K vs. T

Answer: B

- Watch Video Solution

1. For the reaction $\mathrm{R}-\mathrm{X}+\mathrm{OH}^{-} \rightarrow \mathrm{ROH}+\mathrm{X}^{-}$, the rate is given as :

Rate $=5.0 \times 10^{-5}[R-X]\left[O H^{-}\right]+0.20 \times 10^{-5}[R-X]$

What percentage of R-X react by $S_{N} 2$ mechanism when

$$
\left[O H^{-}\right]=1.0 \times 10^{-2} M ?
$$

A. 96.1%
B. 3.9%
C. 80%
D. 20%

Answer: D

2. Consider the reaction,
$C l_{2}(a q)+H_{2} S(a q) \rightarrow S(s)+2 H^{+}(a q)+2 C l^{-}(a q)$
The rate equation for this reaction is,

Rate $=k\left[\mathrm{Cl}_{2}\right]\left[\mathrm{H}_{2} S\right]$
Which of these mechanisms is / are consistent with this
rate equation?
(I) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Cl}^{+}+\mathrm{HS}^{-}$(slow)
$C l^{+}+H S^{-} \rightarrow H^{+}+C l^{-}+S$ (fast)
(II) $H_{2} S \Leftrightarrow H^{+}+H S^{-}$(fast equilibrium)
$C l^{+}+\mathrm{HS}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{H}^{+}+S$ (slow)
A. B only
B. Both A and B
C. Neither A nor B
D. A only

Answer: D

- Watch Video Solution

3. In a reversible reaction $2 \mathrm{NO}_{2} \underset{k_{2}}{\stackrel{k_{1}}{\rightleftarrows}} N_{2} O_{4}$, the rate of disappearance of NO_{2} is equal to
A. $\frac{2 k_{1}}{k_{2}}\left[N O_{2}\right]^{2}$
B. $2 k_{1}\left[N O_{2}\right]^{2}-2 k_{2}\left[N_{2} O_{4}\right]$
C. $2 k_{1}\left[N O_{2}\right]^{2}-k_{2}\left[N_{2} O_{4}\right]$
D. $\left(2 k_{1}-k_{2}\right)\left[N O_{2}\right]$

Answer: B

- Watch Video Solution

4. For the reaction $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ if
$\frac{\Delta\left[N H_{3}\right]}{\Delta t}=2 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$, the value of
$\frac{-\Delta\left[H_{2}\right]}{\Delta t}$ would be
A. $1 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
B. $3 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
C. $4 \times 10^{-4} \mathrm{molL}^{-1} \mathrm{~s}^{-1}$
D. $6 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$

Answer: B
5. The mechanism of the reaction
$2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$ is
$\mathrm{NO}+\mathrm{NO} \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftarrows}} \mathrm{~N}_{2} \mathrm{O}_{2}$ (fast)
$\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{O}_{2} \xrightarrow{k_{2}} 2 \mathrm{NO}_{2}$ (slow)
The rate constant of the reaction is
A. k_{2}
B. $k_{2} k_{1}\left(k_{-1}\right)$
C. $k_{2} k_{1}$
D. $k_{2}\left(\frac{k_{1}}{k_{-1}}\right)$

Answer: D
6. For a reaction initial rate is given as : $R_{0}=k\left[A_{0}\right]^{2}\left[B_{0}\right]$
. By what factor, the initial rate of reaction will increase if initial concentration is taken 1.5 times and B is tripled?
A. 4.5
B. 2.25
C. 6.75
D. none of these

Answer: C

7. When ethyl acetate was was hydrolysedin presemce of 0.1 M HCl , the rate constant was found to be $5.4 \times 10^{-5} s^{-1}$. But in presence of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ the rate constant was found to be $6.25 \times 10^{-5} s^{-1}$. Thus it may be concluded that:
A. $\mathrm{H}_{2} \mathrm{SO}_{4}$ furnishes more H^{+}than HCl .
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$ furnishes less H^{+}than HCl .
C. both have the same strength.
D. will depend on concentration of ethyl acetate.

Answer: A

- Watch Video Solution

8. The temperature dependence of rate constant (k) of a chemical reaction is written in terms of Arrhenius equation, $\left.k=A e^{-E_{a} / R T}\right)$ Activation energy $\left(E_{a}\right)$ of the reaction can be calculate by plotting
A. $\log \mathrm{k}$ vs $\frac{1}{\log T}$
B. k vs T
C. k vs $\frac{1}{\log T}$
D. $\log \mathrm{k}$ vs $\frac{1}{T}$

Answer: D

9. A graph between $\log t_{\frac{1}{2}}$ and \log a (abscissa), a being the initial concentration of A in the reaction For reaction $A \rightarrow$ Product, the rate law is :

A. $\frac{-d[A]}{d t}=k$
B. $\frac{-d[A]}{d t}=k[A]$
C. $\frac{-d[A]}{d t}=k[A]^{2}$
D. $\frac{-d[A]}{d t}=k[A]^{3}$

Answer: C

- Watch Video Solution

10. The accompanying figure depicts a change in concentration of species A and B for the reaction
$A \rightarrow B$, as a function of time. The point of inter section
of the two curves represents

A. $t_{1 / 2}$
B. $t_{3 / 4}$
C. $t_{2 / 3}$
D. Data insufficient to predict

- Watch Video Solution

11. Decomposition of $\mathrm{NH}_{4} \mathrm{NO}_{2}\left(a q\right.$ into $\mathrm{N}_{2}(g)$ and $2 \mathrm{H}_{2} \mathrm{O}(l)$ is first order reaction.
A.

B.

C.

D.

Answer: D

- Watch Video Solution

12. For a reaction $A \xrightarrow{k_{r}=0.6 M \text { min }} 2 B$
starting with 1 M of ' A ' only, concentration of B (in M)
after 100 sec . and 200 sec . is respectively?
A. 2 and 4
B. 1 and 2
C. 2 and 3
D. none of these

Answer: D

D Watch Video Solution

13. For an elementary reaction , $X(g) \rightarrow Y(g)+Z(g)$
the half life period is 10 min . In what period of time would the concentration of X be reduced to 10% of original concentration?
A. 20 Min
B. 33 Min
C. 15 Min
D. 25 Min

Answer: B

- Watch Video Solution

14. Consider following two competing first ordr reactions,
$P \xrightarrow{k_{1}} A+B, Q \xrightarrow{k_{2}} C+D$
if 50% of the reaction oof P wascompleted when 96% of Q was complete , then the ratio $\left(k_{2} / k_{1}\right)$ will be :
A. 4.06
B. 0.215
C. 1.1
D. 4.65

Answer: D

- Watch Video Solution

15. For the reaction
(i) $A \xrightarrow{k_{1}} P$
(ii) $B \xrightarrow{k_{I I}} Q$, following observation is made.

Calculate $\frac{k_{I}}{k_{I I}}$, where k_{I} and $k_{I I}$ are rate constant for the respective reaction.
A. 2.303
B. 1
C. 0.36
D. 0.693

Answer: D

- View Text Solution

16. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in carbon tetrachloride was followed by measuring the volume of O_{2} gas evolved
$: \quad 2 \mathrm{NO}_{2} \mathrm{O}_{5}\left(\mathrm{CCl}_{4}\right) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4}\left(\mathrm{CCl}_{4}\right)+\mathrm{O}_{2}(g) . \quad$ The maximum volume of O_{2} gas obtained was $100 \mathrm{~cm}^{3}$. In 500
minutes, $90 \mathrm{~cm}^{3}$ of O_{2} were evolved. The first order rate constant (in min^{-1}) for the disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$ is:

> A. $\frac{2.303}{500}$
> B. $\frac{2.303}{500} \log \frac{100}{90}$
> C. $\frac{2.303}{500} \log \frac{90}{100}$
> D. $\frac{100}{10 \times 500}$

Answer: A

- View Text Solution

17. The half-life of first order decomposition of $\mathrm{NH}_{4} \mathrm{NO}_{3}$
is 2.10 hr at 288 K temperature
$\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{aq}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$. If 6.2 of
$\mathrm{NH}_{4} \mathrm{NO}_{3}$ is allowed to decompose, the required for $\mathrm{NH}_{4} \mathrm{NO}_{3}$ to decompose 90% is :
A. 6.978 hr
B. 0.319
C. 0.319 hr
D. 0.6978 hrs

Answer: A

- Watch Video Solution

18. The hydrolysis of sucrose was studied with the help of
calorimeter and following data were
Collected time (min.)
:0 70
∞
observed rotation (degrees) : $44 \quad 16.5-11$
the time taken when reaction mixture wil be optically inactive ? (Given : In $2=0.7$,in $3=1.1$, in $5=1.6$)
A. 16 min .
B. 69.47 min .
C. 160 min .
D. 1.6 min .

Answer: C

- Watch Video Solution

19. The value of $\frac{t_{0.875}}{t_{0.50}}$ for $n^{t h}$ order reaction is
A. $2^{(2 n-2)}$
B. $2^{(2 n-2)-1}$
C. $\frac{8^{n-1}-1}{2^{n-1}-1}$
D. None of these

Answer: C

D Watch Video Solution

20. In an attempt to compare the half-lives of two radioactive elements A and B , a scientist set aside 400 g of each. After 3 months, the scientist found 25 g of A and 200 g of B . Which one of the following statements is true?
A. Half-life of B is twice that of A
B. Half-life of B is four times that of A
C. Half-life of A is twice that of B
D. Half-life of A is four times that of B

Answer: B

- Watch Video Solution

21. The initial rates ofreaction
$3 A+2 B+C \rightarrow$ Products, at different initial
concentrations are given below:

Initial rate, Ms^{-1}	[Averagel $]_{8} \mathbf{M}\left[\left.\mathbf{B}\right\|_{0}, \mathbf{M}\right.$		$\left.\underline{\|C\|}\right\|_{6}$ M
5.0×10^{-1}	0010	0.005	0.010
5.0×10^{-3}	0.010	0.005	0.015
1.0×10^{-2}	0010	0.010	0.010
1.25×10^{3}	0.005	000s	0010

The order with respect to the reactants, A, B and Care respectively
A. 3, 2, 0
B. 3, 2, 1
C. 2, 2, 0
D. 2, 1, 0

Answer: D

- View Text Solution

22. The intergrated rate equation is
$R t=\log , C_{0}-\log C_{t}$. The straight line graph is obtained by plotting:
A. time vs $\log C_{t}$
B. $\frac{1}{\text { time }}$ vs C_{t}
C. time vs C_{t}
D. $\frac{1}{\text { time }}$ vs $\frac{1}{C_{t}}$

Answer: A

- Watch Video Solution

23. The rate constant for a second order reaction is
$k=\frac{2.303}{t(a-b)} \log \frac{b(a-x)}{(b-x)}$
where a and b are initial concentrations of the two reactants A and B involved. If one of the reactants is
present in excess, it becomes pseudo unimolecular.

Explain how?

A. first order w.r.t. A
B. zero order w.r.t. A
C. first order w.r.t.B
D. overall zero order

Answer: A

- Watch Video Solution

24. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ occurs as,
$2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ and follows I order kinetics, hence:
A. the reaction is unimolecular
B. the reaction is bimolecular
C. $t_{1 / 2} \propto a^{0}$
D. none of these

Answer: C

- Watch Video Solution

25. Graph between $\log k$ and $1 / T$ [k rate constant $\left(s^{-1}\right)$
and T and the temperature (K)] is a straight line with
$O X=5, \theta=\tan ^{-1}(1 / 2.303)$. Hence $-E_{a}$ will be

A. 2.303×2 cal
B. $2 / 2.303 \mathrm{cal}$
C. 2 cal
D. none

Answer: C

- Watch Video Solution

26. For reaction $\mathrm{A} \rightarrow \mathrm{B}$, the rate constant $K_{1}=A_{1}\left(e^{-E_{a_{1}} / R T}\right)$ and the reaction $X \rightarrow Y$, the rate constant $K_{2}=A_{2}\left(e^{-E a_{2} / R T}\right)$. If $A_{1}=10^{9}, A_{2}=10^{10}$ and $E_{a_{1}}=1200 \mathrm{cal} / \mathrm{mol}$ and $E_{a_{2}}=1800 \mathrm{cal} / \mathrm{mol}$, then the temperature at which $K_{1}=K_{2}$ is: (Given , $\mathrm{R}=2 \mathrm{cal} / \mathrm{K}$ mol)
A. 300 K
B. $300 \times 2.303 K$
C. $\frac{303}{2.303} K$
D. None of these

Answer: C

- Watch Video Solution

27. The rate constant, the activation energy and the

Arrhenius parameter of a chemical reactions at $25^{\circ} \mathrm{C}$ are $3.0 \times 10^{-4} s^{-}, 104.4 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad$ and $\quad 6 \times 10^{14} s^{-1}$ respectively. The value of the rate constant as $T \rightarrow \infty$ is
A. $2.0 \times 10^{18} s^{-1}$
B. $6.0 \times 10^{14} s^{-1}$
C. infinity
D. $3.6 \times 10^{30} s^{-1}$

Answer: B

- Watch Video Solution

28. The racemisation of α - pinene is first order reaction.

In the gas the specific reaction rate was found to be $2.2 \times 10^{-5} \mathrm{mmHg}^{-1}$ at $457.6 \quad \mathrm{~K} \quad$ and $3.07 \times 10^{-3} \mathrm{mmHg}^{-1}$ at 510.1 K . The energy of activation is
A. $K(510.1-457.6) \operatorname{In}\left(3.07 \times 10^{-3} / 2.2 \times 10^{-5}\right)$
B. 3.048×10^{-3}
C. In $2.2 \times 10^{-5} \times 457.7 \mathrm{kcal}$.

D. $(510.1 \times 457.6)(R \operatorname{In}(307 / 2.2) / 52.5$

Answer: D

- Watch Video Solution

29. The activation energy of a reaction is $9.0 \mathrm{kcal} / \mathrm{mol}$.

The increase in the rate consatnt when its temperature is increased from 298 K to 308 K is
A. 63%
B. 50%
C. 100%
D. 10%

Answer: A

- Watch Video Solution

30. The rate constant for the decomposition of a certain
substance is $2.80 \times 10^{-1} M^{-1} s^{-1}$ at $30^{\circ} C$ and
$1.38 \times 10^{-2} M^{-1} s^{-1} \quad$ at $\quad 50^{\circ} \mathrm{C}$. The Arrhenius
parameters (A) of the reaction is:
$\left(R=8.314 \times 10^{-3} \mathrm{kJmol}^{-1} \mathrm{~K}^{-1}\right)$.
A. $8.68 \times 10^{8} M^{-1} s^{-1}$
B. $2.16 \times 10^{7} M^{-1} s^{-1}$
C. $4.34 \times 10^{8} M^{-1} s^{-1}$
D. $3.34 \times 10^{8} M^{-1} s^{-1}$

Answer: C

- Watch Video Solution

