

PHYSICS

AAKASH INSTITUTE ENGLISH

Mock Test27

1. A wire of resistance 20Ω is bent to form a

complete circle. The resistance between two

diametrically opposite points A and B as

shown in the figure, is 📄

A. 5Ω

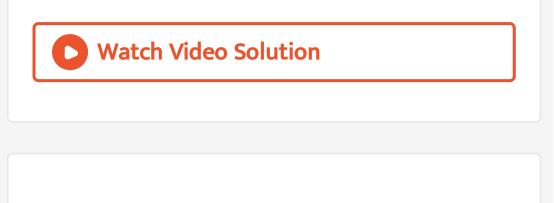
 $\mathsf{B.}\,20\Omega$


 $\mathsf{C}.\,10\Omega$

D. 15Ω

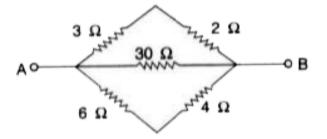
Answer: A

2. Find the equivalent resistance between points A and B.


A. Zero

 $\mathsf{B}.\,R_1+R_3$

C. R_2 + R_3`


D.
$$R_1+rac{R_2\cdot R_3}{R_2+R_3}$$

Answer: A

3. Calculate the equivalent resistance between

the points A and B in Fig.

A.
$$\frac{2}{3}\Omega$$

B. $\frac{4}{3}\Omega$

C. 1Ω

D. 2Ω

Answer: A

4. In the given figure, equivalent resistance

between points P and Q is 📄

A.
$$\frac{1}{3}\Omega$$

B. $\frac{4}{3}\Omega$

C.
$$\frac{2}{3}\Omega$$

D. 2Ω

Answer: B

5. If the ammeter in given circuit reads 1 A,

then resistance R is 戻

A. 4Ω

 $\mathsf{B.}\,2\Omega$

C. 3Ω

D. 1Ω

Answer: A

6. If the power dissipated in the 27Ω resistor

in the circuit shown is 108 watt, the potential

difference across the 4Ω resistor is

A. 20volt

B. 10 volt

C. 5 volt

D.4 volt

Answer: A

7. The resistance between the lerminal points

P and Q of the given infinitely long circuit will

be

A.
$$2(\sqrt{3}-1)\Omega$$

B. $2(\sqrt{3}+1)\Omega$
C. $(\sqrt{3}-1)\Omega$
D. $(\sqrt{3}+1)\Omega$

Answer: B

8. A battery of EMF 10 V, with internal resistance 1Ω is being charged by a 120 V d.c. supply using a series resistance of 10Ω . The terminal voltage of the battery is

A. 20 V

B. 10 V

C. Zero

D. 30 V

Answer: A

9. A battery of EMF E produces currents 4 A and 3 A when connected to external resistance 1Ω and 2Ω respectively. The internal resistance of the battery is

A. 0.5Ω

 $\mathsf{B.}\,2\Omega$

 $\mathsf{C}.\,1.5\Omega$

D. 1Ω

Answer: B

10. A 5 V battery with internal resistance 1Ω and a 2 V battery with internal resistance 0.5Ω are connected to a 3Ω resistor as shown in the figure.The current in the 3Ω resistor is

A. 0.1 A, A to B

B. 0.1 A, B to A

C. 0.01A, A to B

D. 0.01 A, B to A

Answer: B

11. n identical cells each of e.m.f. E and internal resistance r are connected in series. An external resistance R is connected in series to this combination. The current through R is

A.
$$\frac{nE}{R+nr}$$

B. $\frac{nE}{nR+r}$
C. $\frac{E}{R+nr}$
D. $\frac{nE}{R+r}$

Answer: A

Watch Video Solution

12. Two sources of equal emf are connected to an external resistance R. The internal resistances of the two sources are R_1 and $R_2,\,(R_2>R_1)$ If the potential difference across the source having internal resistance R_2 is zero then :

A. 1Ω B. $\frac{2}{3}\Omega$

 $\mathsf{C}.\,2\Omega$

D. 6Ω

Answer: A

13. A cell of internal resistance r drivers current through an external resistance R. The power delivered by the to the external resistance will be maximum when:

A. The cell supplies a power EI

B. The heat is produced in R at the rate = EI

C. The heat is produced in R at the rate =

$$(EI)\frac{R}{R+r}$$

D. The heat is produced in cell at the rate =

$$(EI)rac{r}{R+r}$$

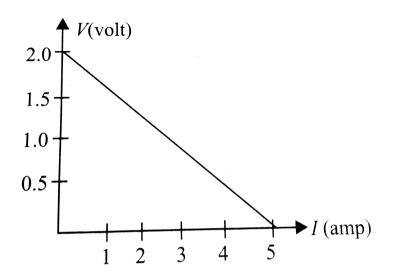
Answer: B

14. To get maximum current through a resistance of 2.5Ω , one can use m rows of cells, each row having n cells. The internal resistance of each cell is 0.5Ω what are the values of n and m, if the total number of cells is 45.

A. 3, 15

B. 5, 9

C. 9, 5


D. 15, 3

Answer: D

Watch Video Solution

15. For a cell, a graph is plotted between the potential difference V across the terminals of the cell and the current I drawn the cell. The emf and the internal resistance of the cell are

E and r, respectively. Then

A. E = 2 V, $r=0.5\Omega$

B. E= 2 V, $r=0.4\Omega$

C. Egt 2 V, $r=0.5\Omega$

D. E gt 2 V, $r=0.4\Omega$

Answer: B

16. If electric bulbs having resistances in the ratio 2 : 3 are connected in parallel to a voltage sources of 220 V. The ratio of the power dissipated in them is

A. 2: 3`

B.3:2`

C.1:1`

D. 2: 5 `

Answer: B

Watch Video Solution

17. Two bulbs 100W, 250V and 200W, 250V are connected in parallel across a 500V line. Then-

A. 60 W bulb will be fused

B. 120 W bulb will be fused

C. NO bulb will be fused

D. Both bulbs will be fused

Answer: D

Watch Video Solution

18. Fill in the blanks :

	Volume of cuboid	Length	Breadth	Height
<i>(i)</i>	90 cm ³		5 em	3 em
(<i>ii</i>)	840 cm ³	15 cm		7 cm
(iii)	62.5 m ³	10 m	5 m	
. /				

A. 4Ω , 12Ω

B. 4Ω , 9Ω

C. 9Ω , 4Ω

D. 9Ω , 9Ω

Answer: C

19. The following figure shows a part of a circuit, the potential difference between C and

 $B(V_C - V_B)$ is

1Ω 5A D 2Ω E 4Ω 2A ***** • B -11 12 V 3V 3Ω 6Ω 6A

A. + 3 V`

B. + 6 V`

C. + 9 V`

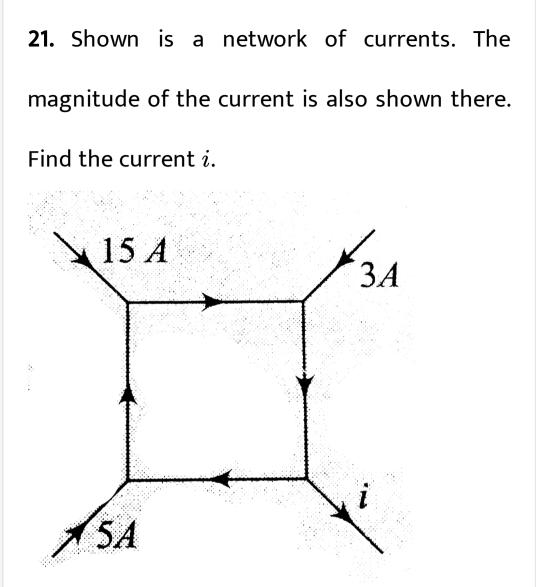
D. -9 V`

Answer: C

20. In the given circuit. If the potential at A is

95 V, then the potential of B is 📄

A. 12 V


B. 19 V

C. 25 V

D. 5 V

Answer: B

Watch Video Solution

A. 1 A `

C. 8 A`

D. 10 A `

Answer: D

22. The following figure shows a part of a circuit, the potential difference between C and

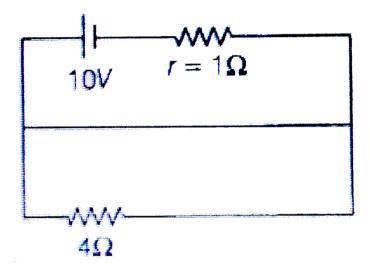
 $B(V_C - V_B)$ is

1Ω 5A D 2Ω E 4Ω 2A ***** • B -11 12 V 3 V 3Ω 6Ω 6 A

A. 10 V

B. 5 V

C. 15 V


D. 7.5 V

Answer: B

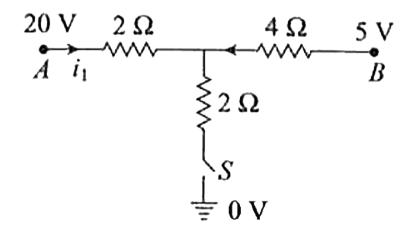
Watch Video Solution

23. Potential different across the terminals of

the battery shown in figure is

A. 8 V

B. 10 V


C. 5 V

D. 0 V

Answer: D

24. As the switch S is closed in the circuit shown in figure, current passed through it is

B. 3 V

C. 4.5 V

D. 6.5 V

Answer: C

Watch Video Solution

25. The following figure shows a part of a circuit, the potential difference between C and

 $B(V_C - V_B)$ is

1Ω 5A D 2Ω E 4Ω 2A ***** · B -11 12 V 3 V 3Ω 6Ω 6 A

A. 10 V

B. 13 V

C. 20 V

D. 15 V

Answer: C

