びdoubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - DISHA PUBLICATION CHEMISTRY
 (HINGLISH)

COORDINATION COMPOUNDS

Exercise

1. Which of the following complexes will show geometrical isomerism ?
A. Potassium tris(oxalato) chromate (III)
B. Pentaaquachlorochromium (III) chloride
C. Aquachlorobis (ethylenediamine) cobalt
chloride
D. Potassium aminetrichloroplatinate (II)

Answer: C

- Watch Video Solution

2. In Wilkinson's catalyst, the hybridization of central metal ion and its shape are respectively :
A. $s p^{3} d$, trigonal bipyramidal
B. $d^{2} s p^{3}$ octahedral
C. $d s p^{2}$, square planar
D. $s p^{3}$, tetrahedral

Answer: C

D Watch Video Solution

3. Four statements for the following reaction given below

$$
\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+} \rightarrow\left[\mathrm{CoCl}_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]+\mathrm{NH}_{3}
$$

(P) Only one isomer is produced if the ractant
complex ion is a trans isomer
(Q) Three isomers are produced if the reactant complex ion is a cis isomer
(R) Two isomers are produced if the reactant complex ion is trans isomer
(S) Two isomers are produced if the reactant complex is cis isomer

The correct statements are :
A. (I) and (II)
B. (I) and (III)
C. (III) and (IV)
D. (II) and (IV)

- Watch Video Solution

4. $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ displays :
A. one Co-Co bond, six terminal CO and two bridging CO
B. one Co-Co bond, four terminal CO and four bridging CO
C. no Co-Co bond, six terminal CO and two bridging CO
D. no Co-Co bond, four terminal CO and four bridging CO

- Watch Video Solution

5. On treatment of 100 mL of 0.1 M solution of
$\mathrm{COCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$ with excess of $\mathrm{AgNO}_{3}, 1.2 \times 10^{22}$
ions are precipitated. The complex is
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$

Answer: D

- Watch Video Solution

6. Which one of the following complexes will consume more equivalent of aqueous solution of
$\mathrm{Ag}\left(\mathrm{NO}_{3}\right)$?
A. $\mathrm{Na} a_{2}\left[\mathrm{CrCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
B. $\mathrm{Na}_{3}\left[\mathrm{CrCl} l_{6}\right]$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

Answer: D

- Watch Video Solution

7. Identify the correct trend given below:
(Atomic No $=T i: 22, C r: 24$ and Mo:42)
A. Δ_{\circ} of $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>\left[\mathrm{Mo}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and
Δ 。of $\left[T i\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. Δ 。

$$
\begin{aligned}
& {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}>\left[\mathrm{Mo}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \text { and } \Delta_{\circ}} \\
& \text { of }\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}
\end{aligned}
$$

C. Δ 。

$$
\begin{aligned}
& {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{Mo}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \text { and } \Delta_{\circ}} \\
& \text { of }\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}
\end{aligned}
$$

D. Δ 。

$$
\begin{aligned}
& {\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{Mo}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \text { and } \Delta_{\circ}} \\
& \text { of }\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}
\end{aligned}
$$

Answer: C

- Watch Video Solution

8. Which of the following is an example of homoleptic complex ?
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{cl}\right] \mathrm{Cl}_{2}$

Answer: A

- Watch Video Solution

9. Which one of the following complexes shows optical isomerism ?
(en=ethylenediamine)
A. trans $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
D. cis $\left[\mathrm{Co}(\mathrm{em})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$

Answer: D

D Watch Video Solution

10. The pair having the same magnetic moment is
[at.
No.
$C r=24, M n=25, F e=26$ and $C o=27]$
A. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Co}\left(\mathrm{Cl}_{4}\right]^{2-}\right.$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{CoCl}_{4}\right]^{2-}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: D

- Watch Video Solution

11. Which molecule/ion among the following cannot act as a ligand in complex compounds ?
A. CH_{4}
B. $C O$
C. $C N^{-}$
D. $B r^{-}$

Answer: A

D Watch Video Solution

12. The correct statement on the isomerism associated with the following complex ions.
$I\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NH}_{3}\right]^{2+}$
II. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$
III. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]^{2+}$
A. (A) and (B) show only geometrical isomerism
B. (A) and (B) show geometrical and optical isomerism
C. (B) and (C) show geometerical and optical isomerism
D. (B) and (C) show only geometrical isomerism.

Answer: C

- Watch Video Solution

13. The number of geometric isomers that can exist
$\left[\mathrm{Pt}(\mathrm{CI})(\mathrm{PY})\left(\mathrm{NH}_{3}\right)\left(\mathrm{NH}_{2} \mathrm{OH}\right)\right]^{+}$is $(\mathrm{Py}=$ pyridine $)$
A. 4
B. 6
C. 2
D. 3

Answer: D

- Watch Video Solution

14. An octahedral complex of Co^{3+} is diamagnetic.

The hydridisation involved in the formation of the

complex is :

A. $s p^{3} d^{2}$
B. $d s p^{2}$
C. $d^{2} s p^{3}$
D. $s p^{3} d$

Answer: C

- Watch Video Solution

15. The correct statement about the magnetic properties of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{FeF} \mathrm{F}_{6}\right]^{3-}$ is : (Z=26)
A. both are paramagnetic
B. both are diamagnetic
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is diamagnetic $\left[\mathrm{FeF}_{6}\right]^{3-}$ is
paramagnetic.
D. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is paramagnetic, $\left[\mathrm{FeF}_{6}\right]^{3-}$ is diamagnetic

Answer: A

- Watch Video Solution

16. An octahedral complex with molecular
composition M. $5 \mathrm{NH}_{3}, \mathrm{Cl} . \mathrm{SO}_{4}$ has two isomers, A
and B. The solution of A gives a white precipitate with AgNO_{3} solution and the solution of B gives white precipitate with BaCl_{2} solution. The type of isomerism exhibited by the complex is :
A. Linkage isomerism
B. Ionisation isomerism
C. Coordinate isomerism
D. Geometrical isomerism

Answer: B
17. The octahedral complex of a metal ion M^{3+} with
four monodentate ligands L_{1}, L_{2}, L_{3} and L_{4} absorb wavelengths in the region of red,green, yellow and bule, respectively The increasing order of ligand strengh of the four ligands is

$$
\begin{aligned}
& \text { A. } L_{4}<L_{3}<L_{2}<L_{1} \\
& \text { B. } L_{1}<L_{3}<L_{2}<L_{4} \\
& \text { C. } L_{3}<L_{2}<L_{4}<L_{4} \\
& \text { D. } L_{1}<L_{2}<L_{4}<L_{3}
\end{aligned}
$$

Answer: B

18. The correct $I U P A C$ name for $\left[\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]\left[\mathrm{PtCI}_{4}\right]$ complex
A. Tetrapyridineplatinate(II)
tetrachloridoplantinate(II)
B. Tetrapyridineplatinum(II)
tetrachloridoplantinum(II)
C. Tetrapyridineplatinate(II)
tetrachloridoplantinum(II)
D. Tetrapyridineplatinum(II)
tetrachloridoplantinate(II)

Answer: D

D Watch Video Solution

19. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}_{2}$ are related to each other as
A. Hydrated as well as ionization isomerism
B. Ionization as well as geometrical isomerism
C. Linkage as well as geometrical isomerism
D. Ionization as well as optical isomerism
20. The pair of compounds having metals in their highest oxidation state is
A. MnO_{2} and $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
B. $\left[\mathrm{NiCl}_{4}\right]^{2-}$ and $\left[\mathrm{CoCl}_{4}\right]^{2-}$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{Cu}(\mathrm{CN})_{2}\right]^{2-}$
D. $\left[\mathrm{FeCl}_{4}\right]^{-}$and $\mathrm{Co}_{2} \mathrm{O}_{3}$

Answer: A

21. The number of geometric isomers that can exist

$$
\begin{aligned}
& \text { for square planner complex ion } \\
& \left.\left[\mathrm{Pt}(\mathrm{CI})(\mathrm{PY})\left(\mathrm{NH}_{3}\right)\left(\mathrm{NH}_{2} \mathrm{OH}\right)\right]^{+} \text {is (Py = pyridine }\right)
\end{aligned}
$$

A. 2 isomers (Geometrical)
B. 3 isomers (Geometrical)
C. 6 isomers (Geometrical)
D. 4 isomers (Geometrical)

Answer: B

22. The geometries of $\mathrm{Ni}(\mathrm{CO})_{4}$ and $\mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ are.
A. both square planar
B. tetrahedral and square planar
C. both tetrahedral
D. None of these

Answer: C

- Watch Video Solution

23.

$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{ONO})\right] \mathrm{Cl}_{2}$ are related to each other as
A. cis isomer
B. trans isomer
C. cis or trans isomers
D. None of these

Answer: A

- Watch Video Solution

24. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Br}_{2}$ and $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}_{2}$ are related to each other as
A. Linkage and optical
B. Geometrical and linkage
C. Optical and ionization
D. Linkage and geometrical

Answer: B

- Watch Video Solution

25. Which of the following complex does not show geometrical isomerism ?

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \\
& \text { B. }\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)\left(\mathrm{NH}_{2} \mathrm{OH}\right)\left(\mathrm{NO}_{2}\right)\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)\right] \mathrm{NO}_{2} \\
& \text { C. }\left[\mathrm{Pt}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{COO}\right)_{2}\right] \\
& \text { D. }\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{2}
\end{aligned}
$$

Answer: D

- Watch Video Solution

26. Which statement about coordination number of a cation is true?
A. Most metal ions exhibit only a single characteristic coordination number
B. The coordination number is equal to the number of ligands bonded to the metal atom
C. The coordination number is determined solely
by the tendency to surround the metal atom
with the same number of electrons as one of
the inert gases

D. For most cations, the coordination number

depends on the size, and charge of the cation

Answer: D

- Watch Video Solution

27. Select the correct code about complex
$\left[\mathrm{Cr}\left(\mathrm{NO}_{2}\right)\left(\mathrm{NH}_{3}\right)_{5}\right]\left[\mathrm{ZnCl}_{4}\right]:$
(I) IUPAC name of compoun is pentaamminenitrito

- N - chromium (III) tetrachlorozincate (II)
(II) It shows geometrical isomerism
(III) It shows linkage isomerism
(IV) It shows coordination isomerism`
A. III, IV
B. I, III and IV
C. II, III and IV
D. I, II , III and IV

Answer: B

- Watch Video Solution

28. In which of the following pairs both the complex
show optical isomerism?.
A. cis

$$
-\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2} \mathrm{Cl}_{2}\right]^{2-} \quad \operatorname{cis}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]
$$

B. $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}, \quad$ cis $-\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
C. $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{3}\left(\mathrm{NH}_{3}\right)_{3}\right], \quad$ cis $-\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$
D. $[P t C l(\mathrm{en}) \mathrm{Cl}], \quad\left[\mathrm{NiCl}_{2} B r_{2}\right]^{2-}$

Answer: B

D Watch Video Solution

29. The total number possible isomers for the complex compound $\left[\mathrm{Cu}^{I I}\left(\mathrm{NH}_{3}\right)_{4}\left[\mathrm{Pt}^{I I} \mathrm{CI}_{4}\right]\right.$ are
A. 3
B. 6
C. 5
D. 4

Answer: D

- Watch Video Solution

30. Which of the following will give maximum number of isomer ?
A. $\left[N i\left(C_{2} O_{4}\right)(\mathrm{en})_{2}\right]^{2-}$
B. $\left[N i(\mathrm{en})\left(N H_{3}\right)_{4}\right]^{2+}$
C. $\left[\mathrm{Cr}(\mathrm{SCN})_{2}\left(\mathrm{NH}_{3}\right)_{4}\right]^{+}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$

Answer: C

D Watch Video Solution

31. Which of the following compounds shows optical isomerism?
A. $\left[C o(C N)_{6}\right]^{3-}$
B. $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
C. $\left[Z n C l_{4}\right]^{2-}$

$$
\text { D. }\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}
$$

Answer: B

- Watch Video Solution

32. The ionisation isomer of
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}$
A. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{O}_{2} \mathrm{~N}\right)\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right]\left(\mathrm{NO}_{2}\right)$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}(\mathrm{ONO})\right] \mathrm{Cl}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\left(\mathrm{NO}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

33.

The
correct
structure
A. ${ }^{\text {nocec }}$
B. ${ }^{\text {Hooce }}{ }^{\text {Hoor }} \mathrm{NHH}_{2}-\mathrm{CH}_{2}-\mathrm{N}_{\text {Coon }}^{\text {coor }}$

Answer: C

- Watch Video Solution

34. Which one of the following complex is not expected to exhibit isomerism

> A. $\left[\mathrm{Ni}(e n)_{3}\right]^{2+}$
> B. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$
> C. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
> D. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$

Answer: D
35.

The
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
are the examples of which type of isomerism ?
A. Linkage isomerism
B. Ionization isomerism
C. Coordination isomerism
D. Geometrical isomerism

Answer: C

36. The complex, $\left[P t(p y)\left(\mathrm{NH}_{3}\right) \mathrm{BrCl}\right]$ will have how

 many geometrical isomers?A. 3
B. 4
C. 0
D. 2

Answer: A
37. The sum of coordination number and oxidation number of the metal M in the complex $\left[M(e n)_{2}\left(C_{2} O_{4}\right)\right] C l$ (where en is ethylenediamine) is:
A. 9
B. 6
C. 7
D. 8

Answer: A

38. Which of the following is the most likely structure of $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, if $1 / 3$ of total chlorine of the compound is precipitated by adding AgNO_{3} to its aqueous solution:
A. $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$
C. $\left[\mathrm{CrCl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
D. $\left[\mathrm{CrCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{Cl}_{2} . \mathrm{H}_{2} \mathrm{O}$

Answer: C

39. Which of the following is not chelating agent
(a) Thiosulphate
(b) Oxalato
(c) Glycinato
(d) Ethylene diamine .
A. thiosulphato
B. oxalato
C. glycinato
D. ethylene diamine

Answer: A

40. Which of the following species is not expected to be a ligand?

> A. $\stackrel{+}{\mathrm{NO}}$
> B. NH_{4}^{+}
> C. $\mathrm{NH}_{2}-\mathrm{NH}_{3}^{+}$
> D. CO

Answer: B
41. Which is the pair of ambidentate ligand?

$$
\begin{aligned}
& \text { A. } \mathrm{CN}^{-}, \mathrm{NO}_{2}^{-} \\
& \text {B. } \mathrm{NO}_{3}^{-}, S C N^{-} \\
& \text {C. } \mathrm{N}_{3}^{-}, \mathrm{NO}_{2}^{-} \\
& \text {D. } \mathrm{NCS}^{-}, \mathrm{C}_{2} O_{4}^{2-}
\end{aligned}
$$

Answer: A

- Watch Video Solution

42. Number of water molecules acting as ligands in
$\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}, \mathrm{ZnSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}, \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
respectively are .

> A. 5,5,7
B. 4,5,4
C. $4,4,6$
D. $4,4,7$

Answer: C

- Watch Video Solution

43. Which of the following pair of complexes have the same EAN of the central metal atoms/ions?
A. $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}$ and $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
B. $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
C. $\mathrm{K}_{3}\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ and $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}\left(\mathrm{NO}_{2}\right)_{2}$
D. All of the above

Answer: D

D Watch Video Solution

44.

The
correct
name
of

A. Tri- μ carbonylbis (tricarbonyl iron (0))
B. Hexacarbonyliron (III) μ-tricarbonylferrate (0)
C. Tricarbonyliron (0) μ-tricarbonyliron (0)
D. Nonacarbonyl iron

Answer: A

- Watch Video Solution

45. In octaamine $-\mu$-dihydroxodiiron(III)sulphate,
the number of bridging ligands is:
A. 2
B. 1
C. 3
D. none of these

Answer: A

- Watch Video Solution

46. Ammonia will not form complex with
A. $A g^{2+}$
B. $P b^{2+}$
C. $C u^{2+}$
D. $C d^{2+}$

Answer: B

- Watch Video Solution

47. Which of the following complex compound is low spin, inner orbital, diamagnetic complex ?
A. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$
B. $K_{3}\left[F e(C N)_{6}\right]$
C. $K_{2}\left[P t C l_{6}\right]$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

Answer: C

- Watch Video Solution

48. An aqueous solution of titanium bromide shows
zero magnetic moment. Assuming the complex as octahedral in aqueous solution, the formula of the complex is .
A. $\left[T i B r_{6}\right]^{3-}$
B. $\left[T i\left(H_{2} O\right)\right] B r_{4}$
C. $\left[T i B r_{6}\right]^{2-}$
D. $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Br}_{2}\right]$

Answer: B

- Watch Video Solution

49. Which of the following complexes have a maximum number of unpaired electrons?
A. $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right]^{+}$
C. $\left[\operatorname{Ag}(C N)_{2}\right]^{-} a$
D. $\left[C u B r_{4}\right]^{2-}$

Answer: D
50. The degeneracy of d-orbitals is lost under:
(I) Strong field ligand
(II) Weak field ligand
(III) Mixed field lagand
(IV) Chelated Ligand field

Choose the correct code:
A. I, II and IV
B. I and II
C. I, II, III and IV
D. I, II and III

Answer: C

- Watch Video Solution

51. Relative to the average energy in the spherical crystal field the $t_{2 g}$ orbitals in tetrahedral field is .
A. raised by $(2 / 5) \Delta_{t}$
B. lowered by (2/5) Δ_{t}
C. raised by (3/5) Δ_{t}
D. lowered by (1/5) Δ_{t}
52. Which of the following outer orbital complex has the highest magnetic moment ?
A. $\left[\mathrm{Mn}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
C. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{2}$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$

Answer: A

53. the correct IUPAC name of the following compound $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{NCS})\right]\left[\mathrm{ZnCl}_{4}\right]$ is
A. colourless and diamagnetic
B. green coloured and diamagnetic
C. green coloured and shows coordination isomerism
D. diamagnetic and shows linkage isomerism

Answer: C

54. Mn^{2+} forms a complex with Br - ion. The magnetic moment of the complex is 5.92 B. M. What could not be the probable formula and geometry of the complex?
A. $\left[M r B r_{6}\right]^{4-}$, octahedral
B. $\left[M n B r_{4}\right]^{2-}$, square planar
C. $\left[M n B r_{4}\right]^{2-}$, tetrahedral
D. $\left[M n B r_{5}\right]^{3-}$,trigonal bipyramidal

Answer: C

55. Which of the following hydrate is diamagnetic ?

> A. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
> B. $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
> C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
> D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: C

- Watch Video Solution

56. Which one of the following will show paramagnetism corresponding to 2 unpaired
electrons?
(Atomic numbers: $\mathrm{Ni}=28, \mathrm{Fe}=26$)
A. $\left[F e F_{6}\right]^{3-}$
B. $\left[\mathrm{NiCl}_{4}\right]^{2-}$
C. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
D. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$

Answer: B

- Watch Video Solution

57. $C N^{-}$is a strong field ligand. This is due to the
fact that
A. it carries negative charge
B. it is a pseudohalide
C. it can accept electrons from metal species
D.it forms high spin complexes with metal

species

Answer: B

- Watch Video Solution

58. $\left[\mathrm{Se}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion is
A. colourless and diamagnetic

B. coloured and octahedral

C. colourless and paramagnetic
D. coloured and paramagnetic

Answer: A

- Watch Video Solution

59. The crystal field stabilization energy (CFSE) is the highest for
A. $\left[\mathrm{CoF}_{4}\right]^{2-}$
B. $\left.\mathrm{Co}(\mathrm{NCS})_{4}\right]^{2-}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{CoCl}_{4}\right]^{2-}$

Answer: C

- View Text Solution

60. Which of the following complex ion is not expected to absorb visible light?
A. $\left[N i(C N)_{4}^{2-}\right]$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}^{3+}\right]$
C. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}\right]$
D. $\left[N i\left(H_{2} O\right)_{6}^{2+}\right]$

Answer: A

D Watch Video Solution

61. Crystal field stabilization energy for high spin d^{4} octahedral complex is

$$
\begin{aligned}
& \text { A. }-1.8 \Delta_{0} \\
& \text { B. }-1.6 \Delta_{0}+P \\
& \text { C. }-1.2 \Delta_{0} \\
& \text { D. }-0.6 \Delta_{0}
\end{aligned}
$$

Answer: D

- Watch Video Solution

62. A solution containing 2.675 g of $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$
(molar mass $=267.5 \mathrm{gmol}^{-1}$) is passed through a cation exchanger. The chloride ions obtained is solution were treated with excess of AgNO_{3} to give
4.73 g of AgCl (molar mass $=143.5 \mathrm{gmol}^{-1}$). The
formula of the complex is (At. mass of $\mathrm{Ag}=108 \mathrm{u}$)
A. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$
B. $\left[\mathrm{CoCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}$
C. $\left[\mathrm{CoCl}_{3}\left(\mathrm{NH}_{3}\right)_{3}\right]$
D. $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$

Answer: A

D Watch Video Solution

63. Of the following complex ions, which is diamagnetic in natures?
A. $\left[N i C l l_{4}\right]^{2-}$
B. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
C. $\left[C u C l_{4}\right]^{2-}$
D. $\left[\mathrm{CoF}_{6}\right]^{3-}$

Answer: B

D Watch Video Solution

64. The d-electron configurations of
$\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$ and Co^{2+} are d^{4}, d^{5}, d^{6} and
d^{7} respectively. Which one of the following will exhibit minimum paramagnetic behavious?
A. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: C

- Watch Video Solution

65. Which of the following complex compounds will exhibit highest paramagnetic behaviour ?
(At. No. : $\mathrm{Ti}=22, \mathrm{Cr}=24, \mathrm{Co}=27, \mathrm{Zn}=30$)
A. $\left[T i\left(N H_{3}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$

Answer: B

- Watch Video Solution

66. Which one of the following is an outer orbital complex and exhibits paramagnetic behaviour ?

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \\
& \text { B. } \left.\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{6}\right)\right]^{2+} \\
& \text { C. }\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+} \\
& \text { D. }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}
\end{aligned}
$$

Answer: A

- Watch Video Solution

67. Red precipitae is obtained when ethanol solution of dimethylglyoxime is added to ammoniacal $N i(I I)$
. Which of the following statement is not true?
A. Red complex has a square planar geometry.
B. Complex has symmetrical H-bonding
C. Red complex has a tetrahedral geometry.
D. Dimethylglyoxime functions as bidentate ligand.

Answer: C

- Watch Video Solution

68. Low spin complex of d^{6}-cation in an octahedral
field will have the following energy:
A. $\frac{-12}{5} \Delta_{0}+P$
B. $\frac{-12}{5} \Delta_{0}+3 P$
C. $\frac{-2}{5} \Delta_{0}+2 P$
D. $\frac{-2}{5} \Delta_{0}+P$

Answer: B

- Watch Video Solution

69. Among the following complexes, the one which shows zero crystal field stabilization energy (CFSE) is

> A. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
> B. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
> C. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
> D. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
70. Which of the following complexes is used as an anti-cancer agent:
A. mer- $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
B. cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]$
C. cis- $K_{2}\left[P t C l_{2} B r_{2}\right]$
D. $\mathrm{Na}_{2} \mathrm{CoCl}_{4}$

Answer: B

D View Text Solution
71. Cobalt (III) chloride forms several octahedral complexes with amonia. Which of the following will not give test for chloride ions with silver nitrate at $25^{\circ} C ?$
A. $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$
B. $\mathrm{CoCl}_{3} \cdot 5 \mathrm{NH}_{3}$
C. $\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}$
D. $\mathrm{CoCl}_{3} \cdot 3 \mathrm{NH}_{3}$

Answer: D
72. $\mathrm{HgCl} l_{2}$ and I_{2} both when dissolved in water containing I^{-}ions the pair of species formed is:
A. $H g I_{2}, I^{-}$
B. HgI_{4}^{2-}
C. $H g_{2} I_{2}, I^{-}$
D. $\mathrm{HgI}_{2}, \mathrm{I}_{3}^{-}$

Answer: B

- Watch Video Solution

73. Correct increasing order for the wavelength of absorption in the visible region for the complexes of Co^{3+} is:
A.

$$
\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}(e n)_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}
$$

B.

$$
\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(e n)_{3}\right]^{3+}
$$

C.

$$
\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}
$$

D.

$$
\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}
$$

Answer: D

- Watch Video Solution

74. Pick out the correct statement with respect to $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
A. It is $s p^{3} d^{2}$ hybridised and tetrahedral.
B. It is $d^{2} s p^{3}$ hybridised and octahedral.
C. It is $d s p^{2}$ hybridised and square planar.
D. It is $s p^{3} d^{2}$ hybridised and octahedral.

Answer: B

75. The molar ionic conductances of octahedral complexes.
(I) $\mathrm{PtCl}_{4} \cdot 5 \mathrm{NH}_{3}$
(II) $\mathrm{PtCl}_{4} \cdot 4 \mathrm{NH}_{3}$
(III) $\mathrm{PtCl}_{4} \cdot 3 \mathrm{NH}_{3}$
(IV) $\mathrm{PtCl}_{4} \cdot 2 \mathrm{NH}_{3}$
A. $I<I I<I I I<I V$
B. $I V<I I I<I I<I$
C. $I I I<I V<I I<I$
D. $I V<I I I<I<I I$
76. Which of the following has the highest molar conductivity in solution?
A. Diamminedichloroplatinum (II)
B. Tetraamminedichlorocobalt(III) chloride
C. Potassium hexacyanoferrate (II)
D. Hexaaquachromium(III) chloride

Answer: C

- Watch Video Solution

77. Consider the following complex
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{CO}_{3}\right] \mathrm{ClO}_{4}$
The coordination number, oxidation number number of d-electrons and number of unpaired d-electrons on the metal are respectively
A. 6,3,6,0
B. 7,2,7,1
C. 7,1,6,4
D. $6,2,7,3$

Answer: A
78. Nickel $(Z=28)$ combines with a uninegative monodenatate ligands to form a diamagnetic complex $\left[\mathrm{NiL}_{4}\right]^{2-}$. The hybridisation involved and the number of unpaired electrons present in the complex are respectively:
A. $s p^{3}$, two
B. $d s p^{2}$, zero
C. $d s p^{2}$, one
D. $s p^{3}$,zero

Answer: A

79. Ferrocene is

A. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
B. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
C. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
D. $\left[\left(C_{5} H_{5}\right)_{2} F e\right]$

Answer: D

- Watch Video Solution

80. An example of organometallic compound is

A. $\mathrm{Ti}\left(\mathrm{OCOCH}_{3}\right)_{4}$
B. $T i\left(C_{2} H_{4}\right)_{4}$
C. $T i\left(O C_{6} H_{5}\right)_{4}$
D. $\mathrm{Ti}\left(O C_{2} H_{5}\right)_{4}$

Answer: B

- Watch Video Solution

81. Which of the following does not have a metal carbon bond?
A. $\mathrm{Al}\left(O C_{2} H_{5}\right)_{3}$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgBr}$
C. $K\left[P t\left(C_{2} H_{4}\right) C l_{3}\right]$
D. $\mathrm{Ni}(\mathrm{CO})_{4}$

Answer: A

D Watch Video Solution

82. Which of the following is an organometallic compound?
A. Lithium methoxide

B. Lithium acetate

C. Lithium dimethylamide

D. Methyl lithium

Answer: D

- Watch Video Solution

83. In $\mathrm{Fe}(\mathrm{CO})_{5}$, the $\mathrm{Fe}-\mathrm{C}$ bond possesses:
A. ionic character
B. σ-character only
C. π-character
D. both σ and π characters

Answer: D

- Watch Video Solution

84. Which of the following is not considered as an organometallic compound?
A. Nickel tetracarbonyl
B. Chlorophyll
C. $K_{3}\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$
D. $\left[\mathrm{Co}(e n)_{3}\right] \mathrm{Cl}_{3}$

Answer: B

D Watch Video Solution

85. $\mathrm{CH}_{3} \mathrm{MgBr}$ is an organometallic compound due to
A. $\mathrm{Mg}-\mathrm{Br}$ bond
B. C-Mg bond
C. C-Br bond
D. C-H bond

Answer: B
86. Oxidation state of " V " in $R b_{4} K\left[H V_{10} O_{28}\right]$ is .
A. +5
B. +6
C. $+\frac{7}{5}$
D. +4

Answer: A

87. Following Sidgwick's rule of EAN, $\mathrm{Co}(\mathrm{CO})_{x}$ will

 be.A. $\mathrm{Co}_{2}(\mathrm{CO})_{4}$
B. $\mathrm{Co}_{2}(\mathrm{CO})_{3}$
C. $\mathrm{Co}_{2}(\mathrm{CO})_{8}$
D. $\mathrm{Co}_{2}(\mathrm{CO})_{10}$

Answer: C
88. Coordination compounds have great importance in biological systems. In this context which of the following statements is incorrect:
A. Cyanocobalamin is B_{12} and contains cobalt
B. Haemoglobin is the red pigment of blood and contains iron
C. Chlorophylls are green pigments in plants and contain calcium
D. Carboxypeptidase - A is an exzyme and contains zinc.

Answer: C

- Watch Video Solution

89. Carbonyls are organometallic compounds .
A. Ferrocene
B. Diethyl zinc
C. Tetraethyl lead (TEL)
D. All of these

Answer: D
90. Which of the following carbonyls will have the strongest C-O bond

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+} \\
& \text {B. }\left[\mathrm{Cr}(\mathrm{CO})_{6}\right] \\
& \text { C. }\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-} \\
& \text {D. }\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]
\end{aligned}
$$

Answer: A
91. Which of the following has longest $C-O$ bond length? (Free $C-O$ bond length in CO is $1.128 \AA$).
A. $N i(C O)_{4}$
B. $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$
C. $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
D. $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$

Answer: C

- Watch Video Solution

92. An example of a sigma bonded organometallic compound is:
A. Grignard's reagent
B. Ferrocene
C. Cobaltocene
D. Ruthenocene

Answer: A

93. Facial-meridional isomers is associated with

 which one of the following complex ($M=$ central metal).A. $\left[M(A A)_{2}\right]$
B. $\left[M A_{3} B_{3}\right]$
C. $[M A B C D]$
D. $\left[M(A A)_{3}\right]$

Answer: B

- Watch Video Solution

94. The IUPAC name of the red coloured complex $\left[\mathrm{Fe}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}_{2}\right)_{2}\right]$ obtained from the reaction of Fe^{2+} and dimethyl glyoxime
A. bis (dimethyl oxime) ferrate (II)
B. bis (dimethyl oxime) iron (II)
C. bis (2, 3-butanediol dioximato) iron (II)
D. bis (2, 3-butanedione dioximato) iron (II)

Answer: D

- Watch Video Solution

95.

The
are the examples of which type of isomerism ?
A. by measurement of their conductivity
B. by titration method
C. by precipitation method with AgNO_{3}
D. by electrolysis of their aqueous solutions

Answer: D

- Watch Video Solution

96. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{NO}_{2}\right)_{2}\right] \mathrm{Cl}$ exhibits
A. linkage isomerism, ionization isomerism and geometrical isomerism
B. ionization isomerism, geometrical isomerism and optical isomerism
C. linkage isomerism, geometrical isomerism and optical isomerism
D. linkage isomerism, ionization isomerism and
optical isomerism
97. The total number of possible coordination isomer for the given compounds
$\left[P t\left(N H_{3}\right)_{4} B r_{2}\right]\left[P t B r_{4}\right]$ is .
A. 2
B. 4
C. 5
D. 3

Answer: B
98. Incorrect matching for given complex compound/ion and its characteristics:
(a) $\left[\mathrm{CrBrCl}(\mathrm{en})_{2}\right] \mathrm{Br} \quad$ Ionization and optical isomerism
(b) $\left[\mathrm{CoBr}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \quad$ Fac-mer and hydrate isomerism
(c) $\left[\mathrm{PtCl}_{2}\left(\mathrm{NH}_{3}\right)_{4}\right] \quad$ Linkage isomerism and $\left[\mathrm{Co}(\mathrm{SCN})_{4}\right]$ paramagnetic character
(d) $\left[\mathrm{Co}(\mathrm{ox})_{3}\right]^{3-} \quad$ Inner orbital complex and optical isomerism

D View Text Solution

99. For complex ion/compound formation reactions
(I) Co $^{3+}(a q)+E D T A^{4-} \rightarrow P$
(II) $N i^{2+}(a q)+\mathrm{dmg}($ excess $) \xrightarrow{N \mathrm{H}_{4} \mathrm{OH}} Q$
(III) ${Z n^{2+}}^{2+}(a q)+$ gly (excess) $\rightarrow R$
(IV) $P t^{4+}$ aq +en (excess $\rightarrow \mathrm{S}$

Which of the following complex ion/compound does
not exhibit optical activity?
A. P
B. Q
C. R
D. S

Answer: B
100. The hypothetical complex chloro diaquatriammine cobalt (II) chloride can be represented as
A. $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{2}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{3}\right]$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{2}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}\right]$
D. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{3}$

Answer: A

- Watch Video Solution

101. 50 ml of 0.2 M solution of a compound with empirical formula $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ on treatment with excess of $\mathrm{AgNO}_{3}(a q)$ yields 1.435 g of AgCl .

Ammonia is not removed by treatment with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. The formula of the compound is
A. $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{3}$
B. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}_{3}$
D. $\left[\mathrm{CoCl}_{3}\left(\mathrm{NH}_{3}\right)\right]\left(\mathrm{NH}_{3}\right)_{3}$

Answer: B
102. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ (at no. of $\mathrm{Cr}=24$) has a magnetic moment of $3.83 B . M$. The correct distribution of $3 d$ electrons the chromium of the complex.
A. $3 d_{x y}^{1} \cdot 3 d_{y z}^{1}, 3 d_{z x}^{1}$
B. $3 d_{x y}^{1}, 3 d_{y z}^{1}, 3 d_{z^{2}}^{1}$
C. ${ }^{3 d^{1}\left(x^{2}-y^{2}, 3 d^{1} 2^{2}, 3 d^{\prime} d_{x}\right.}$
D. $\left.{ }^{3 d^{1}{ }_{x y}{ }^{3} d^{1}\left(x^{2}-y^{2}, 3 d^{1} x\right.}\right)$

Answer: A
103. Arrange the following in increasing value of magnetic moments.
(i) $\left[\mathrm{Fe}(\mathrm{Cn})_{6}\right]^{4-}$ (ii) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
(iii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ (iv) $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$
A. I,III
B. I,II
C. III,IV
D. only IV

Answer: B
104. Which of the following complex is an outer orbital complex?
A. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
B. $\left[M n(C N)_{6}\right]^{4-}$
C. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$

Answer: A

105. Which of the following order of stability of complex ion is Incorrect ?

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}<\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \\
& \text { B. }[\mathrm{Fe}(\mathrm{edta})]^{-}>\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \\
& \text { C. }\left[\mathrm{Ni}(\mathrm{en})_{2}\right]^{2+}>\left[\mathrm{Ni}(\mathrm{DMG})_{2}\right] \\
& \text { D. }\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}
\end{aligned}
$$

Answer: C

106. The correct order of the stoichiometries of

AgCl formed when AgNO_{3} in excess is treated with the complexes:
$\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$
respectively is:
A. $3 \mathrm{AgCl}, 1 \mathrm{AgCl}, 2 \mathrm{AgCl}$
B. $3 \mathrm{AgCl}, 2 \mathrm{AgCl}, 1 \mathrm{AgCl}$
C. $2 \mathrm{AgCl}, 3 \mathrm{AgCl}, 1 \mathrm{AgCl}$
D. $1 \mathrm{AgCl}, 3 \mathrm{AgCl}, 2 \mathrm{AgCl}$

Answer: B
107. Which of the following statement is correct for the complex $\mathrm{Ca}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{O}_{2}\right]$ having $t_{2 g}^{6}, e_{g}^{0}$ electronic configuration?.
A. $d^{2} s p^{3}$ hybridised and diamagnetic
B. $s p^{3} d^{2}$ hybridised and paramagnetic
C. $s p^{3} d^{2}$ hybridised and diamagnetic
D. $d^{2} s p^{3}$ hybridised and paramagnetic

Answer: D

108. The magnetic moment of complex (A) of Co was found to be $4.89 B M$ and the $E A N$ as 36 , complex (B) with magnetic moment $3.87 B M$ and $E A N$ as 37 and complex (C) with $E A N$ as 36 but diamagnetic. Which of the following statements is true?
A. The oxidation states of Co in (A), (B) and (C) are $+3,+2$ and +3 , respectively.
B. Complexes (A) and (B) have $s p^{3} d^{2}$
hybridisation state while (C) has $d s p^{3}$
hybridisation state.
C. The spin multiplicities of Co in (A), (B) and (C)
are 3,2 and 1 , respectively.
D. The oxidation states of Co in (A) , (B) and (C)
are $+6,+8$ and +1 respectively.

Answer: A

- Watch Video Solution

109. In which of the following species the hybrid state of the central atom is same?
A. $\left[N i\left(P F_{3}\right)_{4}\right]$
B. $\left[F e(d m g)_{2}\right]$
C. $\left[Z n(e n)_{2}\right]^{2+}$
D. $\left[N i\left(P m e_{3}\right)_{4}\right]^{2+}$

Answer: B

- Watch Video Solution

110. Which of the following molecule do not have the
same number of unpaired electron?
A. $\left[\mathrm{Co}(\mathrm{CO})_{4}^{-}, \mathrm{INi}(\mathrm{CN})_{4}\right]^{4-}$
B. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{NiF}_{6}\right]^{2-}$

$$
\begin{aligned}
& \text { C. } \left.\left.\left[\mathrm{Ni}(\mathrm{en})_{3}\right]^{2+}\right],\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{4-}\right] \\
& \text { D. }\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{4-}\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}
\end{aligned}
$$

Answer: D

- Watch Video Solution

111. Which of the following complex ion (s) is/are not expected to absorb visible light?
A. $\left[\mathrm{Sc}\left(\mathrm{H}_{2} \mathrm{O}_{3}\right)\left(\mathrm{NH}_{3}\right)\right]^{3+}$
B. $\left[\mathrm{Ti}(e n)_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{4+}$
C. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
D. $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$

Answer: C

- Watch Video Solution

112. The d-electron configurations of
$\mathrm{Cr}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}$ and Co^{2+} are d^{4}, d^{5}, d^{6} and
d^{7} respectively. Which one of the following will exhibit minimum paramagnetic behavious?
A. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
B. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
D. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$

Answer: A

- Watch Video Solution

113. The oxidation number of Co in the complex ion

A. +2
B. +3
C. +4
D. +6

Answer: B

D View Text Solution

114. Match the geometry (given in columnA) with the complexes (given in column B) in

	Column A	
I.	Octahedral	
II.	Square planar	
III.	Tetrahedral	
	I	II
(a)	P	Q
(b)	R	R
(c)	R	P
(d)	Q	P
(d)	Q	
		R

Column B

$\mathrm{P}:\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2}$
$\mathrm{Q}:\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
$\mathrm{R}:\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4}$
III
R
P
Q
R
115. $\left[\mathrm{Fe}(e n)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2+}+e n \rightarrow \quad$ complex (X).

The correct statement about the complex (X) is
A. it is a low spin complex
B. it is diamagnetic
C. it shows geometrical isomerism
D. (a) and (b) both

Answer: D

- Watch Video Solution

116. $\left[\mathrm{NiCl}_{2}\left\{P\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)\right\}_{2}\right]$ exhibits temperature dependent magnetic behaviour. The coordination geometries of $N i^{2+}$ in the paramagnetic and diamagnetic states are:
A. tetrahedral and tetrahedral
B. square planar and square planar
C. tetrahedral and square planar
D. square planar and tetrahedral

Answer: C

117. Which of the following organometallic compound is a sigma and pi bonded? .

$$
\begin{aligned}
& \text { A. }\left[\mathrm{Fe}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right] \\
& \text { B. } \mathrm{K}\left[\mathrm{PtCl}_{3}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] \\
& \text { C. }\left[\mathrm{Co}(\mathrm{CO})_{5} \mathrm{NH}_{3}\right]^{2+} \\
& \text { D. }\left[\mathrm{Fe}\left(\mathrm{CH}_{3}\right)_{3}\right]
\end{aligned}
$$

Answer: C

-
 Watch Video Solution

118. Among the following, which is not the π-bonded organometallic compound

$$
\begin{aligned}
& \text { A. }\left(\mathrm{CH}_{3}\right)_{4} \mathrm{~Pb} \\
& \text { B. }\left[\mathrm{Cr}\left(\eta^{6}-C_{6} H_{6}\right)_{2}\right] \\
& \text { C. }\left[F e\left(\eta^{5}-C_{5} H_{5}\right)_{2}\right] \\
& \text { D. } K\left[\mathrm{PtCl}_{3}\left(\eta^{2}-C_{2} H_{4}\right)\right]
\end{aligned}
$$

Answer: A

- Watch Video Solution

119. The coordination number, EAN of the central metal atom and geometry of the complex ion obtained by adding $\mathrm{CuSO} \mathrm{O}_{4}$ to excess of aqueous

KCN are respectively.
A. $4,35, s p^{2} d$
B. $6,36, s p^{3} d^{2}$
C. $4,36, s p^{2} d$
D. $4,35, s p^{3}$

Answer: C

120. The π - bounded organometallic compound which has ethylene as one of its component is
A. Zeise's salt
B. Ferrocene
C. Dibenzene chromium
D. Tetraethyl tin

Answer: A

- Watch Video Solution

121. In isolated condition $C-C$ bond length of
$C_{2} H_{4}$ is x, then the bond length of $C-C$ bond of
$C_{2} H_{4}$ in Zeise's salt is .
A. Greater than x
B. Less than x
C. Equal to x
D. None of these

Answer: A

- Watch Video Solution

122. The number of sigma and π-bonds in $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ is.
A. 22σ and 15π
B. 22σ and 16π
C. 23σ and 15π
D. 15σ and 8π

Answer: A

