© 'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - CENGAGE CHEMISTRY (ENGLISH)

SOLID STATE

Illustration

1. A sample of a crystalline solid scatters a beam of

X-rays of wavelength 70.93 pm at an angle 2θ of
14.66°. If this is a second-order reflection $(n=2)$,
calculate the distance between the parallel planers
of atoms from which the scattered beam appears to have been reflected.

- Watch Video Solution

2. Calculate λ of X-rays which give a diffraction angle $2 \theta=16.8^{\circ}$ for crystal, if the interplanar distance in the crystal is 0.2 nm and that only for the first-order diffraction is observed. Given $\sin 8.40^{\circ}=0.146$.

- Watch Video Solution

3. A compound formed by elements X and Y has a cubic structure in which X atoms are at the corner of the cube and Y atoms are at the face centres.

One atoms X is misssing from the corner.
a. Calculate (i). $Z_{e f f}$, (ii). total number of the atoms
in the cube, and (iii). formula of the compound.
b. If alll the atoms are removed from one of the
faces of the cube containing atoms at corners, as in
(a) above, calculate (i) $Z_{e f f}$, (ii) total number of
atoms in a cube, and (iii) formula of the compound.

- Watch Video Solution

4. A compound formed by elements X and Y has a cubic structure in which X atoms are at the corners of the cube of and two atoms (Y) are at each body diagonal of the cube.
a. Calculate: (i) $Z_{e f f}$, (ii) total number of atoms in a cube, and (iii) formula of the compound.
b. If all atoms form one body diagonal of the cube except corners are removed, calculate: (i) $Z_{\text {eff }}$, (ii) total number of atoms in the cube, and (iii) formula of the compound.

- Watch Video Solution

5. A compound formed by elements X and Y has a cubic structure in which X atoms are at the corner of the cube and Y atoms are at the face centres.

One atoms X is misssing from the corner.
a. Calculate (i). $Z_{e f f}$, (ii). total number of the atoms in the cube, and (iii). formula of the compound.
b. If alll the atoms are removed from one of the
faces of the cube containing atoms at corners, as in
(a) above, calculate (i) $Z_{\text {eff }}$, (ii) total number of atoms in a cube, and (iii) formula of the compound.

- Watch Video Solution

6. A compound formed by elements X and Y has a cubic structure in which X atoms are at the corner of the cube and also at the face centers. Y atoms are present at the body centre and at the edge centre of the cube.
a. Celculate (i) $Z_{\text {eff }}$, (ii) total number of atoms in the cube, and (iii) formula of the compound.
b. If all the atoms are removed from one of the body
diagonals of the cube, calculate (i) $Z_{\text {eff }}$, (ii) total
number of atoms in the cube, and (iii) formula of the compound.
c. If all the atoms from the diagonals of the one of the face of the cube are removed, calculate (i) $Z_{e f f}$,
(ii) total number of atoms in the cube, and
formula of the compound.
d. If all the atoms are removed from one of the
plane passing through the middle of t he cube,
calculate (i) $Z_{\text {eff }}$, (ii) total number of atoms in the cube, and (iii) formula of the compound.
e. If all the atoms are removed from one of the axes
passing through one of the face centres of the cube, calculate (i) $Z_{\text {eff }}$, (ii) total number of atoms in the cube, and (iii) formula of the compound.

- Watch Video Solution

7. A compound formed by elements X and Y has a cubic structure in which X atoms are at the corner of the cube and also at alternate face entres. Y atoms are present at the body centre and also at the alternate edge centre of the cube.
a. Calculate (i) $Z_{\text {eff }}$, (ii) total number of atoms in the cube, and (iii) formula of the compound.
b. If all the atoms are removed from one of the
plane passing through the middle of the cube of the cube which contains atoms both on the edge entre as well as on the face centre, calculate (i)
$Z_{e f f}$, (ii) total number of atoms in the cube, (iii) formula of the compound.
c. If all the atoms are removed from the plane passing through the middle of the cube which contains atoms only on the edge centre but not on
face centre, calculate (i) $Z_{e f f}$, (ii) total number of atoms in t he cube, and (iii) fomula of the compound.
d. If all the atoms are removed from one of the
plane passing through the middle of the cube which neither contains atoms on the edge centre nor on the face centre, calculate (i) $Z_{\text {eff }}$, (ii) total number of atoms in the cube, and (iii) formula of the compound.
e. If all the atoms are removed from on e of the axes
passing through the middle of the cube containing
face centre atoms, calculate (i) $Z_{\text {eff }}$, (ii) total number of atoms in a cube, and (iii) formula of the compound.
f. If all the atoms are remove from one of the axes passing through the middle of the cube nor containing face centre atoms, calculate (i) $Z_{e f f}$, (ii) total number of atoms in a cube, and (iii) formula of the compound.

- View Text Solution

8. Draw a two-dimesnsional haxagonal lattice. Try to
visualize the possibility of pentagonal twodimensional lattice.

- Watch Video Solution

9. Consider the parallelotrams shown in the figure below representing two-dimensional cells.

a. Which of these are primitive and which are multiple unit cells? Are any of these orthogonal?
c. What is the relation between the radius of circle
and the length of parallelogram for the unit cell shown in the figure below (space filling diagram)?

d. How many nearest neighbour circles does a given circle have in the second figure abov?
e. What is the radius of the triangular hole shown in the second figure above?
f. What is the packing fraction of the unit cell in the second figure above?
10. Why uncharged atoms or molecules never crystallize in simple cubic lattice?

- Watch Video Solution

11. Why an end-centred unit cell cannot he cubic?

What is the highest possible symmetry for this type of unit cell?

- Watch Video Solution

12. Explain why a hexagonal close-packed structure
and a cubic close packed structure for a given
element would be expected to have the same density?

- Watch Video Solution

13. Select the close-packing arrangements in the following:
a. ... $A B A B A B A$..., b. ... $A B C A B C A B C A$...
c. ... $A B A B C B C A B C$... , d. ... $A C C B C A B C A B C$
14. A compound is formed by two elements X and
Y. Atoms of the element Y (as anion) make ccp and those of element X (as cation) occupy all the octahedral voids. What is the formula of the compound?

- Watch Video Solution

15. Atoms of elements B from hep lattice and those of element A occupy two-thirds of tetrahedral voids. What is the formula of the compound formed by elements A and B ?
16. An element has a bcc structure with a cell edge of 288 pm . The density of the element is $7.2 \mathrm{gcm}^{-3}$.

How many atoms are present in $208 g$ of the element?

- Watch Video Solution

17. X-ray diffraction studies show that copper crystallizes in an fcc unit cell with cell edge of $3.608 \times 10^{-8} \mathrm{~cm}$. In a separate experiment, copper
is determined to have a density of $8.92 \mathrm{~g} / \mathrm{cm}^{3}$ calculate the atomic mass of copper.

- Watch Video Solution

18. Silver forms ccp lattice and X-ray studies of its
crystals show that the edge length of its unit cell is
408.6 pm. Calculate the density of silver (Atomic mass $=107.9 \mathrm{u}$).

- Watch Video Solution

19. Metallic gold crystallizes in the fcc lattice.

The length of the cubic unit cell is $a=4.242 A$.
a. What is the closest distance between gold atoms?
b. How many "nearest neighbours" does each gold atom have at the distance calculated in (a) ?
(c) What is the density of gold? (Aw of Au $=197.0 \mathrm{gmol}^{-1}$)
d. Prove that the packing factor for gold is 0.74 .

- Watch Video Solution

20. If the radius of an atom of an elements is 75 pm and the lattice type is body-centred cubic, what is the edge length of the unit cell?

D Watch Video Solution

21. The radius of an atom of an element is 500 pm . If
it crystallizes as a face-centred cubic lattice, what is
the length of the side of the unit cell?

- Watch Video Solution

22. Sodium has a bcc structure with nearest neighbour distance of 365.9 pm . Calculate its density. (Atomic mass of sodium $=23$)

- Watch Video Solution

23. A face-centred cubic element (atomic mass 60) has a cell edge of 400 pm . What is its density?

- Watch Video Solution

24. Xenon crystallizes in the face-centred cubic lattice and the edge of the unit cell is 620 pm . What is the nearest neighbour distance and what is the redius of xenon atom?

- Watch Video Solution

25. In a compound, oxide ions are arranged in p.

One-sixth of the tetrahedral voids are occupied by
cations. (A) and one-third of $O V_{s}$ are occupieed by cations (B). (a) What is the formula of the compound of the compound? (b) What are the charges on A and B ?
26. A compund is made of two elements P and Q are in p arrangement while atoms P occupy all the tetrahedral voids. What is the formula of the compound?

- Watch Video Solution

27. Two ions A^{\oplus} and B^{Θ} have radii 88 and 200 pm , respectively. In the close-packed crystal of compound $A B$, predict coodination number of A^{\oplus}.
28. If the close-packed cations in an $A B$-type solid gave a radius of 75 pm . What would be the maximum and minimum sizes of the anions filling the voids?

- Watch Video Solution

29. If the radii of $\mathrm{Mg}^{2+}, \mathrm{Cs}^{\oplus}, \mathrm{O}^{2-}, \mathrm{S}^{2-}$, and $C I^{\Theta}$ ions are $0.65,1.69,1.40,1.84$, and $1.81 \AA$, respectively, calculate the coordination number of the cation in the crystals of $M g S, M g O$, and $C_{s} C I$.
30. Whenever two-demiensional square packing same layers are kept in the way so that the centres are aligned in all three dimensation, coordination numberof each sphere is
A. 6
B. 8
C. 12
D. 10

Answer: A

(D) Watch Video Solution

31. In an f crystal, which of the following shaded planes contain the given (\rightarrow) type of type of arrangement of atoms?

a.

b.

d.

A.
a.

Answer: A

D Watch Video Solution

32. In hexagonal close packing of spherer in three dimensions.
A. In one unit cell there are 12 octahedral voids
and all are completely inside the unit cell.
B. In one unit cell there are six octahedral voids
and all are competely inside the unit cell.
C. In one unit cell there are six octahedral voids
and of which three are completely inside the
unit cell and other three are from
contributions of octahedral voids which are
partially inside the unit cell

D. in one unit cell there are 12 tetrahedral voids,

all are completely inside the unit cell.

Answer: B

- Watch Video Solution

33. The coordination number of an f structure for a metal is 12 , since
A. Each atom toucher four others in same layer,
two in layer above and six in layer below
B. Each atom touches four others in same layer,
four in layer above and four in layer below.
C. Each atom touches six others in same layer, three in layer above and three in layer below D. Each atom touches eight others in same layer, two in layer above and two in layer below.

Answer: A

- Watch Video Solution

34. Which of the following statements is correct for a two-dimensional haxagonal close-packed layer?
A. Each sphere is surrounded by six spheres
B. Each sphere is surrounded by six voids
C. Each sphere has three voids
D. Each voids is surrounded by three spheres

Answer: A::B::D

- Watch Video Solution

35. A compound made of particles A, B, and C forms p lattice. Ions A are at lattice points, B occupy $T V_{s} C$ occupy $O V_{s}$. If all the ions along one of the edge axis are removed, then formula of the compound is
A. $A_{3.75} B_{8} C_{3.75}$
B. $A_{3.75} B_{4} C_{8}$
C. $A_{4} B_{8} C_{3.75}$
D. $A_{4} B_{3.75} C_{8}$

Answer: A
36. A compound made of particles A, B, and C forms p lattice. In the lattice, ions A occupy the lattice points and ions B and C occuphy the alternate $T V_{s}$. If all the ions along one of the body diagonals are removed, then formula of the compound is
A. $A_{3.75} B_{3} C_{3}$
B. $A_{3.75} B_{3} C_{4}$
C. $A_{3} B_{3.75} C_{3}$
D. $A_{3} B_{3} C_{3.75}$

Answer: A

- Watch Video Solution

37. A compound made of particles A and B. A forms $f c c$ packing and B occupies all the $O V_{s}$. If all the particles along the plane as shown in the figure below are removeed, then the simplest formula of the compound is

A. $A_{5} B_{7}$
B. $A_{7} B_{5}$
C. $A B$
D. $A B_{3.75}$

Answer: C

- Watch Video Solution

38. In a solid having rock salt structure, if all tge atoms touching one body diagonal plane are removed (except at body centre), then the formula of the left unit cell is
A. $A_{3.5} B_{2.5}$
B. $A_{7} B_{3}$
C. $A_{5} B_{3}$
D. $A_{3} B_{5}$

Answer: A

- Watch Video Solution

39. Calculate the value of Avogadro's number from the following data:

Density of $\mathrm{NaCl}=2.165 \mathrm{gcm}^{-3}$

Distance between $N a^{\oplus}$ and $C l^{\Theta}$ in $N a C l=281$
pm

- Watch Video Solution

40. $C s C l$ has $b c c$ arrangement and its unit cell edge
length is 400 pm . Calculate the interionic distance in $C s C l$.

- Watch Video Solution

41. A solid $A B$ has $C s C l$-type structure. The edge
length of the unit cell is 404 pm . Calculate the
distance of closest approach between A^{\oplus} and B^{Θ} ions.

- Watch Video Solution

42. CsCl has cubic structure. Its density is $3.99 \mathrm{gcm}^{-3}$. What is the distance between $C s^{\oplus}$ and $C l^{\Theta}$ ions?
(Atomic mass of $C s=133$)
43. The unit cube length for LiCl (NaCl structure) is $5.14 \AA$. Assuming anion-anion contact, calculate the ionic radius for chloride ion.

44. Casium may be considered to form interpentrating simple primitice cubic crystal. The edge length of unit cell is 412 pm . Determine
a. The density of $C s C l$.
b. The inoic radius of $C s^{\oplus}$ if the ionic radius of $C l^{\Theta}$ is 181 pm . Given: $A w(C s)=133 \mathrm{gmol}^{-1}$

- Watch Video Solution

45. $K C I$ crystallizes in the same type of lacttice as does $N a C l$. Given that

$$
\frac{r_{N a^{\oplus}}}{r_{C l} \Theta}=0.5 \text { and } \frac{r_{N a^{\oplus}}}{r_{K^{\oplus}}}=0.7
$$

Calculate (a) the ratio of side of the unit cell for
$K C l$ to that for $N a C l$, and (b) the ratio of density of NaCl to that KCl .

- Watch Video Solution

46. LiI occurs as cubical closed packing. If the edge
lenth of unit cell is 624 pm , determine the ionic radii of $L i^{\oplus}$ and I^{Θ} inos.

- Watch Video Solution

47. The composition of a sample of Wustite is
$F e_{0.93} O_{1.00}$. What percentage of the iron is present
in the form of $F e(I I I)$?

- Watch Video Solution

48. $C s B r$ crystallizes in a body-centred cubic unit
lattice with an edge length of $4.287 \AA$. Calculate the
angles at which the second-order reflection maxima may be expected for $(2,0,0),(1,1,0)$, planes when X-rays of $\gamma=0.50 \AA$ are used.

- Watch Video Solution

49. Calculate the miller indices of crystal. Planes which cut through the crystal axes at
A. $(2 a, 3 b, c)$
B. (a, b, c)
C. $(6 a, 3 b, 3 c)$
D. $(2 a,-3 b,-3 c)$

- Watch Video Solution

50. How do the spacings of the three planes 100 , 110 , and 111 of cube lattice vary?

- Watch Video Solution

51. Potassium chloride crystallize with a bodycentred cubic lattice. Calculate the distance between the 200,110 , and 222 Planes. The length of the side of the unit cell is $5.34 \AA$.

- Watch Video Solution

52. Diamond has face-centred cubic lattice. There are two atoms at $(0,0,0)$ and $\left(\frac{a}{4}, \frac{a}{4}, \frac{a}{4}\right)$ coordinates. The ratio of the carbon-carbon bond distance to the edge of the unit cell is
A. $\sqrt{\frac{3}{16}}$
B. $\sqrt{\frac{1}{4}}$
C. $\frac{1}{4}$
D. $\frac{1}{\sqrt{2}}$

Answer: A

53. Which of the following statements is(are) correct for the diamond structure?
A. Each atom has 4 nearest neighbours and 12 next nearest neighbours.
B. It is relatively empty.
C. The maximum proportion of the available
volume which may be filled by hard spheres is
only 0.34 .
D. The maximum proportion of the available
volume which may be filled by hard sphere is

Answer: A::B::C

D Watch Video Solution

54. Which of the following compounds are not isomorphous?
a. Copper sulphate and zine sulphate
b. Zinc sulphate and manganeous sulphate
c. Calcium carbonte and ferrous sulphate
d. Zine sulphate and ferrous sulphate

- Watch Video Solution

55. Potassium selenate is isomorphous with potassium sulphate and contains 50.0% of $S e$. The atomic weight of $S e$ is

$$
\text { a. } 142 \text {, b. } 71, \text { c. } 47.33, \text { d. } 284
$$

- Watch Video Solution

56. The $E w$ of an element is 13 . It forms an acidic oxide which $K O H$ forms a salt isomorphous with
$K_{2} S O_{4}$. The Aw of element is
a. 13 , b. 26, c. 52 , d. 78
57. If NaCl is doped with $10^{-3} \mathrm{~mol} \%$ of SrCl_{2}, what is the concentration of cation vacancies?

D Watch Video Solution

58. If NaCl is doped with $10^{-3} \mathrm{~mol} \% \mathrm{GaCl}_{3}$, what is the concentration of the cation vacancies?

- Watch Video Solution

59. If all the atoms touching one face plane are removed in solid $A^{\oplus} B^{\Theta}$ having rock salt type
structure, then the formula of the compound left
and the defect brought by this removal, respectively, is
a. $A B$, Frenkel defect
b. $A_{2} B$, Frenkel defect
c. $A B$, Schottky defect
d. $A_{2} B$, Schottky defect

- Watch Video Solution

60. The addition of CaCl_{2} crystal to KCl crystal
a. Lowers the density of the $K C l$ crystal
b. Raises the density of the $K C l$ crystal
c. Does not affect the density of the $K C l$ crystal
d. Increases the Frenkel defects of the $K C l$ crystal

- Watch Video Solution

61. What fraction of the surface of a crystal of $C d$ at
$T=298 K$ consists of vacancies? Assume that the energy needed to form a vacancy $=0.5 \Delta_{\text {sub }} H^{\Theta}$.

For $C d(s), \Delta_{\text {sub }} H^{\Theta}=112.0 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

62. Calcium crystallizesin f unit cell with 0.556 nm .

Calculate the density if
a. It contains 0.2% Frenkel defects
b. It contains 0.1% Schottky defects

- Watch Video Solution

Solved Examples

1. The pyknometric density of sodium chloride crystal is $2.165 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ while its X-ray density is $2.178 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$. The fraction of unoccupied sites in sodium chloride crystal is
2. The molar volumes of KCl and NaCl are 40 mL and 30 mL , respectively. Find the ratio of the unit cube edges of the two crystals. Assume both have the same packing efficiency.

- Watch Video Solution

3. Calculate the void space in closest packing of n
spheres of radius 1 unit, n spheres of radiys 0.414 units, and $2 n$ spheres of radius 0.225 units.
4. Calculate the following:
a. Number of $Z n S$ units in a unit cell of zinc blend.
b. Number of $C a F_{2}$ units in a unit cell of $C a F_{2}$.

- Watch Video Solution

5. CsCl has bcc structure with Cs^{+}at the centre and Cl^{-}ion at each corner. If $r_{c s+} i s 1.69 \AA$ and $r_{C l}-i s 0.81 \AA$, what is the edge length of the cube?
6. For a cubiccrystal, the face diagonal is $3.5 \AA$.

Calculate the face length.

- Watch Video Solution

7. Cesium chloride forms a body-centred cubic
lattice. Cesiumm and chloride ions are in contact along the body diagoanl of a cell. The length of the side of the unit cell is $412 \pm$ and $C l^{\Theta}$ ion has a radius of 181 pm . Calculate the radius of $C s^{\oplus}$ ion.
8. A unit of cell of sodium chloride has four formula units. The edge length of the unit cell is $0.564 n m$. What is the density of sodium chloride?

- Watch Video Solution

9. In an $L i I$ crystal, I^{-}ions from a cubical closepacked arrangement, and Li^{+}ion occupy octahedral holes. What is the relationship between the edge length of the unit cells and radii of the I^{-} ions if $a=60 \mathrm{pm}$.
10. An element occurs in two crystalline form α and
β. The α-form has an fcc with $\mathrm{a}=3.68 \AA$ and β-form
has a bcc with a = $2.92 \AA$. Calculate the ratio of their densities.

- Watch Video Solution

11. Find the simplest formula of a solid containing A
and B atoms ia cubic arrangement In which A occuples corner and B the centre of the faces of unit cell. If the side length is $5 \AA$, estimate the density of the solid assuming atomic weights of A and B as 60 and 90 , respectively.
12. In the cubic crystal of $\operatorname{CsCl}\left(d=3.97 \mathrm{gcm}^{-3}\right)$, the eight corners are occupied by $C l^{\ominus}$ with a $C s^{\oplus}$ at the centre and vice versa. Calculate the distance between the neighbouring $C s^{\oplus}$ and $C l^{\ominus}$ ions. What is the radius of the two ions? ($A w$ of $C s=132.91$ and $C l=35.45)$

- Watch Video Solution

13. $L i$ forms a body-centred cubic lattice. If the edge of the cube is $3.5 \times 10^{-10} \mathrm{~m}$ and the density is
$5.3 \times 10^{2} \mathrm{kgm}^{-3}, \quad$ calculate the percentage occupancy of $L i$ metal.

- Watch Video Solution

Exercises (Linked Comprehension)

1. If calcium crystallizes in $b c c$ arrangement and the
radius of $C a$ atom is $96 \pm$, then the volume of unit cell of $C a$ is
A. $10.9 \times 10^{-36} m^{3}$
B. $10.9 \times 10^{-30} \mathrm{~m}^{3}$
C. $21.8 \times 10^{-30} \mathrm{~m}^{3}$
D. $21.8 \times 10^{-36} \mathrm{~m}^{3}$

Answer: B

- Watch Video Solution

2. The number of unit cells in the $C a$ atom lies on the surface of a cubic crystal that is 1.0 cm in length is
A. 9.17×10^{23}
B. 9.17×10^{22}
C. $2 \times 9.17 \times 10^{23}$
D. $2 \times 9.17 \times 10^{22}$

Answer: B

- Watch Video Solution

3. The number of unit cells in the $C a$ atom lies on the surface of a cubic crystal that is 1.0 cm in length is
A. 1.11×10^{-8}
B. 2.22×10^{-8}
C. 1.11×10^{-7}
D. 2.22×10^{-7}

Answer: A

- Watch Video Solution

4. The OLIVINE series of minerals consists of crystal in which Fe^{2+} and Mg^{2+} ions may substitute for each other causing susbstitutional impurity defects without changing the volume of unit cell. In OLIVINE series of minerals, O^{2-} ions exist as fcc with Si^{4+} occupying one-fourth of $O V s$
and divalent metal ions occupying one-fourth of
$O V s$ and divalent metal ions occupying one-fourth of TVs. The density of "forsterite" (magnesium
silicate) is $3.21 \mathrm{gcm}^{-3}$ land that of "fayalite" (ferrous
silicate) is $4.34 \mathrm{gcm}^{-3}$.
The formula of "fayalite mineral" is
A. $\mathrm{Fe}_{2} \mathrm{SiO}_{4}$
B. FeSiO_{4}
C. $\mathrm{Fe}_{2} \mathrm{SiO}_{6}$
D. $\mathrm{Fe}_{S} i \mathrm{O}_{3}$

Answer: A

5. The OLIVINE series of minerals consists of crystal in which Fe^{2+} and Mg^{2+} ions may substitute for each other causing susbstitutional impurity defects without changing the volume of unit cell. In OLIVINE series of minerals, O^{2-} ions exist as fcc with Si^{4+} occupying one-fourth of $O V s$ and divalent metal ions occupying one-fourth of
$O V s$ and divalent metal ions occupying one-fourth of TVs. The density of "forsterite" (magnesium
silicate) is $3.21 \mathrm{gcm}^{-3}$ land that of "fayalite" (ferrous
silicate) is $4.34 \mathrm{gcm}^{-3}$.
If in "forsterite mineral" bivalent $M g^{2+}$ ions are to
be replaced by unipositive $N a^{\oplus}$ ions, and if $N a^{\oplus}$ ions are occupying half of $T V_{s}$ in f lattice, the arrangement of rest of the constituents is kept same, then the formula of the new solid is:
A. $\mathrm{Na}_{2} \mathrm{SiO}_{4}$
B. $\mathrm{Na}_{2} \mathrm{SiO}_{3}$
C. $\mathrm{Na}_{4} \mathrm{SiO}_{4}$
D. $\mathrm{Na}_{2} \mathrm{Si}_{2} \mathrm{O}_{6}$

Answer: C

6. $A X, A Y, B X$, and $B Y$ have rock salt type structure with following internuclear distances:

Salt Anion-anion Cation-anion distance in \AA distance in \AA
$\begin{array}{lll}A X & 2.40 & 1.70\end{array}$
$A Y \quad 1.63 \quad 1.15$
$B X \quad 2.66 \quad 1.88$
By $2.09 \quad 1.48$
Ionic radii of A^{\oplus} and B^{\oplus}, respectively, are
a. 0.35 and $0.68 \AA$
b. 0.68 and $0.35 \AA$
c.1.20 and $0.80 \AA$
d. 0.80 and $1.20 \AA$
A. 0.35 and $0.68 \AA$
B. 0.68 and $0.35 \AA$

C. 1.20 and $0.80 \AA$

D. 0.80 and $1.20 \AA$

Answer: A

- Watch Video Solution

7. $A X, A Y, B X$, and $B Y$ have rock salt type structure with following internuclear distances:

Salt Anion-anion Cation-anion distance in \AA distance in \AA
$A X \quad 2.40 \quad 1.70$
$A Y \quad 1.63$
1.15

BX 2.66
1.88

By 2.09
1.48

Ionic radii of X^{\oplus} and Y^{Θ}, respectively, are
A. 0.35 and $0.68 \AA$
B. 0.68 and $0.35 \AA$
C. 1.20 and $0.80 \AA$
D. 0.80 and $1.20 \AA$

Answer: C

- Watch Video Solution

8. $A X, A Y, B X$, and $B Y$ have rock salt type structure with following internuclear distances:
$\left|\begin{array}{lll}\text { Salt } & \begin{array}{l}\text { Anion-anion } \\ \\ \text { distance in } \AA\end{array} & \begin{array}{l}\text { Cation-anion } \\ \text { distance in } \AA \\ A X\end{array} \\ 2.40 & 1.70 \\ A Y & 1.63 & 1.15 \\ B X & 2.66 & 1.88 \\ B y & 2.09 & 1.48\end{array}\right|$
The structure given below is of

(a) $A X$
(b) $A Y, B X$
(c) $A Y, B X, B Y$
(d) $A Y, B X, B Y$ and $K C I$
A. $A X$
B. $A Y, B X$
C. $A Y, B X, B Y$
D. $A Y, B X, B Y$ and $K C I$

Answer: D

- Watch Video Solution

9. $A X, A Y, B X$, and $B Y$ have rock salt type structure with following internuclear distances:

Salt Anion-anion Cation-anion
distance in \AA distance in \AA

AX $\quad 2.40$
1.70

AY 1.63
1.15
$B X \quad 2.66$
1.88

By 2.09
1.48

Which of the following structure is, respectively, by
$A x$?
(a)
a.

b.

(b)
(c)
c.

d.
(d)

A.
a.

b.

B.

Answer: A

- Watch Video Solution

10. $A X, A Y, B X$, and $B Y$ have rock salt type structure with following internuclear distances:

Salt Anion-anion Cation-anion distance in \AA distance in \AA
$A X \quad 2.40$
1.70
$A Y \quad 1.63$
1.15
$B X \quad 2.66$
1.88

By 2.09
1.48

A salt $M Y$ crystallizes in the CsCl structure. The
anions at the corners touch each other and cation
is in the centre. The radius ratio $\left(r_{\oplus} / r_{\Theta}\right)$ for this structure is
A. 0.225
B. 0.414
C. 0.732
D. 1.0

Answer: C
11. In a unit cell, atoms (A) are present at all corner
lattices, (B) are present at alternate faces and all edge centres. Atoms (C) are present at face centres
left from (B) and one at each body diagonal at disntance of $1 / 4 t h$ of body diagonal from corner.

Formula of given solid is
A. $A_{3} B_{8} C_{7}$
B. $A B_{4} C_{6}$
C. $A_{6} B_{4} C_{8}$
D. $A_{2} B_{9} C_{11}$

- Watch Video Solution

12. In a unit cell, atoms (A) are present at all corner
lattices, (B) are present at alternate faces and all edge centres. Atoms (C) are present at face centres left from (B) and one at each body diagonal at disntance of $1 / 4 t h$ of body diagonal from corner.

A tetrad axis is passed from the given unit cell and all the atoms touching the axis are removed. The possible formula of the compound left is
A. $A B_{3} C_{6}$ and $A B_{4} C_{5}$
B. $A_{3} B_{6} C_{7}$ and $A_{3} B_{6} C_{5}$

C. $A_{4} B_{5} C_{8}$ and $A_{4} B_{5} C_{7}$

D. $A B_{2} C$ and $A B C_{2}$

Answer: A

- Watch Video Solution

13. In a unit cell, atoms (A) are present at all corner lattices, (B) are present at alternate faces and all edge centres. Atoms (C) are present at face centres
left from (B) and one at each body diagonal at disntance of $1 / 4$ th of body diagonal from corner.

Total fraction of voids occupied are
A. 0.58
B. 0.25
C. 0.48
D. 0.86

Answer: A

(D)
 Watch Video Solution

Exercises (Multiple Correct)

1. In fcc structure octahedral voids are present at :
A. Corners of unit cell
B. Edge centre of unit cell
C. Body centre of unit cell
D. Face centre of unit cell

Answer: B::C

- Watch Video Solution

2. An hcp and a ccp structure for a given element would be expected to have
(a)The same co-ordinational number
(b)the same density
(c)the same packing fraction
(d)all of the above
A. The same coordination number
B. The same density
C. The same packing fraction
D. All of these

Answer: A: C

- Watch Video Solution

3. Ions of $N a C l$ which are touched by 1 body diagonal are
A. $C l^{\Theta}$ ions present at the corner of cube
B. $C l^{\Theta}$ ions present at the face centre of cube
C. $N a^{\oplus}$ ions present at the edge centre of cube
D. $N a^{\oplus}$ ions present at body centre of cube

Answer: A::D

- Watch Video Solution

4. Which of the follwing statements is/are correct for both fluorite and antifluorite structures?
A. Cation is present in alternate $T V_{s}$
B. Anion constitutes lattice.
C. Number of formula unit in one unit cell is 4 .
D. 100% tetrahedral voids are occupied

Answer: C::D

- Watch Video Solution

5. Identical spheres are undergoing two-dimensinal packing in squre close packing and hexagonal close packing. Which is correct regarding the spheres?
A. The ratio of coordination number for a sphere in first case to that in second case is $2: 3$.
B. Packing in second case is more effective.
C. Packing in first case is more effective.
D. The stacking of layer on first type packing produces simple cubic structure.
6. For which of the following cases, answer is 4
A. Coordination number of $Z n^{2+}$ in Z inc blende
B. Number of body diagonal planes in a cube
C. Formula units in rock salt structure
D. Formula units in CsCl structure

Answer: A::C

- Watch Video Solution

7. An octahedron has

A. 8 corners
B. 8 faces
C. 8 edges
D. 12 edges

Answer: B::D

- Watch Video Solution

8. Aluminium metal has a density of $2.72 \mathrm{gcm}^{-3}$ and crystallizes in a cubic lattice with an edge of 404 pm .

Which is//are correct?
A. It forms an fcc unit cell.
B. It forms a bcc unit cell.
C. Its coordination number is 8 .
D. Its coordination number is 12 .

Answer: A::D

- Watch Video Solution

9. For the spinel structure $\left(\mathrm{MgAl}_{2} \mathrm{O}_{4}\right)$, the correct

 statement is//areA. $1.50 \% O V_{s}$ are occupied by ions.
B. 2. $A l^{3+}$ is equally distributed in $T V s$ and OVs.
C. 3.Oxide ions occupy ccp lattice.
D. 4.12.5 \% TVs are occupied by ions.

Answer: A::C::D

- Watch Video Solution

10. If the radius of anion is 0.20 nm , the maximum radius of cation which can be filleed in respective voids is correctly matched in
A. $r_{\oplus}=0.0828 n m$ for tetrahedral void
B. $r_{\oplus}=0.045 \mathrm{~nm}$ for triangular void
C. $r_{\oplus}=0.1464 n m$ for tetrahedral void
D. None of the above.

Answer: A::B::C

- Watch Video Solution

11. Which of the following statements is/are correct?
A. Dislocation of ion from lattice site to interstitial site is called Frenkel defect.
B. Missing of $+v e$ and $-v e$ ions from their respective position producing a pair of holes is called Schottky defect.
C. The presence of ions in the vacent interstital
sites along with lattice point is called interrstital defect.
D. Non-stoichiometric $N a C l$ is yellow solid.

Answer: A::B::C::D

12. Select the correct statement(s).
A. The conductance through electron is called p type conducation.
B. The conductance through positive holes is
called p-type conduction.
C. The conductance through electrons is called n -type conduction.
D. The band gap in germanimum is small.
13. Select the correct statement(s).
A. Solids with F-centres are paramagnetic.
B. Ferrimagnetic character of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ at room temperature changes to paramagnetic
character at 850 K .
C. Anti-ferrimagetic $V_{2} O_{3}$ changes to
paramagnetic at $150 K$.
D. Non-stoichiometric $\mathrm{Cu}_{2} \mathrm{O}$ is a p-type semiconductor.

Answer: A::B::C::D

- Watch Video Solution

14. Select the correct statement(s) about threedimensional hcp system.
A. The number of atoms in $h c p$ unit cell is six.
B. The volume of $h c p$ unit cell is $24 \sqrt{2} r^{3}$.
C. The empty space in $h c p$ unit cell is 26%.
D. The base area of $h c p$ unit is $6 \sqrt{3} r^{2}$.
15. In which of the following systeam primitives
$a \neq b \neq c$?
A. Orthorhombic
B. Monoclinic
C. Triclinic
D. Hexagonal

Answer: A::B::C
16. In which of the following systeams interfacial angles $\alpha=\gamma=90^{\circ}$ but $\beta \neq 90^{\circ}$?
A. Monoclinic

B. Rhombohedral

C. Triclinic
D. Hexagonal

Answer: A::B

- Watch Video Solution

17. The space in which atoms are not present in unit cell is
A. In sc 48%

B. In fcc 26%

C. In bcc 32%
D. In hexagonal 26%

Answer: A::B::C::D

18. Which of the following having having their radius ratio between 0.414 and 0.732 , i.e., for NaCl structure, have their radius ratio not in this range but posses NaCl -type structure?
A. LiBr
B. KCl
C. RbCl
D. BaO

Answer: A::B::C::D
19. In the fluorite structure if the radius ratio is $\left(\sqrt{\frac{3}{2}}-1\right)$ how many ions does each cation touch?
A. 4 anions
B. 12 cations
C. 8 anions
D. No cations

Answer: B::C

- Watch Video Solution

20. Following three planes $\left(P_{1}, P_{2}, P_{3}\right)$ in an fcc unit cell are shown in the figure below. Consider the following statements and choose the correct option/options that follow:

(a) P_{1} contains no three-dimensional voids.
(b) P_{2} contains only octahedral voids.
(c) P_{3} contains both octahedral and tetrahedral voids
(d)All of these
A. P_{1} contains no three-dimensional voids.
B. P_{2} contains only octahedral voids.
C. P_{3} contains both octahedral and tetrahedral voids
D. All of these

Answer: A::B::C::D

- Watch Video Solution

21. If the radious of $C s^{\oplus}=1.69 \AA$ and $B r^{\Theta}=1.95 \AA$, then which of the following is//are correct statement?
A. The edge length of unit cell is $4.2 \AA$.
B. The coordination number for $C s^{\oplus}$ is 6 .
C. $C s B r$ has bcc-type structure.
D. $B r^{\Theta}$ ions touch each other along the edge.

Answer: A::C

- Watch Video Solution

22. Given is the arrangement of atoms in a crystallographic plane.

Name one plane which correctly represent(s) the
adjacent drawn structure?

A. Face plane in fcc
B. Body diagonal plane in fcc
C. Face plane in bcc
D. Body diagonal plane in bcc

Answer: A::D

- Watch Video Solution

23. In fcc structure octahedral voids are present at :
A. Edge centre of unit cell
B. Body centre of unit cell
C. Corners of unit cell
D. Face centre of unit cell

Answer: A::B
24. Position of $T V s$ in closest packed structure is//are
A. Edge centre of unit cell
B. Two $T V s$ on each body diagonal
C. Position of each $T V$ from corner is $\sqrt{3} a / 4$.
D. Face centre of unit cell

Answer: B::C
25. Which of the following statements is/are correct about $T V s$ in an fcc unit cell?
A. Number of $T V s$ per atom in fcc unit cell is 2 .
B. Number of $T V s$ per unit cell is 8 .
C. Number of $T V s$ is twice the number of atoms in the fcc unit cell.
D. Number of $T V s$ is equal to the number of atoms in the fcc unit cell?

Answer: A::B::C

26. Which of the following statements is//are correct about $T V s$ in an fcc unit cell?

Given: Edge length $=a$
Body diagonai $=b$
A. Each $T V$ lies at a diastance $\mathrm{b} / / 4$ from the
nearest corner.
B. Each $T V$ lies at a distance $3 b / 4$ from the
farthest corner.
C. Each $T V$ lies at a distance of $\sqrt{3} a / 4$ from the
nearest corner.
D. The distance between two $T V_{s}$ is $b / 2$.

Answer: A::B::C::D

- Watch Video Solution

27. Graphite
A. A good conductor
B. $s p^{2}$ hybridized
C. An amorphous solid
D. A convalent crystal

Answer: A::B::D

- Watch Video Solution

28. Diamond
A. A covalent solid
B. A non-conductor
C. A lubricant
D. $s p^{3}$ hybridized

Answer: A::B::D
29. The density of KBr is $2.75 \mathrm{~g} \mathrm{~cm}{ }^{-3}$. The length of the edge of the unit cell is 654 pm . Show that KBr has a face centred cubic structure.(

$$
\left.N_{A}=6.023 \times 10^{23} \mathrm{~mol}^{-} \text {at. mass : } \mathrm{K}=39, \mathrm{Br}=80\right]
$$

A. The unit cell is fcc.
B. $Z=4$.
C. There are four constituents/unit cells.
D. There are 8 ions at corners and 6 at the centres of the faces.
30. What is true about a bcc unit cell?
A. The number of atoms in the unit cell is 2 .
B. In addition to an atom at the centre of the body, in a unit cell there are 8 atoms at 8 different corners.
C. One-eighth of an atom at a corner of the unit cell.
D. None of the above.

Answer: A::B::C

- Watch Video Solution

31. What is true about simple cubic type of unit cells?
A. Eight constituents are at different corners of
the cube.
B. $Z_{e f f}=1$.
C. Contribution by one corner is (1) / (8)th of an atom:.

D. None of the above.

Answer: A::B::C

- Watch Video Solution

32. Which of the following is//are convalent solids?
A. $F e$
B. Diamond
C. NaCl
D. Graphite

Answer: B::D

- Watch Video Solution

33. Which is/are not amorphous solid(s)?
A. Rubber
B. Graphite
C. Glass
D. Plastics

Answer: B
34. Non-stoichiometric compounds are
A. $\mathrm{Cu}_{2} \mathrm{O}$
B. $C u_{2} S$
C. FeO
D. $\mathrm{Hg}_{2} \mathrm{Ba}_{2} \mathrm{YCaCu} u_{2} \mathrm{O}_{7}$

Answer: A::B::C::D

- Watch Video Solution

35. Recently discovered superconductivity materials

 areA. $M_{3} C_{60}$
B. $Y B a_{2} C u_{3} O_{7}$
C. SiC
D. $\mathrm{Hg}_{2} \mathrm{Ba}_{2} \mathrm{YCaCu} \mathrm{C}_{2} \mathrm{O}_{7}$

Answer: A::B::D

36. If a mixture of LiCl and NaCl is malted and then cooled,
A. A solid solution is formed.
B. Mixture formed is called eutectic mixture.
C. $\mathrm{TiO}_{1.8}$ is non-stoichiometric solid solution of

$$
T i_{2} \mathrm{O}_{3} \text { and } T i O_{2} .
$$

D. Neither LiCl nor NaCl separates.

Answer: A::B::C::D

- Watch Video Solution

37. Which of the following statements is/are correct?
A. If three Fe^{2+} ions are missing from their
lattice in FeO , then there must be two Fe^{3+} ions somewhere in the lacttice.
B. Crystals with matal deficiency defects are
called super conductors.
C. Crystals with metal deficiency are called semiconductors.
D. 1 Bohr Magneton $=9.27 \times 10^{-24} \mathrm{Am}^{2}$
38. Select the correct statement(s).
A. The non-stoichiometric from of NaCl is
yellow and that of KCl is blue-lilac.
B. Solids containing F-centres (Farbe) are paramagentic.
C. Non-stoichiometric compounds are called Berthollide compounds.
D. Conduction by electrons is called n-type semiconductor.

Answer: A::B::C::D

- Watch Video Solution

39. A mineral having the formula $A B_{2}$ crystallizes in the p lattice, with A atoms occupying the lattice points. Select the correct statement(s).
A. The coordination number $(C N)$ for A atoms $=8$.
B. The $C N$ for B atom $=4$
C. 100% of $T V_{s}$ are occupied by B atoms
D. 50% of $T V_{s}$ are occupied by B atoms.

Answer: A::B::C

- Watch Video Solution

Exercises (Single Correct)

1. A crystal is made of particles X, Y and $Z . X$ form fcc packing. Yoccupies all the octahedral void of X and
Z occupies all the tetrahedral voids of X. If all the particles along one body diagonal are removed then the formula of the crystal would be:
A. $X Y Z_{2}$
B. $X_{2} Y Z_{2}$
C. $X_{8} Y_{4} Z_{5}$
D. $X_{5} Y_{4} Z_{8}$

Answer: D

- Watch Video Solution

2. In a hypothetical solid, C atoms are found to form cubical close-packed lattice. A atoms occupy all tetrahedral voids and B atoms occupy all octahedrals voids.

A and B atoms are of appropriate size, so that
there is no distortion in the p lattice of C atoms.

Now if a plane as shown in the following figure is
cut, then the cross section of this plane will look like

Answer: C

- Watch Video Solution

3. What is the maximum number of layers of atom in close-packed planes that will lie within two imaginary parallel planes having a distance between them of $13 \sqrt{\frac{2}{3}} r$ (where r is the radius of atom) in the copper crystal (fcc)?
(Consider the atoms to be within the parallel planes
if their centres are on or within the two parallel planes).
A. 5
B. 6
C. 7
D. 8

Answer: C

D View Text Solution

4. Analysis show that nickel oxide consists of nickel ion with 96% ions having d^{8} configuration and 4% having d^{7} configuration. Which amongst the following best represents the formula of the oxide?
A. $N i_{1.02} O_{1.00}$
B. $N i_{0.96} O_{1.00}$
C. $N i_{0.98} O_{0.98}$
D. $N i_{0.98} O_{1.00}$

Answer: D

- Watch Video Solution

5. What is the density of $\mathrm{Na}_{2} \mathrm{O}$ having antifluoritetype crystgal stryctutre, if the edge length of cube is 100 gm and what is the effect on density by 0.05% Frenkel defect?
A. $823.5 \mathrm{gcm}^{-3}$, density decreases
B. $4.14 .16 \mathrm{gcm}^{-3}$, density decreases
C. $823.5 \mathrm{gcm}^{-3}$, density remains same
D. $414.16 \mathrm{gcm}^{-3}$, density remains same

Answer: D

- Watch Video Solution

6. In the $C a F_{2}$ structure, the C.N of cations and anions are respectively:
A. 6 and 6
B. 8 and 4
C. 4 and 4
D. 4 and 8

- Watch Video Solution

7. A metallic crystal cystallizes into a lattice containing a sequence of layers $A B A B A B \ldots$ Any packing of spheres leaves out voids in the lattice.

What percentage by volume of this lattice is empty spece?
A. 74%
B. 26%
C. 50%
D. None of these

Answer: B

- Watch Video Solution

8. In fcc unit cell, atoms are numbered as shown
below.
The atoms not touching each other are (Atom
numbered 3 is face centre of front face)

A. 3 and 4
B. 1 and 3
C. 1 and 2
D. 2 and 4

Answer: C

- Watch Video Solution

9. The number of nearest neighbours and next nearest neighbours of an $N a^{\oplus}$ ion in a crystal of
$N a C l$ are, respectively,
A. $6 N a^{\oplus}, 12 C l^{\Theta}$
B. $6 \mathrm{Cl}^{\Theta}$, and $12 \mathrm{Na}^{\oplus}$
C. $12 \mathrm{Cl}^{\Theta}, 12 \mathrm{Na}^{\oplus}$
D. $6 \mathrm{Cl}^{\Theta}, 6 N a^{\oplus}$

- Watch Video Solution

10. In the closet packing of atoms:
A. The size of $T V$ is greater than that of $O V$.
B. The size of $T V$ is smaller than that of $O V$.
C. The size of $T V$ is equal to that of $O V$.
D. The size of $T V$ may be greater or smaller or equal to that of $O V$ depending upon the size of atoms.

Answer: B

- Watch Video Solution

11. The following diagram shows the arrangement of
lattice points with $a=b=c \quad$ and $\alpha=\beta=\gamma=90^{\circ}$. Choose the correct options.
A. The arrangement is $s c$ with each lattice point surrounded by 6 nearest neighbours.
B. The arrangement is $s c$ with each lattice point surrounded by 8 nearest neighbours.
C. The arrangement is fcc with each lattice point surrounded by 12 nearest neighbours.
D. The arrangement is bcc with each lattice point
surroundeed by 8 nearest neigbours

Answer: A

- Watch Video Solution

12. The number of atoms in 100 g of an fcc crystal with density $=10.0 \mathrm{gcm}^{-3}$ and cell edge equal to $200 \pm$ is equal to
A. 5×10^{24}
B. 5×10^{25}
C. 6×10^{23}
D. 2×10^{25}

Answer: A

- Watch Video Solution

13. What is the effect of Frenkel defect on the density of ionic solids ?
A. Increases
B. Decreases
C. Does not change
D. Changes

Answer: C

- Watch Video Solution

14. In a tetragonal crystal
A. $a=b=c, \alpha=\beta=90^{\circ} \neq \gamma$
B. $\alpha=\beta=\gamma=90^{\circ}, a=b \neq c$
C. $\alpha=\beta=\gamma=90^{\circ}, a \neq b \neq c$
D. $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}, a=b \neq c$

Answer: B

- Watch Video Solution

15. Which of the following is not a ferroelectric compound?
A. Rochelle salt
B. $K_{4}\left[F e(C N)_{6}\right]$
C. BaTiO_{3}
D. $\mathrm{KH}_{2} \mathrm{PO}_{4}$

Answer: B

D Watch Video Solution
16. The material used in solar cells contains
A. $C s$
B. $S i$
C. $S n$
D. $T i$

Answer: B

- Watch Video Solution

17. If the lattice parameter of $S i=5.43 \AA$ and the mass of Si atom is $28.08 \times 1.66 \times 10^{-27} \mathrm{~kg}$, the density of silicon in kgm^{-3} is (Given: Silicon has diamondcubic structure)
A. 2330
B. 1115
C. 3445
D. 1673

Answer: A

D Watch Video Solution

18. The lacttice parameter of $G a A s$ (radius of
$G a=1.22 \AA, A s=1.25 \AA$) is
A. $5.635 \AA$
B. $2.852 \AA$
C. $5.774 \AA$
D. $4.94 \AA$

Answer: B

- Watch Video Solution

19. In cubic $Z n S(I I-V I)$ compounds, if the radii of $Z n$ and S atoms are $0.74 \AA$ and $1.70 \AA$, the lattice parameter of cubic $Z n S$ is
A. $11.87 \AA$
B. $5.634 \AA$
C. $5.14 \AA$
D. $2.97 \AA$

Answer: B

- Watch Video Solution

20. $N a$ and $M g$ crystallize in bcc- and fcc-type crystals, the ratio of number of atoms present in the unit cell of their respective crystal is
A. 1
B. 0.5
C. 3
D. 4

Answer: B

- Watch Video Solution

21. In a close packed structure of mixed oxides, the lattice is composed of oxide ions, one-eighth of tetrahedral voids are occupied by divalent cations while one-half of octahedral voids are occupied by trivalent cations. The formula of the oxide is
A. $A_{2} B O_{3}$
B. $A B_{2} O_{3}$
C. $A_{2} B O_{4}$
D. $\mathrm{AB}_{2} \mathrm{O}_{4}$

Answer: D

- Watch Video Solution

22. An ionic solid $A^{\oplus} B^{\Theta}$ crystallizes as an bcc structure. The distance between cation and anion in
the lattice is $338 \pm$. The edge length of cell is
A. 338 pm
B. 390.3 pm
C. 292.7 pm
D. 507 pm

Answer: B

- Watch Video Solution

23. An ionic solid $A^{\oplus} B^{\Theta}$ crystallizes as an fcc
structure. If the edge length of cell is 508 pm and
the radius of anion is $144 \pm$, the radius of cation is
A. 110 pm
B. 364 pm
C. 220 pm
D. 288 pm

Answer: A

- Watch Video Solution

24. The γ-form of iron has f structure (edge length $386 \pm$) and β-form has b structure (edge length $290 \pm$). The ratio of density in γ-form and β-form is
A. 0.9788
B. 1.02

C. 1.57

D. 0.6344

Answer: A

- Watch Video Solution

25. The density of an ionic compounds
$(M w=58.5)$ is $2.165 \mathrm{kgm}^{-3}$ and the edge length of unit cell is 562 pm , then the closest distance between $A^{\oplus} B^{\ominus}$ and $Z_{\text {eff }}$ of unit cell is
A. $281 \mathrm{pm}, 4$
B. $562 \mathrm{pm}, 2$
C. $562 \mathrm{pm}, 4$
D. $281 \mathrm{pm}, 2$

Answer: A

- Watch Video Solution

26. The edge length of unit cell of a metal
$(M w=24)$ having cubic structure is $4.53 \AA$. If the density of metal is $1.74 \mathrm{gcm}^{-3}$, the radius of metal is $\left(N_{A}=6 \times 10^{23}\right)$
A. 180 pm
B. 160 pm
C. 140 pm
D. 190 pm

Answer: B

D Watch Video Solution
27. The ratio of packing fraction in fcc, bcc, and
cubic structure is, respectively,
A. $1: 0.92: 0.70$
B. $0.70: 0.92: 1$
C. $1: 0.70: 0.92$
D. $0.92: 0.70: 1$

Answer: A

- Watch Video Solution

28. If R is the radius of the octahedral voids and r is
the radius of the atom in close packing, then r / R is
equal to
A. 2.41
B. 4.76
C. 3.22
D. 9.1

Answer: A

- Watch Video Solution

29. How many unit cells are present in a cubic shaped ideal crystal of NaCl of mass 1.0 g ?
A. 1.28×10^{21}
B. 1.71×10^{21}
C. 2.57×10^{21}
D. 5.14×10^{21}

Answer: C

- Watch Video Solution

30. What type of crystal defect is shown in the figure given below?
$\mathrm{Na}^{+} \quad \mathrm{Cl}^{-} \quad \mathrm{Na}^{+} \quad \mathrm{Cl}^{-} \quad \mathrm{Na}^{+}$
Cl^{-}
Cl^{-}
$N a^{+}$
Cl^{-}
$\mathrm{Na}^{+} \quad \mathrm{Cl}^{-} \quad \mathrm{Na}^{+} \quad \square \quad \mathrm{Na}+$
$\mathrm{Cl}^{-} \quad \mathrm{Na}^{+} \quad \square \quad \mathrm{Na}^{+} \quad \mathrm{Cl}^{-}$
$\mathrm{Na}^{+} \mathrm{Cl}^{-} \quad \mathrm{Na}^{+} \quad \mathrm{Cl}^{-} \quad \square$
A. Both Frenkel and Schottky defects
B. Schottky defect
C. Interstitial defect
D. Frenkel defect

Answer: B

- Watch Video Solution

31. The volume of atom present in a face-centred cubic unit cell of a metal (r is atomic radius) is
A. $\frac{20}{3} \pi r^{3}$
B. $8 \pi r^{3}$
C. $4 \pi r^{3}$
D. $\frac{16}{3} \pi r^{3}$

Answer: D

- Watch Video Solution

32. An elemental crystal has density of $8570 \mathrm{kgm}^{-3}$.

The packing efficiency is 0.68 . If the closest distance between neighbouring atoms is $2.86 \AA$. The mass of one atom is $\left.\left(1 a \mu=1.66 \times 10^{-27}\right) k g\right)$
A. 186 amu
B. 93 amu
C. 46.5 amu
D. 43 amu

Answer: B

- Watch Video Solution

33. The atomic fraction (d) of tin in bronze (fcc) with a density of $7717 \mathrm{kgm}^{-3}$ and a lattice parameter of $3.903 \AA$ is
$\left(A w C u=63.54, S n=118.7,1 a \mu=1.66 \times 10^{-27 k g}\right)$
A. 0.01
B. 0.05
C. 0.10
D. 3.8

Answer: B

D Watch Video Solution
34. Every atom or ion that forms an fcc unit cell is
surrounded by
A. Six $O V s$ and eight $T V s$.
B. Eight $O V s$ and Six $T V s$.
C. Six $O V s$ and $\operatorname{six} T V s$.
D. Eight $O V s$ and four $T V s$.

Answer: A

- Watch Video Solution

35. Consider the structure of CsCl (8:8 coordination). How many $C s^{\oplus}$ ions occupy the second nearest neighbour locations of a $C s^{\oplus}$ ion? 8
A. 8
B. 24
C. 6
D. 16

Answer: C

- Watch Video Solution

36. A metal of density $7.5 \times 10^{3} \mathrm{kgm}^{-3}$ has an fcc crystal structure with lattice parameter $a=400 \pm$.

Calculater the number of unit cells present in 0.015 kg of metal.
A. 6.250×10^{22}
B. 3.125×10^{23}
C. 3.125×10^{22}
D. 1.563×10^{22}

Answer: C
37. The ratio of the volume of a tetragonal lattice unit cell to that of a hexagonal lattice unit cell is
(both having same respective lengths)
a. $\frac{\sqrt{3}}{2} a b c$
b. $\frac{2}{3 \sqrt{3}}$
$3 \sqrt{3}$
2
c. $\frac{2}{\sqrt{3} \frac{a^{2} c}{b}}$
d. 1
A. $\frac{\sqrt{3}}{2} a b c$
B. $\frac{2}{3 \sqrt{3}}$
C. $\frac{2}{\sqrt{3} \frac{a^{2} c}{b}}$
D. 1

Answer: B

- Watch Video Solution

38. An fcc lattice has a lattice parameter $a=400$ pm. Calculater the molar volume of the lattice including all the empty space.
A. $10.8 m L$
B. $96 m L$
C. $8.6 m L$
D. $9.6 m L$

Answer: D

- Watch Video Solution

39. A $T V$ in fcc is formed by atoms at
A. 3 corners +1 face centre
B. 3 face centres +1 corner
C. 2 face centres +2 corners
D. 2 face centres +1 corner +1 body centre

Answer: B
40. A metal crystallizes in b lattice. The percent fraction of edge length not covered by atom is
A. 10.4%
B. 13.4%
C. 12.4%
D. 11.4%

Answer: B
41. In the cubic lattice given below, the three distances between the atoms $A-B, A-C$, and $A-G$ are, respectively,

A. $a, \sqrt{2} a, \sqrt{3} a$
B. $a, \sqrt{3} a, \sqrt{2} a$
C. $\frac{a}{2}, \frac{a}{\sqrt{2}}, \frac{\sqrt{3} a}{2}$
D. $a, \frac{\sqrt{3} a}{2}, \sqrt{2} a$

Answer: A

- Watch Video Solution

42. In body-centred cubic lattice given below, the three disntances $A B, A C$, and \forall^{\prime} are

A. $a, \sqrt{2} a, \frac{\sqrt{3} a}{2}$
B. $a, \frac{\sqrt{3} a}{2}, \sqrt{2} a$
C. $\frac{\sqrt{3} a}{2}, \sqrt{2} a, a$
D. $a, \frac{a}{\sqrt{2} a}, \frac{\sqrt{3} a}{2}$

Answer: A
43. Two ionic solids $A B$ and $C B$ crystallize in the same lattice. If $r_{A^{\oplus}} / r_{B^{\ominus}}$ and $r_{C^{\oplus}} / r_{B^{\ominus}}$ are 0.50 and 0.70 , respectively, then the ratio of edge length of

$A B$ and $C D$ is

A. 0.68
B. 0.78
C. 0.88
D. 0.98

Answer: C
44. A molecule $A_{2} B(M w=166.4)$ occupies triclinic lattice with $a=5 \AA, b=8 \AA$, and $c=4 \AA$, If the density of $A_{2} B$ is $5.2 \mathrm{gcm}^{-3}$, the number of molecules present in one unit cell is
A. 2
B. 3
C. 4
D. 5
45. Silicon dopped with group 13 and group 15 member element is, repectively, called semiconductor
A. p-type, n-type
B. n-type, p-type
C. p-type
D. n-type

Answer: A
46. $N a$ and $M g$ crystallize in bcc- and fcc-type crystals, respectively, then the number of atoms of
$N a$ and $M g$ present in the unit cell of their respective crystal is
A. 4 and 2
B. 9 and 14
C. 14 and 9
D. 2 and 4

Answer: B
47. The electrical conductivity of semiconductor is
A. $10^{8} \mathrm{ohm}^{-1} \mathrm{~cm}^{1}$
B. $10^{-22} \mathrm{ohm}^{-1} \mathrm{~cm}^{1}$
C. In the range of 10^{-9} to $10^{2} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$
D. None of the above

Answer: C

- Watch Video Solution

48. Pure silicon and germanium behave as
A. Conductors
B. Insulators
C. Semiconductors
D. May be any one of the above

Answer: B

- Watch Video Solution

49. A solid has a structure in which W atoms are located at the corners of a cubic lattice, O atom at the centre of edges, and $N a$ atom at the centre of the cube. The formula for the compound is
A. $\mathrm{NaWO} \mathrm{O}_{2}$
B. $\mathrm{NaWO} \mathrm{O}_{3}$
C. $\mathrm{Na}_{2} W \mathrm{O}_{3}$
D. NaWO_{4}

Answer: B

- Watch Video Solution

50. Which of the following is a ferroelectric compound?
A. BaTiO_{3}
B. $K_{4}\left[F e(C N)_{6}\right]$
C. $\mathrm{Pb}_{2} \mathrm{O}_{3}$
D. None of these

Answer: A

- Watch Video Solution

51. The intermetallic compound LiAg crystallizes in cubic lattice in which both lithium and silver have co-ordination number of eight. The crystal class is
A. Simple cubic
B. Body-centred cubic
C. Face-centred cubic
D. None of these

Answer: B

- Watch Video Solution

52. The edge length of a face-centred cubic unit cell is 508 pm . If the radius of the cation is 110 pm the radius of the anion is
A. 144 pm
B. 288 pm
C. 618 pm
D. 398 pm

Answer: A

- Watch Video Solution

53. In the crystals of which of the following ionic compounds would you expect maximum distance between the centres of the cations and anion?
A. $L i F$
B. $C s F$
C. $C s l$
D. $L i I$

Answer: C

- Watch Video Solution

54. Schottky defect is observed in crystals when
A. Unequal number of cations and anions are missing from the lattice.
B. Equal number of cations and anions are missing from the lattice.
C. An ion leaves its normal site and occupies an interstitial site.
D. Density of the crystal is increased.

Answer: B

- Watch Video Solution

55. How many kinds of space lattices are possible in
a crystal?
A. 23
B. 7
C. 230
D. 14

Answer: D

- Watch Video Solution

56. Potassium crystallizes with a
A. Face-centred cubic lattice
B. Body-centred cubic lattice

C. Simple cubic lattice

D. Orthorhombic lattice

Answer: B

- Watch Video Solution

57. A compound formed by elements A and B crystallizes in the cubic arrangement in which atoms A are at the corners of the cube and atoms B at the face centres. What is the formula of the compound?
A. $A B_{3}$
B. $A B$
C. $A_{3} B$
D. $A_{2} B_{2}$

Answer: A

- Watch Video Solution

58. The number of unit cells in 58.5 g of NaCl is nearly :
A. 6×10^{20}
B. 3×10^{22}
C. 1.5×10^{23}
D. 0.5×10^{24}

Answer: C

- Watch Video Solution

59. The number of octahedral sites per sphere in fcc
structure is
A. 8
B. 4
C. 2
D. 1

Answer: D

- Watch Video Solution

60. The packing fraction for a body-centred cube is
A. 0.42
B. 0.53
C. 0.68
D. 0.82

Answer: C

- Watch Video Solution

61. Which of the following has Frenkel defect?
A. Sodium chloride
B. Graphite
C. Silver bromide
D. Diamond

Answer: C

- Watch Video Solution

62. In $N a C l$, the chloride ions occuphy the space in a fashion of
A. fcc
B. bcc
C. Both
D. None

Answer: A

- Watch Video Solution

63. To get n-type of doped semi conductor, the impurity to be added to silicon should have the following number of valence electrons ?
A. 2
B. 5
C. 3
D. 1

Answer: B

- Watch Video Solution

64. The range of radius ratio (cationic to anionic) for an octahedral arrangement of ions in an ionic solid is
A. $0.155-0.225$
B. $0.225-0.414$
C. $0.414-0.732$
D. $0.732-1.000$

Answer: C

- Watch Video Solution

65. When molten zinc is cooled to solid state, it assumes $h c p$ structure. Then the number of nearest neighbours of zinc atom will be
A. 4
B. 6
C. 8
D. 12

Answer: D

- Watch Video Solution

66. Superconductors are derived from the compounds of
A. p-block elements
B. Lanthanides
C. Actinides
D. Transition elements

Answer: A

- Watch Video Solution

67. A semiconductor of $G e$ can be made p-type by adding
A. Trivalent impurity
B. Tetravalent impurity
C. Pentavalent impurity
D. Divalent impurity

Answer: A

- Watch Video Solution

68. The interionic distance for cesium chloride crystal will be
A. a
B. $a / 2$
C. $\sqrt{3} a / 2$
D. $2 a / \sqrt{3}$

Answer: C

- Watch Video Solution

69. Which of the following metal oxides is antiferromagnetic in nature?
A. MnO_{2}
B. TiO_{2}
C. VO_{2}
D. CrO_{2}

Answer: A

- Watch Video Solution

70. What are types of following semiconductors I

 and $I I$.
A. $I \Rightarrow p$-type, $I I \Rightarrow n$ - type
B. $I \Rightarrow n$-type, $I I \Rightarrow p$-type
C. Both n-type
D. Both p-type

Answer: B
71. In the structure of diamond, carbon atoms appear at
a. $0,0,0$, and $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
b. $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$, and $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
c. $0,0,0$, and $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$
d. $0,0,0$, and $\frac{3}{4}, \frac{3}{4}, \frac{3}{4}$
A. $0,0,0$, and $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
B. $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$, and $\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
C. $0,0,0$, and $\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$
D. $0,0,0$, and $\frac{3}{4}, \frac{3}{4}, \frac{3}{4}$

Answer: A

- Watch Video Solution

72. Which of the following figures represets the cross-section of an octahedral site?

A.

B.

C.

Answer: A

- Watch Video Solution

Exercises (Assertion-Reasoning)

1. Assertion (A) : in $C s C l$ crystal, $C s^{\oplus}$ ions asopt bcc arragement.

Reason (R) : For N atoms adopting bcc arragement, there are 2 NOVs .
a.If both (A) and (R) are correct, and (R) is the correct explanation of (A)
b.If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
c.If (A) is correct, but (R) is incorrect.
d.If both (A) is incorrect, but (R) is correct.
A. If both (A) and (R) are correct, and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect, but (R) is correct.

Answer: C

- Watch Video Solution

2. Assertion (A) : $C s C l$ crystal, the coordination number of $C s^{\oplus}$ ion is 8 .

Reason (R) : $C l^{\ominus}$ ion in $C s C l$ adopt b type of packing,
a.If both (A) and (R) are correct, and (R) is the correct explanation of (A)
b.If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
c.If (A) is correct, but (R) is incorrect.
d.If both (A) is incorrect, but (R) is correct.
A. If both (A) and (R) are correct, and (R) is
the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

3. Assertion (A) : In sodium chloride crystal, the coordination number of $N a^{\oplus}$ IS 6 .

Reason (R) : The sodium atom is smaller than chloring atom.
a.If both (A) and (R) are correct, and (R) is the correct explanation of (A)
b.If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
c.If (A) is correct, but (R) is incorrect.
d.If both (A) is incorrect, but (R) is correct.
A. If both (A) and (R) are correct, and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect, but (R) is correct.

Answer: B

- Watch Video Solution

4. Assertion (A) : The density of crystal having

Schottky defect is lowered.
Reason (R): The crystals suffering from Schottky
defect have same number of cation and anions missing from their normal lattice sites.
A. If both (A) and (R) are correct, and (R) is
the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

5. Assertion (A) : In sodium chloride crystal, $N a^{\oplus}$ ions occupy $O V s$ while $C l^{\ominus}$ ions occupy vertices of octahedron.

Reason (R): The radius ratio of $N a^{\oplus}: C l^{\ominus}$ lies between 0.4 and 0.7 .
A. If both (A) and (R) are correct, and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect, but (R) is correct.

Answer: D

- Watch Video Solution

6. Assertion (A) : Solids containing F centres are paramagnetic.

Reason (R) : Solids containing F centres conduct electricity and it is n-type semiconduction.
A. If both (A) and (R) are correct, and (R) is
the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect, but (R) is correct.

Answer: B

- Watch Video Solution

7. STATEMENT -1 : Electrical consuctivity of semi -
conductors incresase with increasing
temperature .
STATEMENT -2: With increase in temperature number of electrons which jumps from
the valence bond to the conduction band in semicondctors increase.
A. If both (A) and (R) are correct, and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect, but (R) is correct.

Answer: A

- Watch Video Solution

8. Assertion (A) : Group-13-doped crystals of Si are called p-type semiconductors.

Reason (R) : Positive holes are reasponsible for the semiconducting properties.
A. If both (A) and (R) are correct, and (R) is
the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect, but (R) is correct.
9. Assertion (A) : Group-15-doped crystal of $S i$ are called n-type semiconductors.

Reason (R) : Neutrons are responsible for the semiconducting properties.
(a)If both (A) and (R) are correct, and (R) is the correct explanation of (A)
(b)If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
(c) If (A) is correct, but (R) is incorrect.
(d)If both (A) is incorrect, but (R) is correct.
A. If both (A) and (R) are correct, and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect, but (R) is correct.

Answer: C
10. Assertion (A) : Non-stoichiometric compounds are called Bertholide compounds. NaCl and KCl crystal, when heated in an atmosphere of $N a$ and K varpours, respectively, they impart violet and yellow colours to NaCl and KCl , respectively.

Reason (R) : Metal excess defect is due to the presence of extra cations atg the interstitial sites.

The excess metal ions move to the interstitial sites
and the electrons to the neighbouring sites. The
colour results byt the excitation of these electrons
by absorbing suitable energy from visible light.
When the excited electroon comes back to the
ground state, there is emission of radiation in the visible region and gives complimentary colour.
A. If both (A) and (R) are correct, and (R) is
the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect, but (R) is correct.

Answer: D

- Watch Video Solution

11. Assertion (A) : Graphite is an example of tetragonal crystal system.

Reason (R) : For a tetragonal system, $a=b \neq c$
and $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$.
A. If both (A) and (R) are correct, and (R) is
the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) and (R) are incorrect.
12. Assertion (A) : The size of a cation is larger in $T V$ than in $O V$.

Reason (R) : Cations occupy more space than anions is crystals packing.
A. If both (A) and (R) are correct, and (R) is
the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.

D. If both (A) and (R) are incorrect.

Answer: D

- Watch Video Solution

13. STATEMENT -1 : Antiferromagnetic subatance becomes paramagentic on heating to
hight temperture .
STATEMENT -2 : Heating results in spins of electrons becoming random .
A. If both (A) and (R) are correct, and (R) is
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect but (R) is correct.

Answer: A

- Watch Video Solution

14. Assertion (A) : Zinc blende and wurtzite both have f arrangement of S^{2-} ions.

Reason (R): A unit cell of both has four formula units of $Z n S$.
A. If both (A) and (R) are correct, and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) and (R) are incorrect.

Answer: D
15. Assertion (A) : Covalent crystals have higher melting point.

Reason (R): Covalent bonds are stronger than ionic bonds.
A. If both (A) and (R) are correct, and (R) is
the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect but (R) is correct.
16. Assertion (A) : hcp is more closely packed than сср.

Reason (R) : hcp has a $C N$ of 12 , whereas ccp has a $C N$ of 8.
A. If both (A) and (R) are correct, and (R) is
the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect but (R) is correct.

- Watch Video Solution

17. Assertion (A) : Frenkel defects are shown by $A g X$

Reason (R) : $A g^{\oplus}$ ions have small size.
A. If both (A) and (R) are correct, and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is
C. If (A) is correct, but (R) is incorrect.

D. If both (A) is incorrect but (R) is correct.

Answer: A

D Watch Video Solution

18. Assertion (A) : Triclinic systeam is the most unsymmetrical systeam.

Reason (R) : No axial angle is equal to 90° in triclinic systeam.
A. If both (A) and (R) are correct, and (R) is the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect but (R) is correct.

Answer: B
19. Assertion (A) : In the rock salt type structure, all the $O V_{s}$ are occupied by $N a^{\oplus}$ ions.

Reason (R): Number of $O V_{s}=$ Number of $C l^{\ominus}$
ions in the packing.
A. If both (A) and (R) are correct, and (R) is
the correct explanation of (A)
B. If both (A) and (R) are correct, but (R) is
not the correct explanation of (A)
C. If (A) is correct, but (R) is incorrect.
D. If both (A) is incorrect but (R) is correct.

(-) Watch Video Solution

Exercises (Interger)

1. If a solid $A^{\oplus} B^{\ominus}$ having $Z n S$ Structure is heated so that the ions along two of the axis passing throgh the face centre particles are lost and bivalent ion (Z) enters herre to maintain the electrical neutrality, so that the new formula unit becomes $A_{x} B_{y} Z_{c}$, report the value of $x+y+c$.
2. Metal M of radius 50 nm is crystallized in fcc type and made cubical crystal such that face of unit cells aligned with face of cubical crystal. If the total number of metal atoms of M at all faces of cubical crystal is 6×10^{30}, then the area of one face of cubical crystal is $A \times 10^{16} \mathrm{~m}^{2}$. Find the value of A.

- Watch Video Solution

3. O_{2-} ions are arranged in p in spinel strructure.
A^{2+} ions occupy $1 / 8$ of $T V_{s}$ and B^{\oplus} ions occupy half of $O V$. The void volume of unit cell $=0.11 \AA$.

Find the value of A.
4. Find the coordination of $N a^{\oplus}$ in $N a_{2} O$.

- Watch Video Solution

5. A body centered cubic lattice is made up of hollow sphere of B. Spheres of solid A are present in hollow spheres of B. Radius of A is half of radius of
B. What is the ratio of total volume of spheres of B
unocupied by A in a unit cell and volume of unit cell
?
6. In the figure given below, four parallelograms are shown. How many parallelograms are a unit cells?

D Watch Video Solution
7. Cesium atoms are the largest neturally occurring atoms. The radius of $C s$ atom is $2.6 \AA$. The number
of moles of $C s$ atoms to be laid side by side to give a row of $C s$ atoms 2.5 cm long is $x \times 10^{-17}$. Find the value of x.

- Watch Video Solution

8. The following figure shows the unit cell of a compound, i.e., a mixed oxide of yttrium, bariym,
and copper. The formula of mixed oxide is $Y_{a} B a_{b} C u_{c} O_{d}$.

Find the value of $(a+b+c+d)$.

D Watch Video Solution

9. A solid has a structure in which X atoms are
located at cubic corners of unit cell, O atom are at the edge centres and Y atoms at cube centre.

Then the formula of compound is $X_{a} Y_{b} O_{c}$
If two atoms of O missing from any of two edge
centres per unit cell, then the molecular formula is
$X_{a} Y_{b} O_{z}$. Then, find the value of
$(x+y+z)-(a+b+c)$.

- Watch Video Solution

Exercises (Fill In The Blanks)

1. Although amorphous solids do not posses the
long range order of crystals, they do have just as liquids do.
2. When a piezoeletric crystal is deformed by mechanical stress is produced due to the displacement of ions.

- Watch Video Solution

3. Unlike paramagenetic substance, ferromagnetic
substances show even if the external magnetic
field is removed.

- Watch Video Solution

4. The number of atoms touching a particular atom in a crystal is called its

- Watch Video Solution

5. The number of atoms present per unit cell in simple, fcc and bcc are,, and respectively.

- Watch Video Solution

6. A metallic element crystallises into a lattice having a $A B C$ $A B C$...... pattern and packing of spheres leaves out voids in the lattice. What type of structure is formed by this arrrangement ?

- Watch Video Solution

7. The compounds having the general molecular
formula $A^{2+} F e_{2.04}$ are called

- Watch Video Solution

8. If r_{\oplus} / r_{Θ} for a crystal is 0.50 , it has structure.

D Watch Video Solution

9. Introducing a defect in a crystal by adding impurity is called

- Watch Video Solution

10. When a substance conducts elecricity without any resistance, it is called a
11. A liquid which is permanently supercooled is frequently called a

- Watch Video Solution

12. In the sodium chloride structure each $N a_{\oplus}$ ion is surrounded by six $C l^{\theta}$ ions nearest neighbours and $N a^{\oplus}$ ions next nearest neighbours.
13. For N atoms in a crystal with N_{i} interstitial position in its structure. If there are n Frenekel defects in the crystal, then $n=\ldots$.

D Watch Video Solution

14. If a crystal a contains a total of N atoms and n

Schottky defects are produced by removing n
cations and r anions from the interior of the crystal, then $n=.$.

- Watch Video Solution

15. The distance between any two $T V_{s}$ formed one
any body diagonal of a closest packed structure is
$=x \times a$, where a is the edge length of closest packed structure.
the value of ${ }^{\prime} x=.$. .

D Watch Video Solution

Exercises (True/False)

1. It is much more difficult to describe the crystal
structure of compounds than those of elements.
2. If the radius of the spheres in the close packing is
R and the radius pf pctahedral voids is r, then $r=0.414 R$.

- Watch Video Solution

3. Is the below statement correct or wrong

In crystals, the state of complete order and of lowest energy is formed at $0^{\circ} C$.
4. Comment on below statement

Amorphous solids lack the repeact ordered arrangement of atoms or ions.

- Watch Video Solution

5. Comment on below statement

In bcc lattice, the atoms at the corners of the unit cell are in contact with each other.
6. The cubic close-packed structure is based on an fcc unit cell.

- Watch Video Solution

7. In $Z n S$ (zinc blende) strucutre, the $C N$ of each ion ie 4.

- Watch Video Solution

8. Solids with Schottky defects are electrical insulators.
9. Platinum crystallizes in fcc crystal with a unit cell length a. The atomic radius of platinum is therefore $a \sqrt{2} / 2$.

- Watch Video Solution

10. There are four formula units in fluorite and antifluorite structure.

- Watch Video Solution

11. In antifluorite structure, 50% of $T V s$ are occupied by anion.

- Watch Video Solution

12. In fluorite structure, 100% of $T V s$ are occupied by cations.

- Watch Video Solution

13. The number of carbon atoms per unit cell of diamond unit cell is
14. $Z n S$ exists in two different form: zinc blende and wurtzite. Both occur in 4:4 coordination compounds. Zinc blende has an fcc structure and wurtizite has an hcp structure.

- Watch Video Solution

15. $F e^{I I I}\left(F e^{I I} F e^{I I I}\right) O_{4}$ represent an inverse $2: 3$ spinel structre.True/False.
16. The addition of $C a C l_{2}$ to a $K C l$ crystal lowers the density of the $K C l$ crystal.

- Watch Video Solution

17. The maximum number of Bravais lattices is
shown by tetragonal-type crystals.State whether the given statement is true or false.

- Watch Video Solution

18. Comment on the below statement

Bragg reflection can occur only when $\gamma \leq 2 d$.

- Watch Video Solution

19. Comment on the below statement
$T V s$ and $O V s$ both are found is hcp and simple cube.

D Watch Video Solution

Exercises (Archives) Linked Comprehension

1. In a hexagonal system system of crystals, a
frequently encountered arrangement of atoms is described as a hexagonal prism. Here, the top and bottom of the cell are regular hexagons, and three atoms are sandwiched in between them. A space-
cilling model of this structure, called hexagonal close-packed is constituted of a sphere on a flat surface surrounded in the same plane by six identical spheres as closely as possible. Three spheres are then placed overt the first layer so that
they touch each other and represent the second
layer so that they touch each other and present the
second layer. Each one of the three spheres touches
three spheres of the bottom layer. Finally, the
second layer is converted with a third layer identical
to the bottom layer in relative position. Assume the
radius of every sphere to be r.
The number of atom in this hcp unit cell is
(a) 4
(b) 6
(c) 12
(d) 17
A. 4
B. 6
C. 12
D. 17

Answer: B

- Watch Video Solution

2. In a hexaonal system system of cycstals, a frequently encountered arrangement of atoms is described as a hexagonal prism. Here, the top and bottom of the cell are refular hexagons, and three atoms are sandwiched in between them. A space-
cilling model of this structure, called hexagonal close-paked is constituted of a sphere on a flat surface surrounded in the same plane by six identical spheres as closely as possible. Three
spherres are then placed overt the first layer so that they toych each other and represent the second layer so that they toych each other and present the
second layer. Each one of the three spheres touches
three spheres of the bottom layer. Finally, the
second layer is convered with a third layer identical
to the bottom layer in relative position. Assume the
radius of every sphere to be r.
The voume of this hcp unit cell is
A. $24 \sqrt{2} r^{3}$
B. $16 \sqrt{2} r^{3}$
C. $12 \sqrt{2} r^{3}$
D. $\frac{64}{3 \sqrt{3} r^{3}}$

Answer: A

D View Text Solution

3. In a hexaonal system system of cycstals, a frequently encountered arrangement of atoms is described as a hexagonal prism. Here, the top and bottom of the cell are refular hexagons, and three atoms are sandwiched in between them. A space-
cilling model of this structure, called hexagonal close-paked is constituted of a sphere on a flat surface surrounded in the same plane by six identical spheres as closely as possible. Three
spherres are then placed overt the first layer so that they toych each other and represent the second layer so that they toych each other and present the
second layer. Each one of the three spheres touches
three spheres of the bottom layer. Finally, the
second layer is convered with a third layer identical
to the bottom layer in relative position. Assume the
radius of every sphere to be r.

The empty space in this hop unit cell is
(a) 74%
(b) 48.6%
(c) 32%
(d) 26%
A. 74%
B. 48.6%
C. 32%
D. 26%

Answer: D

D Watch Video Solution

Exercises (Archives) Multiple Correct

1. Which of the following statements is/are correct?
A. The coordination number of each type of ion in $C s C l$ crystal is 8 .
B. A metal that crystallizes in bcc structure has a coordination number of 12 .
C. A unit cell of an ionic crystal shares some of its ions with other unit cells.
D. The edge length of the unit cell in NaCl is
$552 \mathrm{pm}\left(r_{N a^{\oplus}}=95 \mathrm{pm}, r_{C l^{\oplus}}=181 \pm\right)$.

Answer: A::C::D

2. Which of the following statement regarding defects in solids is/are correct?
A. Frenkel defect is usually favoured by a very
small difference in the sizes of cation and anion.
B. Frenkel defect is a dislocation defect.
C. Trapping of an electron in the lattice leads to
the formation of F-centre.
D. Schottky defects have no effect on the physical properties of solids.

Answer: B::C

- Watch Video Solution

Exercises (Archives) Single Correct

1. $C s B r$ has b structure with edge length of $43 \pm$.

The shortest interionic distance between cation and anion is
A. 37.2
B. 18.6
C. 74.4
D. 43

Answer: A

- Watch Video Solution

2. The cordination number of a metal crystallising in a hexagonal close-packed structure is:
A. ${ }^{`} 12$
B. 4
C. 8
D. 6

Answer: A

D Watch Video Solution

3. In a solid 'AB' having the NaCl structure, 'A' atoms occupy the corners of the cubic unit cell. If all the face centered atoms along one of the axes are removed, then the resultant stoichiometry of the solid is:
A. $A B_{2}$
B. $A_{2} b$
C. $A_{4} B_{3}$
D. $A_{3} B_{4}$

Answer: D

- Watch Video Solution

4. A substance $A_{x} B_{y}$ crystallizes in a face-centred cubic lattice in which atoms A occupy the centres of each face of the cube. Identify the correct composition of the substance $A_{x} B_{y}$.
A. $A B_{3}$
B. $A_{4} B_{3}$
C. $A_{3} B$
D. Cannot be specified

Answer: A

- Watch Video Solution

5. In which of the following crystals, alternate tetrahedral voids are occupied?
A. NaCl
B. $Z n S$
C. $C a F_{2}$
D. $\mathrm{Na}_{2} \mathrm{O}$

Answer: B

- Watch Video Solution

6. The packing efficiency of the two-dimensional square unit cell shown below is :

A. 39.27%
B. 68.02 \%
C. 74.05%
D. 78.54%

Answer: D
7. A compound $M_{p} X_{q}$ has cubic close packing (ccp) arrangement of X. Its unit cell structure shown below. The empirical formula of the compound is

A. $M X$
B. $M X_{2}$
C. $M_{2} X$
D. $M_{5} X_{14}$

Answer: B

- Watch Video Solution

8. Experimentally it was found that a metal oxide has formula $M_{0.98} O$. Metal M is present as M^{2+} and M^{3+} in its oxide ,Fraction of the metal which exists as M^{3+} would be
A. 4.08%
B. 6.05%
C. 5.08%
D. 7.01%

Answer: A

- Watch Video Solution

9. The arrangement of X^{\ominus} ions around A^{\oplus} ion in
solid $A X$ is given in the figure (not drawn to scale).

If the radius of X^{\ominus} is $250 \pm$, the radius of A^{\oplus} is

A. $104 \pm$
B. $125 \pm$
C. $183 \pm$
D. $57 \pm$

Answer: A
10. CsCl crystallises in body centred cubic lattice. If
'a' is its edge length then which of the following expression is correct ?

$$
\begin{aligned}
& \text { A. } r_{C s \oplus}+r_{C I^{\ominus}}=\frac{\sqrt{3}}{2} a \\
& \text { B. } r_{C s^{\oplus}}+r_{C I^{\ominus}}=\sqrt{3} \\
& \text { C. } r_{C s^{\oplus}}+r_{C I^{\ominus}}=3 a \\
& \text { D. } r_{C s^{\oplus}}+r_{C I^{\ominus}}=\frac{3 a}{2}
\end{aligned}
$$

Answer: A

Exercises (Archives) Assertion-Reasoning

1. STATEMENT -1: In any ionic solid [MX] with SCHOTTKY defects, the number of positive and negative ions are the same.

STATEMENT -2 : Equal number of cation and anion vacancies present.
A. Statement I is true, Statement II is true,

Statement II is a correct explanation of

Statement I.
B. Statement I is true, Statement II is true,

Statement II is not a correct explanation of

Statement I.

C. Statement I is true, Statement II is false.
D. Statement I is false, Statement II is true.

Answer: A

- Watch Video Solution

Exercises (Archives) Interger

1. Find the number of hexagonal faces that are present in a truncated octahedral.

Exercises (Archives) Subjective

1. Sodium metal crystallizes in a body centred cubic lattice with a unit cell edge of 4.29 Å. The radius of sodium atom is approximately :

- Watch Video Solution

2. A metal crystallises into a lattice containing a sequence of layers as $A B A B A B \ldots$. What percentage of voids are left in the lattice ?
3. The body centered cubic cell of chronium has an edge lenth of 0.288 nm . Calculte the density of chromium $\left(\mathrm{g} / \mathrm{cm}^{3}\right):($ Atomic mass : $C r=52.0)$

- Watch Video Solution

4. A metal crystallises into two cubic phases, face centred cubic (fcc) and body centred cubic (bcc) , whose unit cell lengths are $3.5 \AA$ and $3.0 \AA$, respectively. The ratio of densities of fcc and bcc is
5. The figure below show the locations of atoms in three crystallographic planes in an fcc lattice. Draw the unit cells for these structure and identify these planes in your diagrams.

6. You are given marbles of diameter 10 mm . They are to be placed such that their centres are laying in a square bound by four lines each of length

40 mm . What will be the arrangements of marbles
in a plane so that maximum number of marbles can
be placed inside the area? Sketch the diagram and derive expression for the number of molecules per unit area.
7. The crystal $A B$ (rock salt structure) has molecular weight $6.023 Y u$, where Y is an arbitrary number in u. If the minimum distance between cation and anion is $Y^{\frac{1}{3}} \mathrm{~nm}$. Find the density in kgm^{-3}.

- Watch Video Solution

8. An element crystallises in f.c.c. lattice having edge length 400 pm . Calculate the maximum diameter, which can be placed in interstitial sites without disturbing the structure.
9. The edge length of unit cell of a metal having molecular weight $75 \mathrm{gmol}^{-1}$ is $5 \AA$ which crystallizes
in cubic lattice. If the density is $2 \mathrm{gcm}^{-3}$, then find
the radius of metal atom $\left(N_{A}=6 \times 10^{23}\right)$. Give the answer in pm.

D Watch Video Solution

Ex 1.1 (Subjective)

1. A compound formed by element X and Y
crystallizes in the cubic structure when Y atoms are
at the corners of the cube and X atoms are at the
alternate faces. What is the formula of the compound?

- Watch Video Solution

2. Calculate the number of atoms in a cube based unit cell having one atom on each corner and two atoms on each body diagonal.

- Watch Video Solution

3. A compound formed by elements A and B crystallizes in the cubic arrangement in which
atoms A are at the corners of the cube and atoms B at the face centres. What is the formula of the compound?

- Watch Video Solution

4. In a face centered cubic arrangement of A and B atoms whose A atoms are at the corner of the unit cell and B atoms at the face centers. One of the B atoms missing from one of the face in unit cell. The simplest formula of compounding is:

- Watch Video Solution

5. A solid $A B$ has $N a C l$ structure. If the radius of the cation A is 100 pm , what is the radius of anion B ?

- Watch Video Solution

6. In a crystallizes solid, anions B are arranged in
cubic close packing, cations A are equally distributed between octahedral and tetrahedral voids, what is the formula of the solid?
7. In sapphire, oxide ions are arranged in hexagonal close packing and aluminium ions occupy two-thirds of the octahedral voids. What is the formula of sapphire?

- Watch Video Solution

8. The density of $\mathrm{NH}_{4} \mathrm{Cl}$ is $1.534 \mathrm{gcm}^{-3}$. It crystallizes in the $C s C l$ lattice.
a. Calculate the length of the length of the edge of
$\mathrm{NH}_{4} \mathrm{Cl}$ unit cell.
b. Calculate the shortest distance between a $\mathrm{NH}_{4}{ }^{\oplus}$ ion and a $C l^{\ominus}$ ion.
c. Calculate the radius of NH_{4}^{\oplus} ion if the radius of the $C l^{\ominus}$ ion is 181 pm

- Watch Video Solution

9. A solid $A^{\oplus} B^{\ominus}$ has $N a C l$-type close-packed structure. If the radius of the cation is 90 pm , calculate the probable range of the radius of the anion.

D Watch Video Solution

10. A solid $A^{+} B^{-}$has $N a C l$-type close-packed structure. If the anion has a radius of 250 pm , what should be the ideal radius for the cation? Can a cation C^{+}having radius of 180 pm be slipped into the tetrahedral site of the crystal $A^{+} B^{-}$? Give reason for your answer.

- Watch Video Solution

11. In a close packed structure of mixed oxides, the
lattice is composed of oxide ions, one-eighth of tetrahedral voids are occupied by divalent cations
while one-half of octahedral voids are occupied by trivalent cations. The formula of the oxide is

- Watch Video Solution

12. a. $M g O$ has the structure of $N a C l$ and $T I C I$
has the structure of CsCl . What are the
coordiantion number of the ions in $M g O$ and
TICI?

If the closed-packed cations in an $X Y$-type solid have a raidus of 73.2 pm , what would be the maximum and minimum sizes of the anions filling voids?
c. $\mathrm{Fe}_{2} \mathrm{O}_{3}$ (haematite) forms ccp arrangement of
O^{2-} ions with $F e_{3+}$ ions occupying initerstitial positions. Predict whether $f e^{3+}$ ions are in the $O V$ or $T V$. Given $r_{F^{3+}}=0.7 \AA$ and $r_{O^{2-}}=1.4 \AA$
d. A solid $X Y$ has $C s C l$-type structure. The edge
length of the unit cell is $400 \pm$ Calculate the distance of closest approach between X^{\oplus} and Y^{\ominus} ions.

D View Text Solution

Ex 1.1 (Objective)

1. Which of the following statement is correct in the

 zinc blende type structure of an ionic comound?A. Coordination number of each cation and
anion is 2 .
B. Coordination number of each cation and
union is 4 .
C. Coordination number of each cation and union is 6 .
D. Coordination number of each cation and union is 8 .

Answer: B

- Watch Video Solution

2. In the body centered cubic unit cell and simple unit cell, the radius of atoms in terms of edge length (a) of the unit cell is respectively:
A. $a / 2$
B. $a / \sqrt{2}$
C. $a / 2 \sqrt{2}$
D. $\sqrt{3} a / 4$

Answer: D

- Watch Video Solution

3. Which of the following expression is correct in case of a sodium chloride cell (edge length, a)?

$$
\begin{aligned}
& \text { A. } r_{\oplus}+r_{\theta}=a \\
& \text { B. } r_{\oplus}+r_{\theta}=a / 2 \\
& \text { C. } r_{\oplus}+r_{\theta}=2 a \\
& \text { D. } r_{\oplus}+r_{\theta}=\sqrt{2} a
\end{aligned}
$$

- Watch Video Solution

4. In silicon crystal, $S i$ atoms from fcc arrangement where 4 out $8 T V s$ are alos occupied by $S i$ atoms.

$Z_{\text {eff }}$ of unit cell is

A. 1
B. 2
C. 4
D. 8

Answer: D
5. Which of the following crystal systems exist in bcc, end-centred, fcc , as well as primitive unit cell?
A. Hexagonal
B. Cubic
C. Triclinic
D. Orthorhombic

Answer: D

6. In a cubic, A atoms are present on alternative corners, B atoms are present on alternate faces, and C atoms are present on alternalte edges and body centred of the cube. The simplest formula of the compound is
A. $A_{2} B C_{4}$
B. $A B_{2} C_{4}$
C. $A B C_{4}$
D. $A B C_{2}$

Answer: B
7. The fraction of octahedral voids filled by $A l^{3+}$ ion in $A l_{2} O_{3}\left(r_{A l^{3} \oplus} / r_{O^{2-}}=0.43\right)$ is
A. 0.43
B. 0.287
C. 0.667
D. 1

Answer: C
8. In the closet packing of atoms, there are:
A. One tetrahedral voids and two octahedral
voids per atom
B. Two tetrahedral voids and one octahedral
void per atom
C. Two of each tetrahedral and octahedral voids
per atom
D. One of the each tetrahedral and octahedral
void per atom

- Watch Video Solution

9. Which of the following statements is correct in the body centred type of cubic structure of ionic compound?
A. Coordination number of each cation and anion is 2 .
B. Coordination number of each cation and
anion is 4.
C. Coordination number of each cation and anion is 6 .

D. Coordination number of each cation and

 anion is 8 .
Answer: D

- Watch Video Solution

10. Aluminium metal has a density of $2.72 \mathrm{gcm}^{-3}$
and crystallizes in a cubic lattice with an edge of
404 pm . Which is//are correct?
A. It forms bcc unit cell
B. It forms fcc unit cell
C. Its $C N=8$
D. Its $C N$ is 6

Answer: B

- Watch Video Solution

11. If atoms are removed from half of the edge-
centred $O V_{s}$ in $R b B r$, then the molecular formula of unit cell is
A. $R b_{2} B r_{2}$
B. $R b_{1.5} B r_{3}$
C. $R b_{2.5} B r_{4}$
D. $R b_{4} B r_{2.5}$

Answer: C

D Watch Video Solution
12. ThO_{2} exists in fluorite structure, what is the effective number of bivalent ion in the unit cell of $T h O_{2}$?
A. 2
B. 4
C. 1
D. 8

Answer: D

- Watch Video Solution

13. What is the coordination number of $T h^{4+}$ in $T h O_{2}$?
A. 4
B. 8
C. 6
D. 12

Answer: C

D Watch Video Solution

14. The coordination number $C s$ and $B r$ in $C s B r$ are, respectively,
A. 8,8
B. 6,6
C. 8,6
D. 6,8

Answer: A

- Watch Video Solution

15. The fraction of the total volume occupied by the atoms present in a simple cube is
A. $\sqrt{3} \pi / 8$
B. $\pi / 6$
C. $\pi / 3$
D. $\sqrt{2} \pi / 3$

- Watch Video Solution

16. Xenon crystallises in face - centered cubic, and the edge of the unit cell is 620 pm . The radius of a xenon atom is
A. 219.20 pm
B. 438.5 pm
C. 290.3 pm
D. 318.53 pm

Answer: A
17. In BeO (zinc blende structure), Mg^{2+} is introduced in available $T V$ is. The coordination numbers of Be^{2+} and Mg^{2+} are, respectively,
A. 8,8
B. 6,6
C. 4,4
D. 8,6

Answer: C

- Watch Video Solution

18. If the ions are removed from a single body diagonal in above case after doping, then the molecular formula of the unit cell would be
A. $M g_{2} B e_{3.5} O_{2.5}$
B. $M g_{3} B e_{3} O_{3.75}$
C. $M g_{3} B e_{3} O_{3.5}$
D. $M g_{4} B e_{4} O_{2.5}$

Answer: B

D View Text Solution
19. In spinel, $M g^{2+}$ is present in one-eighth of $T V s$ in an fcc lattice of oxide ions and $A l^{3+}$ ions are present in half of the $O V s$. The Formula of spinel is
A. $\mathrm{MgAl}_{3} \mathrm{O}_{3}$
B. $\mathrm{MgAl}_{2} \mathrm{O}_{3}$
C. $\mathrm{MgAl}_{2} \mathrm{O}_{4}$
D. $\mathrm{MgAl}_{3} \mathrm{O}_{4}$

Answer: C

- Watch Video Solution

1. The number of Schottky defects (n) present in an ionic compound containing N ions at temperature
T is given by $n=N e^{-E / 2 K T}$, where E is the energy required to create n Schottky defects and K
is the Boltzmann constant, If the mole fraction of

Schottky defect in NaCl crystal at 2900 K is X , then
calculate $-\ln (x)$,
Given: ΔH of Schottky defect $=2 e V$ and

$$
\begin{aligned}
& K=1.38 \times 10^{-23} J K^{-1} \\
& 1 \mathrm{eV}=1.608 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

2. FeO crystallizes in NaCl -type of crystal lattice.

The crystals of FeO are deficient in iron and are always non-stoichiometric. Some cationic sites are vacant and some contain Fe^{3+} ions but the combination is such that the structure is elctrically neutral. The formula approximates to $F e_{0.95} O$.

What is the ratio of Fe^{2+} to Fe^{3+} ions in the solid?

- Watch Video Solution

1. The structure shown here represents
2. The structure shown here represents

A. Schottky defect
B. Frenkel defect
C. Metal excess defect

D. None

Answer: A

- Watch Video Solution

2. The structure shown here represents

A. Schottky defect

B. Frenkel defect

C. Metal excess defect because of absent anion

D. Metal excess defect because of excess cation

Answer: B

- Watch Video Solution

3. In $A g C l$, the $A g^{\oplus}$ ions are deisplaced from their
lattice position to an interstitial position. Such a defect is called
A. Schottky defect
B. Frenkel defect
C. Wadsley defect

D. Colour centre

Answer: B

- Watch Video Solution

4. NaCl shows Schottku defects and AgCl Frenkel defects. The electrical conductivity is due to the:
A. Motion of electrons and not the motion of ions
B. Motion of ions and not the motion of ions
C. Lower coordination number of NaCl

D. Higer coordination number of AgCl

Answer: B

- Watch Video Solution

5. Amorphous solids are
A. Isotropic and supercooled liquids
B. Anisotropic and supercolled liquids
C. Isoenthalpic and supercooled liquids
D. Isotropic and supercooled solids

Answer: A

- Watch Video Solution

6. Due to Frenkel defect, the density of ionic solids:
A. Density of the crystal increases
B. Conducation and increases
C. Conduction decreases
D. Crystal becomes charged electrically

Answer: B

- Watch Video Solution

7. Which of the following statement is/are correct?
A. All ferroelectric solids are piezoelectric.
B. All piezoelectric solids are ferroelectric.
C. Lead zirconate $\left(\mathrm{Pb}_{r} \mathrm{O}_{3}\right)$ is a an
antiferroelectric is an antiferroelectric crystal.

D. BaTiO_{3}, (barium titanate) is a ferroelectric crystal.

Answer: A::C::D

- Watch Video Solution

8. Which of the following statement is//are correct?
A. A diode is a combination of p-and n-type semiconductors which is used as a rectifier.
B. Transistors are sandwich semiconductors of
the type $p m p$ or $n p n$ which are used to detect
or amplify radio or audio signals.
C. Monoxides of transition metals, all of which posses NaCl structures, show very large variations in electrical properties.
D. $R e O_{3}$ has the conductivity as well as appearance like that of copper.

Answer: A::B::C::D

- Watch Video Solution

9. Identify the Acidic salt? $\mathrm{NaCl}, \mathrm{NaNO}, \mathrm{NH} 4 \mathrm{Cl}$
A. Piezoelectric crystals are used as pick-ups in
record players, they are also used in microphones, ultrasonic generators, and sonar detectors.
B. BaTiO_{3}, Rochelle salt, $\mathrm{KH}_{2} \mathrm{PO}_{4}$, and quartz are ferroelectric and piezoelectric solids.
C. The temperature above which no
ferromagnetism is observed is called curie termperature.
D. The temperature at which the material shows
super-conductivity is called transition
termperature.

Answer: A::B::C::D

- Watch Video Solution

