# © 'doubtnut 

## India's Number 1 Education App

## PHYSICS

## BOOKS - CENGAGE PHYSICS (ENGLISH)

## ELECTRIC POTENTIAL

## Illustration

1. find the work done by an external agent in slowly shifting a charge $q=1 \mu C$ in the electric field $\vec{E}=10^{3} \hat{i} V m^{-1}$ from the point $P(1,2)$ to $Q(3,4)$.
2. A charge particle $q=-10 \mu C$ is carried along OP and $P Q$ and then back to $O$ along QO as shown in an electric field $\vec{E}=(x+2 y) \hat{i}+2 x \hat{j}$ Find the work done by an external agent in (i) each path and (ii) the round trip.

3. The electric field in a region is given by $\vec{E}=\left(\frac{A}{x^{3}}\right) \vec{I}$. Write a suitable SI unit for A. Write an experssion for the potential in the region assuming the potential at. infinity to be zero.

## D Watch Video Solution

4. 

Three
charges
$q_{1}=1 \mu C, q_{2}=-2 \mu C$, and $q_{3}=-1 \mu C \quad$ are
placed at $A(0,0,0), B(-1,2,3$,$) and C(2,-1,1)$.
Find the potential of the system of three charges at
$P(1,-2,-1)$.
5. Two point charges $Q_{1}$ and $Q_{2}$ lie along a line at a distance from each other. Figure 3.7 shows the potential variation along the line of charges. At which of the points 1,2 , and 3 is the electric field zero ? What are the singns of the charges $Q_{1}$ and $Q_{2}$ and which of the two charges is greater in magnitude?


## D Watch Video Solution

6. Two electric charges $q$ and $-2 q$ are placed at a distance 6 m apart on a horizontal plane. Find the locus of point on this plane where the potential has a value zero.


## D Watch Video Solution

7. $1 \mu C$ charge is shifted from A to B , and it is found that work done by an external force is $40 \mu J$. In doing
so against electrostatic forces, find potential difference $V_{A}-V_{B}$.

## D Watch Video Solution

8. A uniform electric field is present in the positive x direction. If the intensity of the field is $5 N C^{-1}$ then find the potential difference $\left(V_{B}-V_{A}\right)$ between two points $A(0 \mathrm{~m}, 2 \mathrm{~m})$ and $\mathrm{B}(5 \mathrm{~m}, 3 \mathrm{~m})$.

## - Watch Video Solution

9. A uniform field of magnitude $\vec{E}=2000 N C^{-1}$ is directed $\theta=37^{\circ}$ below the horizontal [fig. 3.11].

(i) Find the potential difference between P and R .
(ii) If we define the reference level of potential so that potential at R is $V_{R}=500 \mathrm{~V}$, what is the potential at P?
10. Find the potential difference $V_{A B}$ between
$A(0,0,0)$ and $B(1 m, 1 m, 1 m)$ in an electric field :
(i) $\vec{E}=(y \hat{i}+x \hat{j}) V m^{-1}$
(ii) $\vec{E}=\left(3 x^{2} y \hat{i}+x^{3} \hat{j}\right) V m^{-1}$.

## - Watch Video Solution

11. Uniform electric field of magnitude $100 \mathrm{Vm}^{-1}$ in space is directed along the line $y=3+x$. Find the potential difference between points
$A(3,1)$ and $B(1,3)$.
12. A uniform electric field of magnitude $325 \mathrm{Vm}^{-1}$ is directed in the negative $y$-direction in (fig. 3.12). Theb coordinates of point $A$ are $(-0.2 m,-0.3 m)$ and those of point $B$ are $(0.4 m, 0.5 m)$. Calculate the potential difference $V_{B}-V_{A}$ along the path shown in the figure.

13. Three equal charges $q$ are placed at the corners of an equilateral triangle of side A.
(i) Find out potential energy of charge system.
(ii) Calculate work required to decrease the side of triangle to $a / 2$.
(iii) If the charges are released from the shown position and each of them has same mass $m$, then find the speed of each particle when they lie on triangle of
side $2 a$.


- Watch Video Solution

14. Four identical charges $q$ are placed at the corners of a square of side a. Find the potential energy of one of the charges due to the remaining charges.

15. Four identical point charges $q$ are placed at four corners of a square of side a. Find the potential energy of the charge system.

16. An alpha particle with kinetic energy 10 MeV is heading toward a stationary tin nucleus of atomic number 50. Calculate the distance of closest approach
(Fig . 3.23).


## D Watch Video Solution

17. A proton moves from a large distance with a speed $\mathrm{u} \mathrm{m} / \mathrm{s}$ directly towards a free proton originally at rest.

Find the distance of closest of closest approach for
the two protons in terms of mass of proton $m$ and its charge e.

## - Watch Video Solution

18. In space of horizontal $E F(E=(m g) / q)$ exist as
shown in figure and a mass $m$ is released at the end of
a light rod. If mass $m$ is releases from the position
shown in figure find the angular velocity of the rod
when it passes through the bottom most position


## D Watch Video Solution

19. (Figure 3.27) shows equipotential surfaces. What is the direction of electric field $\vec{E}$ at P and R ?

R-30 V

$$
\begin{aligned}
& -25 \mathrm{~V} \\
& -20 \mathrm{~V}
\end{aligned}
$$

## D Watch Video Solution

20. Three equipotential surfaces are shown in (Fig.
3.28) A. Draw the corresponding field lines and estimate the field strength at a point A where the
distance between the surfaces is 4 cm .

(a)

(b)

## - Watch Video Solution

21. Consider a spherical surface of radius 4 m cenred at the origin. Point charges $+q$ and $-2 q$ are fixed at points
$\mathrm{A}(2 \mathrm{~m}, 0,0)$ and $\mathrm{B}(8 \mathrm{~m}, 0,0)$, respectively. Show that every point on the shperical surface is at zero potential.

## D Watch Video Solution

22. The potential at any point is given by $V=x\left(y^{2}-4 x^{2}\right) . \quad$ Calculate the cartesian components of the electric field at the point.

## - Watch Video Solution

23. Some equipotential surfaces are shown in figure(29.E3) What can you say about the magnitude
and the direction of the electric field?


## D Watch Video Solution

24. Determine the electric field strength vector if the potential of this field depends upon $x$ - and $y$ coordinates as :
(i) $V=a\left(x^{2}-y^{2}\right)$
(ii) $V=a x y$.
25. (i) Find the field intensity if potential
$V=-k x y(k>0)$.
(ii) Draw the field pattern of the field in i .

## - Watch Video Solution

26. A, B, C, D, P and Q are points in a uniform electric
field. The potentials at these points are
$V(A)=2 V \cdot V(P)=V(B)=B(D)=5 V \cdot V(C)=8 V$
. The electric field at $P$ is
27. Referring to the spherical equipotential lines in
(Fig. 3.36)A, find
(i) $\vec{E}=f(r)$
(ii) $\vec{E}$ - pattern.
a.
b.

C.
(a)
(b)
(c)

## D Watch Video Solution

28. A very small sphere of mass $80 g$ having a charge $q$ is held at a height of $9 m$ vertically above the center of
a fixed conducting sphere of radius $1 m$, carrying an equal charge $q$. When released, it falls until it is repelled back just before it comes in contact with the shpere as shown in Fig. 47. Calculate the charge q. $\left[g=10 m s^{-2}\right]$.

## - Watch Video Solution

29. A hollow uncharged spherical conductor has inner
radius A and outer radius $b$. A positive point charge +q is in the cavity at the center of the sphere (Fig. 3.48).

Find the potential $V(r)$ everywhere, assuming that $V=0$ at $r \rightarrow \infty$.

## D Watch Video Solution

30. Figure shows two concentric conducting shells of
radii $r_{1}$ and $r_{2}$ carrying uniformly distributed charges
$q_{1}$ and $q_{2}$, respectively. Find an expression for the potential of each shell.

31. A metal sphere A of radius a is charged to potential
V. What will be its potential if it is enclosed by a spherical conducting shell $B$ of radius $b$ and the two are connected by a wire ?

## D Watch Video Solution

32. Find the electric work done in bringing a charge $q$
from $A$ to $B$ in a sphere of charge $Q$ distributed
uniformly throughout its volume.


## D Watch Video Solution

33. Positive charge $Q$ is uniformly distributed throughout the volume of a sphere of radius R. A Point mass having charge $+q$ and mass m is fired towards the centre of the sphere with velocity v from a point A at distance $r(r>R)$ from the centre of the sphere.

Find the minimum, so that it can penetrate $R / 2$
distance of the sphere. Neglect any resistance other than:e-c141::, interaction. Charge on the small mass remains constant throughout the motion

## D Watch Video Solution

34. A charge particle $q$ is shifted from point 1 to point

2 in the electric field of a straight long linear charge of
$\lambda$.
i. Find the electric work done if $r_{1}=R$ and $r_{2}=2 R$
ii. Find the potential difference between 1 and 2 .

35. Two circular loops of radii 0.05 and 0.09 m , respectively, are put such that their axes coincide and their centers are 0.12 m apart. A charge of $10^{-6} \mathrm{C}$ is spread uniformly on each loop. Find the potential difference between the centers of the loops.

## - Watch Video Solution

36. A circular ring of radius $R$ with uniform positive
charge density $\lambda$ per unit length is located in the $y z$
plane with its center at the origin O. A particle of mass
m and positive charge q is projected from that point
$p(-\sqrt{3} R, 0,0)$ on the negative $\mathrm{x}-\mathrm{axis}$ directly
toward O , with initial speed V. Find the smallest (nonzero) value of the speed such that the particle does not return to P ?

## - Watch Video Solution

37. A spherical shell of radius $R_{1}$ with uniform charge q is expanded to a radius $R_{2}$. Find the work performed by the electric forces in this process.

## - Watch Video Solution

38. A spherical shell of radius $R_{1}$ with a uniform
charge q has a point charge $q_{0}$ at its center. Find the
work performed by the electric forces during the shell expansion from radius $R_{1}$ to radius $R_{2}$.

## - Watch Video Solution

39. Inside a conducting hollow sphere of inner radius
$R_{1}$ and outer radius $R_{2}$, a point charge q is placed at a distance $x$ from the center as shown in fig. Find.

(i) electric potential at C
(ii) electric field and potential at a distance $r$ from the center outside the shell.

## D Watch Video Solution

40. In (Fig. 3.73), if the inner shell has charge $+q_{0}$ and the outer shell is earthed, then

i. determine the charge on the outer shell, and
ii. find the potential of the inner shell.

## D Watch Video Solution

41. Consider two concentric spherical metal shells of radii ' $a$ ' and $b>a$.The outer shell has charge $Q$ but the inner shell has no charge.Now the inner shell is grounded ,This means that the inner shell will come at zero potential and that electric fields lines leave the outer shell and end on the inner shell.(a) Find the charge on the inner shell

Find the potential on outer sphere.


## - Watch Video Solution

42. (Figure 3.78) shows three thin concentric spherical shells $A, B$ and $C$ with initial charges on $A, B$, and $C$ as 3
$Q, 2 Q$, and $-Q$, respectively. The shells $A$ amd $C$ are
connected by a wire such that it does not touch B.
Shell B is earthed. Determine the final charges $q_{A}, q_{B}, \operatorname{and} q_{C}$.


## D Watch Video Solution

43. Two small particles $A$ and $B$ having masses $m=0.5 \mathrm{~kg}$ each and charges $q_{1}=(-155 / 18 \mu C)$ and $q_{2}=(+100 \mu C)$, respectively, are connected at the ends of a nonconducting, flexible, and inextensible string of length $r=0.5 m$.

Particle $A$ is fixed and $B$ is whirled along a vertical circle with center at A. if a vertically upward electric field of Strength $E=1.1 \times 10^{5} N C^{-1}$ exists in the space, calculate the minimum velocity of particle $B$ required at the highest point so that it may just complete the
circle $\left(g=10 m s^{-2}\right)$.


## - Watch Video Solution

44. A small sphere of mass $m=0.6 \mathrm{~kg}$ carrying a positive charge $q=80 \mu C$ is connected with a light, flexible, and inextensible string of length $r=30 \mathrm{~cm}$ and whirled in a vertical circle. If a horizontal rightward electric field of strength $E=10^{5} N C^{-1}$ exists in the space, calculate the minimum velocity of the sphere required at the highest point so that it may just complete the circle $\left(g=10 m s^{-2}\right)$.

## D Watch Video Solution

45. Two point charges of
$3.2 \times 10^{-19} \mathrm{C}$ and $-3.2 \times 10^{-19} \mathrm{C}$ are separated
from each other by $2.4 \times 10^{-10} \mathrm{~m}$. The dipole is situated in a uniform electric field of intensity $4 \times 10^{5} \mathrm{Vm}^{-1}$. Calculate the work done in roating the dipole by $180^{\circ}$.

## D Watch Video Solution

46. What is the potential energy of the charge and dipole system shown in (Fig. 3.93) ?

47. A nonconducting disk of radius a and uniform
positive surface charge density $\sigma$ is placed on the ground, with its axis vertical. A particle of mass $m$ and positive charge q is dropped, along the axis of the disk, from a height H with zero initial velocity. The particle has $q / m=4 \varepsilon_{0} g / \sigma$.
(i) Find the value of H if the particle just reaches the disk.
(ii) Sketch the potential energy of the particle as a function of its height and find its equilibrium position.
48. Three concentric conducting shells of radii $a, b$ and $c$ are shown in (Fig. 3.100). Charge on the shell of radius b is Q . If the key K is closed, find the charges on the innermost and outermost shells and the radio of charge densities of the shells. Given that $a: b: c=1: 2: 3$.

## Watch Video Solution

3. A conducting sphere $S_{1}$ of radius $r$ is attached to an insulating handle. Another conduction sphere $S_{2}$ of radius $R$ is mounted on an insulating stand. $S_{2}$ is initially uncharged. $S_{1}$ is given a charge $Q$ brought into contact with $S_{2}$ and removed. $S_{1}$ is recharge such
that the charge on it is again $Q$ and it is again brought into contact with $S_{2}$ and removed. This procedure is repeated $n$ times.
a. Find the electrostatic energy of $S_{2}$ after $n$ such contacts with $S_{1}$.
b. What is the limiting value of this energy as $n \rightarrow \infty$
?

## - Watch Video Solution

4. Two isolated metallic solid spheres of radii $R$ and $2 R$
are charged such that both of these have same charge density $\sigma$. The spheres are located far away from each
other and connected by a thin conducting wire. Find the new charge density on the bigger sphere.

## D Watch Video Solution

5. The potential in the electric field varies as $V=-a x^{2}+b$ with respect to x - coordinate, where a and b are constants. Find the charge density $\rho(x)$ in a space.

## D Watch Video Solution

6. A positive charge $+Q$ is fixed at a point A. Another positively charged particle of mass $m$ and charge $+q$ is
projected from a point $B$ with velocity $u$ as shown in
(Fig. 3.103). Point B is at a large distance from A and at distance $d$ from the line A C. The initial velocity is parallel to the line A C. The point C is at a very large distance from A. Find the minimum distance (in meter) of +q from +Q during the motion. Take $Q q=4 \pi \varepsilon_{0} m u^{2} d$ and $d(\sqrt{2}-1) m$.

$A \oplus-\cdots \cdot-\cdot \cdot \bullet_{C}$

## D Watch Video Solution

7. Two point like charges $q_{1}$ and $q_{2}$ are fixed in free space. At every point on the curve shown, the net electrostatic potential created by these charges is V .

Find the separation $r$ between the charges.


## - Watch Video Solution

8. Two small metal spheres $A$ and $B$, each of radius $r$ and supported on insulating stands, located at a
distance $a(a \gg r)$ from each other are connected by a thin conducting wire. A point charge $q$ is brought near the spheres at distance $l(l \gg r)$ on the line joining the centers of the spheres. What are the moduli of charge induced on the spheres ?


## D Watch Video Solution

9. A particle of mass $m=0.1 \mathrm{~kg}$ and having positive charge $q=75 \mu C$ is suspended from a point by a thread of length $l=10 \mathrm{~cm}$. In the space, a uniform horizontal electric field $E=10^{4} N C^{-1}$ exists. The
particle is drawn aside so that the thread becomes vertical and then it is projected horizontally with velocity v such that the particle starts to move along a circle with the same constant speed V. Calculate the radius of the circle and speed $v\left(g=10 m s^{-2}\right)$.

## - Watch Video Solution

## Exercise 3.1

1. The electric field inside a hollow charged conductor is zero. Is this true or false?
2. How can you check whether the electric potential in a given region of space has constant value?

## D Watch Video Solution

3. Are we free to call the potential of earth (+ 100 V ) instead of zero ? What effect would such an assumption have on measured values of

A potentials
B potential difference?

## - Watch Video Solution

4. If you know (E) at a given point, can you calculate V at that point ? If not, what further information do you need?

## - Watch Video Solution

5. Can there be a potential difference between two adjacent conductors that carry same amount of positive charge?
6. An electron moves from the positive to the negative terminal of a battery ( 9 V ). How much potential energy did it gain or lose?

## D Watch Video Solution

7. We want to produce a proton with kinetic energy
$4.3 \times 10^{-15} \mathrm{~J}$. Through what difference of potential should we accelerate the proton to obtain this kinetic energy assuming that it starts from rest and no other forces are present ?
8. The potential produced by a point charge is $V=k Q / r$. Use this information to determine the shape of equipotential surface?

## - Watch Video Solution

9. a. A circle is drawn with center as a charge +q . What is the work done in moving a charge $+q$ from $B$ to $C$ along the circumferebce of the circle ?
$B$ In the above question, if the charge $+q$ is first taken from $B$ to $A$ and then from $A$ to $C$, on which path is the
magnitude of work greater?


## D Watch Video Solution

10. A uniform electric field E exists between two oppositely charged plates (Fig. 3.38). What will be the work done in moving a charge $q$ along a closed rectangular path ?
11. Show that if at some part of a field the lines of force
have the from of concentric circles whose centres are at point O (as given in Fig. 3.39), the field intensity at each point in this part of the field should be inversely proportional to the distance from the point 0 .


## D Watch Video Solution

12. If you carry out the integral of the electric field $\int \vec{E} \cdot \vec{d} l$ for a closed path like that as shown in (Fig. 3.40), the integral will always be equal tom zero, independent of the shape of the path and independent of where charges may be located relative to the path. Explain why.

13. (Figure 3.41) shows the lines of constant potential in region in which an electric field is present. The values of potentials are written in brackets. At which points A, B or C, the electric field is greatest.

14. A charge $2 \mu C$ is taken from inifinity point in an electric field, without changing its velocity. If work done against eletrostatic forces is $-40 \mu J$, then find the potential at that point.

## - Watch Video Solution

15. When charge $10 \mu C$ is shifted from inifinity to a point in an electric field, it is found that work done by eletrotatic forces is $10 \mu \mathrm{~J}$. If the charge is doubled and taken again from inifinity to the same point without
accelerating it, then find the amount of work done by electric field and against electric field.

## - Watch Video Solution

16. A charge $3 \mu C$ is released at rest from a point P where electric potential is ( 20 V ). Find its kinetic energy when it reaches inifinity.

## D Watch Video Solution

17. Find out the following
a. $V_{A}-V_{B}$
b. $V_{B}-V_{C}$
c. $V_{C}-V_{A}$
d. $V_{D}-V_{C}$
e. $V_{A}-V_{D}$
f. Arrange the order of potential for points (A, B,C and
D).


## D Watch Video Solution

18. Four balls, each with mass $m$, are connected by four nonconducting strings to from a square with side with

A, as shown in (Fig. 3.43.) The assembly is placed on a
horizontal nonconducting frictionless surface. Balls 1 and 2 each have charge $q$, and balls 3 and 4 are uncharged. Find the maximum speed of balls 1 and 2 after the string connecting them is cut.

19. Consider the configuration of a system of four charges each of value ( +q ). Find the work done by external agent in changing the configuration of the system from (Fig. 3.44 A) to (Fig. 3.4B).


## D Watch Video Solution

20. The electric potential in a region is represented as

$$
V=2 x+3 y-z
$$

obtain expression for electric field strength.

## D Watch Video Solution

21. Find $V_{a b}$ in an electric field
$E=(2 \hat{i}+3 \hat{j}+4 \hat{k}) \frac{N}{C}$
where, $r_{a}=(\hat{i}-2 \hat{j}+\hat{k}) m$
and $r_{b}=(2 \hat{i}+\hat{j}-2 \hat{k}) m$.

## D Watch Video Solution

22. A uniform electric field exists in x y plane as shown
in Fig. 3.45. Find the potential difference. Between
origin O and $A(d, d, 0)$.


## D Watch Video Solution

23. The electric field in a region is given by $E=(4 a x y \sqrt{z}) \hat{i}+\left(2 a x^{2} \sqrt{z}\right) \hat{j}+\left(a x^{2} y / \sqrt{z}\right) \hat{k}$
where $A$ is a positive constant. The equation of an equipotential surface will be of the form.

## Exercise 3.2

1. A particle of mass 1 kg and charge $1 / 3 \mu C$ is projected toward a nonconducing fixed spherical shell of radius $r=1 m m$ having the same charge uniformly distributed on its surface. Find th minimum initial velocity of projection requires if the particle just grazes the shell.


## D Watch Video Solution

2. A cone made of insulating material has a total charge $Q$ spread uniformly over its sloping surface.

Calculate the work done in bringing a small test charge q from infinity to the apex of the cone. The cone has a slope length L.

## D Watch Video Solution

3. A simple pendulum of length $l$ and bob mass $m$ is hanging in front of a large nonconducting sheet having surface charge density $\sigma$. If suddenly a charge $+q$ is given to the bob \& it is released from the
position shown in figure. Find the maximum angle through which the string is deflected from vertical .


- Watch Video Solution

4. An insulating rod having linear charge density
$\lambda=40.0 \mu \mathrm{Cm}^{-1} \quad$ and linear mass density
$\mu=0.100 \mathrm{kgm}^{-1}$ is released from rest in a uniform electric field $E=100 \mathrm{Vm}^{-1}$ directed perpendicular to the rod.
(a) Determine the speed of the rod after it has travelled 2.00 m
(b) How does your answer to part (a) change if the
electric field is not perpendicular to the rod ?


- Watch Video Solution

5. Three concentric spherical conductors of radii a, 2a, and 3 a have charges $-Q,+2 Q$, and $-4 Q$, respectively. If $r$ is the distance of the point under consideration from the center of the spheres, then find the electric field and potential due to the given configuration, for the values
(i) $r<a$
(ii) $a<r<2 a$
(iii) $2 a<r<3 a$
$r>3 a$.


Fig. 3.89

- Watch Video Solution

6. In the previous problem, if we connect the conductors 1 and 2,2 and 3,1 and 3,1 and ground, 2 and ground, and 3 and ground, separately, find the charge flown in each case.

## - View Text Solution

7. As shown in (Fig. 3.90), two large parallel vertical conducting plates separated by distance D are charge so that their potential are $+V_{0}$ and $-V_{0}$. A small conducting ball of mass $m$ and radius $r$ (where $R \ll d$ ) is hung midway between the plates.

The thread of length $L$ supporting the ball is a
conducting wire connected to ground, so the potential of the ball is fixed at $V=0$. The ball hangs straight down in stable equilibrium when $V_{0}$ is sufficiently small. Show that the equilibrium of the ball is unstable if $V_{0}$ exceeds the critical value $\left[k_{e} d^{2} m g /(4 R L)\right]^{1 / 2}$.

8. Electrically charged drops of mercury fall from an altitude $h$ into a spherical metal vessel of radius $R$.

There is a small opening in the upper part of the vessel. The mass of each drop is $m$, and the charge on the drop is Q . What will be the number n of the last drop that can still enter the sphere?

## D Watch Video Solution

9. A small sphere of mass $m=0.5 \mathrm{~kg}$ carrying a positive charge $q=110 \mu C$ is connected with a light, flexible, and inextensible string of length of length
$r=60 \mathrm{~cm}$ and whirled in a vertical circle. If a vertically upward electric field of strength $E=10^{5} N C^{-1}$ exists
in the space, calculate the minimum velocity of the
sphere required at the highest point so that it may just complete the circle $\left(g=10 m s^{-2}\right)$.

## - Watch Video Solution

## Exercise 3.3

1. An electric dipole of length 4 cm , when placed with its axis making an angle of $60^{\circ}$ with a uniform electric field, experiences a torque of $4 \sqrt{3} N m$. Calculate the a. magnitude of the electric field, and
b. potential energy of the dipole, if the dipole has charges of $\pm 8 n C$.

## - Watch Video Solution

2. An electric dipole consists of two opposite charges each of magnitude 1 mC separated by 2 cm . The dipole is placed in an external uniform field of $10^{5} \mathrm{NC}^{-1}$ intensity. Find the
a. maximum torque exterted by the field on the dipole, and
b. work done in roating the dipole through $180^{\circ}$ starting from the position $\theta=0^{\circ}$.
3. (Fig. 3.95) shows four orientations of an electric dipole in an external electric field. Rank the orientations acording to the
a. magnitude of the torque on the dipole, and b. potential energy of the dipole, greatest first.


- Watch Video Solution

4. A In question 3, If the dipole rotates from orientation 1 to orientation 2 , is the work done on the dipole by field positive, negative, or zero ?

B If, instead, the dipole rotates from the orientation 1
to orientation 4, is the work done by the field more than, less than, the same as in (a) ?

## D Watch Video Solution

5. The potential energies associated with four orientations of an electric dipole in an electric field are
(1) $-5 U_{0},(2)-7 U_{0},(3) 3 U_{0}$, and (4) $5 U_{0}$, where $U_{0}$
is positive. Rank the orientation according to the angle
between the electric dipole moment $\vec{P}$ and the electric field $\vec{E}$, and B magnitude of the torque on the electric dipole, greatest first.

## - Watch Video Solution

6. A neutral water molecule $\left(\mathrm{H}_{2} \mathrm{O}\right)$ in its vapour state
has an electric dipole moment of magnitude $6.2 \times 10^{-30} \mathrm{~cm}$.
a. How far apart are the molecules' centers of positive and negative charge?
b. If a molecule is placed in an electric field of $1.5 \times 10^{4} N C^{-1}$, what maximum torque can the field exert on it ? (Such a field can easily be set up in the
laboratory).
c. How much work must an external agent do to turn this molecule end for end in this field, starting from its fully aligned position, for which $\theta=0$ ?

## D Watch Video Solution

7. What is the potential energy of dipole with charge particles system as shown in (Fig. 3.96) ?

8. State the following statements as Ture or False.
a. Electric potential at any point on the bisector of a dipole is zero.
b. A dipole experences maximum torque at the positive where potential energy is zero.

## - Watch Video Solution

9. A charge +q is carried from point $A\left(r, 135^{\circ}\right)$ to point $B\left(r, 45^{\circ}\right)$ following a path, which is a quadrant of circle of radius $r$ ( Fig. 3.97). If the dipole moment is

P, find the work done by the external agent (assume
short dipole).


## - Watch Video Solution

Subjective

1. The variation of electric potential for an electric field directed parallel to the x - axis is shown in (Fig. 3.110).

Draw the variation of electric field strength with the $x$ axis.


## D Watch Video Solution

2. If identical charges $(-q)$ are placed at each corner of a cube of side $b$, then electric potential energy of charge $(+q)$ which is placed at centre of the cube will be
3. At s point due to a point charge, the values of electric field intensity and potential are $32 \mathrm{NC}^{-1}$ and $16 \mathrm{JC}^{-1}$, respectively. Calculate the
a. magnitude of the charge, and
b. distance of the charge from the point of observation.

## D Watch Video Solution

4. Four charges $+q,-q,+q$ and $-q$ are placed in order on the four consecutive corners of a square of
side a. The work done in interchanging the positions of any two neighboring charges of the opposite sign is
5. Water from a tap, maintained at a costant potential

V , is allolwed to fall by drops of radius r through a small hole into a hollow conducting sphere of radius R standing on an insulating stand until it fills the entire sphere. Find the potential of the hollow conductor after it is completely filled with water.

## - Watch Video Solution

6. Three point charges of 0.1 C each are placed at the corners of an equilateral triangle with side 1 m . If this system is supplied energy at the rate of 1 kW , how
much time will be required to move one of the charges on the mid-point of the line joining the two others ?

## D Watch Video Solution

7. Figure shows a large conducting ceiling having uniform charge particle of charge density $\sigma$ below which a charge particle of charge $q_{0}$ and mass m is hung from point O , through a small string of length I .

Calculate the minimum horizontal velocity v required
for the string to become horizontal.


## D Watch Video Solution

8. A nonconducting sphere of radius $R=5 \mathrm{~cm}$ has its
center at the origin O of the coordinate system as
shown in (Fig. 3.112). It has two spherical cavities of radius $r=1 \mathrm{~cm}$, whose centers are at $0,3 \mathrm{~cm}$ and
$0,-3 \mathrm{~cm}$, respectively, and solid material of the sphere has uniform positive charge density $\rho=1 / \pi \mu \mathrm{Cm}^{-3}$. Calculate the electric potential at point $P(4 c m, 0)$.

9. Two identical thin rings, each of radius $R$, are coaxially placed at a distance R . If $Q_{1}$ and $Q_{2}$ are respectively, the charges uniformly spread on the two rings, find the work done in moving a charge $q$ from centre of ring having charge $Q_{1}$ to the other ring.

## - Watch Video Solution

10. Three conducting spherical shells have radii ( $a, b$,
and c) such that $a<b<c$ (Fig. 3.113). Initially, the inner shell is uncharged, the middle shell has a positive charge $Q$, and the outer shell has a negative charge $-Q$.

a. Find the electric potential of the three shells.
b. If the inner and outer shells are now connected by a wire that is insulated as it passes through the middle shell, what is the electric potential of each of the three shells ? Also, what is the final charge on each shell ?
11. (Figure 3.114) shows three concentric spherical conductors $A, B$, and $C$ with radii $R, 2 R$, and $4 R$, respectively. A and C are connected by a conducting wire, and $B$ is uniformly charged (charge $=+Q$ ). Find

a. charges on conductors $A$ and $C$, and
b. potentials of $A$ and $B$.
12. Two concentric shells of radii $R$ and $2 R$ are shown in (Fig. 3.115). Initially, a charge $q$ is imparted to the inner shells. Now, key $K_{1}$ is closed and opened and then key $K_{2}$ is closed and opened. After the keys
$K_{1}$ and $K_{2}$ are alterbately closed n times each, find the potential difference between the shells. Note that
finally key $K_{2}$ remains closed.


## D Watch Video Solution

13. Three charges each of value $q$ are placed at the corners of an equilateral triangle. A fourth charge $Q$ is
placed at the center of the triangle.
a. Find the net force on charge $q$.
b. If $Q=-q$, will the charges at the corners move toward the center or fly away from it ?
c. For what value of $Q$ at $O$ will the charges remain stationary?
d. In situation (c), how much work is done in removing the charges to infinity?

## - Watch Video Solution

14. A small ball of mass $2 \times 10^{-3} \mathrm{~kg}$, having a charge
$1 \mu C$, is suspended by a string of length $0.8 m$. Another identical ball having the same charge is kept at the
point of suspension. Determine the minimum horizontal velocity that should be imparted to the lower ball so that it can make a complete revolution.

## D Watch Video Solution

15. Two fixed charges $-2 Q$ and $+Q$ are located at points $(-3 a, 0)$ and $(+3 a, 0)$ respectively. Then which of the following statement is correct?

## - Watch Video Solution

16. A point charge $q$ is located at the centre $O$ of a spherical uncharged coducting layer provided with
small orifice. The inside and outside radii of the layer are equal to a and $b$ respectively. The amount of work that has to be performed to slowly transfer the charge $q$ from teh point $O$ through the orifice and into infinity is

$+8 \mu C-1 \mu C,-1 \mu C$ and $+8 \mu C$ are fixed at the points
$-\sqrt{27 / 2} m,-\sqrt{3 / 2} m+\sqrt{3 / 2} m$ and $+\sqrt{27 / 2} m$ respectively on the $Y$-axis. A particle of mass $6 \times 10^{-4}$ kg and charge $+0.1 \mu C$ moves along the -X direction. It speed at $x=+\infty$ is $v_{0}$. Find the least value of $v_{0}$ for which the paticle will cross the origin. Find also the
kinetic energy of the particle at the origin. Assume that space is gravity free.
17. Charges $+q$ and $-q$ are located at the corners of a
cube of side as show in the figure. Find the work done to separate the charges to infinite distance

(D) Watch Video Solution
18. Two uniformly charged large plane sheets $S_{1}$ and
$S_{2}$ having charge densities $\sigma_{1}$ and $\sigma_{2}\left(\sigma_{1}>\sigma_{2}\right)$ are
placed at a distance d parallel to each other. A charge $q_{0}$ is moved along a line of length $\mathrm{a}(\mathrm{altd})$ at an angle
$45^{\circ}$ with the normal to $S_{1}$. Calculate the work done by the electric field

## D Watch Video Solution

20. (Figure 3.118) shows two dipole moments parallel to each other and placed at a distance $x$ apart. What is the magnitude of force of interaction ? What is the nature of force, attractive or repulsive ?

21. Two dipoles $p_{1}$ and $p_{2}$ are placed along the same axis at a distance $x$ apart as shown in (Fig. 3.119). What is the magnitude of the force of interaction ? What is the nature of force, attractive or repulsive?


## D Watch Video Solution

22. A short dipole is placed along the x -axis at $x=x$
(Fig. 3.120).

a. Find the force acting on the dipole due to a point charge q placed at the origin.
b. Find the force on the dipole if the dipole is rotated by $180^{\circ}$ about the z - axis.
c. Find the force on dipole if the dipole is rotated by $90^{\circ}$ anticlockwise about z-axis, i.e., it becomes parallel to the y -axis.

## - Watch Video Solution

23. For the eletrostatic charge system as shown in (Fig.
3.121), find

a. the net force on electric dipole, and
b. electrostatic energy of the system.

## D Watch Video Solution

24. Four charge particles each having charge $Q=1 \mathrm{C}$ are fixed at the corners of the base $(A, B, C$, and $D)$ of a square pyramid with slant length
$a(A P=B P=P C=a=\sqrt{2} m)$, a charge -Q is
fixed at point P. A dipole with dipole moment $\mathrm{p}=1 \mathrm{C}-\mathrm{m}$ is placed at the center of the bases and perpendicular to its plane as shown in fig. Force on the dipole due to the charge particles is $\frac{\square}{4 \pi \varepsilon_{0}} N$.

25. Three identical dipoles with charges $q$ and $-q$, and separation A between the charges, are placed at the corners of an equilateral triangle of side $D$ as shown in
(Fig. 3.123). Find the interaction energy of the system
$(a \ll d)$.

26. A radioactive source, in the form of a metallic sphere of radius $10^{-2} m$ emits $\beta$ - particles at the rate of $5 \times 10^{10}$ particles per second. The source is electrically insulated. How long will it take for its potential to be raised by $2 V$, assuming that $40 \%$ of the emitted $\beta$ - particles escape the source.

## D Watch Video Solution

27. Three point charges of 0.1 C each are placed at the
corners of an equilateral triangle with side 1 m . If this
system is supplied energy at the rate of 1 kW , how
much time will be required to move one of the charges on the mid-point of the line joining the two others ?

## D Watch Video Solution

28. When a small uncharged conducting ball of radius
$a=1 \mathrm{~cm}$ and mass $m=50 g$ is dropped from a height
$h$ above the center of another large conducting sphere
of radius $b(=1 m)$ having charge $Q(=(100 \mu C)$. It rises to a height $h_{1}(=2 m)$ after the collision. Find
the value of $h$. Assume that during the impact there is
no dissipation of energy.


## (D) Watch Video Solution

Single Correct

1. A large insulated sphere of radius $r$ charged with $Q$ units of electricity is placed in contact with a small insulated uncharged sphere of radius $r$ and is then separated. The charge on the smaller sphere will now be.
A. $\frac{Q\left(r^{\prime}+r\right)}{r^{\prime}}$
B. $\frac{Q\left(r^{\prime}+r\right)}{r}$
C. $\frac{Q r}{r^{\prime}+r}$
D. $\frac{Q r^{\prime}}{r^{\prime}+r}$

Answer: d
2. Three charges $2 q,-q,-q$ are located at the vertices of an equilateral triangle. At the centre of the triangle,
A. the field is zero but potential is nonzero.
B. the field is nonzero but potential is zero.
C. both field and potential are zero.
D. both field and potential are nonzero.

Answer: b

- Watch Video Solution

3. The variation of potential with distance $R$ from the fixed point is shown in (Fig. 3.125).


The electric field at $R=5 \mathrm{~m}$ is.
A. $2.5 \mathrm{Vm}^{-1}$
B. $-2.5 \mathrm{Vm}^{-1}$
C. $0.4 \mathrm{Vm}^{-1}$
D. $-0.4 \mathrm{Vm}^{-1}$

## Answer: a

## D Watch Video Solution

4. When a $2 \mu C$ charge is carried from point A to point

B, the amount of work done by the electric field is $50 \mu J$. What is the potential difference and which point is at a higher potential ?
A. $25 \mathrm{~V}, B$
B. $25 \mathrm{~V}, \mathrm{~A}$
C. $20 \mathrm{~V}, B$
D. both are at same potential.

## - Watch Video Solution

5. The work done in taking a unit positive charge from

P to A is $W_{A}$ and P to B is $W_{B}$. Then

A. $W_{A}>W_{B}$
B. $W_{A}<W_{B}$
C. $W_{A}=W_{B}$
D. $W_{A}+W_{B}=0$

## Answer: c

## - Watch Video Solution

6. The electric field at the origin is along the positive $x$ axis. A small circle is drawn with the centre at the origin cutting the axes at points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D having coordinates $(a, 0),(0, a),(-a, 0),(0,-a)$ respectively. Out of the points on the periphery of the circle, the potential is minimum at
A. $A$
B. $B$
C. $C$
D. $D$

## Answer: a

## D Watch Video Solution

7. A small conducting sphere of radius a, carrying a charge $+Q$, is placed inside an equal and oppositely charged conducting shell of radius $b$ such that their centers coincide. Determine the potential at a point
which is at a distance c from center such that $a<c<b$.
A. $k(Q / c+Q / b)$
B. $k(Q / a+Q / b)$
C. $k(Q / a-Q / b)$
D. $k(Q / c-Q / b)$

Answer: d

## - Watch Video Solution

8. Two metal spheres ( radii $_{1}, r_{2}$ with $r_{1}<r_{2}$ ) are very far apart but are connected by a thin wire. If their
combined charges is $Q$, then what is their common potential ?
A. $k Q /\left(r_{1}+r_{2}\right)$
B. $k Q /\left(r_{1}-r_{2}\right)$
C. $-k Q /\left(r_{1}+r_{2}\right)$
D. $-k Q / r_{1} r_{2}$

## Answer: a

## D Watch Video Solution

9. Mark the correct statement :.
A. If $E$ is zero at a certain point, then $V$ should be zero at that point.
B. If $E$ is not zero at a certain point, then $V$ should not be zero at that point.
C. If $V$ is zero at a certain point, then $E$ should be zero at that point.
D. If $V$ is zero at a certain point, then $E$ may or may not be zero.

## Answer: d

## - Watch Video Solution

10. Variation in potential is maximum if one goes.
A. along the line of force.
B. Perpendicular to the line of force.
C. in any direction.
D. none of these.

## Answer: a

## D Watch Video Solution

11. An uncharged conductor $A$ is brought near $a$ positively charged conductor $B$. The size of the
conductor $A$ is much greater than the size of conductor B. Then,
A. the charge on $B$ will increase, but the potential of $B$ will not change.
B. the charge on $B$ will not change, but the potential of $B$ will decrease.
C. the charge on $B$ will decrease, but the potential of $B$ will not change.
D. the charge on $B$ will not change, but the potential of $B$ will increase.

Answer: b
12. Two spherical conductors of radii $R_{1}$ and $R_{2}$ are separated by a distance much larger than the radius of eighter sphere. The spheres are connected by a conducting wire as shown in (Fig. 3.128). If the charges on the spheres in equilibrium are $q_{1}$ and $q_{2}$, respectively, what is the ratio of the field strength at the surfaces of the spheres?

A. $R_{2} / R_{1}$
B. $R_{2}^{2} / R_{1}^{2}$
C. $R_{1} / R_{2}$
D. $R_{1}^{2} / R_{2}^{2}$

## Answer: a

## D Watch Video Solution

13. There is an electric field $E$ in $x$-direction. If the work done on moving a charge of $0.2 C$ through a distance of 2 m along a line making an angle $60^{\circ}$ with x -axis is 4 $J$, then what is the value of $E$ ?
A. $\sqrt{3} N C^{-1}$
B. $N C^{-1}$
C. $N C^{-1}$
D. $20 N C^{-1}$

## Answer: d

## - Watch Video Solution

14. In moving from $A$ to $B$ along an electric field line, the work done by the electric field on an electron is
$6.4 \times 10^{-19} \mathrm{~J}$. If $\phi_{1}$ and $\phi_{2}$ are equipotential surfaces,
then the potential difference $V_{C}-V_{A}$ is.

A. $-4 V$
B. $4 V$
C. zero
D. 6.4 V

Answer: b

- Watch Video Solution

15. An electron is taken from point $A$ to point $B$ along
the path A B in a uniform electric field of intensity $E=10 \mathrm{Vm}^{-1}$ side $A B=5 \mathrm{~m}$, and side $B C=3 \mathrm{~m}$.

Then, the amount of work done on the electron by us is.

A. 50 eV
B. 40 eV
C. -50 eV
D. $-40 e V$

Answer: b

## D Watch Video Solution

16. Two identical rings $P$ and $Q$ of radius $0.1 m$ are mounted coaxially at a distance $0.5 m$ apart. The charges on the two rings are $2 \mu C$ and $4 \mu C$, respectively. The work done in transferring a charge of $5 \mu C$ from the center of $P$ to that of $Q$ is.
A. 1.28 J
B. 0.72 J
C. 0.144 J
D. 2.24 J

## Answer: b

## D Watch Video Solution

17. $n$ charged drops, each of radius $r$ and charge $q$, coalesce to from a big drop of radius $R$ and charge $Q$.

If $V$ is the electric potential and $E$ is the electric field at the surface of a drop, then.
A. $E_{\text {big }}=n^{2 / 3} E_{\text {small }}$
B. $V_{\text {big }}=n^{1 / 3} V_{\text {small }}$
C. $E_{\text {small }}=n^{2 / 3} E_{\text {big }}$
D. $V_{\text {big }}=n^{2 / 3} V_{\text {small }}$

## Answer: d

## D Watch Video Solution

18. At a point in space, the eletric field points toward north. In the region surrounding this point, the rate of change of potential will be zero along.
A. north
B. south
C. north - south
D. east - west
19. A spherical charged conductor has surface density of charge as $\sigma$. The electric field intensity on its surface is $E$. If the radius of the surface is doubled, keeping $\sigma$ uncharged, what will be the electric field intensity on the new sphere?
A. $E / 2$
B. $E / 4$
C. $2 E$
D. $E$
20. In the previous question, if $V$ is the electric potential of the first sphere, what would be the electric potential of the second sphere?
A. 2 V
B. $V / 2$
C. $V / 4$
D. V

## Answer: a

21. The electric field lines are closer together near object $A$ than they are near object $B$. We can conclude that.
A. the potential near $A$ is greater than the potential near $B$.
B. the potential near $A$ is less than the potential near $B$.
C. the potential near $A$ is equal to the potential near $B$.
D. nothing about the relative potentials near $A$ and $B$.

## D Watch Video Solution

22. As shown in figure a dust particle with mass $m=5.0$
$\times 10-9 \mathrm{~kg}$ and charge $\mathrm{qO}=2.0 \mathrm{nC}$ starts from rest at
point a and moves in a straight line to point b. What is its speed $v$ at point $b$ ?

A. $26 m s^{-1}$
B. $34 m s^{-1}$
C. $46 m s^{-1}$
D. $14 m s^{-1}$

## Answer: C

## D Watch Video Solution

23. Charges $-q, Q$, and $-q$ are placed at an equal distance on a straight liner. If the total potential energy of the system of three charges is zero, then find the ratio $Q / q$.

A. $1 / 2$
B. $1 / 4$
C. $2 / 3$
D. $3 / 4$

## Answer: b

## D Watch Video Solution

24. $A B C$ is a right - angled triangle, where $A B$ and $B C$ are 25 cm and 60 cm , respectively. A metal sphere of 2 cm radius charged to a potential of $9 \times 10^{5} V$ is placed at $B$ as in (Fig. 3.133). Find the amount of work done in carrying a positive charge of 1
coulomb from C to A .

A. 21 kJ
B. 42 kJ
C. 14 kJ
D. 52 kJ

Answer: b
25. Two charged particles having charges

1 and $-1 \mu C$ and of mass $50 g$ each are held at rest
while their separation is $2 m$. Now the charges are released. Find the speed of the particles when their separation is $1 m$.
A. $\frac{1}{5} m s^{-1}$
B. $\frac{3}{5} m s^{-1}$
C. $\frac{3}{10} m s^{-1}$
D. $\frac{2}{7} m s^{-1}$

Answer: c
26. An electron is fired directly towards the center of a large metal plate that has excess negative charge with surface charge density $=2.0 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$. If the initial kinetic energy of electron is 100 eV and if it is to
stop due to repulsion just as it reaches the plate, how far from the plate must it be fired ?
A. 0.44 mm
B. 0.20 mm
C. 1 mm
D. 0.30 mm

Answer: a
27. A solid sphere of radius $R$ has charge $q$ uniformly distributed over its volume. The distance from it surfce at which the electrostatic potential is equal to half of the potential at the centre is
A. R
B. $R / 2$
C. $R / 3$
D. $2 R$

## Answer: c

28. Four identical charges are placed at the points
$(1,0,0),(0,1,0),(-1,0,0)$, and $(0,-1,0)$. Then,
A. the potential at the origin is zero
B. the electric field at the origin is not zero.
C. the potential at all points on the $z$ - axis, other than the origin, is zero
D. the field at all points on the $z$ - axis, other than the origin acts along the z -axis.

## Answer: d

29. When the separation between two charges is increase the electric potential energy of the charges.
A. increases
B. decreases
C. remains the same.
D. may increase or decrease

Answer: d

- Watch Video Solution

30. Mark the correct statement :.
A. An electron and a proton when released from
rest in uniform electric field experience the same
force and the same acceleration.
B. Two equipotential surfaces may intersect.
C. A solid conducting sphere holds more charge
than a hollow conducting sphere of the same radius.
D. No work is done in taking a positive charge from
one point to another inside a negatively charged metallic sphere.
31. Two point charges $Q$ and $-Q / 4$ placed along the x - axis are separated by a distance $r$. Take $-Q / 4$ as origin and it is placed at the right of Q . Then the potential is zero.
A. at $x=r / 3$ only
B. at $x=-r / 5$ only
C. both at $x=r / 3$ and at $x=-r / 5$
D. there exist two points on the axis where the electric field is zero.
32. The electric potential decreases unifromly from 120
$V$ to 80 V as one moves on the x -axis from $\mathrm{x}=-1 \mathrm{~cm}$ to
$x=+1 \mathrm{~cm}$. The electric field at the origin
A. must be equal to $20 \mathrm{Vcm}^{-1}$
B. must be equal to $20 \mathrm{Vm}^{-1}$
C. may be greater than $20 \mathrm{Vm}^{-1}$
D. may be less than $20 \mathrm{Vcm}^{-1}$

## Answer: c

33. A small sphere with mass $1.2 g$ hangs by a thread between two parallel vertical plates 5.00 cm apart. The plates are insulating and have uniform surface charge densities $+\sigma$ and $-\sigma$. The charge on the sphere is
$q=9 \times 10^{-6} C$. What potential difference between the plates will cause the thread to assume an angle of
$37^{\circ}$ with the vertical as shown in (Fig. 3.134)?

A. 30 V
B. 12 V
C. 50 V
D. 25 V

## Watch Video Solution

34. A particle of mass $m$ carrying charge $q$ is projected with velocity $v$ from point $P$ toward aninfinite line of charge from a distance $a$. Its speed reduces to zero momentarily at point $Q$, which is at a distance $a / 2$ from the line of charge. If another particle with mass $m$ and charge $-q$ is projected with the same velosity $v$ from $P$ toward the line of charge, what will be its speed at $Q$ ?
A. $v_{1}=\sqrt{2} v$
B. $v_{1}=2 v$
C. $v_{1}=\sqrt{v}$
D. $v_{1}=\sqrt{2}$

## Answer: a

## - Watch Video Solution

35. Charge $Q$ is given a displacement $\vec{r}=a \hat{i}+b \hat{j}$ in an electric field $\vec{E}=E_{1} \hat{i}+E_{2} \hat{j}$. The work done is.
A. $Q\left(E_{1} a+E_{2} b\right)$
B. $Q \sqrt{\left(E_{1} a\right)^{2}+\left(E_{2} b\right)^{2}}$
C. $Q\left(E_{1}+E_{2}\right) \sqrt{a^{2}+b^{2}}$
D. $Q \sqrt{\left(E_{1}^{2}+E_{2}^{2}\right)^{2}} \sqrt{a^{2}+b^{2}}$

## Answer: a

## D Watch Video Solution

36. A point charge q is placed inside a conducting spherical shell of inner radius $2 R$ and outer radius $3 R$ at a distance of $R$ from the centre of the shell. The electric potential at the centre of shell will be $\frac{1}{4 \pi \varepsilon_{0}}$ times
A. $\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{2 R}$
B. $\frac{1}{4 \pi \varepsilon_{0}} \frac{4 q}{3 R}$
C. $\frac{1}{4 \pi \varepsilon_{0}} \frac{5 q}{6 R}$
D. $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{3 R}$

## Answer: c

## D Watch Video Solution

37. An electric field is expressed as $\vec{E}=2 \hat{i}+3 \hat{j}$. Find
the potential difference $\left(V_{A}-V_{B}\right)$ between two
points $A$ and $B$ whose position vectors are given by
$r_{A}=\hat{i}+2 \hat{j}$ and $r_{B}=2 \hat{i}+\hat{j}+3 \hat{k}$.
A. $-1 V$
B. 1 V
C. 2 V
D. 3 V

Answer: a

## D Watch Video Solution

38. The potentaial function of an electrostatic field is
given by $V=2 x^{2}$. Determine the electric field strength at the point $(2 m, 0,3 m)$.
A. $\vec{E}=4 \hat{i}\left(N C^{-1}\right)$
B. $\vec{E}=-4 \hat{i}\left(N C^{-1}\right)$
C. $\vec{E}=8 \hat{i}\left(N C^{-1}\right)$
D. $\vec{E}=-8 \hat{i}\left(N C^{-1}\right)$
39. A conducting sphere $A$ of radius $a$, with charge $Q$, is placed concentrically inside a conducting shell $B$ of radius $b . B$ is earthed. $C$ is the common center of
$A$ and $B$. Study the following statements.
(i) The potential at a distance $r$ from $C$, where
$a \leq r \leq b, i s \frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{r}\right)$
(ii) The potential difference between $A$ and $B$ is

$$
\frac{1}{4 \pi \varepsilon_{0}} Q\left(\frac{1}{r}-\frac{1}{B}\right)
$$

(iii) The potential at a distance rom $C$, where
$a \leq r \leq b, i s \frac{1}{4 \pi \varepsilon_{0}} Q\left(\frac{1}{r}-\frac{1}{B}\right)$

Which of the following statements are correct ?

A. Only (i) and (ii)
B. Only (ii) and (iii)
C. Only (i) and (iii)
D. All

## - Watch Video Solution

40. An electron having charge $e$ and mass $m$ starts
from the lower plate of two metallic plates separated by a distance $d$. If the potential difference between the plates is $V$, the time taken by the electron to reach the upper plate is given by

V
A. $\sqrt{\frac{2 m d^{2}}{e V}}$
B. $\sqrt{\frac{m d^{2}}{e V}}$
C. $\sqrt{\frac{m d^{2}}{2 e V}}$
D. $\frac{2 m d^{2}}{e V}$

## Answer: a

## - Watch Video Solution

41. There is an infinite straight chain of alternating charges $q$ and $-q$. The distance between the neighbouring charges is equal to $a$. Find the interaction energy of each charge with all the others.

Instruction. Make use of the expansion of $\ln (1+\alpha)$ in a power series in $\alpha$.
A. $-\frac{2 q}{4 \pi \varepsilon_{0} a}$
B. $\frac{2 q^{2} \log _{e} 2}{4 \pi \varepsilon_{0} a}$
C. $-\frac{2 q^{2} \log _{e} 2}{4 \pi \varepsilon_{0} a}$
D. none of these.

## Answer: c

## D Watch Video Solution

42. Three identical metallic uncheged spheres
$A, B$, and $C$, each of radius $a$, are kept at the corners of an equilateral triangle of side $d(d \gg a)$ as shown in (Fig. 3.137). The fourth sphere (of radius a), which has a charge $q$, touches $A$ and is then removed
a position far away. $B$ is earthed and then the earth connection is removed. $C$ is then earthed. The charge on $C$ is

A. $\frac{q a}{2 d}\left(\frac{2 d-a}{2 d}\right)$
B. $\frac{q a}{2 d}\left(\frac{2 d-a}{d}\right)$
C. $-\frac{q a}{2 d}\left(\frac{d-a}{d}\right)$
D. $-\frac{2 q a}{d}\left(\frac{d-a}{2 d}\right)$

## Answer: c

## D Watch Video Solution

43. A solid conducting sphere of radius 10 cm is enclosed by a thin metallic shell of radius 20 cm . A charge $q=20 \mu C$ is given to the inner sphere. Find the heat generated in the process, the inner sphere is connected to the shell by a conducting wire.
A. 12 J
B. 9 J
C. 24 J
D. zero

## - Watch Video Solution

44. Find the potential $V$ of an electrostatic field $\vec{E}=a(y \hat{i}+x \hat{j})$, where $a$ is a constant.
A. $a x y+C$
B. $-a x y+C$
C. $a x y$
D. $-a x y$

Answer: b
45. We have three identical metallic spheres
$A, B$, and $C . A$ is given a charge $Q$, and $B$ and $C$
are uncharged. The following processes of touching of two spheres are carried out in succession. Each process is carried out with sufficient time. Itbgt i. A and B
ii. B and C
iii. C and A
iv. A and B
v. B and C

The final charges on the spheres are.

$$
\text { A. } \frac{11 Q}{32}, \frac{5 Q}{16}, \frac{11 Q}{32}
$$

B. $\frac{11 Q}{32}, \frac{11 Q}{32}, \frac{5 Q}{16}$
C. $\frac{8 Q}{8}, \frac{5 Q}{16}, \frac{5 Q}{16}$
D. $\frac{5 Q}{16}, \frac{11 Q}{32}, \frac{11 Q}{32}$

## Answer: d

## - Watch Video Solution

46. Determine the electric field strength vector if the potential of this field depends upon $x$ - and $y$ coordinates as:
(i) $V=a\left(x^{2}-y^{2}\right)$
(ii) $V=a x y$.
A.
a.

B.

C.

D.


Answer: a
47. The point charge $q$ is within the cavity of an electrically neutral conducting shell whose outer surface has spherical shape. Find the potential $V$ at a point $P$ lying outside the shell at distance $r$ from the center $O$ of the outer sphere.

A. $V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}$
B. $V=\frac{1}{2 \pi \varepsilon_{0}} \frac{q}{r}$

$$
\begin{aligned}
& \text { C. } V=\frac{1}{\pi \varepsilon_{0}} \frac{q}{r} \\
& \text { D. } V=\frac{3}{4 \pi \varepsilon_{0}} \frac{q}{r}
\end{aligned}
$$

## Answer: a

## D Watch Video Solution

48. Two concentric conducting spherical shells of radii $a_{1}$ and $a_{2}\left(a_{2}>a_{1}\right)$ are charged to potentials $\phi_{1}$ and $\phi_{2}$, respectively. Find the charge on the inner shell.

$$
\begin{aligned}
& \text { A. } q_{1}=4 \pi \varepsilon_{0}\left(\frac{\phi_{1}-\phi_{2}}{a_{2}-a_{1}}\right) a_{1} a_{2} \\
& \text { B. } q_{1}=4 \pi \varepsilon_{0}\left(\frac{\phi_{1}+\phi_{2}}{a_{2}+a_{1}}\right) a_{1} a_{2} \\
& \text { C. } q_{1}=\pi \varepsilon_{0}\left(\frac{\phi_{1}-\phi_{2}}{a_{2}+a_{1}}\right) a_{1} a_{2}
\end{aligned}
$$

$$
\text { D. } q_{1}=2 \pi \varepsilon_{0}\left(\frac{\phi_{1}+\phi_{2}}{a_{2}-a_{1}}\right) a_{1} a_{2}
$$

Answer: a

## - Watch Video Solution

49. (Figure 3.139) shows three circular arcs, each of radius $R$ and total charge as indicated. The net electric
potential at the center of curvature.

A. $\frac{Q}{2 \pi \varepsilon_{0} R}$
B. $\frac{5 Q}{12 \pi \varepsilon_{0} R}$
C. $\frac{3 Q}{32 \pi \varepsilon_{0} R}$
D. none of these.

## D Watch Video Solution

50. When the positively charged hanging pendulum bob is made fixed, the work done in slowly shifting a unit positive charge from infinity to $P$ is $V$. If the pendulum is free to move, the corresponding work done id $V^{\prime}$. Then.
A. $V=V^{\prime}$
B. $V>V^{\prime}$
C. $V<V^{\prime}$
D. $V \leq V^{\prime}$

## D Watch Video Solution

51. The potential $V$ is varying with $x$ as

$$
V=\frac{1}{2}\left(y^{2}-4 x\right) \text { volt. The field at } x=1 m, y=1 m
$$ is.

A. $1.2 \hat{i}+\hat{j} V m^{-1}$
B. $2 .-2 \hat{i}+\hat{j} V m^{-1}$
C. $3.2 \hat{i}-\hat{j} V m^{-1}$
D. $4 .-2 \hat{i}+2 \hat{j} V m^{-1}$

## Answer: c

52. A charge $+Q$ at A as shown produces electric field $E$ and electric potential $\vee$ at D . If we now put charges
$-3 Q$ and $+Q$ at B and C , respectively, then the electric field and potential at $D$ will be

A. E and 0
B. 2 E and -V
C. $\sqrt{2} E$ and $\frac{V}{\sqrt{2}}$

## D. 2 E and V

## Answer: b

## - Watch Video Solution

53. Figure shown two equipotential lies $x, y$ plane for an electric field. The scales are market. The $x$ component $E_{x}$ and y-component $E_{y}$ of the field in the space between these equipotential lines are
respectively
$\mathrm{y} / \mathrm{cm}$

A. $+100 \mathrm{Vm}^{-1},-200 \mathrm{Vm}^{-1}$
B. $-100 \mathrm{Vm}^{-1},+200 \mathrm{Vm}^{-1}$
C. $+200 \mathrm{Vm}^{-1},+100 \mathrm{Vm}^{-1}$
D. $-200 \mathrm{Vm}^{-1},-400 \mathrm{Vm}^{-1}$

Answer: b
54. Variation of electrostatic potential along the $x$ direction is shown in (Fig. 3.142). The correct statement about electric field is

A. x - component at point $B$ is maximum
B. x - component at point $A$ is toward positive x axis
C. x-component at point $C$ is along negative x axis
D. x - component at point $C$ is along positive x axis

## Answer: d

## D Watch Video Solution

55. A unit positive point charge of mass $m$ is projected with a velocity $V$ inside the tunnel as shown. The tunnel has been made inside a uniformly charged nonconducting sphere. The minimum velocity with which the point charge should be projected such that
it can reach the opposite end of the tunnel is equal to

A. $\left[\rho R^{2} / 4 m \varepsilon_{0}\right]^{1 / 2}$
B. $\left[\rho R^{2} / 24 m \varepsilon_{0}\right]^{1 / 2}$
C. $\left[\rho R^{2} / 6 m \varepsilon_{0}\right]^{1 / 2}$

# D. zero because the initial and the final points are 

## at same potential.

## Answer: a

## D Watch Video Solution

56. Electric field given by the vector $\vec{E}=x \hat{i}+y \hat{j}$ is present in the x y plane. A small ring carrying $+Q$, which can freely slide on a smooth nonconducting rod, is projected along the rod from the point $(0, L)$ such that it can reach the other end of the rod. What minimum velocity should be given to the ring ?
(Assume zero gravity).

A. $\left(Q L^{2} / m\right)^{1 / 2}$
B. $2\left(Q L^{2} / m\right)^{1 / 2}$
C. $4\left(Q L^{2} / m\right)^{1 / 2}$
D. $\left(Q L^{2} / 2 m\right)^{1 / 2}$

## Multiple Correct

1. A wire having a uniform linear charge density $\lambda$ is bent in the form of a ring of radius $R$. Point $A$ as shown in (Fig. 3.145) is in the plane of the ring but not at the center. Two elements of the ring of lengths $a_{1}$ and $a_{2}$ subtend very small same angle at point $A$. they are at distances $r_{1}$ and $r_{2}$ from point $A$, respectively
$\left(r_{2}>r_{1}\right)$.

A. The ratio of charges of element $a_{1}$ to that of
element $a_{2}$ is $r_{1} / r_{s}$.
B. The element $a_{1}$ produced greater magnitude of
electric field at $A$ than elements $a_{2}$.
C. The same elements $a_{1}$ and $a_{2}$ produce same potential at $A$
D. The direction of the net electric field produced by the elements only at $A$ is toward element $a_{2}$.

Answer: a.,b.,c.,d.

## D Watch Video Solution

2. Two point charges of different magnitudes and of opposite signs are separated by some distance. There can be.
A. only on the point in space where net electric field intensity is zero.
B. only two points in space where net electric potential is zero
C. infinite number of points in space where net electric field intensity is 0
D. infinite number of points in space where net electric potential is zero.

Answer: a.,d.

## - Watch Video Solution

3. Two infinite parallel, non- conducting sheets carry equal positive charge density $\sigma$,One is placed in the $y z$ plane other at distance $x=a$ Take potential $V=0$ at $x=0$ then
A. for $0 \leq x \leq a$, potential $V=0$
B. for $x \geq a$, potential $V=\frac{\sigma}{\varepsilon_{0}}(x-a)$
C. for $x \geq a$, potential $V=\frac{\sigma}{\varepsilon_{0}}(x-a)$
D. for $x \leq 0$, potential $V=\frac{\sigma}{\varepsilon_{0}} x$

Answer: a.,c.,d.
4. A negative charge is moved by an external agent in the direction of electric field. Then

A. Potential energy of the charge increases.
B. Potential energy of the charge decreases.
C. Positive work is done by the electric field
D. negative work is done by the electric field

Answer: a.,d.

## D Watch Video Solution

5. If a charged conductor is enclosed by a hollow charged conducting shell (assumed concentric and spherical in shape), and they are connected by a conducting wire, then which of the following statement (s) would be correct ?
A. Potential difference between the two conductors becomes zero.
B. If charge on the inner conductor is $q$ and on the outer conductor is $2 q$, then finally charge on the outer conductor will be $3 q$.
C. The charge on the inner conductor is totally transferred to the outer conductor.

# D. If charge on the inner conductor is $q$ and charge 

on the outer conductor is zero, then finally the charge on each conductor will be $q / 2$.

Answer: b.,d.

## D Watch Video Solution

6. For the situation shown in the figure below mark out the correct statement (s) -


## Hollow neutral conductor

A. Potential of the conductor is $q /\left[4 \pi \varepsilon_{0}(d+R)\right]$.
B. Potential of the conductor is $q / 4 \pi n \varepsilon_{0} d$.
C. Potential of the conductor cannot be determined as the nature of distribution of induced charges is not known.
D. Potential at point $B$ due to the induced charges

$$
\text { is }-q R /\left[4 \pi \varepsilon_{0}(d+R) d\right] \text {. }
$$

Answer: a.,d.

## - Watch Video Solution

7. Which of the following is true for the figure showing
electric lines of force ? ( E is electrical field, and V is
potential).

A. $E_{A}>E_{B}$
B. $E_{B}>E_{A}$
C. $V_{A}>V_{B}$
D. $V_{B}>V_{A}$

Answer: a.,d.

## - Watch Video Solution

8. A uniform electric field $E_{0}$ exists in a region at angle
$45^{\circ}$ with the $x$ - axis. There are two point $A(a, 0)$ and $B(0, b)$ having potential $V_{A}$ and $V_{B}$,
respectively, then

A. $a<b$
B. $a>b$
C. can't say
D. $a=b$

## D Watch Video Solution

9. An uncharged conducting ball $B$ lies inside a charged conductor $A$ as shown in (Fig. 3.150). $B$ is isolated from $A$.

A. When $B$ touches the inner surface of $A$, then potential of $B$ will change.
B. No net charge is inside the cavity.
C. There is an induced charge on $B$.
D. Potentials of $A$ and $B$ are same.

## Answer: b.,d.

## D Watch Video Solution

10. At a distance of 5 cm and 10 cm from surface of a uniformly charge solid sphere, te potentials are 100 V and 75 V respectivley. Then
A. Potential at its surface is 150 V
B. the charge on the sphere is $(5 / 3) \times 10^{-10} C$
C. the electric field on the surface is $1500 \mathrm{Vm}^{-1}$
D. the electric potential at its center is $0 V$

## Answer: a.,c.

## - Watch Video Solution

## Comprehension

1. Two point charges are located on the x - axis :
$q_{1}=-e$ at $x=0$ and $q_{2}=+e$ at $x=a$.

The work done by an external force to bring a third point charge $q_{3}=+e$ from infinity to $x=2 a$ is.
A. $\frac{e^{2}}{4 \pi \varepsilon_{0} a}$
B. $\frac{e^{2}}{8 \pi \varepsilon_{0} a}$
C. $\frac{-e^{2}}{8 \pi \varepsilon_{0} a}$
D. $\frac{-e^{2}}{4 \pi \varepsilon_{0} a}$

## Answer: B

## - Watch Video Solution

2. Two point charges are located on the $x$ - axis : $q_{1}=-e$ at $x=0$ and $q_{2}=+e$ at $x=a$. A third
charge $q_{3}=+e$ is brought to $x=2 a$.
The total potential energy of the system of three charges.
A. $\frac{e^{2}}{4 \pi \varepsilon_{0} a}$
B. $\frac{e^{2}}{8 \pi \varepsilon_{0} a}$
C. $\frac{-e^{2}}{8 \pi \varepsilon_{0} a}$
D. $\frac{-e^{2}}{4 \pi \varepsilon_{0} a}$

## Answer: C

3. A small metal sphere, carrying a net charge $q_{1}=-2 \mu C$, is held in a stationary position by insulating supports. A second small metal sphere, with
a net charge of $q_{2}=-8 \mu C$ and mass $1.50 g$, is projected toward $q_{1}$. When the two spheres are
0.800 m apart, $q_{2}$ is moving toward $q_{1}$ with speed $20 \mathrm{~ms}^{-1}$ as shown in (Fig. 3.151). Assume that the two
spheres can be treated as point charges. You can ignore the force of gravity.


The speed of $q_{2}$ when the spheres are 0.400 m apart is.
A. $2 \sqrt{10} m s^{-1}$
B. $2 \sqrt{6} m s^{-1}$
C. $4 \sqrt{10} m s^{-1}$
D. $4 \sqrt{6} m s^{-1}$

## Answer: C

## D Watch Video Solution

4. A small metal sphere, carrying a net charge
$q_{1}=-2 \mu C$, is held in a stationary position by insulating supports. A second small metal sphere, with
a net charge of $q_{2}=-8 \mu C$ and mass $1.50 g$, is projected toward $q_{1}$. When the two spheres are
0.800 m apart, $q_{2}$ is moving toward $q_{1}$ with speed $20 \mathrm{~ms}^{-1}$ as shown in (Fig. 3.151). Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.


How close does $q_{2}$ get to $q_{1}$ ?
A. 0.20 m
B. 0.30 m
C. 0.10 m
D. 0.15 m
5. Four charges $+q,+q,-q$, and $-q$ are placed, respectively, at the corners $A, B, C$, and $D$ of a square of side $a$, arranged in the given order. If $O$ is the center of square.

The electric field at $O$ is.
A. $\frac{q}{\sqrt{2} \pi \varepsilon_{0} a^{2}}$
B. $\frac{q}{\sqrt{3} \pi \varepsilon_{0} a^{2}}$
C. $\frac{\sqrt{3} q}{\pi \varepsilon_{0} a^{2}}$
D. $\frac{\sqrt{2} q}{\pi \varepsilon_{0} a^{2}}$
6. Four charges $+q,+q,-q$, and $-q$ are placed, respectively, at the corners $A, B, C$, and $D$ of a square of side $a$, arranged in the given order.
$E$ and $F$ are the midpoints of sides $B C$ and $C D$, respectively, $O$ is the center of square.

The electric potential at $O$ is.
A. $\frac{\sqrt{2} q}{\pi \varepsilon_{0} a}$
B. $\frac{\sqrt{3} q}{\pi \varepsilon_{0} a}$
C. $\frac{q}{\pi \varepsilon_{0} a}$
D. zero

## Answer: D

## D Watch Video Solution

7. Four charges $+q,+q,-q$, and $-q$ are placed, respectively, at the corners $A, B, C$, and $D$ of a square of side $a$, arranged in the given order.
$E$ and $F$ are the midpoints of sides $B C$ and $C D$, respectively, $O$ is the center of square.

The work done in carrying a charge $e$ from $O$ to E is.
A. $\frac{\sqrt{2} q e}{\pi \varepsilon_{0} a}$
B. $\frac{q e}{\pi \varepsilon_{0} a}\left[\frac{1}{\sqrt{5}}-1\right]$
C. $\frac{q e}{\pi \varepsilon_{0} a}\left[\frac{1}{\sqrt{5}}+1\right]$

D. zero

## Answer: D

## D Watch Video Solution

8. Four charges $+q,+q,-q$, and $-q$ are placed, respectively, at the corners $A, B, C$, and $D$ of a square of side $a$, arranged in the given order. $E$ and $F$ are the midpoints of sides $B C$ and $C D$, respectively, $O$ is the center of square.

The work done in carrying a charge $e$ from $O$ to $F$ is.
A. $\frac{\sqrt{2} q e}{\pi \varepsilon_{0} a}$
B. $\frac{q e}{\pi \varepsilon_{0} a}\left[\frac{1}{\sqrt{5}}-1\right]$
C. $\frac{q e}{\pi \varepsilon_{0} a}\left[\frac{1}{\sqrt{5}}+1\right]$
D. zero

## Answer: B

## - Watch Video Solution

9. A charge $Q$ is distributed over two concentric conducting thin spherical shells radii r and $\mathrm{R}(R>1)$.

If the surface charge densities on the two shells are
equal, the electric potential at the common centre is:

A. $\frac{Q r^{2}}{r^{2}+R^{2}}$ and $\frac{Q R^{2}}{r^{2}+R^{2}}$. Respectively
B. $Q\left(1+\frac{r^{2}}{R^{2}}\right)$ and $Q\left(1+\frac{R^{2}}{r^{2}}\right)$, respectively
C. $Q\left(1-\frac{r^{2}}{R^{2}}\right)$ and $Q\left(1-\frac{R^{2}}{r^{2}}\right)$, respectively
D. $\frac{Q R^{2}}{r^{2}+R^{2}}$ and $Q \frac{Q r^{2}}{r^{2}+R^{2}}$, respectively

## (D) Watch Video Solution

10. A charge $Q$ is distributed over two concentric conducting thin spherical shells radii r and $\mathrm{R}(R>1)$.

If the surface charge densities on the two shells are equal, the electric potential at the common centre is:
A. $\frac{\sqrt{2}}{\pi \varepsilon_{0}} \frac{Q(R+r)}{\left(R^{2}+r^{2}\right)}$
B. $\frac{1}{2 \pi \varepsilon_{0}} \frac{Q(R+r)}{\left(R^{2}+r^{2}\right)}$
C. $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q(R+r)}{\left(R^{2}+r^{2}\right)}$
D. $\frac{1}{\pi \varepsilon_{0}} \frac{Q(R-r)}{\left(R^{2}+r^{2}\right)}$

## Answer: C

## D Watch Video Solution

11. The electrical potential function for an electrical field directed parallel to the $x$-axis is shown in the given graph.


Draw the
graph of electric field strength.
A. $-2 \leq x \leq 0,4 \leq x \leq 8$, and $0 \leq x \leq 2$
B. $-2 \leq x \leq 0$ and $0 \leq x \leq 2$
C. $-2 \leq x \leq 0,2 \leq x \leq 4$, and $\leq x \leq 8$
D. $0 \leq x \leq 2$ and $4 \leq x \leq 8$

Answer: C
12. The electrical potential function for an electrical field directed parallel to the $x$-axis is shown in the given graph.


Draw the
graph of electric field strength.
A. $2.5 N C^{-1}$
B. $5 N C^{-1}$
C. $-2.5 N C^{-1}$
D. $-5 N C^{-1}$

## Answer: B

## D Watch Video Solution

13. The electrical potential function for an electrical field directed parallel to the $x$-axis is shown in the given graph.


Draw the
graph of electric field strength.

B.

C.

D.


Answer: A

## D Watch Video Solution

14. A uniform electric field of $100 \mathrm{~V} / \mathrm{m}$ is directed at $3^{\circ}$ with the positive $x$-axis as shown in figure. Find the
potential difference $V_{B A}$ if $O A=2 \mathrm{~m}$ and $O B=4 \mathrm{~m}$.

A. $100 \sqrt{3} V$
B. $200 \sqrt{3} V$
C. $-100 \sqrt{3} V$
D. $-200 \sqrt{3} V$

Answer: C
15. A uniform electric field of $100 \mathrm{~V} / \mathrm{m}$ is directed at $30^{\circ}$ with the positive $x$-axis as shown in figure. Find the potential difference $V_{B A}$ if $O A=2 \mathrm{~m}$ and $O B=4 m$.

A. $-100[2+\sqrt{3}] V$
B. $100[2+\sqrt{3}] V$
C. $100[2-\sqrt{3}] V$
D. $-100[2-\sqrt{3}] V$

## Answer: A

## - Watch Video Solution

16. The electric potential varies in space according to
the relation $V=3 x+4 y$. A particle of mass 10 kg starts from rest from point $(2,3.2) \mathrm{m}$ under the influence of this field. Find the velocityr,f the particle when it crosses the $x$-axis. The charge on the particle is $+1 \mu C$. Assume $\mathrm{V}(\mathrm{x}, \mathrm{y})$ are in SI units.
A. $-3 V m^{-1}$
B. $4 V m^{-1}$
C. $5 V m^{-1}$
D. $8 V m^{-1}$

## Answer: A

## D Watch Video Solution

17. The electric potential varies in space according to
the relation $V=3 x+4 y$. A particle of mass 10 kg starts from rest from point $(2,3.2) \mathrm{m}$ under the influence of this field. Find the velocityr,f the particle when it crosses the $x$-axis. The charge on the particle is $+1 \mu C$. Assume $\mathrm{V}(\mathrm{x}, \mathrm{y})$ are in SI units.
A. $3 \mathrm{Vm}^{-1}$
B. $-4 V m^{-1}$
C. $5 \mathrm{Vm}^{-1}$
D. $8 \mathrm{Vm}^{-1}$

## Answer: B

## D Watch Video Solution

18. The electric potential varies in space according to
the relation $V=3 x+4 y$. A particle of mass 10 kg starts from rest from point $(2,3.2) \mathrm{m}$ under the influence of this field. Find the velocityr,f the particle
when it crosses the x-axis. The charge on the particle is
$+1 \mu C$. Assume $\mathrm{V}(\mathrm{x}, \mathrm{y})$ are in SI units.
A. 20 s
B. 40 s
C. 200 s
D. 400 s

## Answer: D

## - Watch Video Solution

19. The electric potential varies in space according to
the relation $V=3 x+4 y$. A particle of mass 10 kg
starts from rest from point $(2,3.2) \mathrm{m}$ under the influence of this field. Find the velocityr,f the particle when it crosses the $x$-axis. The charge on the particle is $+1 \mu C$. Assume $\mathrm{V}(\mathrm{x}, \mathrm{y})$ are in SI units.
A. $20 \times 10^{-3} \mathrm{~ms}^{-1}$
B. $40 \times 10^{-3} \mathrm{~ms}^{-1}$
C. $30 \times 10^{-3} \mathrm{~ms}^{-1}$
D. $50 \times 10^{-3} \mathrm{~ms}^{-1}$

Answer: A

- Watch Video Solution

20. Three concentric spherical metallic shells
$A, B$, and $C$ of radii $a, b$, and $c(a<b<c)$ have surface charge densities $\sigma,-\sigma$ and $\sigma$, respectively.

If $V_{A}, V_{B}$ and $V_{C}$ are potential of shells $\mathrm{A}, \mathrm{B}$ and C , respectively, match the columns

Column A
Column B
a. $V_{A} \quad$ i. $\quad \frac{\sigma}{\varepsilon_{0}}\left[\frac{a^{2}-b^{2}+c^{2}}{c}\right]$
b. $V_{B}$
ii. $\quad \frac{\sigma^{2}}{\varepsilon_{0}}\left[\frac{a^{2}}{b}-b+c\right]$
c. $V_{C}$
iii. $\quad \frac{\sigma}{\varepsilon_{0}}[a-b+c]$

## - Watch Video Solution

21. Three concentric spherical metallic shells A, B and C of radii a, b and c (a<b<c) have surface charge
densities $\sigma,-\sigma$ and $\sigma$ respectively.
(i) Find the potential of the three shells $A, B$ and $C$.
(ii) If the shells A and C are at the same potential, obtain the relation between the radii $\mathrm{a}, \mathrm{b}$ and c .
A. $a=b+c$
B. $c=a+b$
C. $b+a+c$
D. $2 a=b-c$

## Answer: B

## - Watch Video Solution

22. We have an isolated conducting spherical shell of radius 10 cm . Some positive charge is given to it so that the resulting electric field has a maximum intensity of $1.8 \times 10^{6} N C^{-1}$. The same amount of negative charge is given to another isolated conducting spherical shell of radius 20 cm . Now, the first shell is placed inside the second so that both are concentric as shown in (Fig. 3.154).


The electric potential at any point inside the first shell is.
A. $18 \times 10^{4} V$
B. $9 \times 10^{4} V$
C. $4.5 \times 10^{4} V$
D. $1.8 \times 10^{4} V$

## Answer: B

## D Watch Video Solution

23. We have an isolated conducting spherical shell of radius 10 cm . Some positive charge is given to it so that the resulting electric field has a maximum intensity of $1.8 \times 10^{6} N C^{-1}$. The same amount of negative charge is given to another isolated conducting spherical shell of radius 20 cm . Now, the first shell is placed inside the second so that both are concentric as shown in (Fig. 3.154).


The electric field intensity just inside the outer sphere.
A. $4.5 \times 10^{5} \mathrm{NC}^{-1}$
B. $9 \times 10^{5} N C^{-1}$
C. $4.5 \times 10^{4} N C^{-1}$
D. $5 \times 10^{4} N C^{-1}$

## Answer: A

## D Watch Video Solution

24. We have an isolated conducting spherical shell of radius 10 cm . Some positive charge is given to it so
that the resulting electric field has a maximum intensity of $1.8 \times 10^{6} N C^{-1}$. The same amount of negative charge is given to another isolated conducting spherical shell of radius 20 cm . Now, the first shell is placed inside the second so that both are concentric as shown in (Fig. 3.154).


The electrostatic energy stored in the system is.
A. 1.0 J
B. 0.045 J
C. 0.09 J
D. 1.8 J

## Answer: C

## D Watch Video Solution

25. We have an isolated conducting spherical shell of
radius 10 cm . Some positive charge is given to it so
that the resulting electric field has a maximum
intensity of $1.8 \times 10^{6} \mathrm{NC}^{-1}$. The same amount of negative charge is given to another isolated conducting spherical shell of radius 20 cm . Now, the first shell is placed inside the second so that both are concentric as shown in (Fig. 3.154).


If both the spheres are connected by a conducting wire, then.
A. nothing will happen.
B. some part of the energy stored in the system will convert into heat.
C. charge on both spheres will be positive.

# D. entire amount of the energy stored in the 

 system will convert into heat.
## Answer: D

## D Watch Video Solution

26. In a certain region, electric field $E$ exists along the x - axis which is uniform. Given $B=2 \sqrt{3} m$ and $B C=4 m$. Points A, B, and C are in $x y$ plane.

# $\xrightarrow[2]{\text { Path }}$ <br>  

Find the potential difference $V_{A}-V_{B}$ between the points $A$ and $B$.
A. 3 E
B. 4 E
C. E
D. 2 E

Answer: A
27. In a certain region, electric field $E$ exists along the x - axis which is uniform. Given $A B=2 \sqrt{3} m$ and $B C=4 m$. Points A, B, and C are in $x y$ plane.

find the potential difference $V_{C}-V_{B}$ between the points $C$ and $B$.
A. 2 E
B. 3 E
C. $-E$
D. $-2 E$

## Answer: D

## - Watch Video Solution

28. In a certain region, electric field $E$ exists along the x-axis which is uniform. Given $A B=2 \sqrt{3} m$ and $B C=4 m$. Points $\mathrm{A}, \mathrm{B}$, and C are in $x y$ plane.


A charged particle $q$ is moved from A to C as shown in path 1 . What is the work done by electric field in this process?
A. 2 qE
B. 5 qE
C. q E
D. 4 qe

## Answer: B

## D Watch Video Solution

29. An uniform electric field of strength $E$ exists in a region. An electron of mass $m$ enters a point $A$ perpendicular to x - axis with velocity $V$. It moves through the electric field and exists at point $B$. The components of velocity at $B$ are shown in (Fig. 3.156).

At $B$ the y -component of velocity remain uncharged.


Find electric field.
A. $\frac{2 m a V^{2}}{e d^{2}}$
B. $\frac{m a V^{2}}{e d^{2}}$
C. $\frac{m a V^{2}}{2 e d^{2}}$
D. $\frac{2 m a V^{3}}{e d^{3}}$

Answer: A
30. An uniform electric field of strength $E$ exists in a region. An electron of mass $m$ enters a point $A$ perpendicular to x - axis with velocity $V$. It moves through the electric field and exists at point $B$. The components of velocity at $B$ are shown in (Fig. 3.156).

At $B$ the y -component of velocity remain uncharged.


Find velocity at $B$.
A. $V \sqrt{1-\left(\frac{2 a}{d}\right)^{2}}$
B. $V \sqrt{1+\left(\frac{2 a}{d}\right)^{2}}$
c. $V \sqrt{1+\left(\frac{a}{d}\right)^{2}}$
D. $V \sqrt{2+\left(\frac{2 a}{d}\right)^{2}}$

## Answer: B

## D Watch Video Solution

31. An uniform electric field of strength $E$ exists in a region. An electron of mass $m$ enters a point $A$ perpendicular to x - axis with velocity $V$. It moves through the electric field and exists at point $B$. The
components of velocity at $B$ are shown in (Fig. 3.156).
At $B$ the y -component of velocity remain uncharged.


Find the rate of work done by the field at $B$.
A. $\frac{2 m a^{2} V^{3}}{d^{3}}$
B. $\frac{m a^{2} V^{3}}{2 d^{3}}$
C. $\frac{4 m a^{2} V^{3}}{d^{3}}$
D. $\frac{m a^{2} V^{3}}{d^{3}}$

## Answer: ( c)

## D Watch Video Solution

## Integer

1. There are 27 drops of a conducting fluid. Each drop
has radius $r$, and each of them is charged to the same
potential $V_{1}$. They are then combined to from a bigger
drop. The potential of the bigger drop is $V_{2}$. Find the
ratio $V_{2} / V_{1}$. Ignore the change in density of the fluid on combining the drops.
2. Figure shows two conducting thin concentric shells of radii $r$ and $3 r$. The outer shell carries charge $q$ and the inner shell is neutral. The amount of charge that flows from the inner shell to the earth after the key $K$ is closed is equal to $(1 / n)^{t h}$ of the charge on the outer shell. What is the value of $n$ ?

3. A charge of $5 \mu C$ is placed at the center of a square $A B C D$ of side 10 cm . Find the work done $(\operatorname{in} \mu J)$ in moving a charge of $1 \mu C$ from A to B .

## D Watch Video Solution

4. The linear charge density on a dielectric ring of radius $R$ vanes with $\theta$ as $\lambda=\lambda_{0} \cos \theta / 2$, where $\lambda_{0}$ is constant. Find the potential at the center $O$ of the ring [in volt].
5. Three point charges $q,-2 q$ and $-2 q$ are plaed at the vertices of an equilateral triangle of side a. The work done by some external force to increase their separation to 2a will be

## - Watch Video Solution

## DPP 3.1

1. There is an electric field $E$ in the $x$-direction. If the work done by the electric field in moving a charge of
$0.2 C$ through a distance of $2 m$ along a line making an
angle $60^{\circ}$ with the x - axis is 4 J , then what is the value of $E$ ?
A. $\sqrt{3} N / C$
B. $4 N / C$
C. $5 N / C$
D. None of these

## Answer: D

## D Watch Video Solution

2. Four equal charges $q$ each are placed at four corners of a square of a square of side a each. Work done
incarrying a charge $-q$ from its centre to infinity is
A. 0
B. $\frac{\sqrt{2} Q^{2}}{4 \pi \varepsilon_{0} a}$
C. $\frac{\sqrt{2} Q^{2}}{\pi \varepsilon_{0} a}$
D. $\frac{Q^{2}}{2 \pi \varepsilon_{0} a}$

## Answer: C

## D Watch Video Solution

3. Charges of $+\frac{10}{3} \times 10^{-9} \mathrm{C}$ are placed at each of the four corners of a square of side 8 cm . The potential at the intersection of the diagonals is
A. $150 \sqrt{2}$ volt
B. $1500 \sqrt{2}$ volt
C. $900 \sqrt{2}$ volt
D. 900 volt

## Answer: B

## D Watch Video Solution

4. Three charges $2 q,-q,-q$ are located at the vertices of an equilateral triangle. At the centre of the triangle,
A. the field is zero but potential is non-zero
B. the field is non-zero but potential is zero
C. both field and potential are zero
D. both field and potential are non-zero

## Answer: B

## D Watch Video Solution

5. Two electric charges $12 \mu C$ and $-6 \mu C$ are placed 20 cm apart in air. There will be a point $P$ on the line joining these charges and outside the region between them, at which the electric potential is zero. The distance of $P$ from $6 \mu C$ charge is
A. 0.10 m
B. 0.15 m
C. 0.20 m
D. 0.25 m

## Answer: C

## D Watch Video Solution

6. A spherical conductor of radius 2 m is charged to a potential of 120 V . It is now placed inside another hollow spherical conductor of radius 6 m . Calculate the potential to which the bigger sphere would be raised
A. 20 V
B. 60 V
C. 80 V
D. 40 V

## Answer: D

## D Watch Video Solution

7. Two point charges $100 \mu C$ and $5 \mu C$ are placed at points $A$ and $B$ respectively with $A B=40 \mathrm{~cm}$. The work done by external froce in displacing the charge $5 \mu C$ from B to C, where $B C=30 \mathrm{~cm}$, angle $A B C=\frac{\pi}{2}$ and $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
A. 9 J
B. $\frac{81}{20} J$
C. $\frac{9}{25} J$
D. $-\frac{9}{4} J$

## Answer: D

## D Watch Video Solution

8. In the rectangle shown below, the two corners have charges $q_{1}=-5 \mu C$ and $q_{2}=+2.0 \mu C$. The work done in moving a charge $+3.0 \mu C$ from B to A is
A. 2.8 J
B. 3.5 J
C. 4.5 J
D. 5.5 J

## Answer: A

## D Watch Video Solution

9. A charge $(-q)$ and another charge $(Q)$ are kept at two points $A$ and $B$ respectively. Keeping the charge
$(+Q)$ fixed at $B$, the charge $(-q)$ at $A$ is moved to another point $C$ such that $A B C$ forms an equilateral
triangle of side $l$. The net work done in moving teh charge $(-q)$ is
A. $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{l}$
B. $\frac{1}{4 \pi \varepsilon_{0}} \frac{Q q}{l^{2}}$
C. $\frac{1}{4 \pi \varepsilon_{0}} Q q l$
D. Zero

## Answer: D

## - Watch Video Solution

10. A point charge is surrounded symmetrically by six identical charges at distance $r$ as shown in the figure

How much work is done by the froces of electrostatic repulsion when the point charge at the centre is removed to infinity?

A. Zero
B. $6 q^{2} / 4 \pi \varepsilon r$
C. $q^{2} / 4 \pi \varepsilon_{0} r$
D. $12 q^{2} / 4 \pi \varepsilon_{0} r$

Answer: B

## - Watch Video Solution

11. An electric field ' $E$ ' whose direction is radially outward varies as distance from origin 'r' as shown in the graph E is taken as positive if its direction is away from the origin. Then the work done by electric field on
a 2 C charge if it is taken from $(1,1,0)$ to $(3,0,0)$ is :

A. $20(3+\sqrt{2}) J$
B. -60 J
C. 60 J
D. $20(3-\sqrt{2}) J$

## Answer: D

12. 



A point charge $q_{1}=+6 e$ fixed at the origin of a coordinate system, and another point charge $q_{2}=-10 e$ is fixed at $x=8 n m, y=0$ the locus of all points in the xy plane for which potential $V=0$
(other man inifinity) is a circle centered on the $x$-axis as shown.
Q. Radius $R$ of the circle is
A. 3 nm
B. 6 nm
C. 7.5 nm
D. 9 nm

## Answer: C

## D Watch Video Solution

13. A point charge $q_{1}=+6 e$ fixed at the origin of a conducting system, and another point charge $q_{2}=-10 e$ is fixed at $x=8 \mathrm{~nm}, y=0$. The locus of all points in the $x y$ plane for which potential $V=0$ (other than infinity) is a circle contered on the $x$-axis, as shown

$x$-coordinate of the centre of the circle is
A. -2 nm
B. -3 nm
C. -4.5 nm
D. -7.5 nm

Answer: C
14.


A point charge $q_{1}=+6 e$ fixed at the origin of a coordinate system, and another point charge $q_{2}=-10 e$ is fixed at $x=8 n m, y=0$ the locus of all points in the xy plane for which potential $V=0$ (other man inifinity) is a circle centered on the $x$-axis as shown.
Q. The potential at the centre of the circle is
A. 0.32 V
B. 0.77 V
C. 1.2 V
D. -1.2 V

## Answer: B

## (D) Watch Video Solution

## DPP 3.2

1. A uniform surface charge of density $\sigma$ is given to a quarter of a disc extending up to infinity in the first quadrant of $x-y$ plane. The centre of the disc is at the origin $O$. Find the z-component of the electric field at the point $(0,0, z)$ and the potential difference
between the point $(0,0, d)$ and $(0,0,2 d)$


## D Watch Video Solution

2. The electric potential V at any point $\mathrm{x}, \mathrm{y}, \mathrm{z}$ (all in metre) in space is given by $V=4 x^{2}$ volt. The electric field at the point $(1 m, 0,2 m)$ is .............. $\frac{V}{m}$.
A. 8 along negative $X$-axis
B. 8 along positive X -axis
C. 16 along negative X -axis
D. 16 along positive Z-axis

## Answer: A

## D Watch Video Solution

3. Electric potential is given by
$V=6 x-8 x y^{2}-8 y+6 y z-4 z^{2}$
Then electric force acting on $2 C$ point charge placed on origin will be
A. 2 N
B. 6 N
C. 8 N
D. 20 N

## Answer: D

## D Watch Video Solution

4. Consider two points 1 and 2 in a region outside a charged sphere. Two points are not very far away from the sphere. If $E$ and $V$ respresent the electric fileld vector and the electric potential. Which of the following is not possible ?
A. $\left|\vec{E}_{1}\right|=\left|\vec{E}_{2}\right|, V_{1}=V_{2}$
B. $\vec{E}_{1} \neq \vec{E}_{2}, V_{1} \neq V_{2}$
C. $\vec{E}_{1} \neq \vec{E}_{2}, V_{1}=V_{2}$
D. $\left|\vec{E}_{1}\right|=\left|\vec{E}_{1}\right|, V_{1} \neq V_{2}$

## Answer: D

## D Watch Video Solution

5. Electric potential at any point is
$V=-5 x+3 y+\sqrt{15} z$, then the magnitude of the electric field is
A. $3 \sqrt{2}$
B. $4 \sqrt{2}$
C. $5 \sqrt{2}$
D. 7

## Answer: D

## - Watch Video Solution

6. The figure gives the electric potential $V$ as a function of distance through five regions on $x$-axis.

Which of the following is true for the electric $E$ in
these regions?

A. $E_{1}>E_{2}>E_{3}>E_{4}>E_{5}$
B. $E_{1}=E_{3}=E_{5}$ and $E_{2}<E_{4}$
C. $E_{2}=E_{4}=E_{5}$ and $E_{1}<E_{2}$
D. $E_{1}<E_{2}<E_{3}<E_{4}<E_{5}$

Answer: B
7. Figure shown a charged conductor resting on an insulating stand. If at the point $P$ the charge density is $\sigma$, the potential is $V$ and the electric field strength is
$E$, what are the values of these quantities at point $Q$ ?


Charge density Potential Electric intensity
A. $>\sigma$ $>V$ $>E$

Charge density Potential Electric intensity B.
$>\sigma$
V
$>E$
c.

Charge density Potential Electric intensity $<\sigma$ $V \quad E$

Charge density Potential Electric intensity
D.
$<\sigma$
V
$<E$

## Answer: D

## D Watch Video Solution

8. The electrostatic potential on the surface of a charged conducting sphere is 100 V . Two statements are made in this regard
$S_{1}$ : At any point inside the sphere, electric intensity is zero.
$S_{2}:$ At any point inside the sphere, the electrostatic potential is 100 V .

Which of the following is a correct statement ?
A. $S_{1}$ is true but $S_{2}$ is false
B. Both $S_{1}$ and $S_{2}$ are false
C. $S_{1}$ is true, $S_{2}$ is also true and $S_{1}$ is the cause of $S_{2}$
D. $S_{1}$ is true, $S_{2}$ is also true but the statements are independent

## Answer: C

9. If unifrom electric filed $\vec{E}=E_{0} \hat{i}+2 E_{0} \hat{j}$, where $E_{0}$
is a constant, exists in a region of space and at $(0,0)$
the electric potential $V$ is zero, then the potential at $\left(x_{0}, 0\right)$ will be.
A. Zero
B. $-E_{0} x_{0}$
C. $-2 E_{0} x_{0}$
D. $-\sqrt{5} E_{0} x_{0}$

Answer: B
10. There exists a uniform electric filed in the space as shown. Four points $A, B, C$ and $D$ are marked which are equildistant from the origin. If and $V_{D}$ are their potentials respectively, then

A. $V_{B}>V_{A}>V_{C}>V_{D}$
B. $V_{A}>V_{B}>V_{D}>V_{C}$
C. $V_{A}=V_{A}>V_{C}=V_{D}$
D. $V_{B}>V_{C}>V_{A}>V_{D}$

Answer: B

## - Watch Video Solution

11. The potential of an electric field $\vec{E}=(y \hat{i}+x \hat{j})$ is
A. $V=-x y+$ constant
B. $V=-(x+y)+$ constant
C. $V=-\left(x^{2}+y^{2}\right)+$ constant
D. $V=$ constant
12. A uniform electric field exists in $x-y$ plane. The potential of points $A(-2 m, 2 m), B(-2 m, 2 m)$ and $C(2 m, 4 m)$ are $4 V, 16 \mathrm{~V}$ and 12 V respectively. The electric field is
A. $(4 \hat{i}+5 \hat{j}) \frac{V}{m}$
B. $(3 \hat{i}+4 \hat{j}) \frac{V}{m}$
C. $-(3 \hat{i}+4 \hat{j}) \frac{V}{m}$
D. $(3 \hat{i}-4 \hat{j}) \frac{V}{m}$

Answer: D
13. Four similar charges each of charge $+q$ are placed at four corners of a square of side a. Find the value of integral $-\int_{\infty}^{a / \sqrt{2}} \vec{E} \cdot \vec{d} r$. (in volts) if value of integral
$-\int_{a / \sqrt{2}}^{0} \vec{E} \cdot \overrightarrow{d r}=\frac{\sqrt{2} K q}{a}\left(\right.$ where $\left.K=\frac{1}{4 \pi \varepsilon_{0}}\right)$
A. $\frac{4 K q}{a}$
B. $\frac{3 K q}{a}$
C. $\frac{3 \sqrt{2} K q}{a}$
D. $\frac{4 \sqrt{2} K q}{a}$

Answer: C
14. Two infinite, parallel, nonconducting sheets carry equal positive charges density $\sigma$. One is placed in the yz plane and the other at distance $x=a$. Take potential $V=0$ at $x=0$. Then.
A. For $0 \leq x \leq a$, potential $V_{x}=0$
B. For $x \geq a$, potential $V_{x}=-\frac{\sigma}{\varepsilon_{0}}(x-a)$
C. For $x \geq a$ potential $V_{x}=\frac{\sigma}{\varepsilon_{0}}(x-a)(X-a)$
D. For $x \leq 0$ potential $V_{X}=\frac{\sigma}{\varepsilon_{0}} x$

## Answer: A::B::D

15. About an electric field which of the following statements are not true?
A. If $E=0, V$ must be zero
B. If $V=0, E$ must be zero
C. If $E \neq 0, V$ cannot be zero
D. If $V \neq 0, E$ cannot be zero

## Answer: A::B::C::D

## D Watch Video Solution

1. Two metal spheres, one of radius $R$ and the other of radius 2 R , both have same surface charge density $\sigma$. If they are brought in contact and separated, then the new surface charge densities on each of the sphere are respectively

## - Watch Video Solution

2. Two charges $q_{1}$ and $q_{2}$ are placed at ( $0,0, \mathrm{~d}$ ) and ( $0,0,-\mathrm{d}$ ) respectively. Find locus of points where the potential is zero.

## 3. Equipotentials at a great distance from a collection

 of charges whose total sum is not zero are approximately.A. spheres
B. planes
C. paraboloids
D. ellipoids

## Answer: A

## - Watch Video Solution

4. Figure shows ome equipotential lines distributed in space. A charged object is moved from point A to point B.
A. The work done in Fig (i) is the greatest
B. The work done in Fig. (ii) is the least
C. The work done is the same in Fig. (i), Fig. (ii) and

Fig. (iii)
D. The work done in Fig (iii) is greater than Fig. (ii) but equal to that in Fig. (i)

## Answer: C

## D Watch Video Solution

5. In the electric field of a point chargde $q$, a cetrain charge is carried from point $A$ to $B, C, D$ and $E$. Then the work done

$A$. is least along the path $A B$
B. is least along the path $A D$
$C$. is zero along all the paths $A B, A C, A D$ and $A E$
D. is least along AE

## Answer: C

## D Watch Video Solution

6. Equipotential surfaces are shown in figure. Then the electric field strength will be

A. $100 \mathrm{Vm}^{-1}$ along X -axis
B. $100 \mathrm{Vm}^{-1}$ along Y -axis
C. $200 \mathrm{Vm}^{-1}$ at an angle $120^{\circ}$ will X -axis
D. $50 \mathrm{Vm}^{-1}$ at an angle $120^{\circ}$ with X -axis

Answer: C
7. In moving from $A$ to $B$ along an electric field line, the work done by the electric field on an electron is $6.4 \times 10^{-19} \mathrm{~J}$. If $\phi_{1}$ and $\phi_{2}$ are equipotential surfaces, then the potential difference $V_{C}-V_{A}$ is.

A. $-4 V$
B. $4 V$
C. Zero
D. 64 V

Answer: B

## - Watch Video Solution

8. Electric lines of force are as shown in the figure.

Then potential at point $P$

A. is zero
B. is not zero
C. may be zero also
D. is not defined

## Answer: B

## - Watch Video Solution

9. Two infinitely large charged planes having uniform
suface charge density $+\sigma$ and $-\sigma$ are placed along
$x-y$ plane and $y z$ plane respectively as shown in the figure. Then the nature of electric lines of forces in
$x-z$ plane is given by:

(a)

B.

C.
(d)


## D.

## Answer: C

## D Watch Video Solution

10. Equipotential surfaces
A. are closer in regions of large electric fields compared to regions of lower electric fields
B. will be more crowded near sharp edges of a conductor

# C. will be more crowded ner regions of large charge 

 densitiesD. will always be equally spaced

## Answer: A::B::C

## D Watch Video Solution

11. Consider a uniform electric field in the z-direction.

The potential is a constant
A. in all space
B. for any $x$ for a given $z$
C. for any $y$ for a given $z$
D. on the $x-y$ plane for a given $z$

## Answer: B::C::D

## - Watch Video Solution

12. Across the surface of a charged conductor, the electric
A. field is continuous
B. potential is continuous
C. field is discontinous
D. potential is discontinuous

## Answer: B::C

## D Watch Video Solution

13. Mark the correct statements.
A. a given conducting sphere can be charged to any
extent
B. a given conducting sphere cannot be charged to a potential greater than a certain value
C. a given conducting sphere cannot be charged to

## a potential less than a certain minimum value

D. none of the above

## Answer: B::C

## - Watch Video Solution

14. A conducting sphere of radius $R$ has a charge. Then,
A. the charge is uniformly distributed over its surface. If there is no external electric field
B. distribution of charge over its surface will be non-uniform, if an external electric field exists in the space.
C. the electric field strength inside the space will be equal to zero only when no external electric field
exists
D. potential at every point of the sphere must be the same

## Answer: A::D

## (D) Watch Video Solution

15. Consider two conducting spheres of radii
$R_{1}$ and $R_{2}$ with $R_{1}>R_{2}$. If the two are at the same potential, the larger sphere has more charge than the smaller sphere. State whetehr the charge density of the smaller sphere is more or less than that of the larger oe.

## D Watch Video Solution

16. Free electrons travel to reion of higher potential or lower potential.

## - Watch Video Solution

17. Assertion: Two adjacent conductors of unequal
dimensions, carrting the same positive charge have a potential difference between them.

Reason : The potential of a conductor depends upon the charge given to it.
18. A test charge $q$ is made to move in the electric field of a point cahrge $Q$ along two different clsoed parths
[figure first path has sections along and perpendicular to lines of electric field. Second path is a rectangular loop of the same area as the first loop. how does the
work done compare in the two cases?


## D Watch Video Solution

19. Prove that a closed equipotential surface with no charge within itself must enclose a equipotential volume.

## (D) Watch Video Solution

20. Prove that, if an insulated, uncharged conductor is
plated near a charged conductor and no other conductors are present, the uncharged body must intermediate in potential between that of the charged body and that of infinity.

## - Watch Video Solution

DPP 3.4

1. Two charges $-q$ each are separated by distance $2 d$.

A third charge $+q$ is kept at mid-point O . Find potential energy of $+q$ as a function of small distance $x$ from O due to $-q$ charges. Prove that the charge at
$O$ is in an unstable equilibrium.

## - Watch Video Solution

2. A positively charged particle is released from rest in an uniform electric field. The electric potential energy of the charge.
A. remains a constant because the electric field is
B. increases because the charge moves along the electric field
C. decreases because the charge moves along electric field
D. decreases because the charge moves opposite to the electric field.

## Answer: C

## - Watch Video Solution

3. If identical charges $(-q)$ are placed at each corner of a cube of side $b$, then electric potential energy of
charge $(+q)$ which is placed at centre of the cube will be

> A. $\frac{8 \sqrt{2} q^{2}}{4 \pi \varepsilon_{0} b}$
> B. $\frac{-8 \sqrt{2} q^{2}}{\pi \varepsilon_{0} b}$
> C. $\frac{-4 \sqrt{2} q^{2}}{\pi \varepsilon_{0} b}$
> D. $\frac{-4 q^{2}}{\sqrt{3} \pi \varepsilon_{0} b}$

## Answer: D

## - Watch Video Solution

4. Two charges $q_{1}$ and $q_{2}$ are placed 30 cm apart, as shown in figure. A third charge $q_{3}$ is moved along the
arc of a circle of radius 40 cm from C to D . The change in the potential energy of the system is $\frac{q_{3}}{4 \pi \varepsilon_{0}} K$, where K is
A. $8 q_{2}$
B. $8 q_{1}$
C. $6 q_{2}$
D. $6 q_{1}$

Answer: A

## 5. A charged particle of charge $Q$ is held fixed another

 charged particle of mass $m$ and charge the same sign is released from a distance $r$ impulse of the force exerted by the external agent the fixed charge by the time when distance between Q and q becomes $2 r$ isA. $\sqrt{Q q / 4 \pi \varepsilon_{0} m r}$
B. $\sqrt{Q q m / 4 \pi \varepsilon_{0} r}$
C. 0
D. cannot determine

## Answer: B

6. A very large sphere having charge $Q$ uniformly distributed on the surface s compressed uniformly till its radius reduces to $R$. The work done by the electric force in this process is :
A. $\frac{Q^{2}}{8 \pi \varepsilon_{0} R}$
B. $\frac{-Q^{2}}{8 \pi \varepsilon_{0} R}$
C. $\infty$
D. 0

## Answer: B

7. In the figure shown the elctric potential energy of the system is: ( $q$ is at the centre of the conducting neutral spherical shell of inner radius a and outer radius $b$ )

A. 0
B. $\frac{k q^{2}}{2 b}$
C. $\frac{k q^{2}}{2 b}-\frac{k q^{2}}{2 a}$
D. $\frac{k q^{2}}{2 a}-\frac{k q^{2}}{2 b}$

## Answer: C

## D Watch Video Solution

8. A point charge ' $Q$ ' is placed at the centre of a spherical cavity of radius 'b' carved inside a solid conducting sphere of radius 'a'. Then total energy of the system is:
$\left[k=\frac{1}{4 \pi \in_{0}}\right]$

A. $\frac{k Q^{2}}{2 a}-\frac{k Q^{2}}{2 b}$
B. $\frac{k Q^{2}}{2 a}+\frac{k Q^{2}}{2 b}$
C. $\frac{k Q^{2}}{a}+\frac{k Q^{2}}{b}$
D. $\frac{k Q^{2}}{a}-\frac{k Q^{2}}{b}$

## Answer: A

## - Watch Video Solution

9. Four charges are rigidly fixed along the $Y$-axis as
shown. A positive charge approches the system along
the $X$ axis with initial speed just enough to cross the
origin. Then its total energy at the origin is

A. Zero
B. positive
C. negative
D. data insufficient

Answer: B

## ( Watch Video Solution

10. Three charge $+q$, $-q$, and $+2 q$ are placed at the vertices of a right angled triangle (isosceles triangle)as shown. The net electrostatic energy of the configuration is:

A. $-\frac{K q^{2}}{a}(\sqrt{2}-1)$
B. $\frac{K q^{2}}{a}(\sqrt{2}+1)$
C. $-\frac{K q^{2}}{a}(\sqrt{2}-1)$
D. None of these

## Answer: C

## D Watch Video Solution

11. Three equal charges $Q$ are placed at the three vertices of an equilateral triangle. What should be the va, ue of a charge, that when placed at the centroid, reduces the interaction energy of the system to zero?
A. $\frac{-Q}{2}$
B. $\frac{-Q}{3}$
C. $\frac{-Q}{2 \sqrt{3}}$
D. $\frac{-Q}{\sqrt{3}}$

## Answer: D

## D Watch Video Solution

12. You are moving a negative charge $q<0$ at a small constant speed away from a uniformly charged nonconducting spherical shell on which resides a negative charge $Q<0$. The electrostatic, field of $Q$ is $E$. Let $U$ be the total energy of the system, $W_{a}$ the work done
by the force $F_{a}$ you exert on $q, W_{E}$ the work done by
the electrostaitc force $F_{E}$ on $q$. Then, as $q$ is being moved:
A. $W_{a}=-W_{E}$, there $U$ remains constant
B. $F_{a}=-F_{E}$
C. $U$ increases
D. $U$ decreases

## Answer: D

13. A negative charge $Q$ is distributed uniformly in volume of a sphere is radius $R$ and a point charge particle (may be negative or positive) is present on the surface of this sphere then variation of escape velocity $\left(v_{s}\right)$ of charge ' q ' as a function of ' q ' will be [negect gravitational interaction].
A.
(a)

B.
(b)

C.
(c)

D.
(d)


## Answer: C

## D Watch Video Solution

14. A positive point charge $+Q$ is fixed in space .A negative point charge $-q$ of mass $m$ revolves around a fixed charge in elliptical orbits. The fixed charge $+Q$ is at one focus of the ellipse.The only force acting on negative charge is the electrostatic force due to positive charge is the electrostatic force due to positive charge.Then which of the following statement

A. Linear momentum of negative point charge is conserved
B. Angular momentum of negative point charge about fixed positive charge is conserved
C. Total kinetic energy of negative point charge is

# D. The sum of electrosatatic potential energy and 

kinetic energy of system of both point charges is conserved.

## Answer: B::D

## - Watch Video Solution

15. Small identical balls with equal charges are fixed at
the vertices of a regular polygon of N sides, each of length d. At a certain instant, one of the ball is released. After long time interval, the adjacent ball to the previous one is released. The difference in kinetic
energies of the two released balls is $K$ at a sufficiently long distance from the polygon.
A. Final kinetic energy of the first ball is greater than that of the second ball
B. Final kinetic energy of the second ball is greater
thn that of the first ball
C. Charge on each ball is $\sqrt{2 \pi \varepsilon_{0} d K}$
D. Charge on each ball is $\sqrt{4 \pi \varepsilon_{0} d K}$

Answer: A::D

- Watch Video Solution

1. In the figure shown a conducting sphere of inner radius 'a' and outer radius ' b ' is given a charge $Q$. A point charge ' $q$ ' is placed in the cavity of this sphere at distance ' $x$ ' $(<a)$ away from the centre. Find the electric field intensity and electric potentials at point
$P$ (outside the sphere) at distance $r>b$. Also find the electric potential at point C

2. A point charge $Q$ is situated (outside) at a distance $r$ from the centre of an uncharged conducting solid sphere of radius $R$. The potential due to induced charges (on the conductor) at a point $B$ inside the conductor whose distance form the point charge is d is $\qquad$

## D Watch Video Solution

3. Find the electric field potentail and strength at the centre of a hemisphere fo raidus $R$ ahcged uniformly with the the surface density $\sigma$.
4. There are three concentric conducting spherical shells. All of them are charged. The innermost sphere is connected by a conducting wire to the outermost sphere. Prove that the final charge on the innermost sphere is independent of the initial charge of outermost sphere.

## D Watch Video Solution

5. Both the ring and the conducting sphere are given
the same charge $Q$. Determine the potential of the
sphere. Assume that the centre of the sphere lies on the axis of th ring. Is it necessary that the charge on the ring be uniformly distributed to answer the above question?


## - Watch Video Solution

6. A solid sphere of radius 'R' has a cavity of radius $\frac{R}{2}$.

The solid part has a uniform charge density ' $\rho$ ' and
cavity has no charge. Find the electric potential at point 'A'. Also find the electric field (only magnetude) at point ' $C$ ' inside the cavity


## - Watch Video Solution

7. A thibn spherical conducting shell of radius $R$ has a charge q . Another charge $Q$ is placed at the centr of the shell. The electrostatic potential at a point P a distance $R / 2$ from the centre of the shell is

> A. $\frac{(q+Q)}{4 \pi \varepsilon_{0}} \frac{2}{R}$
> B. $\frac{2 Q}{4 \pi \varepsilon_{0} R}$
C. $\frac{2 Q}{4 \pi \varepsilon_{0} R}-\frac{2 q}{4 \pi \varepsilon_{0} R}$
D. $\frac{2 Q}{4 \pi \varepsilon_{0} R}+\frac{q}{4 \pi \varepsilon_{0} R}$

## Answer: D

8. An arc of radius $r$ carries charge. The linear density of charge is $\lambda$ and the arc subtends an angle $\frac{\pi}{3}$ at the centre.
A. $\frac{\lambda}{4 \varepsilon_{0}}$
B. $\frac{\lambda}{8 \varepsilon_{0}}$
C. $\frac{\lambda}{12 \varepsilon_{0}}$
D. $\frac{\lambda}{16 \varepsilon_{0}}$

Answer: C
9. Two identical thin rings, each of radius $R$, are coaxially placed at a distance R . If $Q_{1}$ and $Q_{2}$ are respectively, the charges uniformly spread on the two rings, find the work done in moving a charge $q$ from centre of ring having charge $Q_{1}$ to the other ring.
A. Zero

$$
\begin{aligned}
& \text { B. } \frac{q\left(Q_{1}-Q_{2}\right)(\sqrt{2}-1)}{\sqrt{2} .4 \pi \varepsilon_{0} R} \\
& \text { C. } \frac{2 \sqrt{2}\left(Q_{1}+Q_{2}\right)}{4 \pi \varepsilon_{0} R} \\
& \text { D. } \frac{q\left(Q_{1}+Q_{2}\right)(\sqrt{2}+1)}{\sqrt{2} .4 \pi \varepsilon_{0} R}
\end{aligned}
$$

## Answer: B

10. If the electric potential of the inner metal shell is 10

V and that of the outer shell is 5 V , then the potential
at the centre will be
A. 10 volt
B. 5 volt
C. 15 volt
D. 0

Answer: A
11. Potential difference beween centre and surface of the sphere of radius $R$ and uniorm volume charge density $\rho$ within it will be
A. $\frac{\rho R^{2}}{6 \varepsilon_{0}}$
B. $\frac{\rho R^{2}}{4 \varepsilon_{0}}$
C. 0
D. $\frac{\rho R^{2}}{2 \varepsilon_{0}}$

## Answer: A

12. A mercury drop has potential 'V' on its surface. 1000 such drops combine to form a new drop. Find the potential on the surface of the new drop.
A. V
B. 10 V
C. 100 V
D. 1000 V

## Answer: C

13. A solid conducting sphere of radius 'a' is surrounded by a thin uncharged concentric conducting shell of radius $2 a$. A point charge q is placed at a distance $4 a$ from common centre of conducting sphere and shell. The inner sphere is then grounded

The charge on solid sphere is
A. $-\frac{q}{2}$
B. $-\frac{q}{4}$
C. $-\frac{q}{8}$
D. $-\frac{q}{16}$

## Answer: B

## D Watch Video Solution

14. A solid conducting sphere of radius 'a' is surrounded by a thin uncharged concentric conducting shell of radius $2 a$. A point charge q is placed at a distance $4 a$ from common centre of conducting sphere and shell. The inner sphere is then grounded

Pick up the correct statement.
A. Charge on surface of inner sphere is nonuniformly distributed
B. Charge on inner surface of outer shell is nonuniformly distributed
C. Charge on outer surface of outer shell is nonuniformly distributed
D. All the above statements are false

## Answer: C

## D Watch Video Solution

15. A solid conducting sphere of radius 'a' is surrounded by a thin uncharged concentric conducting shell of radius $2 a$. A point charge q is
placed at a distance $4 a$ from common centre of conducting sphere and shell. The inner sphere is then grounded

The potential of outer shell is
A. $\frac{q}{32 \pi \varepsilon_{0} a}$
B. $\frac{q}{16 \pi \varepsilon_{0} a}$
C. $\frac{q}{8 \pi \varepsilon_{0} a}$
D. $\frac{q}{4 \pi \varepsilon_{0} a}$

Answer: A

## - Watch Video Solution

