©゙" doubtnut

MATHS

BOOKS - IA MARON MATHS (HINGLISH)

DIFFERENTIATION OF FUNCTIONS

21 Definition Of The Derivatives

1. Find the increment $\triangle y$ and the ratio $\frac{\triangle y}{\triangle x}$ for the following function
(a) $y=\sqrt{x}$ at $\mathrm{x}=1$ and $\triangle x=0.0001$,
(b) $y=\frac{1}{x^{2}+x-6}$ at $\mathrm{x}=1$ and $\triangle x=0.2$
2. find the derivatives of the following functions :
(a) $\mathrm{y}=\cos \mathrm{ax}$, (b) $y=5 x^{2}-2 x$

- Watch Video Solution

3. Show that the following functions have no finite derivatives at the indicated points :
(a) $y=5 \sqrt{x^{3}}$ at the point $\mathrm{x}=0$
(b) $y=3 \sqrt{x-1}$ at the point $\mathrm{x}=1$
(c) $y=3|x|+1$ at the point $\mathrm{x}=0$

- Watch Video Solution

4. Find the average velocity of motion specified by the formula $s=\left(t^{2}-5 t+2\right) \mathrm{m}$ from $t_{1}=5 \mathrm{sec}$ to $t_{2}=15$ sec.

- Watch Video Solution

5. find the derivatives of the following functions : (a)
$y=x^{3},(b) y=1 / x^{2}$

- Watch Video Solution

6. Investigate the function $\mathrm{y}=|\cos \mathrm{x}|$ for differentiability at the points $x=\frac{\pi}{2}+n \pi$ (n an integer).

22 Differentiation Of Explicit Functions

1. Find y^{\prime}, if
(a)
$y=5 x^{2 / 3}-3 x^{5 / 2}+2 x^{-3}(b) y=\frac{a}{(3 \sqrt{x})^{2}}-\frac{b}{x^{3} \sqrt{x}}$
(a,b constants)

D Watch Video Solution

$$
\begin{aligned}
& \text { 2. Find y } \\
& y=3 \cos x+2 \sin x,(b) y=\frac{\sin x+\cos x}{\sin x-\cos x}(c) y=\left(x^{2}+1\right)
\end{aligned}
$$

$\arctan \mathrm{x}$, (d) $y=x^{3} \arcsin x$

- Watch Video Solution

3. Find the derivative of the given function and then compute the particular value of the derivative at the indicated value of the argument:
(a) $f(x)=1-(3 \sqrt{x})^{2}+\frac{16}{x} a t x=-8$
(b) $f(x)=\frac{(1-3 \sqrt{x})^{2}}{x} a t x=0.01$
(c) $f(t)=\frac{\cot t}{1-\sin t}$ at $\mathrm{t}=\frac{\pi}{6}$

- Watch Video Solution

4. Find the derivation of the function
$y=\arcsin \left(\frac{2 x}{1+x^{2}}\right)$
5. Show that the function $\mathrm{y}=x e^{-x^{2} / 2}$ satisfies the equation
$x\left(\frac{d y}{d x}\right)=\left(1-x^{2}\right) y$

- Watch Video Solution

6. Show that the function $y=x e^{-x}$ satisfies the equation $x y^{\prime}=(1-x) y$

- Watch Video Solution

7. Applying logrithmic differentiation find the derivatives of the following functions
(a) $y=(\cos x)^{\sin x}$
(b) $y=\left(\frac{3 \sqrt{\sin 3 x}}{1-\sin 3 x}\right)$
$(c) y=\frac{\sqrt{x-1}}{(3 \sqrt{x+2})^{2}(\sqrt{x+3})^{3}}$

(D) Watch Video Solution

23 Successive Differentiation Of Explicit Function Leibnitz Formula

1. Compute the value of the nth derivative of the function
$y=\frac{3 x+2}{x^{2}-2 x+5}$ at the point $\mathrm{x}=0$.
2. Using the Leibnitz formula give the derivatives of the indicated orders for the following functions
(a) $y=x^{3} \sin x$, find y^{20}
(b) $y=e^{-x} \sin x$, find $y^{\prime \prime}{ }^{\prime}$,
(c) $y=e^{x}\left(3 x^{2}-4\right)$, find y^{n}
(d) $y=\left(1-x^{2}\right) \cos x$, find $y^{2 n}$

- Watch Video Solution

24 Differentiation Of Inverse Implicit And Parametrically Represented Functions

1. Find $y^{\prime} \times$ if:
(a) $\arctan y-y+c=0$
(b) $e^{x}-e^{y}=y-x$
(c) $x+y=e^{x-y}$

(D) Watch Video Solution

2. Find y ' x for the following implicit function
(a) $y=x+\arctan y$
(b) $x^{2}+5 x y+y^{2}-2 x+y-6=0$ find y " at the point
$(1,1)$

25 Application Of The Derivative

1. Find the points on the curve $y=x^{3}-3 x+5$ at which the tangent line :
(a) is parallel to the straight line $y=-2 x$,
(b) is perpendicular to the straight line $y=\frac{x}{9}$,
(c) forms an angle of 45° with the positive direction of the x-axis.

- Watch Video Solution

2. Find the angles at which the following lines intersect:
(a) the straight line $y=4-x$ and the parabola
$y=4-\frac{x^{2}}{2}$
(b) the sinusoid $y=\sin x$ and the cosine curve $y=\cos x$

- Watch Video Solution

3. Prove that the segment of the tangent to the hyperbola $y=\frac{c}{x}$ which is contained between the coordinate axes is bisected at the point of tangency.

D Watch Video Solution

4. Find the equations of the tangent and the normal to the following curves :
(a) $4 x^{3}-3 x y^{2}+6 x^{2}-5 x y-8 y^{2}+9 x+14=0 \quad$ at
the point $(-2,3)$
(b) $x^{5}+y^{5}-2 x y=0$ at the point $(1,1)$

- Watch Video Solution

5. $f(x)=3 x^{5}-15 x^{3}+5 x-7$. Find out at which of the points x the rate of change of the function is minimal

- Watch Video Solution

6. A point is in motion along a cubic parabola $12 y=x^{3}$.

Which of its coordinates changes faster ?

- Watch Video Solution

7. A body of mass 6 g is in rectilinear motion according to
the laws $=-1+(t+1)+(t+1)^{3} \quad(\mathrm{~s} \quad$ is \quad in
centimetres and t , in seconds). Find the kinetic enery of the body one second after it begins to move.

- Watch Video Solution

8. If the velocity of a body moving in a straight line is proportional to the square root of the distance traversed, then it moves with

D Watch Video Solution

9. A raft is pulled to the bank by means of a rope which is
wound on a drum, at a rate of $3 \mathrm{~m} / \mathrm{min}$. Determine the
speed of the raft at the moment when it is 25 m distant
from the bank if the drum is situated on the bank 4 m above water level.

D Watch Video Solution

10. (a) Find the slope of the tangent to the cube parabola
$y=x^{3}$ at the point $x=\frac{\sqrt{3}}{3}$
(b) Write the equations of the tangents to the curve
$y=\frac{1}{1+x^{2}}$ at the 1 points of its intersection with the
hyperbola $y=\frac{1}{x+1}$
(c) Write the equation of the normal to the parabola
$y=x^{2}+4 x+1$ perpendicular to the line joining the origin of coordinates with the vertex of the parabola.
(d) At what angle does the curve $y=e^{x}$ intersect the y axis

- Watch Video Solution

11. The velocity of a body in rectilinear motion is determined by the formula $v=3 t+t^{2}$. What acceleration will the body have 4 s after the start ?
12. The law of rectilinear motion of a body with a mass of 100 kg is $s=2 t^{2}+3 t+1$. Determine the kinetic energy $\frac{m v^{2}}{2}$ of the body 5 s after the start

- Watch Video Solution

13. If $s=a e^{l}+b e^{-t}$ is the equation of motion of a particle, then its acceleration is equal to

- Watch Video Solution

14. A body is thrown vertically with an initial velocity of a $\mathrm{m} / \mathrm{sec}$. What altitude will it reach in t seconds ? Find the velocity of the body. In how many seconds and at what
distance from the ground will the body reach the highest point ?

- Watch Video Solution

26 Application Of The Derivative

1. All faces of a copper cube with 5 cm sides were uniformly ground down. As a result the weight of the cube was reduced by 0.96 g . Knowing the specific weight of copper (8) find the reduction the cube size, ie, the amount by which its side was reduced

D Watch Video Solution

2. Find differentials of higher orders (x an independent variable) :
(a) $y=4^{-x^{2}}$ find $d^{2} y$
(b) $y=\sqrt{\sin ^{2} x-4}$ find $d^{2} y$
(c) $y=\sin ^{2} x$ find $d^{3} y$

- Watch Video Solution

3. $y=\ln \frac{1-x^{2}}{1+x^{2}}$ find $d^{2} y$ if:
(a) x is an independent variable,
(b) x is a function of another variable. Consider the particular case when $\mathrm{x}=\tan \mathrm{t}$

D Watch Video Solution

1. Given the functions:
(a) $f(x)=|x|$ and
(b) $\phi(x)=\left|x^{3}\right|$

Do derivaties for these functions exist at the point $\mathrm{x}=0$

- Watch Video Solution

2. Prove that the Chebyshev polynomials
satisfy the equation

$$
\left(1-x^{2}\right) T^{\prime \prime}{ }_{n}(x)-x T_{n}^{\prime}(x)+n^{2} T_{n}(x)=0
$$

D Watch Video Solution

3. find derivatives of $y=2 x^{2}-x^{4}$

D Watch Video Solution

4. Determine the parameters a, b, c in the equation of the parabola $y=a x^{2}+b x+c$ so that it becomes tangent to the straight line $y=x$ at the point $x=1$ and passes through the point $(-1,0)$.

D Watch Video Solution

5. Prove that the curves $y_{1}=f(x)(f(x)>0)$ and $y_{2}=f(x) \sin \mathrm{x}$, where $\mathrm{f}(\mathrm{x})$ is a differentiable function, are tangent to each other at the common points.

- Watch Video Solution

6. Show that two cardioids $p=a(1+\cos \phi)$ and $p=a(1-\cos \phi)$ intersect at right angles

- Watch Video Solution

7. How will the expression
$\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y$ be transformed (where y is a twice differentiable function of x) if we introduce a new independent variable t, putting $x=\cos t$
