©゙doubtnut

PHYSICS

BOOKS - CENGAGE PHYSICS (ENGLISH)

INDUCTANCE

Illustration

1. A small square loop of wire of side I is placed
inside a large square loop of wire of side
$L(\gg l)$. The loops aer coplanar and their
centres coincide. What is the mutual inductance of the system?

D Watch Video Solution
2. What is the mutual inducatance of a system of coaxical cables carrying current in opposite directions a sshows in Fig. 4.3. Their radii are a and b, respectively.
3. The equivalent inductance of two inductors
is 2.4 H when connected in parallel and 10 H when connected in series. What is the value of inductances of the individual inductors?

D Watch Video Solution

4. What will happen to the inductance of a
solenoid
a. when the number of turns and the length are double keeping the area of cross section

same?

b. when the air inside the solenoid is replaced by iron of relative permeability μ_{r} ?

D Watch Video Solution

5. In Fig. coil 1 and coil 2 are wound on a long
cylindrical insulator. The ends A^{\prime} and B are joined together and current I is passed. Selfinductance of the two coils are L_{1} and L_{2}, and their mutual inductance is M.
a. Show that this combination can be replaced
by a single coil of equivalent inductange given
by
$L_{e q}=L_{1}+L_{2}+2 M$.
b. How could the coils be reconnected by
yieldings an equivalent inductance of

$$
L_{e q}=L_{1}+L_{2}-2 M
$$

6. The network shown in the figure is a part of complete circuit. What is the potential difference $V_{B}-V_{A}$ when the current I is $5 A$ and is decreasing at a rate of $10^{3} \mathrm{~A} / \mathrm{s}$?

D Watch Video Solution

7. In an $L R$ circuit as shows in Fig.when the swtich is closed, how much time will it take for the current to grow to a value n times the
maximum value of current (where $n<1$)?

D Watch Video Solution

8. In the circuit shows in Fig. the initail current
through the inductor at $t=0$ is I_{0}. After a time $t=L / R$, the switch is quickly shifted to position 2.
a. Plot a graph showing the variation of current with time.
b. Calculate the value of current in the
inductor at $t=\frac{3}{2} \frac{L}{R}$.

D Watch Video Solution
9. During the decay of current in an $L R$ circuit, if the current falls to η times the intial value in time T, then determine the value of time constane.

- Watch Video Solution

10. In the following circuit (Fig.)the switch is closed at $t=0$. Intially, there is no current in inductor. Find out the equation of current in
the inductor coil as s function of time.

- Watch Video Solution

11. Figure shows a circuit consisting of an ideal cell, an inductor L, and a resistor R, connected in series. Let switch S be closed at
$t=0$. Suppose at $t=0$, the current in the
inductor is i_{o}, then find out the equation of current as a function of time.

D Watch Video Solution

12. In the figure both cells A and B are of equal emf. Find R for which potential difference across battery A will be zero, long time after
the switch is closed. Internal resistance of batteries A and $\mathrm{B}\left(r_{1}\right)$ and $\left(r_{2}\right)$ respectively $\left(r_{1}>r_{2}\right)$.

D Watch Video Solution

13. Consider the $R L$ circuit in Fig. When the switch is closed in position 1 and opens in
position 2, electrical work must be performed on the inductor and on the resistor. The energy stored in the inductor is for the resistor energy appears as heat.
a. What is the ratio of P_{L} / P_{R} of the rate at which energy is stored in the inductor to the rate at which energy is dissipated in the resistor?
b. Express the ratio P_{L} / P_{R} as a function of time.
c. If the time constant of circuit is t, what is the time at which $P_{L}=P_{R}$?
14. Derive an expression for the total magnetic energy stored in two coils with inductances L_{1} and L_{2} and mutual inductance M, when the currents in the coils are I_{1} and I_{2}, respectively.

D Watch Video Solution

15. In an $L C$ circuit as shows in Fig. the switch
is closed at $t=0 . Q_{\max }=100 \mu C, L=40 \mathrm{mH}$
, $C=100 \mu F$.
a. Determine the equation for instantaneous
change on the capacitor.
b. Determine the equation for instantaneous
current in the circuit.

D Watch Video Solution

16. Initially the $900 \mu F$ capacitor is charged to

100 V and the $100 \mu F$ capacitor is uncharged in

Fig. Then switch S_{2} is closed for time t_{1}, after which it is opened and at the same instant switch S_{1} is closed for time t_{2} and then opened. It is now found that $100 \mu F$ capacitor is charged to $300 \mu F$ capacitor is charged to 300 V . Find the minimum possible value of the time interval t_{1} and t_{2}.

17. The circuit shows in Fig. is in the steady state with switch S_{1} closed. At $t=0, S_{1}$ is opened and switch S_{2} is closed.
a. Derive expression for the charge on capacitor C_{2} as a function of time.
b. Determine the first instant t, when the energy in the inductor becomes one-third of
that in the capacitor.

- Watch Video Solution

18. In the circuit shows in Fig. the battery has negligible internal resistance. Show that the
current in the circuit through the battery rises
instanlty to its steady state value E / R when the switch is closed, provided that resistance
R is $\sqrt{L / C}$.

19. An inductor of inductance 2.0 mH is connected across a charged capacitor of capacitance $5.0 \mu F$ and the resulting $L-C$ circuit is set oscillating at its natural frequency. Let Q denotes the instantaeus charge on the capacitor and I the current in the circuit. It is found that the maximum value of Q is $200 \mu C$.

- Watch Video Solution

1. A metal bar $A B$ can slide on two parallel thick metallic rails separated by a distance I. A resistance R and an inductance L are connected to the rails as shown in the figure.

A long straight wire carrying a constant current I_{0} is placed in the plane of the rails and perpendicular to them as shown. The bar

AB is held at rest at a distance x_{0} from the
long wire. At $\mathrm{t}=0$, it is made to slide on the rails away from wire. Answer the following questions.
(a) Find a relation among $i, \frac{d i}{d t}$ and $\frac{d \phi}{d t}$,
where i is the current in the circuit and ϕ is
the flux of the megnetic field due to the long
wire through the circuit.
(b) It is observed that at time $\mathrm{t}=\mathrm{T}$, the metal bar $A B$ si at a distance of $2 x_{0}$ from the long
wire and the resistance R carries a current $\left(i_{1}\right)$
. Obtain an expression for the net charge that has flown through riesistance R form $\mathrm{t}=0$ to $\mathrm{t}=\mathrm{T}$.
(c) THe bar is suddenly stopped at time T. THe
current through resistance R is found to be $\frac{i_{1}}{4}$ at time 2 T. Find the value of $\frac{L}{R}$ in terms of
hte other given quantities.

D Watch Video Solution

2. A circuit containing a two position switch S is shown in figure

a. The switch S is in position 1. Find the potential differecne $V_{A}-V_{B}$ and the rte of production of joule heat in R_{1}
b. If now the switch S is put in position 2 at
$t=0$. Find ItbRrgt i steady current in R_{4} and
ii hte time when current in R_{4} is half the steady value. Also calculate the energy stored in the inductor L at that time.
3. A metal rod OA of mann ' m ' and length ' r ' is
kept rotating with a constantangular speed ω
in a vertical plane about a horizontal axis at
the end O. The free end A is arraged to slide
without friction along fixed conduction
circular ring in the same plane as that of rotation. A uniform and constant magnetic induction \vec{B} is applied perpendicular and into
the plane of rotation as shown in the figure below. An inductor L and an external
resistance R are connected through a swithch
S between the point O and a point C on the ring to form an electrical circuit. Neglect the resistance of the ring and the rod. Initially, the switch is open.

(a) What is the induced emf across the teminal of the switch?
(b) The switch S is closed at time $\mathrm{t}=0$.
(i) Obtain an expression for the current as a function of time.
(ii) In the steady state, obtin the time dependence of the torque required to maintain the constant angular speed, given that the rod OA was along th positive X -axis at $\mathrm{t}=0$.

(Watch Video Solution

Exercise 4.1

1. The magnetic field B at all points within a circular region of the radius R is uniform space and directed into the plane of the page in figure. If the magnetic field is increasing at a rate $d B / d t$ what are the magnitude and direction of the force on as stationary positive point charge q located at points a, b, c ? (Point a is a distance r above the centre of the region, point b is a distance r to the right to the centre and point c is at the centre of the
region).

(Watch Video Solution

2. Figure shows two circular regions R_{1} and
R_{2} with redii $r_{1}=21.2 \mathrm{~cm}$ and $r_{2}=32.3 \mathrm{~cm}$,
respectively. In R_{1} there is a uniform magetic
field $B_{1}=48.6 m T$ into the page and in R_{2}
there is a uniform magnetic field
$B_{2}=77.2 m T$ out of the page (ignore any fringing of these fields).Both fields are decreasing at the rate $8.50 \mathrm{mTs} \mathrm{s}^{-1}$. Calculate the intergal $\widehat{\phi E} \cdot \overrightarrow{d l}$ for each of the three identical paths.

3. Figure shows five lettered regions in which a uniform magnetic field extends directly either out of the page (as in region a) or into he page. The field is increasing in magnitude at the same steady rate in all five regions, the regions are identical in area. Also shows are four numbered paths along which $\widehat{\oint E} \cdot \overrightarrow{d l}$ has the magnitudes given below in terms of a quantity mag. Determine whether the magnetic fields in regions b through e are
directed into ot out of the page.

?
$\left|\begin{array}{lllll}\text { Path } & 1 & 2 & 3 & 4 \\ \oint \vec{E} \cdot \overrightarrow{d l} & m a g & 2(m a g) & 3(m a g) & 0\end{array}\right|$

- Watch Video Solution

4. A magentic field directed into the page changes with time according to
$B=\left(0.0300 t^{2}+1.4 .40\right) T$, where t is in
seconds. The field has a circular cross section of radius $R=2.50 \mathrm{~cm}$. What are the magitude and direction of the electric field at point P_{1} when $t=3.00 s$ and $r_{1}=0.0200 \mathrm{~m}$?

5. Figure shows an $L C R$ circuit. When the switch is closed, the currents through resistor
R, inductor L, and capacitor C are I_{1}, I_{2}, and I_{3}, respectively. Determine the values of I_{1}, I_{2}, and I_{3}.

a. at $t=0$ b. at $t=\infty$
6. It has been proposed to use large inductors
as energy storage devices.
a. How much electrical energy is converted to
light and thermal energy by a $200-\Omega$ light bulb in one day?
b. If the amount of energy calculated in part
(a) is stored in an inductor in which the current is $80.0 A$, what is the inductance?

- Watch Video Solution

7. A $1-k \Omega$ resistor is connected in series with
a $10-m H$ inductor, a 30 V battery and an
open switch. At time $t=0$, the switch is
suddenly closed.
a. What is the maximum current in this circuit and when does it occur?
b. What are the voltage drops across the inductor and across the resistor $20 \mu s$ after the switch is closed?
c. On a single set of axes, sketch the voltage across the resistor and the voltage across the inductor as functions of time. Also, sketch a
graph of the current in the circuit as s function of time.

D Watch Video Solution

8. A capacitor with capacitance $6 \times 10^{-5} F$ is
charged by connecting it to a $12-V$ battery.

The capacitor is disconnected from the battery
and connected across an inductor with
$L=1.50 H$.
a. What are the angular frequency ω of the
electrical oscillations and the period of these
oscillations (the time for one oscillation)?
b. What is the intial charge on the capacitor?
c. How much energy is intially stored in the capacitor?
d. What is the charge on the capacitor 0.0230
s after the connecting to the inductor is made? Interpret the sign of the your answer.
e. At the times given in part (d), what is the
current in the inductor? Interpret the sign of
your answer.
f. At the time given in part (d), how much
electrical energy is stored in the capactior and
how much is stored in the inductor?

- Watch Video Solution

9. In the circuit shows in Fig., $E=10 \mathrm{~V}$,
$R_{1}=5 \Omega, R_{2}=10 \Omega$, and $L=5 H$. For the two separate conditions, (i) switch S is just closed and (ii) switch S is closed for a long time, calculate
a. current i_{1} through R_{1},
b. current i_{2} through R_{2},
c. current i through the switchs,
d. the potential difference across R_{2},
e. the potential difference across L,
f. $d i_{2} / d t$.

- Watch Video Solution

10. In Fig. the switch is closed and steady-state conditions are established. The switch is thrown open at $t=0$.
a. Find the initial voltage E_{0} across L just
after $t=0$. Which end of the coil is at the heigher potential : a or b ?
b. Make freehand graphs of the current in R_{1} and R_{2} as a funtion of time, treating the steady-state directions as positive. Show values before and after $t=0$.
c. How long after $t=0$ does the current in R_{2} have the value $2 m A$?

11. The switch in figure is closed at time $t=0$.

Find the current in the inductor and the current through the switch as functions of time thereafter.

12. $A B$ is a part of circuit. Find the potential difference $V_{A}-V_{B}$ if
a. current $I=2 A$ and is constant,
b. current $i=2 A$ and is increasing at the rate
of $1 A s^{-1}$,
c. current $i=2 A$ and is decreasing at the rate

$$
1 A s^{-1}
$$

- Watch Video Solution

13. A circuit contains an ideal cell and an inductor with a switch. Initially, the switch is open. It is closed at $t=0$. Find the current as
a function of time.

14. In the following circuit (Fig.) the switch is closed at $t=0$. Find the current i_{1}, i_{2}, i_{3} and $d i_{3} / d t$ at $t=0$ and at $t=\infty$. Intitially, all current are zero.

- Watch Video Solution

15. In a circuit S_{1} remains closed for a long
time and S_{2} remain open. Now S_{2} is closed and S_{1} is opened. Find out the $d i / d t$ in the right loop just after the moment.

16. At $t=0$, switch S is closed (shown in Fig.).

After a long time, suddenly the inductance of
the inductor is made η times lesser (L / η)
than its initial value. Find out current just after the operation.

17. Which of the two curves shows has lesser time constant.

- Watch Video Solution

18. Two insulated wires are wound on the same
hollow cylinder, s as to from two solenoids shering a common air-filled core. Let l be the
length of the core, A the cross -sectional area of the core, N_{1} the number of times the first wire is wound around the core, and N_{2} the number of times the second wire is wound around the core. Find the mutual inductance of the two solenoids, neglecting the end effects.

D Watch Video Solution

19. Find the mutual inductance of two concentric coils of radii a_{1} and
$a_{2}\left(a_{1} \ll a_{2}\right)$ if the planes of the coils are
same.

- Watch Video Solution

20. Solve problem 19 if the planes of the coils are perpendicular.

D Watch Video Solution

21. Find the mutual inductance of two
concentric coils of radii a_{1} and
$a_{2}\left(a_{1} \ll a_{2}\right)$ if the planes of the coils are
perpendicular.

D Watch Video Solution
22. Figure. shows two concentric coplanar coils with radii a and $b(a \ll b)$. A current $I=2 t$
flows in the smaller loop. Neglecting selfinductance of the larger loop,
a. find the mutual inductance of the two coils,
b. find the emf induced in the larger coil,
c. if the resistance of the larger loop is R, find
the current in it as a function of time.

- Watch Video Solution

23. Figure. shows two concentric coplanar coils
with radii a and $b(a \ll b)$. A current $I=2 t$
flows in the smaller loop. Neglecting selfinductance of the larger loop, if a capacitor of
capacitance C is also connected in the larger
loop as shows in Fig., find the charge on the
capacitor as a function of time.

D Watch Video Solution

24. If the current in the inner loop changes according to $I=2 t^{2}$ (Fig .), then find the
current in the capacitor as a function of time.

D Watch Video Solution

Exercises (subjective)

1. In Fig. a uniform magnetic field decrease at a constant rate $d B / d t=K$, where K is a positive constant. Circular loop of wire of radius a containing a resistnce R and a capacitnce C is placed with its plane normal to the field.
a. Find the charge Q on the capacitor when it is fully charged.
b. Which plate is at higher potential when it is
fully charged?

- Watch Video Solution

2. In the circuits shows in S_{1} and S_{2} are switches. S_{2} remains closed for a long time and S_{1} is opened. Now S_{1} is also closed. Just after S_{1} is closed, find the potential difference
(V) across R and $d i / d t$ (with sign) in L.

- Watch Video Solution

3. In Fig a rod of length l and mass m moves
with an intial velocity u on a fixed frame containing inductor L and resistance $R . P Q$ and $M N$ are smooth conducting wires. There
is auniform magnetic field of strength B.

Initially, there is no current in the inductor.
find the total cherge flows through the inductor by the time, velocity of rod becomes
ν_{f} and the rod has travelled a distance x.

4. A 1.00 mH inductor and a $1.00 \mu \mathrm{~F}$ capacitor are connected in series. The current in the circuit is described by $i=20 t$, where t , is in second and i is in ampere. The capacitor initially has no charge. Determine
(a) the voltage across the inductor as a function of time,
(b) the voltage across the capacitor as a function of time,
(c) the time when the energy stored in the capacitor first exceeds that in the inductor.
5. Two capacitors of capacitances $2 C$ and C are connected in series with an inductor of inductance L. Initially, capacitors have charge such that $V_{B}-V_{A}=4 V_{0}$ and $V_{C}-V_{D}=V_{0}$. Initial current in the circuit is zero. Find

(a) maximum current that will flow in the
circuit,
(b) potential difference across each capacitor at that instant,
(c) equation of current flowing towards left in the inductor.

D Watch Video Solution

6. Switch S is cloesd in the circuit at time
$t=0$. Find the current through the capacitor
and the inductor at any time t

D Watch Video Solution

7. In the circuit shows in Fig the capacitor is
initially uncharged and the two - way switch is
connected in the position $B C$. Find the
current through the resistence R as a
function of time t. After time $t=4 \mathrm{~ms}$, the
switch is connected in the position $A C$. Find
the frequency of oscillation of the capacitor of
the circuit in the position, and the maximum
charge on the capacitor C. At what time will
the energy stored in the capacitor be one-half of the total energy stored in the circuit? It is given
$L=2 \times 10^{-4} H, C=5 m F, R=\frac{I n 2}{10} \Omega$ and
emf of the battery $=1 V$.

- Watch Video Solution

Exercises (single Correct)

1. A mutual inductor consists of two coils X
and Y as shown in Fig. in which one-quarter of the magnetic flux produced by X links with Y, giving a mutual inductance M. What will be the mutual inductance when Y is used as the primary?
A. $M / 4$
B. $M / 2$
C. M

D. $2 M$

Answer: C

D Watch Video Solution

2. Switch S of the circuit shows in Fig. is closed
at $t=0$. If e denotes the induced emf in L
and i the current flowing through the circuit at time t, then which of the following graphs
correctly represents the variation of e with i ?

Answer: B

- Watch Video Solution

3. A small coil of radius r is placed at the centre of a large coil of radius R, where
$R \gg r$. The two coils are coplanar. The mutual inductance between the coils is proportional to
A. r / R
B. r^{2} / R
C. r^{2} / R^{2}
D. r / R^{2}

Answer: B

D Watch Video Solution

4. A circuit contains two inductors of selfinductance L_{1} and L_{2} in series (Fig) If M is the mutual inductence, then the effective

inductance of the circuit shows will be

A. $L_{1}+L_{2}$
B. $L_{1}+L_{2}-2 M$
C. $L_{1}+L_{2}+M$
D. $L_{1}+L_{2}+2 M$

Answer: D

- Watch Video Solution

5. In the circuit Fig the final current through 30Ω resistance when circuit is completed is

A. $3 A$
B. $0.1 A$
C. $5 A$
D. $0.5 A$

Answer: B

D Watch Video Solution

6. The coefficient of mutual inductance of two
circuits A and B is $3 m H$ and their respective
resistanaces are 10 and 4Ω. How much current
should change in $0.02 s$ in circuit A, so that
the induced current in B should be $0.0060 A$?
A. $0.24 A$
B. $1.6 A$
C. $0.18 A$
D. 0.16 A

Answer: D

D Watch Video Solution

7. A long solenoid of length L, cross section A
having N_{1} turns has about its center a small
coil of N_{2} turns as shows in Fig The mutual
inductance of two circuits is

A. $\frac{\mu_{0} A\left(N_{1} / N_{2}\right)}{L}$
B. $\frac{\mu_{0} A\left(N_{1} N_{2}\right)}{L}$
C. $\mu_{0} A N_{1} N_{2} L$
D. $\frac{\mu_{0} A N_{1}^{2} N_{2}}{L}$

Answer: B
8. An emf of 15 V is applied in a circuit coil containing 5 H inductance and 10Ω resistance.

The ratio of the currents at time $t=\infty$ and t $=1 \mathrm{~s}$ is

$$
\begin{aligned}
& \text { A. } \frac{e^{1 / 2}}{e^{1 / 2}-1} \\
& \text { B. } \frac{e^{2}}{e^{2}-1} \\
& \text { C. } 1-e^{-1} \\
& \text { D. } e^{-1}
\end{aligned}
$$

Answer: B

- Watch Video Solution

9. In Fig (a) and (b), two air-cored solenoids P
and Q have been shows. They are placed near each other. In Fig (a), when I_{P}, the current in
P, changes at the rate of $5 A s^{-1}$, an emf of
$2 m V$ is induced in Q. The current in P is then
switched off, and the current changing at $2 A s^{-1}$ is fed through Q as shows in the
figure. What emf will be induced in P ?

A. $8 \times 10^{-4} V$
B. $2 \times 10^{-3} V$
C. $5 \times 10^{-3} V$
D. $8 \times 10^{-2} V$

Answer: A

D Watch Video Solution
10. A coil of inductance 0.20 H is connected in
series with a switch and a cell of emf 1.6 V . The
total resistance of the circuit is 4.0Ω. What is
the initial rate of growth of the current when
the switch is closed?

> A. $0.050 A s^{-1}$
> B. $0.40 A s^{-1}$
> C. $0.13 A s^{-1}$
> D. $8.0 A s^{-1}$
11. The length of a wire required to manufacture a solenoid of length l and selfinduction L is (cross-sectional area is negligible)
A. $\sqrt{\frac{2 \pi L l}{\mu_{0}}}$
B. $\sqrt{\frac{\mu_{0} L l}{4 \pi}}$
C. $\sqrt{\frac{4 \pi L l}{\mu_{0}}}$
D. $\sqrt{\frac{\mu_{0} L l}{2 \pi}}$

Answer: C

- Watch Video Solution

12. The inductance L of a solenoid of length l, whose windings are made of material of density D and resistivity ρ, is (the winding resistance is R)
A. $\frac{\mu_{0}}{4 \pi l} \frac{R m}{\rho D}$
B. $\frac{\mu_{0}}{4 \pi R} \frac{l m}{\rho D}$
C. $\frac{\mu_{0}}{4 \pi l} \frac{R^{2} m}{\rho D}$
D. $\frac{\mu_{0}}{2 \pi R} \frac{l m}{\rho D}$

Answer: A

D Watch Video Solution

13. A toroid is wound over a circular core.

Radius of each turn is r and radius of toroid is
$R(\gg r)$. The coefficient of self-inductance
of the toroid is given by

$$
\begin{aligned}
& \text { A. } L=\frac{\mu_{0} N r^{2}}{2 R} \\
& \text { B. } L=\frac{\mu_{0} N r}{2 R} \\
& \text { C. } L=\frac{\mu_{0} N r^{2}}{R} \\
& \text { D. } L=\frac{\mu_{0} N^{2} r^{2}}{2 R}
\end{aligned}
$$

Answer: D

D Watch Video Solution

14. A straight solenoid of length $1 m$ has 5000
turns in the primary and 200 turns in the secondary. If the area of cross section is $4 \mathrm{~cm}^{2}$, the mutual inductance will be
A. $503 H$
B. 503 mH
C. $503 \mu H$

D. $5.03 H$

Answer: C

D Watch Video Solution

15. The approximate formula expressing the
formula of mutual inductance of two coaxial
loops of the same redius a when their centers are separated by a distance l with $l \gg a$ is

$$
\text { A. } \frac{1}{2} \frac{\mu_{0} \pi a^{4}}{l^{3}}
$$

B. $\frac{1}{2} \frac{\mu_{0} a^{4}}{l^{2}}$
C. $\frac{\mu_{0}}{4 \pi} \frac{\pi a^{4}}{l^{2}}$
D. $\frac{\mu_{0}}{\pi} \frac{a^{4}}{l^{3}}$

Answer: A

- Watch Video Solution

16. The length of a thin wire required to manufacture a solenoid of length $l=100 \mathrm{~cm}$ and inductance $L=1 m H$, if the solenoid's
cross-sectional diameter is considerably less
than its length is
A. 1 km
B. 0.10 km
C. 0.010 km
D. 10 km

Answer: B
(Watch Video Solution
17. Current in a coil of self-inductance 2.0 H is increasing as $I=2 \sin t^{2}$. The amount of energy spent during the period when the current changes from 0 to $2 A$ is
A. $1 J$
B. 2 J
C. $3 J$
D. $4 J$

Answer: D

18. In the current shows Fig x is joined to Y
for a long time and then X is joined to Z. The
total heat produced in R_{2} is

A. $\frac{L E^{2}}{2 R_{1}^{2}}$
B. $\frac{L E^{2}}{2 R_{2}^{2}}$
C. $\frac{L E^{2}}{2 R_{1} R_{2}}$
D. $\frac{L E^{2} R_{2}}{2 R_{1}^{3}}$

Answer: A

D Watch Video Solution

19. Calculate the inductance of a unit length of
a double tape line as shows in Fig if the tapes
are separated by a distance h which is
considerably less than their width b.

A. $\frac{\mu_{0} h}{b}$
B. $\frac{\mu_{0} h}{2 b}$
C. $\frac{2 \mu_{0} h}{b}$
D. $\frac{\sqrt{2} \mu_{0} h}{b}$

Answer: A
20. Find the inductance of a unit length of two
long parallel wires, each of radius a, whose centers are a distance d apart and carry equal currents in opposits directions. Neglect the flux within the wire.

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0}}{2 \pi} \operatorname{In}\left(\frac{d-a}{a}\right) \\
& \text { B. } \frac{\mu_{0}}{\pi} \operatorname{In}\left(\frac{d-a}{a}\right) \\
& \text { C. } \frac{3 \mu_{0}}{\pi} \operatorname{In}\left(\frac{d-a}{a}\right) \\
& \text { D. } \frac{\mu_{0}}{3 \pi} \operatorname{In}\left(\frac{d-a}{a}\right)
\end{aligned}
$$

Answer: B

D Watch Video Solution

21. Figure shows a rectangular coil near a long
wire. The mutual inductance of the
combination is

A. $\frac{\mu_{0} a}{2 \pi} \operatorname{In}\left(1-\frac{b}{c}\right)$
B. $\frac{\mu_{0} a}{2 \pi} \operatorname{In}\left(1+\frac{b}{c}\right)$
C. $\frac{\mu_{0} a}{\pi} \operatorname{In}\left(1+\frac{b}{c}\right)$
D. $\frac{\mu_{0} a}{\sqrt{2} \pi} \operatorname{In}\left(1+\frac{b}{c}\right)$

Answer: B

D Watch Video Solution

22. In the given circuit, find the current
through the 5 mH inductor in steady state.

A. $\frac{2}{3} A$
B. $\frac{8}{3} A$
C. $\frac{1}{3} A$
D. $\frac{2}{3} A$

Answer: B

D Watch Video Solution

23. In the following electrical network at
$t=<0$ Fig key is placed on (1) till the capacitor got fully charged. Key is placed on
(2) at $t=0$. Time when the energy in both the
same for the time is

A. $\frac{\pi}{4} \sqrt{L C}$
B. $\frac{3 \pi}{4} \sqrt{L C}$
C. $\frac{\pi}{3} \sqrt{L C}$
D. $\frac{2 \pi}{3} \sqrt{L C}$
24. The total heat produced in resistor r in an
$R L$ circuit when the current in the inductor decreases from I_{o} to 0 is
A. $L I_{0}^{2}$
B. $\frac{1}{2} L I_{0}^{2}$
C. $\frac{3}{2} L I_{0}^{2}$
D. $\frac{1}{3} L I_{0}^{2}$

Answer: B

- Watch Video Solution

25. In the circuit shows Fig the cell is ideal. The coil has an inductance of $4 H$ and zero resistance. F is a fuse of zero resistance and will blow when the current through it reaches
$5 H$. The switch is closed at $t=0$. The fuse will blow

A. almost at once
B. after $2 s$
C. after $5 s$
D. after $10 s$

Answer: D

D Watch Video Solution

26. In the circuit shown, the coil has inductance and resistance. When X is joined to

Y , the time constant is τ during growth of
current. When the steady state is reached,
then heat is produced in the coil at a rate P. If
X is now joined to Z, then choose the correct
statement.

A. the total heat produed in the coil is $p \tau$
B. The total heat produced in the coil is
$\frac{1}{2} P \tau$
C. The total heat produced in the coil is
$2 P \tau$
D. The data given are not sufficient to reach a conlusion

Answer: B

- Watch Video Solution

27. A long solenoid having 200 turns per centimeter carries a current of $1.5 A$. At the center of the solenoid is placed a coil of 100
turns of cross-sectional area $3.14 \times 10^{-4} \mathrm{~m}^{2}$
having its axis parallel to the field produced by
the solenoid. When the direction of current in
teh solenoid is reversed within 0.05 s , the
induced emf in the coil is
A. 0.48 V
B. 0.048 V
C. 0.0048 V
D. 48 V

Answer: B
28. In an L-R circuit connected to a battery at which energy ius stored in the inducator is plotted against time during the growth of current in the ciruit Which of the following best represents the resulting curve?

B.

C. Time

Answer: A

D Watch Video Solution

29. Two coils are at fixed locations. When coil 1
has no current and the current in coil 2 increases at the rate of $15.0 \mathrm{~A} / \mathrm{s}$ the emf in coil 1 in 25.0 mV , when coil has no current and coil 1 has acurrent of 3.6 A , the flux linkage in coil 2 is
A. $16 m W b$
B. 10 mWb
C. 4.00 mWb
D. 6.00 mWb

Answer: D

D Watch Video Solution

30. Two concentric and coplanar circular coils have radii a and $\mathrm{b}(\gg a)$ as shown in the figure. Resistance of the inner coil is R. Current
in the outer coil is increased from 0 to I, then
the total charge circulating the inNer coil is

A. $\frac{\mu_{0} i a^{2} \pi}{2 R b}$
B. $\frac{\mu_{0} i a b}{2 R}$
C. $\frac{\mu_{0} i a b}{2 a} \frac{\pi b^{2}}{R}$
D. $\frac{\mu_{0} i b}{2 \pi R}$

Answer: A

- Watch Video Solution

31. A current i_{0} is flowin through on L-R circyuit of time constant t_{0}. The source of current is seitched off at time $t=0$. Let r be the value of (-di/dt) at tiemt $t=0$. Assuming this rate to be constant, the current will reduce to
zero in a time interval of
A. t_{0}
B. $e t_{0}$
C. $\frac{t_{0}}{e}$
D. $\left(1-\frac{1}{e}\right) t_{0}$

Answer: A

- Watch Video Solution

32. In the circuit shown in figure switch S is
closed at time $\mathrm{t}=0$. The charge which passes
through the battery in one time constant is

A. $\frac{e R^{2} E}{L}$
B. $E\left(\frac{L}{R}\right)$
c. $\frac{E L}{e R^{2}}$
D. $\frac{e L}{E R}$

Answer: C

- Watch Video Solution

33. A bar magnet was pulled away from a
hollow coil A as shows in Fig As the south
pole came out of the coil, the bar magnet next to hollow coil B experiened a magnetic force

A. to the right

B. to the left

C. upward

Answer: A

- Watch Video Solution

34. In the given circuit (Fig), key K is witched on the at $t=0$. The ratio of current i through the cell at $t=0$ to that at $t=\infty$ will be

A. 3:1
B. 1:3
C. $1: 2$
D. 2:1

Answer: A

D Watch Video Solution

35. A closed loop of cross-sectional area $10^{-2} m^{2}$ which has inductance $L=10 \mathrm{mH}$ and negligible resistance is placed ti timevarying magnetic field. Figure shows the
variation of B with time for the intervel $4 s$.

The field is perpendicular to the plane of the loop (given at $t=0, B=0, I=0$). The value of the maximum current induced in the loop is

A. $0.1 m A$
B. 10 mA
C. 100 mA

D. Date insufficient

Answer: C

D Watch Video Solution

36. In Fig. key K is closed at $t=0$. After a long
time, the potential difference between A and
B is zero, the value of R will be

$$
\left[r_{1}=r_{2}=1 \Omega, E_{1}=3 V \quad \text { and } \quad E_{2}=7 V\right.
$$

$C=2 \mu F, L=4 m H$, where r_{1} and r_{2} are the internal resistances of cells E_{1} and E_{2},
respectively].

A. $\frac{4}{3} \Omega$
B. $\frac{4}{9} \Omega$
C. $\frac{2}{3} \Omega$
D. 4Ω

Answer: B

37. A solenoid of inductance L with resistance r is connected in parallel to a resistance R. A
battery of emf E and of negligible internal
resistance is connected across the parallel
combination as shown in the figure. At time
$t=0$, switch S is opened, calculate
(a) current through the solenoid after the switch is opened.
(b) amount of heat generated in the solenoid.

A. Current in the inductor just after removing the battery is $\frac{E(r+R)}{r R}$

B. Total enery dissipated in the solenoid

and the reistor long time after removing
the battery is $\frac{1}{2} L \frac{E^{2}(R+r)^{2}}{r^{2} R^{2}}$
C. The amount of heat generated in the
solenoid due to removing the battery is

$$
\frac{E^{2} L}{2 r(r+R)}
$$

D. The amount of heat generated in the
solenoid due to removing the battery is

$$
\frac{E^{2} L}{2 R(r+R)}
$$

Answer: C

38. The cell in the circuit shows in Fig is ideal.

The coil has an inductance of $4 m H$ and a
resistance of $2 m \Omega$. The switch is closed at
$t=0$. The amount of energy stored in the inductor at $t=2 s$ is (take $e=3$)

A. $\frac{4}{3} J$
B. $\frac{8}{9} \times 10^{3} J$
C. $\frac{8}{9} \times 10^{3} \mathrm{~J}$
D. $2 \times 10^{3} \mathrm{~J}$

Answer: B

D Watch Video Solution

39. Switch S shown in Fig. is closed for $t<0$
and is opened at $t=0$. When currents
through L_{1} and L_{2} are equal, their common
value is

A. $\frac{E}{R}$
B. $\frac{E\left(L_{2}+L_{2}\right)}{R L_{1}}$
C. $\frac{E L_{1}}{R\left(L_{1}+L_{2}\right)}$
D. $\frac{E}{R} \frac{\left(L_{1}+L_{2}\right)}{L_{2}}$

Answer: C

Watch Video Solution

40. In Fig, the mutual inductance of a coil and
a very long straight wire is M, coil has resistance R and self-inductance L. The current in the wire varies according to the law
$I=a t$, where a is a constant and t is the time,
the time dependence of current in the coil is

$$
\begin{aligned}
& \text { A. } \frac{M}{a R} \\
& \text { B. } m a R e^{-R t / L} \\
& \text { C. } \frac{M}{R} e^{-t R / L}
\end{aligned}
$$

$$
\text { D. } \frac{M a}{R}\left(1-e^{-t R / L}\right)
$$

Answer: D

D Watch Video Solution

41. In the circuit shows in Fig switch S is shifed to position 2 from position 1 at $t=0$, having
been on position 1 for a long time. The current in the circuit just after shifting of switch will
be (battery and both the inductors are ideal)

A. $\frac{4}{5} \frac{E}{R}$
B. $\frac{5}{4} \frac{E}{R}$
C. $\frac{5}{9} \frac{E}{R}$
D. $\frac{E}{R}$
42. The capacitance in an oscilatory $L C$ circuit is increased by 1%. The charge in inductance required to restore its frequency of oscillation is to
A. decrease it by 0.5%
B. increase it by 1%
C. decrease it by 1%
D. decrease it by 2%

Answer: C

- Watch Video Solution

43. In the circuit of Fig. (1) and (2) are ammeters. Just after circuit K is pressed to complete the circuit, the reading is

A. maximum in both 1 and 2
B. zero in both 1 and 2
C. zero in 1 , minimum in 2
D. maximum in 1 , zero in 2

Answer: D

D Watch Video Solution

44. A wire of fixed length is wound on a solenoid of length 'l' and radius 'r'. Its self inductiane is found to be Now if same wire is
wound on a solenoid of length ad radius $\frac{r}{2}$
then the self inductance will be
A. $2 L$
B. L
C. $4 L$
D. $8 L$

Answer: A
(Watch Video Solution
45. The frequency of oscillation of current in
the circuit is

$$
\begin{aligned}
& \text { A. } \frac{1}{3 \sqrt{L C}} \\
& \text { B. } \frac{1}{6 \pi \sqrt{L C}} \\
& \text { C. } \frac{1}{\sqrt{L C}} \\
& \text { D. } \frac{1}{2 \pi \sqrt{L C}}
\end{aligned}
$$

Answer: B

D Watch Video Solution

46. In Fig. switch S is closed for a long time. At
$t=0$, if it is opened, then

A. total heat produced in resistor R after opening the switch is $\frac{1}{2} \frac{L \varepsilon}{R^{2}}$
B. total heat produced in resistor R_{1} after
opening
the
switch
is

$\frac{1}{2} \frac{L \varepsilon^{2}}{R^{2}}\left(\frac{R_{1}}{R_{1}+R_{2}}\right)$

C. heat produced in resistor R_{1} after opening the switch is $\frac{1}{2} \frac{R_{2} L \varepsilon^{2}}{\left(R_{1}+R_{2}\right) R^{2}}$
D. no heat will be produced in R_{1}

Answer: C

D Watch Video Solution

47. A closed circuit of a resistor R, inductor of inductance L and a source of emf E are connected is series. If the inductance of the
coil is abruptly decreaed to $L / 4$ (by removing
its magnetic core), the new current immediately after this moment is (before decreasing the inductance the circuit is in steady state)
A. zero
B. $\frac{E}{R}$
C. $4 \frac{E}{R}$
D. $\frac{E}{4 R}$

Answer: C
48. Given $L_{1}=1 m H, R_{1}=1 \Omega, L_{2}=2 m H$,
$R_{2}=2 \Omega$

(i)

(ii)

(iii)

Neglecting mutual inductance, the time

$$
\begin{aligned}
& \text { A. } 1,1, \frac{9}{2} \\
& \text { B. } \frac{9}{4}, 1,1 \\
& \text { C. } 1,1,1 \\
& \text { D. } 1, \frac{9}{4}, 1
\end{aligned}
$$

Answer: A
(Watch Video Solution
49. A horizontal ring of radius $r=\frac{1}{2} m$ is kept in a vertical constant magentic field $1 T$. The ring is collapsed from maximum area to zero area in $1 s$. Then the emf induced in the ring is
A. $1 V$
B. $(\pi / 4) V$
C. $(\pi / 2) V$
D. πV

Answer: B
50. In the circuit shown the key (K) is closed at $t=0$, the current through the key at the instant $t=10^{-3} \ln , 2$ is

A. $2 A$
B. $3.5 A$

C. $2.5 A$

D. 0

Answer: C

D Watch Video Solution

51. In the circuit shows in Fig. switch k_{2} is open
and switch k_{1} is closed at $t=0$. At time $t=t_{0}$
, switch k_{1} is opened and switch k_{2} is
simultaneosuly closed. The variation of

A.
a. $\frac{E t_{0}}{L}$
B.
b. $\frac{E t_{0}}{L}$
C.
c. $\frac{E t_{0}}{L}$
d. $\frac{E t_{0}}{L}$

D Watch Video Solution

52. In an L-C circuit shown in figure
$C=1 F, L=4 H$

At time $t=0$, charge in the capacitor is 4 C and
it is decreasing at a rate of $\sqrt{5} C / s$

Maximum charge in the capacitor can be
A. Maximum charge in the capacitor can be
$6 C$
B. Maximum charge in the capacitor can be
$8 C$
C. Charge in the capacitor will be maximum
after time $3 \sin ^{-1}(2 / 3) s$

D. None of these

Answer: A

D Watch Video Solution

53. An aluminium ring hangs vertically from a thread with its axis pointing east-west. A coil is
fixed mear to the ring and coaxial with it.

What is the initial motion of the aluminium
ring when the current in the coil is switched

A. moves toward E
B. moves toward W
C. moves toward N
D. moves toward S

Answer: A
54. A coil carrying a steady current is shortcircuited. The current in it decreases α times in time t_{0}. The time constant of the circuit is

$$
\begin{aligned}
& \text { A. } \tau=t_{0} \ln \alpha \\
& \text { B. } \tau=\frac{t_{0}}{I n \alpha} \\
& \text { C. } \tau=\frac{t_{0}}{\alpha} \\
& \text { D. } \tau=\frac{t_{0}}{\alpha-1}
\end{aligned}
$$

55. A solenoid has 2000 turns would over a length of 0.30 m . The area of its cross-section
is $1.2 \times 10^{-3} \mathrm{~m}^{2}$. If an initial current of 2 A in
the solenoid is reversed in 0.25 s , then the emf
induced in the coil is
A. $0.6 m \mathrm{~V}$
B. 60 mV
C. $48 m V$
D. 0.48 mV

Answer: C

- Watch Video Solution

56. Two coils X and Y are linked such that emf
E is induced in Y when the current in x is
changing at the rate $I^{\prime}(=d I / d t)$. If a
current I_{0} is now made to flow through Y, the
flux linked with X will be
A. $E I_{0} I^{\prime}$
B. $\frac{I_{0} I^{\prime}}{E}$
C. $\left(E I^{\prime}\right) I_{0}$
D. $\left(\frac{E}{I^{\prime}}\right) I_{0}$

Answer: D

- Watch Video Solution

57. The time constant of an inductance coil is
$2.0 \times 10^{-3} s$. When a 90Ω resistance is joined in series, then the time constant becomes
$0.5 \times 10^{-3} s$. The inductance and resistance of the coil are
A. $30 m H, 30 \Omega$
B. $60 \mathrm{mH}, 30 \Omega$
C. $30 m H, 60 \Omega$
D. $60 \mathrm{mH}, 60 \Omega$

Answer: B

D Watch Video Solution

58. Find the current passing through battery immediately after key (K) is closed. It is given
that initially all the capacitors are uncharged.
(Given that $R=6 \Omega$ and $C=4 \mu F$)

A. $1 A$
B. $5 A$
C. $3 A$
D. $2 A$

Answer: A

- Watch Video Solution

59. A pure inductor L, a capacitor C and a resistance R are connected across a battery of emf ε and internal resistance r as shown in the figure. The switch S_{w} is closed at $\mathrm{t}=0$, select
the correct alternative.

A. current through resistance R is zero all the time
B. current through resistance R is zero at $t=0$ and $t \rightarrow \infty$
C. maximum charge stored in the capacitor

$$
\text { is } C E
$$

D. maximum charge stored in the inductor
is equal to the maximum energy stored
in the capacitor

Answer: B

D Watch Video Solution

60. A simple $L R$ circuit is connected to a battery at time $t=0$. The energy stored in the inductor reaches half its maximum value at time

$$
\begin{aligned}
& \text { A. } \frac{R}{L} \ln \left[\frac{\sqrt{2}}{\sqrt{2}-1}\right] \\
& \text { B. } \frac{L}{R} \ln \left[\frac{\sqrt{2}-1}{\sqrt{2}}\right] \\
& \text { C. } \frac{L}{R} \ln \left[\frac{\sqrt{2}}{\sqrt{2}-1}\right] \\
& \text { D. } \frac{R}{L} \ln \left[\frac{\sqrt{2}-1}{\sqrt{2}}\right]
\end{aligned}
$$

Answer: C
61. The natural frequency of the circuit shows
in Fig. is

$$
\begin{aligned}
& \text { A. } \frac{1}{\sqrt{L C}} \\
& \text { B. } \frac{1}{\sqrt{2 L C}}
\end{aligned}
$$

c. $\frac{2}{\sqrt{L C}}$
D. None of these

Answer: A

D Watch Video Solution

62. Two resistors of 10Ω and 20Ω and an ideal inductor of $10 H$ are connected to a $2 V$ battery as shows in Fig. key K is inserted at time $t=0$. The initial $(t=0)$ and final
$(t \rightarrow \infty)$ currents through the battery are

A. $\frac{1}{15} A, \frac{1}{10} A$
B. $\frac{1}{10} A, \frac{1}{15} A$
C. $\frac{2}{15} A, \frac{1}{10} A$
D. $\frac{1}{15} A, \frac{2}{25} A$

Answer: A

- Watch Video Solution

63. A square conducting loop of side L is situated in gravity free space. A small conducting circular loop of redius
$r(r \ll L)$ is placed at the center of the square loop, with its plane perpendicular to the plane of the square loop. The mutual inductance of the two coils is
A. $\frac{2 \sqrt{2} \mu_{0} I}{L} r^{2}$
B. $\frac{\sqrt{2} \mu_{0} I_{0}}{L} r^{2}$
C. 0
D. None of these

Answer: C

D Watch Video Solution
64. There is a conducting ring of radius R.

Another ring of radius $r(r \ll R)$ is kept on
the axis of bigger ring such that it's a center
lies on the axis of bigger ring at a distance x from the center of bigger ring and its place is perpendicular to the axis. The mutual inductance of the two rings is

$$
\begin{aligned}
& \text { A. } \frac{\mu_{0} \pi R^{2} r^{2}}{\left(R^{2}+x^{2}\right)^{3 / 2}} \\
& \text { B. } \frac{\mu_{0} \pi R^{2} r^{2}}{4\left(R^{2}+x^{2}\right)^{3 / 2}} \\
& \text { C. } \frac{\mu_{0} \pi R^{2} r^{2}}{16\left(R^{2}+x^{2}\right)^{3 / 2}} \\
& \text { D. } \frac{\mu_{0} \pi R^{2} r^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}}
\end{aligned}
$$

Answer: D

- Watch Video Solution

65. The capacitor of an oscillatory circuit of frequency 10000 Hz is enclosed in a container.

When the container is evacuated, the frequency changes by 50 Hz , the delectric constant of the gas is
A. 1.1
B. 1.01
C. 1.001
D. 1.0001

Answer: B

- Watch Video Solution

Exercises (multiple Correct)

1. In the given circuit Fig the switch is closed at
$t=0$. Choose the correct answers.

A. Current in the inductor when the circuit
reaches the steady state is $4 A$.
B. The net change in flux in the inductor is
$1.5 W b$.
C. The time constant of the circuit after
closing S is 555.55 s
D. The charge stored in the capacitor in
steady state is $1.2 m C$.

Answer: A::B
2. An inductor and two capacitors are connected in the circuit as show in Fig Initially capacitor A has no charge and capacitor B has $C V$ charge. Assume that the circuit has no resistance at all. At $t=0$, switch S is closed, then [given

$$
\left.L C=\frac{2}{\pi^{2} \times 10^{4}} S^{2} \text { and } C v=100 m C\right]
$$

A. when current in the circuit is maximum, charge on each capacitor is same
B. when current in the circuit is maximum,
charge on capacitor A is twice the charge on capacitor B
C. $q=50(1+\cos 100 \pi t) m C$, where q is
the charge on capacitor B at time t

D. $q=50(1-\cos 100 \pi t) m C$, where q is

the charge on capacitor B at time t

Answer: A::C

D Watch Video Solution

3. The potentiak difference across a 2 H inductor as a function of time is shown in the figure. At time $\mathrm{t}=0$, current is zero.

Current at $\mathrm{t}=\mathrm{s}$ is
A. Current at $t=2 s$ is $5 A$
B. Current at $t=2 s$ is $10 A$
C. Current versus time graph across the inductor will be Fig.

D. Current versus time graph across the

 inductor will be Fig.

Answer: A::C

D Watch Video Solution

4. Two parallel resistanceless rails are connected by an inductor of inductance L at one end as shows in Fig. A magnetic field B
exists in the space which is perendicular to the
plane of the rails. Now a conductor of length l
and mass m is placed transverse on the rail and given an inpulse J toward the rightward direction. Then choose the correct option (S).

A. Velocity of the conductor is half of the
initial velocity after a displaacement of
the conductor $d=\sqrt{\frac{3 J^{2} L}{4 B^{2} l^{2} m}}$
B. Current flowing through the inductor at
the instant when velocity of the conductor is half of the initial velocity is $i=\sqrt{\frac{3 J^{2}}{4 L m}}$
C. Velocity of the conductor is half of the
initial velocity after a displacement of
the conductor $d=\sqrt{\frac{3 J^{2} L}{B^{2} l^{2} m}}$
D. Current flowing through the inductor at
the instant when velocity of the
conductor is half of the initial velocity is

$$
i=\sqrt{\frac{3 j^{2}}{m L}}
$$

Answer: A::B

- Watch Video Solution

5. Two inductors are connected in parallel and switch S is closed at $t=0$

$$
\text { A. At } t=0, I_{1}=I_{2}=0
$$

B. At any time $t, \frac{I_{0}}{I_{2}}=\frac{L_{2}}{L_{1}}$
C. At any time $\mathrm{t}, I_{1}+I_{2}=\frac{\varepsilon}{R}$
D. At $t=\infty, I_{1}$ and I_{2} are independent of L_{1} and L_{2}

Answer: A::B

D Watch Video Solution
6. Switch S of the circuit shown in figure is
closed at $\mathrm{t}=0$.

If emf in L is e and i is the current flowing through the circuit at time t, which of the following graphs is corrent?

Answer: C::D

- Watch Video Solution

7. For the circuit shown in figure, which of the

following statements is ture ?

A. Its time constant is $0.25 s$
B. In steady state, current through the inductance will be equal to zero
C. In steady state, current through the battery will be equal to $0.75 A$
D. None of these

- Watch Video Solution

Exercises (assertion-reasoning)

1. Assertion Two concentric conducting rings
of different radii are placed in space. The mutual inductance of both the rings is maximum, if the rings are coplanar.

Reason For two co-axial conducting rings of different radii, the magnitude of magnetic flux in one ring due to current in other ring is maximum when both rings are coplanar.
A. Statement I is True, Statement II is True,

Statement II is the correct explanation
for Statement I.
B. Statement I is True, Statement II is True,

Statement II is NOT the correct explanation for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

Answer: A

2. Statement I: An eletric lamp is connected in series with a long solenoid of copper with air core and then connected to an ac source. If an iron rod is inserted in the solenoid, the lamp will become dim.

Satement II: If an iron rod is inserted in the solenoid, the inductance of the solenoid increases.
A. Statement I is True, Statement II is True,

Statement II is the correct explanation
for Statement I.
B. Statement I is True, Statement II is True,

Statement II is NOT the correct explanation for Statement I.
C. Statement I is True, Statement II is False.
D. Statement I is False, Statement II is True.

Answer: A
(Watch Video Solution

1. A long solenoid of radous R has n turns of wire per unit length and carries a time-varying current that varies sinusiodally as
$I=I_{\max } \cos \omega t$, where $I_{\max }$ is the maximum
current and ω I the angular frequancy of the alternating current source (shows in Fig.)

The magnitude of the induced electric field inside tha solenoid, a distance $r<R$ from its long central axis is
A. $\frac{3 \mu_{0} n I_{\max } \omega}{2} r \sin \omega t$
B. $\frac{\mu_{0} n I_{\max } \omega}{2} r \cos \omega t$
C. $\mu_{0} n I_{\max } \omega r \sin \omega t$

$$
\text { D. } \frac{\mu_{0} n I_{\max } \omega}{2} r \sin \omega t
$$

Answer: D

D Watch Video Solution

2. A long solenoid of radous R has n turns of wire per unit length and carries a time-varying current that varies sinusiodally as
$I=I_{\max } \cos \omega t$, where $I_{\max }$ is the maximum
current and ω I the angular frequancy of the
alternating current source (shows in Fig.)

The magnitude of electric field outside the solenoid at a distance $r>R$ from its long central axis is
A. $\frac{\mu_{0} n I_{\max } \omega R^{2}}{2 r} \sin \omega t$

$$
\text { B. } \frac{2 \mu_{0} n I_{\max } \omega R^{2}}{r} \sin \omega t
$$

C. $\frac{\mu_{0} n I_{\max } \omega R^{2}}{3 r} \sin \omega t$
D. $\frac{3 \mu_{0} n I_{\max } \omega R^{2}}{2 r} \sin \omega t$

Answer: A

D Watch Video Solution

3. In the Figure shown $i_{1}=10 e^{-2 t} A, i_{2}=4 A$ and $V_{C}=3 e^{-2 t} V$. Determine

a. i_{L} and V_{L} b. $V_{a c}, V_{a b}, V_{c d}$
A. $\left[2-2\left(1-e^{-2 t}\right)\right] A$
B. $\left[2+2\left(1-e^{-2 t}\right)\right] A$
C. $\left[3-2\left(1-e^{-2 t}\right)\right] A$
D. $\left[2+3\left(1-e^{-2 t}\right)\right] A$

- Watch Video Solution

4. In Fig $i_{1}=10 e^{-2 t} A, \quad i_{2}=4 A$, and $V_{C}=3 e^{-2 t} V$.

The variation of current in the inductor with
time can be represented as

Answer: A

D View Text Solution

5. In the Figure shown $i_{1}=10 e^{-2 t} A, i_{2}=4 A$ and $V_{C}=3 e^{-2 t} V$. Determine

a. i_{L} and V_{L} b. $V_{a c}, V_{a b}, V_{c d}$
A. $8 e^{-2 t} V$
B. $9 e^{-2 t} V$
C. $16 e^{-2 t} V$
D. $18 e^{-2 t} V$

Answer: C

D Watch Video Solution

6. In Fig $i_{1}=10 e^{-2 t} A, \quad i_{2}=4 A$, and
$V_{C}=3 e^{-2 t} V$.

the vartiation of potential difference across A
and $C\left(V_{A C}\right)$ with time can be respresented as

Answer: A

- Watch Video Solution

7. In the Figure shown $i_{1}=10 e^{-2 t} A, i_{2}=4 A$ and $V_{C}=3 e^{-2 t} V$. Determine

a. i_{L} and V_{L} b. $V_{a c}, V_{a b}, V_{c d}$
A. $8 e^{-2 t} V$
B. $\frac{1}{2} e^{-3 t} V$
C. $17 e^{-2 t} V$
D. $16 e^{-2 t}$ V

- Watch Video Solution

8. In Fig $i_{1}=10 e^{-2 t} A, \quad i_{2}=4 A$, and $V_{C}=3 e^{-2 t} V$.

The variation of potential difference across C and $D\left(V_{C D}\right)$ with time can be expressed as
A.

B.

C.

D.

Answer: B

9. In the circuit shows (Fig.) switches S_{1} and S_{3}
have been closed for $1 s$ and S_{2} remained open. Just after 1 s , switch S_{2} is closed and S_{1} and S_{3} are opened. Find after that instant $(t=0):$

the maximum current in the circuit containing inductor and capacitor (only S_{2} is closed)
A. $\sqrt{3}\left(1-\frac{1}{e}\right)$
B. $\sqrt{2}\left(1-\frac{1}{e}\right)$
C. $\sqrt{3}\left(1+\frac{1}{e}\right)$
D. $\sqrt{2}\left(1+\frac{1}{e}\right)$

Answer: B

D Watch Video Solution

10. In the circuit shows (Fig.) switches S_{1} and
S_{3} have been closed for $1 s$ and S_{2} remained open. Just after $1 s$, switch S_{2} is closed and S_{1}
and S_{3} are opened. Find after that instant $(t=0):$

the maximum charge on the capacitor
A. $\sqrt{3}\left(1+\frac{1}{e}\right)$
B. $\sqrt{3}\left(1-\frac{1}{e}\right)$
C. $\sqrt{2}\left(1+\frac{1}{e}\right)$
D. $\sqrt{2}\left(1-\frac{1}{e}\right)$

Answer: D

D Watch Video Solution

11. In the circuit shows (Fig.) switches S_{1} and
S_{3} have been closed for $1 s$ and S_{2} remained open. Just after $1 s$, switch S_{2} is closed and S_{1} and S_{3} are opened. Find after that instant $(t=0):$

the charge on the upper plate of the capacitor as a funtion of time

$$
\begin{aligned}
& \text { A. } \sqrt{2}\left(1-\frac{1}{e}\right) \sin \left(t+\frac{3 \pi}{4}\right) \\
& \text { B. } \sqrt{2}\left(1-\frac{1}{e}\right) \sin \left(t+\frac{\pi}{4}\right) \\
& \text { C. } \sqrt{3}\left(1-\frac{1}{e}\right) \sin \left(t+\frac{\pi}{4}\right) \\
& \text { D. } \sqrt{3}\left(1+\frac{1}{e}\right) \sin \left(t+\frac{\pi}{4}\right)
\end{aligned}
$$

Answer: A

D Watch Video Solution

12. In the given (Fig.) all the symbols have their usual meanings. At $t=0$, key K is closed. Now answer the following questions.

At $t=0$, the euivalent resistance between A and B is
A. $R_{1}+R_{2}+R_{3}$
B. $R_{1}+R_{2}$
C. $R_{1}+R_{3}$
D. indeterminate

Answer: B
(Watch Video Solution
13. In the given (Fig.) all the symbols have their usual meanings. At $t=0$, key K is closed. Now answer the following questions.

At $t \rightarrow \infty$, the euivalent resistance between A and B is
A. $R_{1}+R_{2}+R_{3}$
B. $R_{1}+R_{2}$
C. $R_{1}+R_{3}$
D. None of these

Answer: C

D Watch Video Solution

14. In the circuit shows in Fig $E=15 \mathrm{~V}$,
$R_{1}=1 \Omega, R_{2}=1 \Omega, R_{3}=2 \Omega$, and $L=1.5 H$.

The currents flowing through R_{1}, R_{2}, and R_{3} are i_{1}, i_{2}, and i_{3}, respectively.

Immediately after tuning switch S on,
A. $i_{1}=i_{2}=7.5 A, i_{3}=0 A$
B. $i_{1}=i_{3}=5 A, i_{2}=0 A$
C. $i_{1}=i_{2}=9 A, i_{3}=0 A$
D. $i_{1}=i_{2}=i_{3}=0 A$

Answer: A

Watch Video Solution

15. In the circuit shows in Fig $E=15 \mathrm{~V}$,
$R_{1}=1 \Omega, R_{2}=1 \Omega, R_{3}=2 \Omega$, and $L=1.5 H$.
The currents flowing through R_{1}, R_{2},and R_{3} are i_{1}, i_{2}, and i_{3}, respectively. Immediately after turning switch S on, $R_{1} \quad R_{3}$

$$
\begin{aligned}
& \text { A. } i_{1}=9 A, i_{2}=6 A, i_{3}=3 A \\
& \text { B. } i_{1}=9 A, i_{2}=3 A, i_{3}=6 A \\
& \text { C. } i_{1}=6 A, i_{2}=6 A, i_{3}=0 A \\
& \text { D. } i_{1}=0 A, i_{2}=0 A, i_{3}=0 A
\end{aligned}
$$

Answer: A

D Watch Video Solution

16. In the circuit shows in Fig $E=15 V$,
$R_{1}=1 \Omega, R_{2}=1 \Omega, R_{3}=2 \Omega$, and $L=1.5 H$.

The currents flowing through R_{1}, R_{2}, and R_{3}
are i_{1}, i_{2}, and i_{3}, respectively.

Immediately after turning switch S on,

$$
\begin{aligned}
& \text { A. } i_{3}=0 A \text { and } \frac{d i_{3}}{d t}=0 A s^{-1} \\
& \text { B. } i_{3}=0 A \text { and } \frac{d i_{3}}{d t} \neq 0 A s^{-1}
\end{aligned}
$$

C. $i_{3}=0 A$ and the rate at which magnetic
energy stored is not zero
D. None of these

Answer: B

- Watch Video Solution

17. In the given at $t=0$, switch S is closed.

The current through the 10Ω resistor at any
instant $t(0<t<\infty)$ will be

$$
\text { A. } \frac{1}{6} e^{-(1000 / 3) t}
$$

B. $\frac{5}{6} e^{-(1000 / 3) t}$
C. $\frac{1}{6} e^{(1000 / 3) t}$
D. $\frac{6}{5} e^{(1000 / 3) t}$

Answer: B

- Watch Video Solution

18. In the given at $t=0$, switch S is closed.

The energy stored in the inductor at any instant $t(0<t \infty)$ will be

$$
\begin{aligned}
& \text { A. } \frac{1}{2}\left[5-5 e^{-(1000 / 3) t}\right]^{2} m J \\
& \text { B. } \frac{125}{2}\left[1-e^{-(1000 / 3) t}\right]^{2} m J \\
& \text { C. } \frac{25}{2}\left[1-e^{-(1000 / 3) t}\right]^{2} m J \\
& \text { D. } \frac{5}{2}\left[1-e^{-(1000 / 3) t}\right]^{2} m J
\end{aligned}
$$

Answer: B

- Watch Video Solution

19. In the given at $t=0$, switch S is closed.

The energy stored in the capacitor and inductor, respectively, at $t \rightarrow \infty$ will be
A. $1 m J$ and $62.5 m J$
B. 62.5 mJ and 1 mJ
C. $2 m J$ and $62.5 m J$
D. 1 mJ and 60 mJ

Answer: A

D Watch Video Solution

20. In Fig. there is a frame consisting of two square loops having resistors and inductors as
shown. This frame is placed in a uniform but
time-varying magnetic field in such a way that
one of the loops is placed in crossed magentic
field and the other is placed in dot magnetic
field. Both magnetic fields are perpendicular to
the planes of the loops.

If the magnetic field is given by
$B=(20+10 t) W b m^{-2} \quad$ in both regions
$[l=20 \mathrm{~cm}, b=10 \mathrm{~cm}, \quad$ and $\quad R=10 \Omega$,
$L=10 H)$,

The direction in induced current in the bigger loop will be
A. clockwise
B. anticlockwise
C. first clockwise for some time, then anticlockwise, and so on
D. first clockwise for some time, then
clockwise, and so on

Answer: B
21. In Fig. there is a frame consisting of two square loops having resistors and inductors as
shown. This frame is placed in a uniform but time-varying magnetic field in such a way that one of the loops is placed in crossed magentic
field and the other is placed in dot magnetic field. Both magnetic fields are perpendicular to the planes of the loops.

If the magnetic field is given by
$B=(20+10 t) W b m^{-2}$ in both regions
$[l=20 \mathrm{~cm}, b=10 \mathrm{~cm}, \quad$ and $\quad R=10 \Omega$,
$L=10 H)$,

The induced emf in the frame only due to the vartation of magnetic field will be
A. 0.3 V
B. 0.1 V
C. 0.5 V

D. 0.4 V

Answer: C

- Watch Video Solution

22. In Fig. there is a frame consisting of two
square loops having resistors and inductors as
shown. This frame is placed in a uniform but
time-varying magnetic field in such a way that one of the loops is placed in crossed magentic
field and the other is placed in dot magnetic
field. Both magnetic fields are perpendicular to
the planes of the loops.

If the magnetic field is given by $B=(20+10 t) W b m^{-2}$ in both regions
$[l=20 \mathrm{~cm}, b=10 \mathrm{~cm}, \quad$ and $\quad R=10 \Omega$,
$L=10 H)$,

The current in the frame as a funtion of time will be
A. $\frac{1}{20}\left(1-e^{-t}\right)$
B. $\frac{1}{40}\left(1-e^{-t}\right)$
C. $\frac{1}{20} e^{-t}$
D. $\frac{1}{10} e^{-t}$

Answer: B

- Watch Video Solution

23. there in no current part of this circuit for time $t<o$. Switch S is closed at $t=0$.

The rate at which the current through the inductor increases initially is
A. zero
B. $10 A s^{-1}$
C. $1 A s^{-1}$
D. $5 A s^{-1}$

Answer: B

- Watch Video Solution

24. there in no current part of this circuit for
time $t<o$. Switch S is closed at $t=0$.

Current through the 6Ω resistor
A. increases linearly with time
B. increase non-linearly with time
C. decreases non-linearly with time
D. remains constant

Answer: D

- Watch Video Solution

25. there in no current part of this circuit for
time $t<o$. Switch S is closed at $t=0$.

The current through the inductor after a long
time will be
A. zero
B. infinite
C. $\frac{6}{13} A$
D. None of these

Answer: C
(Watch Video Solution
26. Two capacitors of capacitance C and $3 C$ are charged to potential difference V_{0} and $2 V_{0}$
, respectively, and connected to an inductor of inductance L as shows in Fig. Initially, the current in the inductor is zero. Now, switch S is closed.

The maximum current in the inductor is
A. $\frac{3 V_{0}}{2} \sqrt{\frac{3 C}{L}}$
B. $V_{0} \sqrt{\frac{3 C}{L}}$
C. $2 V_{0} \sqrt{\frac{3 C}{L}}$
D. $V_{0} \sqrt{\frac{C}{L}}$

Answer: A

- Watch Video Solution

27. Two capacitors of capacitance C and $3 C$
are charged to potential difference V_{0} and $2 V_{0}$
, respectively, and connected to an inductor of
inductance L as shows in Fig. Initially, the current in the inductor is zero. Now, switch S is closed.

Potential difference across capacitor of capacitance C when the current in the circuit is maximum is
A. $\frac{V_{0}}{4}$
B. $\frac{3 V_{0}}{4}$
C. $\frac{5 V_{0}}{4}$
D. None of these

Answer: C

D Watch Video Solution

28. Two capacitors of capacitance C and $3 C$
are charged to potential difference V_{0} and $2 V_{0}$
, respectively, and connected to an inductor of
inductance L as shows in Fig. Initially, the
current in the inductor is zero. Now, switch S is closed.

Potential difference across capacitor of capacitance $3 C$ when the current in the circuit is maximum is

$$
\begin{aligned}
& \text { A. } \frac{V_{0}}{4} \\
& \text { B. } \frac{V_{0}}{4}
\end{aligned}
$$

C. $\frac{5 V_{0}}{4}$
D. None of these

Answer: C

D Watch Video Solution

29. In Fig. there is a conducting loop
$A B C D E F$ of resistance λ per unit length
placed near a long straight current-carrying
wire. The dimension are shows in the figure.

The long wire lies in the plane of the loop. The
current in the long wire varies as $I=I_{0}(t)$.

The mutual inductance of the pair is
A. $\frac{\mu_{0} a}{2 \pi} \operatorname{In}\left(\frac{2 a+l}{l}\right)$
B. $\frac{\mu_{0} a}{2 \pi} \operatorname{In}\left(\frac{2 a-l}{l}\right)$
C. $\frac{\mu_{0} a}{\pi} \operatorname{In}\left(\frac{a+l}{l}\right)$
D. $\frac{\mu_{0} a}{\pi} \operatorname{In}\left(\frac{a+l}{l}\right)$

Answer: A

D Watch Video Solution

30. In Fig. there is a conducting loop
$A B C D E F$ of resistance λ per unit length placed near a long straight current-carrying wire. The dimension are shows in the figure.

The long wire lies in the plane of the loop. The current in the long wire varies as $I=I_{0}(t)$.

The emf induced in the closed loop is
A. $\frac{\mu_{0} I_{0} a}{2 \pi} \operatorname{In}\left(\frac{2 a+l}{l}\right)$
B. $\frac{\mu_{0} I_{0} a}{2 \pi} \operatorname{In}\left(\frac{2 a-l}{l}\right)$
C. $\frac{\mu_{0} I_{0} a}{\pi} \operatorname{In}\left(\frac{a+l}{l}\right)$
D. $\frac{\mu_{0} a}{\pi} \operatorname{In}\left(\frac{a+l}{l}\right)$

Answer: A

D Watch Video Solution

31. In Fig. there is a conducting loop
$A B C D E F$ of resistance λ per unit length placed near a long straight current-carrying wire. The dimension are shows in the figure.

The long wire lies in the plane of the loop. The current in the long wire varies as $I=I_{0}(t)$.

The heat produced in the loop in time t is
A. $\frac{\left[\frac{\mu_{0} I_{0}}{2 \pi} \operatorname{In}\left(\frac{a+l}{l}\right)\right]^{2} a t}{4 \lambda}$
B. $\frac{\left[\frac{\mu_{0} I_{0}}{2 \pi} \operatorname{In}\left(\frac{2 a+l}{l}\right)\right]^{2} a t}{8 \lambda}$
C. $\frac{\left[\frac{\mu_{0} I_{0}}{2 \pi} \operatorname{In}\left(\frac{a+l}{l}\right)\right]^{2} a t}{3 \lambda}$

$$
\text { D. } \frac{\left[\frac{\mu_{0} I_{0}}{2 \pi} \operatorname{In}\left(\frac{3 a+l}{l}\right)\right]^{2} a t}{6 \lambda}
$$

Answer: B

D Watch Video Solution

32. Initially, the capacitor is charged to a potential of 5 V and then connected to position 1 with the shown polarity for $1 s$. After $1 s$ it is connected across the inductor at position 2

(a) Find the potential across the capacitor after $1 s$ of its connection to position 1 .
(b) Find the maximum current flowing in the
$L-C$ circuit when capacitor is connected across the inductor. Also, find the frequency of $L C$ oscillations.

$$
\begin{aligned}
& \text { A. } 5 \times 10^{3}\left(2+\frac{1}{e}\right) V \\
& \text { B. } 5 \times 10^{3}\left(2-\frac{1}{e}\right) V
\end{aligned}
$$

C. $5 \times 10^{3}\left(1+\frac{2}{e}\right) V$
D. none of these

Answer: B

D Watch Video Solution

33. Initially, the capacitor is charged to a potential of 5 V and then connected to position 1 with the shown polarity for $1 s$. After $1 s$ it is connected across the inductor at position 2

(a) Find the potential across the capacitor after $1 s$ of its connection to position 1 .
(b) Find the maximum current flowing in the
$L-C$ circuit when capacitor is connected across the inductor. Also, find the frequency of $L C$ oscillations.

$$
\begin{aligned}
& \text { А. }\left(2-\frac{1}{e}\right) \times 10^{4} A \\
& \text { в. }\left(1+\frac{2}{e}\right) \times 10^{4} A
\end{aligned}
$$

C. $\left(1-\frac{2}{e}\right) \times 10^{4} A$
D. none of these

Answer: A

D Watch Video Solution

34. Initially, the capacitor is charged to a potential of 5 V and then connected to position 1 with the shown polarity for $1 s$. After $1 s$ it is connected across the inductor at position 2

(a) Find the potential across the capacitor after $1 s$ of its connection to position 1 .
(b) Find the maximum current flowing in the
$L-C$ circuit when capacitor is connected across the inductor. Also, find the frequency of $L C$ oscillations.
A. $(20 / \pi) H z$ B. $(2 / \pi) H z$
C. $(40 / \pi) H z$
D. $100 / \pi H z$

Answer: D

- Watch Video Solution

35. In the circuit in Fig. switch S_{1} was closed for a long time. At time $t=0$ the switch is opened.

Find the maximum potentail difference across the plates of the capacitor after the switch is opened.

A. 100 V

B. 200 V

C. 300 V

D. 400 V

Answer: B

- Watch Video Solution

36. In the circuit in Fig. switch S_{1} was closed for a long time. At time $t=0$ the switch is opened.

Find the angular frequency of oscillation of the charge on the capacitor.
A. $100 \mathrm{rads}^{-1}$
B. $200 \mathrm{rads}^{-1}$
C. $300 \mathrm{rads}^{-1} \mathrm{~s}$

D. $400 \mathrm{rads} \mathrm{s}^{-1}$

Answer: B

D Watch Video Solution

Exercises (integer)

1. Figure shows a part of a bigger circuit. The
capacity of the capacitor is $6 m F$ and is desaesing at the constate rate $0.5 m \mathrm{Fs}^{-1}$.

The potential difference across the capacitor
at the shows moment is changing as follows:

$$
\frac{d V}{d t}=2 V s^{-1}, \frac{d^{2} V}{d t^{2}}=\frac{1}{2} V S^{-2}
$$

The current in the 4Ω resistor is decreasing at
the rate of $1 m A s^{-1}$. What is the potential difference (in $m V$) across the inductor at this moment?

2. In the circuit (Fig.) what is potential difference $V_{B}-V_{A}$ (in V) when current I is 5 A and is decreasing at the rate of $10^{3} \mathrm{As}^{-1}$

- Watch Video Solution

3. A current of $2 A$ is increasing at a rate of $4 A s^{-1}$ through a coil of inductance 1 H . Find
the energy stored in the inductor per unit time in the units of $J s^{-1}$.

D Watch Video Solution

4. Figure shows a circuit having a coil of
resistance $R=2.5 \Omega$ and inductance L
connected to a conducting rod of radius 10 cm
with its center at P.

Assume that friction and gravity are absent and a constant uniform magnatic field of $5 T$ exists as shown in figure. At $t=0$, the circuit is switched on and simultaneously a timevarying external torque is applied on the rod so that it rotates about P with a constant angular velocity $40 \mathrm{rads}^{-1}$. Find the magnitude of this torque (in $m N m$) when
current reaches half of its maximum value.

Neglect the self inductance of the loop formed by the circuit.

D Watch Video Solution

5. In the given circuit, initially switch S_{1} is
closed, and S_{2} and S_{3} are open. After charging of capacitor, at $t=0, S_{1}$ is opened and S_{2} and
S_{3} are closed. If the relation between inductance, capacitance and resistance is
$L=4 C R^{2}$, tehn find the time (in s) after
which current passing through capacitor and

D Watch Video Solution

6. Two colis, 1 and 2 have a mutual inductance
$M=5 H$ and resistance $R=10 \Omega$ each. A
current flows in coil 1, which varies with time
as: $I_{1}=2 t^{2}$, where t is time. Find the total
charge (in C) that has flows through coil 2 between $t=0$ and $t=2 s$.

D Watch Video Solution

7. A long solenoid of diameter $0.1 m$ has
2×10^{4} turns per metre. At the centre of the solenoid, a 100 - turns coil of radius $0.01 m$ is
placed with its axis coinciding with the constant rate from $+2 A$ to $2 A$ in $0.05 s$. Find
the total charge (in μC) flowing through the coil during this time when the resistance of the coil is $40 \not \neq^{2} \Omega$.

D Watch Video Solution

8. A capacitor of capacitnafe $2 \mu F$ is charged to
a potential difference of 12 V . It is then
connected across an inductor of inductance
0.6 mH . The current in the circuit when the potential difference across the capacitor is 6 V is

Watch Video Solution

Archives (fills In The Blanks)

1. A uniform wound solenoidal coil of self inductance 1.8×10^{-4} henry and resistance 6 ohm is broken up into two identical coils.

These identical coils are then connected in parallel across a 15 -volt battery of negligible resistance. The time constant for the current in the circuit is.......seconds and the steady
state current through the battery is amperes.

D Watch Video Solution

2. If ε_{0} and μ_{0} are, respectively, the electric permittivity and magnetic permeability of free space, ε and μ the corresponding quantities in
a medium, the index of refraction of the medium in terms of the above parameters is
3. The network shows in Fig is part of a complate circuit. If at a certain instant the current (I) is $5 A$, and is decreasing at a rate of $10^{5} \mathrm{As}^{-1}$ then $V_{B}-V_{A}=-V$.

Archives (single Correct)

1. A small square loop of wire of side I is placed inside a large square loop of wire of side
$L(\gg l)$. The loops aer coplanar and their centres coincide. What is the mutual inductance of the system?
A. l / L
B. l^{2} / L
C. L / l
D. L^{2} / l

Answer: B

D Watch Video Solution

2. A coil of inductance 8.4 mH and resistance
$6(\Omega)$ is connected to a 12 V battery. The
current in the coil is 1.0 A at approximately the
time
A. $500 s$
B. $25 s$
C. $35 m s$

D. $1 m s$

Answer: D

D Watch Video Solution

3. A uniform but time-varying magnetic field $B(t)$ exists in a cylindrical region of radius a and is directed into the plane of the paper as shown. The magnitude of the induced electric field at point P at a distance r from the centre
of the circular region

A. is zero
B. decreases as $1 / r$
C. increases as r
D. decreases as $1 / r^{2}$

- Watch Video Solution

4. A coil of wire having inductance and resistance has a conducting ring placed coaxially within it. The coil is connected to a battery at time $\mathrm{t}=\mathrm{0}$, so that a time-dependent current $1_{1}(t)$ starts following through the coil.

If $I_{2}(t)$ is the current induced in the ring, and $B(t)$ is the magnetic field at the axis of the coil due to $I_{1}(t)$ then as a function of time $(t>0)$, the product $I_{2}(t) B(t)$
A. increases with time
B. decreases with time
C. does not vary with time
D. passes through a mximum

Answer: D

D Watch Video Solution

5. Two circular coils can be arranged in any of
the three situation shown in figure. Their
mutual inductance will be

A. maximum in situation (i)
B. maximum in situation (ii)
C. maximum in situation (iii)
D. the same in all situations

Answer: A
6. A short-circuited coil is placed in a time-
varying magnetic field. Electrical power is dissipated due to the current induced in the coil. If the number of turns were to be quadrupled and the wire radius halved, then the electrical power dissipated would be

A. halved

B. the same
C. doubled
D. quadrupled

Answer: B

D Watch Video Solution

7. A small bar magnet is being slowly inserted
with constant velocity inside a solenoid as
shown in figure. Which graph best represents
the relationship between emf induced with
time

A.

C.

Time

Answer: C

D Watch Video Solution

8. Which of the field patterns given below is
valid for electric field as well as for magnetic

field?

Archives (multiple Correct)

1. Two different coils have self-inductance
$L_{1}=8 m H, L_{2}=2 m H$. The current in one coil is increased at a constant rate. The current in the second coil is also increased at the same rate. At a certain instant of time, the power given to the two coils is the same. At that time the current, the induced voltage and the energy stored in the first coil are
i_{1}, V_{1} and W_{1} respectively. Corrseponding
values for the second coil at the same instant are i_{2}, V_{2} and W_{2} respectively. Then,

$$
\begin{aligned}
& \text { A. } \frac{i_{1}}{i_{2}}=\frac{1}{4} \\
& \text { B. } \frac{i_{1}}{i_{2}}=4 \\
& \text { C. } \frac{W_{1}}{W_{2}}=\frac{1}{4} \\
& \text { D. } \frac{V_{1}}{V_{2}}=4
\end{aligned}
$$

Answer: A::C::D

D Watch Video Solution

2. The SI unit of the inductance, the henry can by written as
A. weber//ampere
B. volt-second//ampere
C. joule//(ampere) ^ (2)
D. ohm-second

Answer: A::B::C::D

- Watch Video Solution

3. A field line is shows in Fig. This field cannot
represent

A. Magnetic field
B. Electrostatic field
C. Induced electric field
D. Gravitational field

Answer: B::D

- Watch Video Solution

Archives (linked Compreshension)

1. In the given circuit the capacitor (C) may be
charged through resistance R by a battery V
by closing switch $\left(S_{1}\right)$. Also when $\left(S_{1}\right)$ is opend and $\left(S_{2}\right)$ is closed the capacitor is connected in series with inductor (L).

At the start, the capicitor was uncharged. when switch $\left(S_{1}\right)$ is closed and $\left(S_{2}\right)$ is kept open, the time constant of this circuit is τ. which of the following is correct
A. After time interval τ, charge on the capacitor is $C V / 2$
B. After time interval 2τ, charge on the
capacitor of $C V\left(1-e^{-2}\right]$
C. The work done by the voltage source will
be half of the heat disspated when the
capacitor is fully charged
D. After time interval 2τ, charge on the
capacitor is $C V\left(1-e^{-1}\right]$

Answer: B

D Watch Video Solution

2. In the given circuit the capacitor (C) may be charged through resistance R by a battery V by closing switch $\left(S_{1}\right)$. Also when $\left(S_{1}\right)$ is opend and $\left(S_{2}\right)$ is closed the capacitor is connected in series with inductor (L).

When the capacitor gets charged compleely, (=
(S_{1}) is opened and $\left(S_{2}\right)$ is closed, Then,
A. at $t=0$, energy stored in the circuit is purely in the from of magnetic energy. B. at any time $t>0$ current in the circuit is in the same direction.
C. at $t>0$, there is no excharge of energy
between the inductor and capacitor.
D. at any time $t>0$, maximum instantaneous current in the circuit may
be $V \sqrt{\frac{C}{L}}$.

- Watch Video Solution

3. In the given circuit the capacitor (C) may be charged through resistance R by a battery V by closing switch $\left(S_{1}\right)$. Also when $\left(S_{1}\right)$ is opend and $\left(S_{2}\right)$ is closed the capacitor is connected in series with inductor (L).

Given taht the total charge stored in the LC circuit is $\left(Q_{0}\right)$. for ${ }^{\text {TgeO }}$, the charge on the capacitor is

$$
\begin{aligned}
& \text { A. } Q=Q_{0} \cos \left(\frac{\pi}{2}+\frac{t}{\sqrt{L C}}\right) \\
& \text { B. } Q=Q_{0} \cos \left(\frac{\pi}{2}-\frac{t}{\sqrt{L C}}\right) \\
& \text { C. } Q=-L C \frac{d^{2} Q}{d t^{2}} \\
& \text { D. } Q=-\frac{1}{\sqrt{L C}} \frac{d^{2} Q}{d t^{2}}
\end{aligned}
$$

Answer: C

- Watch Video Solution

4. Modern train are based on maglev technology in which trains are magntically levitated, which runs its $E D S$ maglev system.

There are coils on both sides of wheels. Due to motion of the train, current induces in the coil of track which levitate it. This is in accordance
with Lenz's law. If train lowers down then due
to Lenz's law, repulsive force increase due to
which train gets uplifted and if it goes much
higher then there is a net downward force due
to gravity. The advantage of Maglev trains in
that there is no friction between the train and
the track, thereby reducting power consumption and enabling the train to attain
very high speeds. Disavantage of Maglev train is that as it slows down, the electromagnetic
forces decreases and it becomes difficult to keep it levitaited and as it moves forward according to Lenz's law there ia an electromagnetic drag force.

What is the advantage of this system?
A. No friction hence no power
consumption
C. Graviatation force is zero
D. Electrostatic force draws the train

Answer: A

D Watch Video Solution

5. Modern train are based on maglev
technology in which trains are magntically
levitated, which runs its $E D S$ maglev system.

There are coils on both sides of wheels. Due to motion of the train, current induces in the coil
of track which levitate it. This is in accordance
with Lenz's law. If train lowers down then due to Lenz's law, repulsive force increase due to which train gets uplifted and if it goes much
higher then there is a net downward force due
to gravity. The advantage of Maglev trains in
that there is no friction between the train and
the track, thereby reducting power
consumption and enabling the train to attain
very high speeds. Disavantage of Maglev train
is that as it slows down, the electromagnetic
forces decreases and it becomes difficult to
keep it levitaited and as it moves forward
according to Lenz's law there ia an electromagnetic drag force.

What is the disadvantage of this system?

A. Train
 experiences
 upward
 force

according to Lenz's law
B. Friction force creates a drag on the train
C. Retardation
D. By Lenz's law, the train experiences a drag

- Watch Video Solution

6. Modern train are based on maglev technology in which trains are magntically levitated, which runs its $E D S$ maglev system.

There are coils on both sides of wheels. Due to motion of the train, current induces in the coil of track which levitate it. This is in accordance
with Lenz's law. If train lowers down then due
to Lenz's law, repulsive force increase due to
which train gets uplifted and if it goes much
higher then there is a net downward force due
to gravity. The advantage of Maglev trains in that there is no friction between the train and the track, thereby reducting power consumption and enabling the train to attain very high speeds. Disavantage of Maglev train is that as it slows down, the electromagnetic forces decreases and it becomes difficult to keep it levitaited and as it moves forward according to Lenz's law there ia an electromagnetic drag force.

Which force causes the train to elevate up?
A. Electrostatic force
B. Time varying electing field
C. Magnetic force
D. Induced electric field

Answer: C

D Watch Video Solution

7. A point charges Q is moving in a circular orbit of radius R in the $x-y$ plane with an angular velocity ω. This can be considered as equivalent to a loop carrying a steady current $\frac{Q \omega}{2 \pi}$. S uniform magnetic field along the positive z-axis is now switched on, which increases at a constant rate from 0 to B in one
second. Assume that the radius of hie orbit remains constant. The application of hie magnetic field induces an emf in the orbit. The induced emf is defined as the work done by an induced electric field in moving a unit positive
charge around a closed loop. It si known that,
for an orbiting charge, the magnetic dipole moment is proportional to the angular momentum with a porportionality constant λ.

The magnitude of the induced electric field in
the orbit at any instant of time during the
time interval of the mangnetic field change is

> A. $\frac{B R}{4}$
> B. $\frac{B R}{2}$
> C. $B R$
> D. $2 B R$

Answer: B

8. A point charges Q is moving in a circular orbit of radius R in the $x-y$ plane with an
angular velocity ω. This can be considered as equivalent to a loop carrying a steady current $Q \omega$ $\frac{Q \omega}{2 \pi}$. S uniform magnetic field along the positive z-axis is now switched on, which increases at a constant rate from 0 to B in one second. Assume that the radius of the orbit remains constant. The application of the magnetic field induces an $E M F$ in the orbit.

The induced $E M F$ is defined as the work done by an induced electric field in moving a
unit positive charge around a closed loop. It is
known that, for an orbiting charge, the magnetic dipole moment is proportional to the angular momentum with a proportionality constant λ. The charge in the magnetic dipole moment associated with the orbit, at the end of the time interval of the magnetic field charge, is
A. $\lambda B Q R^{2}$
B. $-\lambda \frac{B Q R^{2}}{2}$
C. $\lambda \frac{B Q R^{2}}{2}$

D. $-\lambda B Q R^{2}$

Answer: B

- Watch Video Solution

Archives (integer)

1. A long circular tube of length 10 m and radius $0.3 m$ carries a current I along its
curved surface as shown . A wire - loop of resistance 0.005 ohm and of radius 0.1 m is
placed inside the tube its axis coinciding with the axis of the tube. The current varies as
$I=I_{0} \cos (300 t)$ where I_{0} is constant. If the magnetic moment of the loop is
$N \mu_{0} I_{0} \sin (300 t)$, then ' N ' is

2. A circular wire loop of radius R is placed in
the $x-y$ plane centered at the origin O. A
square loop of side a(altltR) having two turns
is placed with its centre at $=\sqrt{3} R$ along the
axis of hte circular wire loop, as shown in
figure. The plane of the square loop makes an angle of 45° with respect to the z-axis. If the mutual inductance between the loops is given
bu $\frac{\mu_{0} a^{2}}{2^{p / 2} R}$, then the value of p is

D Watch Video Solution

Subective Type

1. Two solenoids A and B spaced close to each
other and sharing the same cylindrical axis
have 400 and 700 turns, respectively. A current of $3.50 A$ in coil A produced an average flux of $300 \mu T-m^{2}$ through each turn of A and a flux of $90.0 m T-m^{2}$ through each turn of B.
a. Calculate the mutual inductance of the two solenoids.
b. What is the self inductance of A ?
c. What emf is induced in B when the current in A increases at the rate of $0.5 A / s$?

D Watch Video Solution

2. Solenoid S_{1} has N turns, radius R_{1} and length I. It is so long that its magnetic field is uniform nearly everywhere inside it and is nearly zero outside, Solenoid S_{2} has N_{2} turns, radius $R_{2}<R_{1}$. and the same length as S_{1} It
lies inside S_{1} with their axes prallel.

Assume S_{1} carries variable current i. Compute
the mutual inductance characterizing the emf induced is S_{2}. (b) Now assume S_{2} carries
current i. Compute the mutual inductance to which the emf in S_{1} is proportional. (c) State
how we results of parts (a) and (b) compare with each other.

- Watch Video Solution

Single correct Answer Type

1. A $2.00-\mathrm{H}$ indductor carries a steady current
of 0.500 A . When the switch in the circuit is
opened,the current is effectively zero after
10.0ms. What is the average induced emf in
the inductor during this time interval?
A. 100 V
B. 150 V
C. 133 V
D. 200 V

Answer: A

D Watch Video Solution

2. An emf of 25.0 mV is induced in a 500-turn
coil when the current is changing is at the rate
of $10.0 \mathrm{~A} / \mathrm{s}$. What is the magnetic flux through
each turn of the coil at an instant when the current is 4.0A?
A. $20 \mu T . m^{2}$
B. $10 \mu T . m^{2}$
C. $15 \mu T . m^{2}$
D. $30 \mu T . m^{2}$

Answer: A
(Watch Video Solution
3. The current in a coil changes from 3.50 A to
2.00 A in the same direction in 0.500 s . If the average emf induced in the coil is 12.0 mV .

What is the inductance of the coil?
A. 2.00 mH
B. 4.00 mH
C. 3.00 mH
D. 8.00 mH

Answer: B
4. A self-induced wmf in a solenoid of inductance L changes in time as $\varepsilon=\varepsilon_{0} e^{-k z}$.

Assuming the charge is finite.find the total
charge that passes a point in the wire of the solenoid.

$$
\begin{aligned}
& \text { A. } \frac{\varepsilon_{0}}{L k^{2}} \\
& \text { B. } \frac{2 \varepsilon_{0}}{L k^{2}} \\
& \text { C. } \frac{\varepsilon_{0}}{2 L k^{2}} \\
& \text { D. } \frac{3 \varepsilon_{0}}{L k^{2}}
\end{aligned}
$$

Answer: A

- Watch Video Solution

5. Light of wavelength 24000A is incident on a thin glass plate of refractive index 1.5 such that angle of refraction into plate is 60° .calculate the thickness of plate which will make it appear dark by reflection?

D Watch Video Solution
6. An emf 96.0 mV is induced in the windings of
a coil when the current in a nearby coil is increasing at the rate of $1.20 \mathrm{~A} / \mathrm{s}$. The mutual inductance of the two coils is
A. 40 mH
B. 20 mH
C. 10 mH
D. 80 mH

Answer: D

7. Two coils, held in fixed positions have a mutual inductance of $100 \mu \mathrm{H}$. what is the peak emf in one coil when the current in the other coil is 10 sin (1000t) where i is in amperes and t is in seconds?
A. 2.00 V
B. 1.00 V
C. 4.00 V
D. 3.00V

Answer: B

- Watch Video Solution

8. Two conducting circular loops of radii
R_{1} and R_{2} are placed in the same plane with
their centres coincidingt. Find the mutual inductane between them assuming
$R_{2} \ll R_{1}$.
A. $\frac{\mu_{0} \pi r^{2}}{R}$
B. $\frac{2 \mu_{0} \pi r^{2}}{R}$

> C. $\frac{\mu_{0} \pi r^{2}}{2 R}$
> D. $\frac{3 \mu_{0} \pi r^{2}}{3 R}$

Answer: C

D Watch Video Solution

9. A coil of $C u$ wire (radius r, self-inductance L
) is bent in two concentric turns each having
radius $\frac{r}{2}$. The self-inductance now
A. $2 L$
B. L
C. 4 L
D. $L / 2$

Answer: A

D Watch Video Solution

10. If in a coil rate of change of area is 5 meter 2 $\frac{\text { milli } \sec \text { ond }}{}$ and current become $1 a m p$ from $2 a m p$ in 2×10^{-3} sec. if magnetic field is 1

Tesla then self-inductance of the coil is
A. $2 H$
B. $5 H$
C. $20 H$
D. $10 H$

Answer: D

D Watch Video Solution

11. The current through a 4.6 H inductor is
shown in the following graph. The induced emf during the time interval $\mathrm{t}=5 \mathrm{milli}-\mathrm{sec}$ to

6 milli - sec will be

A. $10^{3} \mathrm{~V}$
B. $-23 \times 10^{3} V$
C. $23 \times 10^{3} \mathrm{~V}$
D. Zero

Answer: C
12. An alternating current of frequency $200 \mathrm{rad} / \mathrm{sec}$ and peak value of $1 A$ as shown in
the figure in applied to the primary of a transformer. If the coefficient of mutual induction between the primary and the secondary is $1.5 H$, the voltage induced in the secondary will be
A. 300 V
B. 191 V
C. 220 V
D. 471 V

Answer: B

D Watch Video Solution

13. The current i in an inducton coil varies with
time t according to the graph shown in figure.

Which of the following graphs shows the induced emf (E) in the coil with time?
A.
B.
c.
D.

Answer: C

D Watch Video Solution

14. When a certain curcuit consisting of a constant e.m.f. E an inductance L and a resistance R is closed, the current in it increases with time according to curve 1. After one parameter (E, L or R) is changed, the increase in current is closed second time.

Which parameter was changed and in what

direction?

A. L is increased
B. L is decreased
C. R is incresed
D. R is decreased

Answer: A
(Watch Video Solution
15. Switch S of the circuit shown in figure is
closed at $\mathrm{t}=0$.

If emf in L is e and i is the current flowing through the circuit at time t, which of the following graphs is corrent?
A.
B.
C.
D.

Answer: C

D Watch Video Solution

16. Light of wavelength 12000A is incident on a
thin glass plate of refractive index1 such that angle of refraction into plate is 60°.calculate
the thickness of plate which will make it appear dark by reflection?

- Watch Video Solution

17. In which of the following circuits is the
current maximum just after the switch S is
closed?

A. (i)
B. (ii)
C. (iii)

D. Both (ii) and (iii)

Answer: B

- Watch Video Solution

18. In an L-R circuit connected to a battery at
which energy ius stored in the inducator is
plotted against time during the growth of
current in the ciruit Which of the following
best represents the resulting curve?
A.
B.
C.
D.

Answer: A

- Watch Video Solution

19. In the circuit diagram shown,
$R=10 \omega, L=5 m H, E=10 \vee$ and $i=1 A$.

The current is decreasing at the reate of
$10^{3} A / S$. Then $\left(V_{A}-V_{B}\right)$ at this instant is :
A. 10 V
B. 15 V
C. 20 V
D. 25 V

Answer: B
(Watch Video Solution
20. In the given circuit find the ratio of i_{1} to i_{2}.

Where is the initial (at $\mathrm{t}=0$) current, and i_{2} is
steady state $($ att $=\infty)$ current the battery
6Ω

A. 1.0
B. 0.8
C. 1.2
D. 1.5

Answer: D

D Watch Video Solution

21. Consider the circuit shown in figure. The
current through the battery a long time after
the switch S is closed is:

A. $\frac{E}{R_{1}}$
B. $\frac{E}{R_{2}}$
C. $\frac{E}{R_{1}+R_{2}}$
D. $\frac{E\left(R_{1}+R_{2}\right)}{R_{1} R_{2}}$

Answer: C

- Watch Video Solution

22. In the circuit shown in figure switch S is
closed at time $\mathrm{t}=0$. The charge which passes
through the battery in one time constant is

A. $\frac{e R^{2} E}{L}$
B. $E\left(\frac{L}{R}\right)$
c. $\frac{E L}{e R^{2}}$
D. $\frac{e L}{E R}$

Answer: A

D Watch Video Solution

Multiple Correct Answer

1. The current in a 90 mH inductor changes
with time as $i=1.0 t^{2}-6 t$, where I is in amperes and t is in seconds.
A. the magnitude of the induced emf at $\mathrm{t}=4.0 \mathrm{~s}$ is 180 mV
B. the emf zero at time $t=3.0 \mathrm{~s}$
C. the magnitude of the induced emf at $\mathrm{t}=4.0 \mathrm{~s}$ is 360 mV
D. the emf zero at time $\mathrm{t}=4.0 \mathrm{~s}$

Answer: A::B

D Watch Video Solution

2. A $1-k \Omega$ resistor is connected in series with
a $10-m H$ inductor, a 30 V battery and an
open switch. At time $t=0$, the switch is
suddenly closed.
a. What is the maximum current in this circuit and when does it occur?
b. What are the voltage drops across the inductor and across the resistor $20 \mu s$ after the switch is closed?
c. On a single set of axes, sketch the voltage across the resistor and the voltage across the inductor as functions of time. Also, sketch a graph of the current in the circuit as a function of time.
A. the power being supplied by the battery
is 20.0 W
B. the power being delivered to the resistor is 20.0 W
C. the power being delivered t the inductor
zero
D. the energy stored in the magnetic filed
of the indicator is 20.0 J

Answer: A

D Watch Video Solution
3. The switch in figure lis connected to position a for a long time interval. At $t=0$, the switch is thrown to position b. After this time, what are
A. the frequency of oscillation of the LC circuit
B. the maximum charge that appears on
the capacitor
C. the maximum current in the indictor
D. the total energy the circuit possesses at

$$
t=3.00 \mathrm{~s}
$$

$$
2
$$

Answer: A

- Watch Video Solution

Comprehension Type

1. A solenoid of radius 2.50 cm has 400 turns
and a length of 20.0 cm . The inductance (L) of
this solenoid is \qquad
A. 4 mH
B. 5 mH
C. 3 mH
D. 2 mH

Answer: D

D Watch Video Solution
2. A solenoid of radius 2.50 cm has 400 turns
and a length of 20.0 cm . The current in the coil
is changing with time such that an emf of
$75 \times 10^{\wedge}(-6)$ is produced.

The rate of change of current in the solenoid
is
A. $38.0 \mathrm{~mA} / \mathrm{s}$
B. $19.0 \mathrm{~mA} / \mathrm{s}$
C. $21.0 \mathrm{~mA} / \mathrm{s}$
D. $50.0 \mathrm{~mA} / \mathrm{s}$

Answer: A

D Watch Video Solution

3. A technician wraps wire around a tube of
length $4 \pi^{2} \mathrm{~cm}$ having a diameter of 8.00 cm .

When the windings are evenly spread over the
full length of the tube, the result is a solenoid containing 1000turns of wire. If the current in this solonoid increases at the rate of 4.00A/s.
the inductance of this solenoid is
A. 32 mH
B. 16 mH
C. 48 mH
D. 8 mH

Answer: B

D Watch Video Solution

4. A technician wraps wire around a tube of length $4 \pi^{2} \mathrm{~cm}$ having a diameter of 8.00 cm .

When the windings are evenly spread over the
full length of the tube, the result is a solenoid containing 1000turns of wire. If the current in this solonoid increases at the rate of $4.00 \mathrm{~A} / \mathrm{s}$ the self-induced emf in the solenoid is
A. 32 mV
B. 16 mV
C. 64 mV
D. 24 mV

Answer: C

5. Consider the circuit shown in figure.

When the switch is in position a, for what
value of r wil the circuit have a time costant of

$10 \mu s$?

A. 2.0 kohm
B. 2.5 kohm
C. 1.0kohm
D. none of these

Answer: A

- Watch Video Solution

6. Light of wavelength 3000A is incident on a thin glass plate of refractive index1 such that angle of refraction into plate is 60°.calculate
the thickness of plate which will make it appear dark by reflection?

D Watch Video Solution

7. A circuit consists of a coil, a switch and a battery, all in series. The internal resistance of the battery is negligible compared with that of the coil. The switch is originally open. It is thrown closed, after a time interval Δt. The current in the circuit reaches 80.0% of its
final value. The switch then remains closed for a time interval much longer than Δt. The wires connected to the terminals of the battery are then short circuited with another wire and removed from the battery, so that the current is uninterrupted.

At an instant that is a time interval Δt. After the short circuit, the current is what percentage of its maximum value? a) 20% b) 8% c) 4% d) 10%
A. 20.0%
B. 8.0%
C. 4.0%
D. 10.0%

Answer: A

8. what is the expression of work done for isobaric process?

- Watch Video Solution

Concept Based

1. Light is incident on a glass plate of refractive index 3.0 such that angle of refraction is 60°
.Dark band is observed corresponding to the wavelength of 12000 A .If the thickness of
glass plate is $1.2 \times 10^{-3} \mathrm{~mm}$. Calculate the order of the interference band for reflected system.

D Watch Video Solution

2. After switch is closed in the LC circuit shown
in the figure, the charge on the capacitor is
sometimes zero, but at such instants the
current in the circuit is not zero. How is this
behaviour possible?
3. Discuss the similarities between the energy stored in the electric field of charged capacitor and the energy stored in the magnetic field of a current-carrying coil.

- Watch Video Solution

4. In the circuit of figure, the battery emf is ε
the resitance is R and the capacitance is C.
The switch S is closed for a long time interval,
and zero potential difference is measured
across the capacitor
T

After the switch is opened. the potential difference across the capacitor reaches a maximum value of ΔV. What is the value of the inductance?

$$
\begin{aligned}
& \text { A. } \frac{C(\Delta V)^{2}}{2 \varepsilon^{2}} \\
& \text { B. } \frac{C(\Delta V)^{2}}{\varepsilon^{2}} \\
& \text { C. } \frac{2 C(\Delta V)^{2}}{\varepsilon^{2}} \\
& \text { D. } \frac{C(\Delta V)^{2}}{4 \varepsilon^{2}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

5. A $1.00 \mu F$ capacitor is charged by a 40.0 V power supply. The fully charged charged capacitor is then discharged through a 10.0 mH inductor. Find the maximum current in the resultaing oscillations.
A. 400 mA
B. 800 mA
C. $600 m A$
D. 150 mA

Answer: A

- Watch Video Solution

6. The frequency of oscillation of current in the
indcutor is
A. $\frac{1}{3 \sqrt{L C}}$

$$
\begin{aligned}
& \text { B. } \frac{1}{6 \pi \sqrt{L C}} \\
& \text { C. } \frac{1}{\sqrt{L C}} \\
& \text { D. } \frac{1}{2 \pi \sqrt{L C}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

7. Light of wavelength 24000 A is incident on a thin glass plate of refractive index1 such that angle of refraction into plate is 60°.calculate
the thickness of plate which will make it appear dark by reflection?

D Watch Video Solution

8. Two waves of intensity I and 9 l are superimposed in such a way that resultant Intensity is 71 .Find the phase difference between them ?

D Watch Video Solution

