# © 'doubtnut 

India's Number 1 Education App

## MATHS

# BOOKS - SHRI BALAJI MATHS (ENGLISH) 

## AREA UNDER CURVES

## Axercise Single Choice Problems

1. The area enclosed by the curve
$[x+3 y]=[x-2]$ where $x \in[3,4]$ is :
(where[.] denotes greatest integer function)
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. 1

## Answer: B

## - Watch Video Solution

2. The area of region(s) enclosed by the curve $y=x^{2}$ and $y=\sqrt{|x|}$ is
A. $\frac{1}{3}$
B. $\frac{2}{3}$
C. $\frac{4}{3}$
D. $\frac{16}{3}$

Answer: B

## - Watch Video Solution

3. Find the area enclosed by the figure described by the equation $x^{4}+1=2 x^{2}+y^{2}$.
A. 2
B. $\frac{16}{3}$
C. $\frac{8}{3}$
D. $\frac{4}{3}$

## Answer: C

## - Watch Video Solution

4. The area defined by $|y| \leq e^{|x|}-\frac{1}{2}$ in cartesian co-ordinate system, is :
A. $(2-2 \ln 2)$
B. $(4-\ln 2)$
C. $(2-\ln 2)$
D. $(2-2 \ln 2)$

## Answer: D

5. For each positive integer $n>a, A_{n}$ represents the area of the region restricted to the following two inequalities : $\frac{x^{2}}{n^{2}}+y^{2}$ and $x^{2}+\frac{y^{2}}{n^{2}}<1$. Find $\lim _{n \rightarrow \infty} A_{n}$.
A. 4
B. 1
C. 2
D. 3

## Answer: A

## - Watch Video Solution

6. Find the ratio in which the area bounded by the curves
$y^{2}=12 x a n d x^{2}=12 y$ is divided by the line $x=3$.
A. $7: 15$
B. $15: 49$
C. 1:3
D. 17: 49

## Answer: B

## - Watch Video Solution

7. The value of positive real parameter 'a' such that area of region blunded by parabolas $y=x-a x^{2}, a y=x^{2}$ attains its maximum value is equal to :
A. $\frac{1}{2}$
B. 2
C. $\frac{1}{3}$
D. 1

## - Watch Video Solution

8. For $0<r<1$, let $n_{r}$ dennotes the line that is normal to the curve $y=x^{r}$ at the point $(1,1)$ Let $S_{r}$ denotes the region in the first quadrant bounded by the curve $y=x^{r}$, the x -axis and the line $n_{r}$ ' Then the value of $r$ the minimizes the area of $S_{r}$ is :
A. $\frac{1}{\sqrt{2}}$
B. $\sqrt{2}-1$
C. $\frac{\sqrt{2}-1}{2}$
D. $\sqrt{2}-\frac{1}{2}$

## Answer: B

## - Watch Video Solution

9. The area bounded by $|x|=1-y^{2}$ and $|x|+|y|=1$ is:
A. $\frac{1}{3}$
B. $\frac{1}{2}$
C. $\frac{2}{3}$
D. 1

## Answer: C

## - Watch Video Solution

10. Point A lies on the curve $y=e^{x^{2}}$ and has the coordinate $\left(x, e^{-x^{2}}\right)$ where $x>0$. Point B has the coordinates $(x, 0)$. If ' $O$ ' is the origin, then the maximum area of the $\triangle A O B$ is
A. $\frac{1}{\sqrt{8} e}$
B. $\frac{1}{\sqrt{4} e}$
C. $\frac{1}{\sqrt{2} e}$
D. $\frac{1}{\sqrt{e}}$

## Answer: A

## - Watch Video Solution

11. If the area enclosed between the curves
$y=a x^{2} a n d x=a y^{2}(a>0)$ is 1 square unit, then find the value of $a$.
A. $\frac{1}{\sqrt{3}}$
B. $\frac{1}{2}$
C. 1
D. $\frac{1}{3}$

Answer: D

- Watch Video Solution

12. Let $f(x)=x^{3}-3 x^{2}+3 x+1$ and $g$ be the inverse of it , then area bounded by the curve $y=g(x)$ wirth $x$-axis between $x=1$ to $x=2$ is (in square units):
A. $\frac{1}{2}$
B. $\frac{1}{4}$
C. $\frac{3}{4}$
D. 1

## Answer: B

## - Watch Video Solution

13. Area bounded by $x^{2} y^{2}+y^{4}-x^{2}-5 y^{2}+4=0$ is equal to :
A. $\frac{4 \pi}{2}+\sqrt{2}$
B. $\frac{4 \pi}{3}-\sqrt{2}$
C. $\frac{4 \pi}{3}-\sqrt{2}$
D. none of these

## Answer: C

## - Watch Video Solution

14. Let $f(x): R^{+} \rightarrow R^{+}$is an invertible function such that $f^{\prime}(x)>0 \operatorname{and} f(x)>0 \forall x \in[1,5]$. If $f(1)=1$ and $f(5)=5$ and area under the curve $y=f(x)$ on $x$-axis from $x=1 \rightarrow x=5 i s 8$ sq. units, then area bounded by $y=f^{-1}(x)$ on x -axis from $x=1 \rightarrow x=5$ is
A. 12
B. 16
C. 18
D. 20
15. A circel centered at origin and having radius $\pi$ units is divided by the curve $y=\sin x$ in two parts. Then area of the upper part equals to
A. $\frac{\pi^{2}}{2}$
B. $\frac{\pi^{3}}{4}$
C. $\frac{\pi^{3}}{2}$
D. $\frac{\pi^{3}}{8}$

## Answer: C

## - Watch Video Solution

16. The area of the loop formed by $y^{2}=x\left(1-x^{3}\right) \mathrm{dx}$ is:
A. $\int_{0}^{1} \sqrt{x-x^{4}} d x$
B. $2 \int_{0}^{1} \sqrt{x-x^{4}} d x$
C. $\int_{-1}^{1} \sqrt{x-x^{4}} d x$
D. $4 \int_{0}^{1 / 2} \sqrt{x-x^{4}} d x$

## Answer: B

## - Watch Video Solution

17. If $f(x)=\min \left[x^{2}, \sin \frac{x}{2},(x-2 \pi)^{2}\right]$, the area bounded by the curve $y=f(x)$, x-axis, $x=0$ and $x=2 \pi$ is given by

Note: $x_{1}$ is the point of intersection of the curves $x^{2}$ and $\sin \frac{x}{2}, x_{2}$ is the point of intersection of the curves $\sin \frac{x}{2}$ and $\left.(x-2 \pi)^{2}\right)$
A.

$$
\int_{0}^{x_{1}}\left(\sin \frac{x}{2}\right) d x+\int_{x_{1}}^{\pi} x^{2} d x+\int_{\pi}^{x_{2}}(x-2 \pi)^{2} d x+\int_{x_{2}}^{2 \pi}\left(\sin \frac{x}{2}\right) d x
$$

B. $\int_{0}^{x_{1}} x^{2} d x+\int_{x_{1}}^{x_{3}}\left(\sin \frac{x}{2}\right) d x+\int_{x_{2}}^{2 \pi}(x-2 \pi)^{2} d x, \quad$ where

$$
x_{1} \in\left(0, \frac{\pi}{3}\right) \text { and } x_{2} \in\left(\frac{5 \pi}{3}, 2 \pi\right)
$$

C. $\int_{0}^{x_{1}} x^{2} d x+\int_{x_{1}}^{x_{2}} \sin \left(\frac{x}{2}\right) d x+\int_{x_{2}}^{2 \pi}(x-2 \pi)^{2} d x$,
$x_{1} \in\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ and $x_{2} \in\left(\frac{3 \pi}{2}, 2 \pi\right)$
D. $\int_{0}^{x_{1}} x^{2} d x+\int_{x_{1}}^{x_{2}} \sin \left(\frac{x}{2}\right) d x+\int_{x_{2}}^{2 \pi}(x-2 \pi)^{2} d x$,
where
$x_{1} \in\left(\frac{\pi}{2}, \frac{2 \pi}{3}\right)$ and $x_{2} \in(\pi, 2 \pi)$

## Answer: B

## - Watch Video Solution

18. The area enclosed between the curves
$|x|+|y| \geq 2$ and $y^{2}=4\left(1-\frac{x^{2}}{9}\right)$ is :
A. $(6 \pi-4)$ sq. units
B. $(6 \pi-8)$ se. units
C. $(3 \pi-4)$ se. units
D. $(3 \pi-2)$ sq. units

## ( Watch Video Solution

## Axercise One Or More Than One Answer Is Are Correct

1. Let $f(x)$ be $a$ polynomial function of degree 3 where $a<b<c$ and $f(a)=f(b)=f(c)$. If the graph of $\mathrm{f}(\mathrm{x})$ is as shown, which of the following statements are INCORRECT ? (Where $c>|a|$ )

A. (a) $\int_{a}^{c} f(x) d x=\int_{b}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
B. (b) $\int_{a}^{c} f(x) d x<a$
C. (c) $\int_{a}^{b} f(x) d x<\int_{c}^{b} f(x) d x$
D. (d) $\frac{1}{b-a} \int_{a}^{b} f(x) d x>\frac{1}{c-b} \int_{b}^{c} f(x) d x$

## Answer: $\mathrm{B}:: \mathrm{C}:: \mathrm{D}$

## - Watch Video Solution

2. $\quad T_{n}=\sum_{r}^{3 n}$
$\forall n \in\{1,2,3 \ldots\}:$
A. $T_{n}>\frac{1}{2} \ln 2$
B. $S_{n}<\frac{1}{2} \ln 2$
C. $T_{n}<\frac{1}{2} \ln 2$
D. $S_{n}>\frac{1}{2} \ln 2$

## Answer: A: D

3. If a curve $y=a \sqrt{x}+b x$ passes through point $(1,2)$ and the area bounded by curve, line $x=4$ and $x$-axis is 8 , then : (a) $a=3$ (b) $b=3$
(c) $a=-1$ (d) $b=-1$
A. $a=\frac{15}{4}$
B. $b=3$
C. $a=-1$
D. $b=-\frac{7}{4}$

## Answer: A:D

## - Watch Video Solution

## Axercise Comprehension Type Problems

1. Let $f: A \rightarrow B f(x)=\frac{x+a}{b x^{2}+c x+2}$, where A represent domain set and B represent range set of function $f(x)$ a,b,c

$$
\begin{aligned}
& \in R, f(-1)=0 \text { and } y=1 \quad \text { is } \quad \text { an } \\
& y=f(x) \text { and } y=g(x) \text { is the inverse of } f(x) .
\end{aligned}
$$

$\mathrm{g}(0)$ is equal to :
A. -1
B. -3
C. $-\frac{5}{2}$
D. $-\frac{3}{2}$

## Answer: A

## - Watch Video Solution

2. Let $f: A \rightarrow B f(x)=\frac{x+a}{b x^{2}+c x+2}$, where A represent domain set and $B$ represent range set of function $f(x) \quad \mathrm{a}, \mathrm{b}, \mathrm{c}$ $\in R, f(-1)=0$ and $y=1 \quad$ is an asymptote of $y=f(x)$ and $y=g(x)$ is the inverse of $f(x)$.
$g(0)$ is equal to :
A. $2 \sqrt{5}+\ln \left(\frac{3-\sqrt{5}}{5+\sqrt{5}}\right)$
B. $2 \sqrt{5}+2 \ln \left(\frac{3+\sqrt{5}}{3-\sqrt{5}}\right)$
C. $3 \sqrt{5}+4 \ln \left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right)$
D. $3 \sqrt{5}+2 \ln \left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right)$

## Answer: D

## - Watch Video Solution

3. Let $f: A \rightarrow B f(x)=\frac{x+a}{b x^{2}+c x+2}$, where A represent domain set and B represent range set of function $f(x)$ a,b,c

$$
\in R, f(-1)=0 \text { and } y=1 \quad \text { is } \quad \text { an } \quad \text { asymptote of }
$$

$y=f(x)$ and $y=g(x)$ is the inverse of $f(x)$.
Area of region enclosed by asymptotes of curves $y=f(x)$ and $y=g(x)$ is:
A. 4
B. 9
C. 12
D. 25

Answer: B

## - Watch Video Solution

4. Consider the area $S_{0}, S_{1}, S_{2} \ldots$ bounded by the x-axis and halfwaves of the curve $y=e^{-x} \sin x, \quad$ where $x \geq 0$.

The value of $S_{0}$ is
A. $\frac{1}{2}\left(1+e^{x}\right)$
B. $\frac{1}{2}\left(1+e^{-\pi}\right)$
C. $\frac{1}{2}\left(1-e^{-\pi}\right)$
D. $\frac{1}{2}\left(e^{\pi}-1\right)$

## Answer: B

## - Watch Video Solution

5. For $j=0,1,2 \ldots n$ let $S_{j}$ be the area of region bounded by the $x$-axis and the curve $y e^{x}=\sin x$ for $j \pi \leq x \leq(j+1) \pi$

The ratio $\frac{S_{2009}}{S_{2010}}$ equals :
A. $e^{-x}$
B. $e^{\pi}$
C. $\frac{1}{2} e^{x}$
D. $2 e^{\pi}$

## Answer: B

## - Watch Video Solution

6. For $j=0,1,2 \ldots n$ let $S_{j}$ be the area of region bounded by the x -axis and the curve $y e^{x}=\sin x$ for $j \pi \leq x \leq(j+1) \pi$

The value of $\sum_{j=0}^{\infty} S_{j}$ equals to :
A. $\frac{e^{x}\left(1+e^{x}\right)}{2\left(e^{\pi}-1\right)}$
B. $\frac{1+e^{\pi}}{2\left(e^{\pi}-1\right)}$
C. $\frac{1+e^{\pi}}{e^{\pi}-1}$
D. $\frac{e^{\pi}\left(1+e^{\pi}\right)}{\left(e^{\pi}-1\right)}$

## Answer: B

## - Watch Video Solution

## Axercise Matching Type Problems

| Column-1 |  |  | Column-II |
| :---: | :---: | :---: | :---: |
| (A) | Area of region formed by points $(x, y)$ satisfying $[x]^{2}=[y]^{2}$ for $0 \leq x \leq 4$ is equal to (where [ ] denotes greatest integer function) | (P) | 48 |
| (B) | The area of region formed by points $(x, y)$ satisfying $x+y \leq 6, x^{2}+y^{2} \leq 6 y$ and $y^{2} \leq 8 x$ is $\frac{k \pi-2}{12}$, then $k=$ | (Q) | 27 |
| (C) | The area in the first quardant bounded by the curve $y=\sin x$ and the line <br> $\frac{2 y-1}{\sqrt{2}-1}=\frac{2}{\pi}(6 x-\pi)$ is $\left[\frac{\sqrt{3}-\sqrt{2}}{2}-\frac{(\sqrt{2}+1) \pi}{k}\right]$, then $k=$ | (R) | 7 |
| (D) | If the area bounded by the graph of $y=x e^{-a x}$ ( $a>0$ ) and the abscissa axis is $\frac{1}{9}$ then the value of ' $a$ ' is equal to | (S) | 4 |
|  |  | (T) | 3 |

## Axercise Subjective Type Problems

1. Find function $f(x)$ which satisfy the relation $f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)} \forall x, y \in R, y \neq 0, f(y) \neq 0$ and $f^{\prime}(1)=2$

## - Watch Video Solution

2. Let $f(x)$ be $a$ function which satisfy the equation $f(x y)=f(x)+f(y)$ for all $x>0, y>0$ such that $f^{\prime}(1)=2$. Let A be the area of the region bounded by the curves $y=f(x), y=\left|x^{3}-6 x^{2}+11 x-6\right|$ and $x=0$, then find value of 28 $\frac{28}{17} A$.

## - Watch Video Solution

3. Find the area enclosed by circle $x^{2}+y^{2}=4$, parabola $y=x^{2}+x+1$, the curve $y=\left[\frac{\sin ^{2} x}{4}+\frac{\cos x}{4}\right]$ and X -axis (where,[.] is the greatest integer function.

## - Watch Video Solution

4. Let the function $f:[-4,4] \rightarrow[-1,1]$ be defined implicitly by the equation $x+5 y-y^{5}=0$ If the area of triangle formed by tangent and normal to $f(x) a t x=0$ and the line $y=5$ is A , find $\frac{A}{13}$.

## - Watch Video Solution

5. Area of the region bounded by $[x]^{2}=[y]^{2}, \quad$ if $x \in[1,5]$, where [ ] denotes the greatest integer function is:

## - Watch Video Solution

6. Consider $y=x^{2}$ and $f(x)$ where $\mathrm{f}(\mathrm{x})$, is a differentiable function satisfying
$f(x+1)+f(z-1)=f(x+z) \forall x, z \in R$ and $f(0)=0, f^{\prime}(0)=4$. If area bounded by curve $y=x^{2}$ and $y=f(x)$ is $\Delta$, find the value of $\left(\frac{3}{16} \Delta\right)$.

## - Watch Video Solution

7. The least integer which is greater than or equal to the area of region in $x-y$ plane satisfying $x^{6}-x^{2}+y^{2} \leq 0$ is:

## (D) Watch Video Solution

8. The set of points ( $\mathrm{x}, \mathrm{y}$ ) in the plane satisfying $x^{2 / 5}+|y|=1$ form a curve enclosing a region of area $\frac{p}{q}$ square units, when p and q are relatively prime positive intergers. Find $p-q$.
