©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - SHRI BALAJI MATHS (ENGLISH)

HYPERBOLA

Exercise 1 Single Choice Problems

1. The normal to curve $x y=4$ at the point (1,4) meets curve again at :
A. $(-4,-1)$
B. $\left(-8,-\frac{1}{2}\right)$
C. $\left(-16,-\frac{1}{4}\right)$
D. $(-1,-4)$

Answer: C

- Watch Video Solution

2. If $y=m x+c$ be a tangent to the hyperbola $\frac{x^{2}}{\lambda^{2}}-\frac{y^{2}}{\left(\lambda^{3}+\lambda^{2}+\lambda\right)^{2}}=1,(\lambda \neq 0)$,
minimum value of $16 \mathrm{~m}^{\wedge} 2$
A. 0
B. 1
C. 4
D. 9

Answer: D

- Watch Video Solution

3. Let any double ordinate $P N P^{\prime}$ of the hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ be produced on both sides to meet the asymptotes in Q and Q^{\prime}. Then $P Q \cdot P^{\prime} Q$ is equal to
(a) 25 (b) 16 (c) 41 (d) none of these
A. 3
B. 4
C. 1
D. 5

Answer: A

- Watch Video Solution

4. The eccentricity of the hyperbola $\left|\sqrt{(x-3)^{2}+(y-2)^{2}}-\sqrt{(x+1)^{2}+(y+1)^{2}}\right|=1$ is
A. 12
B. 14
C. 17
D. 10

Answer: D

- Watch Video Solution

5. A normal to the hyperbola $\frac{x^{2}}{4}-\frac{y^{2}}{1}=1$ has equal intercepts on the positive x - and y-axis. If this normal touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then $a^{2}+b^{2}$ is equal to 5 (b) 25 (c) 16 (d) none of these
A. 5
B. 25
C. 16
D. None of these

Answer: B

- Watch Video Solution

6. The locus of a point whose chord of contact with respect to the circle $x^{2}+y^{2}=4$ is a tangent to the hyperbola $x y=1$ is a/an ellipse (b) circle hyperbola (d) parabola
A. ellipse
B. circle
C. hyperbola
D. parabola

Answer: C

- Watch Video Solution

7. If the chord $x \cos \alpha+y \sin \alpha=p$ of the hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{18}=1$ subtends a right angle at the center, and the diameter of the circle, concentric with the hyperbola, to which the given
chord is a tangent is d, then the value of $\frac{d}{4}$ is
A. 4
B. 5
C. 4
D. 7

Answer: C

- Watch Video Solution

8. If the tangent and normal at a point on rectangular hyperbola cut-off intercept a_{1}, a_{2} on xaxis and b_{1}, b_{2} on the y-axis, then $a_{1} a_{2}+b_{1} b_{2}$ is equal to :
A. 2
B. $\frac{1}{2}$
C. 0
D. -1

Answer: C

Exercise 2 One Or More Than One Answer Is Are Correct

1. A common tangent to $9 x^{2}-16 y^{2}=144$ and $x^{2}+y^{2}=9$, is

$$
\begin{aligned}
& \text { A. } y=\frac{3}{\sqrt{7}} x+\frac{15}{\sqrt{17}} \\
& \text { B. } y=3 \sqrt{\frac{2}{\sqrt{17}}} x+\frac{25}{\sqrt{7}} \\
& \text { C. } y=2 \sqrt{\frac{3}{7}} x+15 \sqrt{7} \\
& \text { D. } y=-3 \sqrt{\frac{2}{\sqrt{7}}} x+\frac{25}{\sqrt{7}}
\end{aligned}
$$

Answer: B::D

2. Tangents are drawn to the hyperbola $x^{2}-y^{2}=3$ which are parallel to the line $2 x+y+8=0$. Then their points of contact is/are
A. $(2,1)$
B. $(2,-1)$
C. $(-2,-1)$
D. $(-2,-1)$

Answer: B::D
3. If the line $a x+b y+c=0$ is a normal to the curve $x y=1$, then $a>0, b>0 \quad a>0, b<0$ $a\langle 0, b\rangle 0$ (d) $a<0, b<0$ none of these

$$
\begin{aligned}
& \text { A. } a>0, b>0 \\
& \text { B. } a>0, b<0 \\
& \text { C. } b<0, a<0 \\
& \text { D. } a<0, b>0
\end{aligned}
$$

Answer: B::D

4. A circle cuts the rectangular hyperbola $x y=1$ in the points $\left(x_{r}, y_{r}\right), r=1,2,3,4$.

Prove that $x_{1} x_{2} x_{3} x_{4}=y_{1} y_{2} y_{3} y_{4}=1$
A. $y_{1} y_{2} y_{3} y_{4}=1$
B. $x_{1} x_{2} x_{3} x_{4}=1$
C. $x_{1} x_{2} x_{3} x_{4}=y_{1} y_{2} y_{3} y_{4}=-1$
D. $y_{1} y_{2} y_{3} y_{4}=0$

Answer: B

Exercise 3 Comprehension Type Problems

1. A point P moves such that the sum of the slopes of the normals drawn from it to the hyperbola $x y=$ 16 is equal to the sum of ordinates of feet of normals. The locus of P is a curve C.

The equation of the curve C is
A. $x^{2}=4 y$
B. $x^{2}=16 y$
C. $x^{2}=12 y$
D. $y^{2}=8 x$

- Watch Video Solution

2. A point P moves such that the sum of the slopes of the normals drawn from it to the hyperbola $x y=$ 16 is equal to the sum of ordinates of feet of normals. The locus of P is a curve C .

The equation of the curve C is

$$
\begin{aligned}
& \text { A. } x^{2}=4 y \\
& \text { B. } x^{2}=2 y \\
& \text { C. } x^{2}+2 y=0
\end{aligned}
$$

$$
\text { D. } x^{2}+4 y=0
$$

Answer: C

- Watch Video Solution

3. A point P moves such that the sum of the slopes of the normals drawn from it to the hyperbola $x y=$ 16 is equal to the sum of ordinates of feet of normals. The locus of P is a curve C .

The equation of the curve C is
A. $768 \sqrt{3}$
B. $776 \sqrt{3}$
C. $760 \sqrt{3}$

D. None of these

Answer: A

- Watch Video Solution

Exercise 4 Subjective Type Problems

1. Let $y=m x+c$ be a common tangent to $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ and $\frac{x^{2}}{4}+\frac{y^{2}}{3}=1$, then find the value of $m^{2}+c^{2}$.

2. The maximum number of normals that can be

 drawn to an ellipse passing through a given point is :
- Watch Video Solution

3. Tangents at P to rectangular hyperbola $x y=2$ meets coordinate axes at A and B, then area of triangle $O A B$ (where O is origin) is \qquad .
