©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - SHRI BALAJI MATHS
 (ENGLISH)

PARABOLA

Exercise 1 Single Choice Problems

1. If BC is a latus rectum of parabola $y^{2}=4 a x$
and A is the vertex, then the minimum length
of the projection of BC on a tangent drawn in
the portion BAC is
A. 2
B. 4
C. $2 \sqrt{3}$
D. $2 \sqrt{2}$

Answer: D
(Watch Video Solution
2. A normal is drawn to the parabola $y^{2}=9 x$
at the point $P(4,6)$. A circle is described on $S P$
as diameter, where S is the focus. The length
of the intercept made by the circle on the normal at point P is :

> A. $\frac{17}{4}$
> B. $\frac{15}{4}$
> C. 4
> D. 5

Answer: B

3. about to only mathematics

A. 70
B. 71
C. 80
D. 75

Answer: D

4. Find the length of normal chord which subtends an angle of 90° at the vertex of the parabola $y^{2}=4 x$.
A. $6 \sqrt{3}$
B. $7 \sqrt{2}$
C. $8 \sqrt{2}$
D. $9 \sqrt{2}$

Answer: A

D Watch Video Solution
5. If b and c are lengths of the segments of any focal chord of the parabola $y^{2}=4 a x$, then write the length of its latus rectum.

$$
\begin{aligned}
& \text { A. } \frac{b c}{b+c} \\
& \text { B. } \frac{2 b c}{b+c} \\
& \text { C. } \frac{b+c}{2} \\
& \text { D. } \sqrt{b c}
\end{aligned}
$$

Answer: B
6. The length of the shortest path that begins
at the point $(-1,1)$, touches the x-axis and
then ends at a point on the parabola
$(x-y)^{2}=2(x+y-4)$, is :
A. $3 \sqrt{2}$
B. 5
C. $4 \sqrt{10}$
D. 13
7. The normal to the parabola $y^{2}=4 a x$ at three points P, Q and R meet at A. If S is the focus, then prove that $S P \cdot S R=a S A^{2}$.
A. 2^{3}
B. $a^{2}\left(S O^{\prime}\right)$
C. $a\left(S O^{\prime}\right)^{2}$
D. None of these
8. A and B are two points on the parabola $y^{2}=4 a x$ with vertex O . if OA is perpendicular to OB and they have lengths r_{1} and r_{2} respectively, then the valye of $\frac{r_{1}^{4 / 3} r_{2}^{4 / 3}}{r_{1}^{2 / 3}+r_{2}^{2 / 3}}$ is
A. $16 a^{2}$
B. a^{2}
C. $4 a$
D. None of these

D Watch Video Solution

9. Length of the shortest chord of the parabola $y^{2}=4 x+8$, which belongs to the family of
lines
$(1+\lambda) y+(\lambda-1) x+2(1-\lambda)=0$ is
A. 6
B. 5
C. 8
D. 2

Answer: C

- Watch Video Solution

10. If locus of mid point of any normal chord of
the parabola :
$y^{2}=4 x$ is $x-a=\frac{b}{y^{2}}+\frac{y^{2}}{c}$,
where $a, b, c \in N$, then $(a+b+c)$ equals to
A. 5
B. 8
C. 10
D. None of these

Answer: B

D Watch Video Solution

11. Let tangents at P and Q to curve
$y^{2}-4 x-2 y+5=0$ intersect at T. If $\mathrm{S}(2,1)$
is a point such that $(S P)(S Q)=16$, then the
length ST is equal to :
A. 3
B. 4
C. 5
D. None of these

Answer: B

D Watch Video Solution
12. Abscissa of two points P and Q on parabola
$y^{2}=8 x \quad$ are roots of equation
$x^{2}-17 x+11=0$. Let Tangents at P and Q
meet at point T, then distance of T from the

focus of parabola is :

A. 7
B. 6
C. 5
D. 4

Answer: A
(Watch Video Solution
13. If $A x+B y=1$ is a normal to the curve $a y=x^{2}$, then :

$$
\begin{aligned}
& \text { A. } 4 A^{2}(1-a B)=a B^{3} \\
& \text { B. } 4 A^{2}(2+a B)=a B^{3} \\
& \text { C. } 4 A^{2}(1+a B)+a B^{3}=0 \\
& \text { D. } 2 A^{2}(2-a B)=a B^{3}
\end{aligned}
$$

Answer: D

- Watch Video Solution

14. The equation of a curve which passes
through the point $(3,1)$, such the segment of any tangent between the point of tangency and the x-axis is bisected at its point of intersection with y-axis, is :

$$
\begin{aligned}
& \text { A. } x=3 y^{2} \\
& \text { В. } x^{2}=9 y \\
& \text { C. } x=y^{2}+2 \\
& \text { D. } 2 x=3 y^{2}+3
\end{aligned}
$$

Answer: A
15. The parabola $y=4-x^{2}$ has vertex P. It intersects x-axis at A and B. If the parabola is translated from its initial position to a new position by moving its vertex along the line $y=x+4$, so that it intersects x -axis at B and C, then abscissa of C will be :
A. 3
B. 4
C. 5

D. 8

Answer: D

D Watch Video Solution

16. A focal chord for parabola $y^{2}=8(x+2)$ is
inclined at an angle of 60° with positive x-axis
and intersects the parabola at P and Q. Let perpendicular bisector of the chord $P Q$ intersects the x-axis at R, then the distance of R from focus is :
A. $\frac{8}{3}$
B. $\frac{16 \sqrt{3}}{3}$
C. $\frac{16}{3}$
D. $8 \sqrt{3}$

Answer: C

D Watch Video Solution
17. The chord of contact of a point $A\left(x_{A}, y_{A}\right)$
of $y^{2}=4 x$ passes through $(3,1)$ and point A
lies on $x^{2}+y^{2}=5^{2}$. Then :
A. $5 x_{A}^{2}+24 x_{A}+11=0$
B. $13 x_{A}^{2}+8 x_{A}-21=0$
C. $5 x_{A}^{2}+24 x_{A}+61=0$
D. $13 x_{A}^{2}+21 x_{A}-31=0$

Answer: A

D Watch Video Solution

Exercise 2 One Or More Than One Answer Is Are

 Correct1. PQ is a double ordinate of the parabola $y^{2}=4 a x$. If the normal at P intersect the line passing through Q and parallel to axis of x at G , then locus of G is a parabola with -
A. vertex at (4a, 0)
B. focus at $(5 a, 0)$
C. directrix as the line $x-3 a=0$
D. length of latus rectum equal to $4 a$

Answer: A::B::C::D

Exercise 3 Comprehension Type Problems

1. Consider the following lines :
$L_{1}: x-y-1=0$
$L_{2}: x+y-5=0$
$L_{3}: y-4=0$

Let L_{1} is axis to a parabola, L_{2} is tangent at
the vertex to this parabola and L_{3} is another
tangent to this parabola at some point P.

Let ' C ' be the circle circumscribing the triangle
formed by tangent and normal at point P and axis of parabola. The tangent and normals at normals at the extremities of latus rectum of this parabola forms a quadrilateral $A B C D$.
Q. The equation of the circle ' C ' is :

$$
\begin{aligned}
& \text { A. } x^{2}+y^{2}-2 x-31=0 \\
& \text { B. } x^{2}+y^{2}-2 y-31=0 \\
& \text { C. } x^{2}+y^{2}-2 x-2 y-31=0 \\
& \text { D. } x^{2}+y^{2}+2 x+2 y=31
\end{aligned}
$$

Answer: A
2. Consider the following lines:
$L_{1}: x-y-1=0$
$L_{2}: x+y-5=0$
$L_{3}: y-4=0$

Let L_{1} is axis to a parabola, L_{2} is tangent at
the vertex to this parabola and L_{3} is another tangent to this parabola at some point P.

Let ' C ' be the circle circumscribing the triangle
formed by tangent and normal at point P and axis of parabola. The tangent and normals at
normals at the extremities of latus rectum of
this parabola forms a quadrilateral $A B C D$.
Q. The given parabola is equal to which of the following parabola ?
A. $y^{2}=16 \sqrt{2} x$
B. $x^{2}=-4 \sqrt{2} y$
C. $y^{2}=-\sqrt{2} x$
D. $y^{2}=8 \sqrt{2} x$

Answer: D

3. Consider the following lines:
$L_{1}: x-y-1=0$
$L_{2}: x+y-5=0$
$L_{3}: y-4=0$

Let L_{1} is axis to a parabola, L_{2} is tangent at
the vertex to this parabola and L_{3} is another tangent to this parabola at some point P.

Let ' C ' be the circle circumscribing the triangle
formed by tangent and normal at point P and
axis of parabola. The tangent and normals at normals at the extremities of latus rectum of
this parabola forms a quadrilateral $A B C D$.
Q. The equation of the circle ' C ' is :
A. 16
B. 8
C. 64
D. 32

Answer: C

D Watch Video Solution

	Column-1		Column-ll
(A)	The equation of tangent to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$ which cuts off equal intercepts on axes is $x-y=a$ where $\|a\|$ equal to	(P)	$\sqrt{2}$
(B)	The normal $y=m x-2 a m-a m^{2}$ to the parabola $y^{2}=4 a x$ subtends a right angle at the vertex if $\|\mathrm{m}\|$ equal to	(Q)	$\sqrt{3}$
(C)	The equation of the common tangent to parabola $y^{2}=4 x$ and $x^{2}=4 y$ is $x+y+\frac{k}{\sqrt{3}}=0$, then k is equal to	(R)	$\sqrt{8}$
(D)	An equation of common tangent to parabola $y^{2}=8 x$ and the hyperbola $3 x^{2}-y^{2}=3$ is $4 x-2 y+\frac{k}{\sqrt{2}}=0$. then k is equal to	(s)	$\sqrt{41}$
		(T)	2

- Watch Video Solution

Watch Video Solution

Exercise 5 Subjective Type Problems

1. Points A and B lie on the parabola $y=2 x^{2}+4 x-2$, such that origin is the mid-point of the linesegment $A B$. If l be the
length of the line segment $A B$, then find the unit digit of l^{2}.
2. For the parabola $y=-x^{2}$, let
$a<0$ and $b>0, P\left(a,-a^{2}\right)$ and $Q\left(b,-b^{2}\right)$
. Let M be the mid-point of $P Q$ and R be the point of intersection of the vertical line through M, with the parabola. If the ratio of the area of the region bounded by the parabola and the line segment PQ to the area of the triangle PQR be $\frac{\lambda}{\mu}$, where λ and μ are relatively prime positive integers, then find the value of $(\lambda+\mu)$:
3. The chord AC of the parabola $y^{2}=4 a x$ subtends an angle of 90° at points B and D on the parabola. If points A, B, C and D are represented \quad by $\quad\left(a t_{i}^{2}, 2 a t_{i}\right), i=1,2,3,4$ respectively, then find the value of $\left|\frac{t_{2}+t_{4}}{t_{1}+t_{3}}\right|$.

- Watch Video Solution

